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Abstract The standard linear approach to the gravitational waves theory is critically reviewed.

Contrary to the prevalent understanding, it is pointed out that this theory contains many concep-

tual and technical obscure issues that require further analysis.

1 Introduction

For many years in the past, the existence of gravitational waves was a controversial issue. The
discovery of a binary pulsar whose orbital period changes in accordance with the predicted
gravitational wave emission [1] put an end to that controversy. In fact, that discovery provided
a compelling evidence for the existence of gravitational waves (for a textbook reference, see
Ref. [2]). That evidence, however, did not provide any clue on their form and effects. The
only it has done was to confirm the quadrupole radiation formula. Despite this fact, together
with the quadrupole radiation formula, the standard linear approach to the gravitational waves
theory became widely considered a finished topic, a theory not to be questioned anymore (see,
for example, Ref. [3], page 313). In other words, it became a dogma.

However, as a careful analysis of the current theory shows, it is actually plagued by many
obscure points [4]. From one hand, owing to the nonlinear nature of gravitation, which makes
it difficult to deal with, it is understandable the existence of some obscure, or even controversial
points. On the other hand, these difficulties cannot be used as an excuse for our leniency with
the established theory. In these notes, by using the potential (or Lagrangian) form of Einstein
field equation, even at the risk of committing a heresy, I will critically review the foundations
of the standard linear approach to the gravitational waves theory, pointing out precisely where
it lacks consistency and why it requires further attention.

2 Gauge versus gravitational waves

It is well-known that, in order to transport its own charge (or source), a gauge field must
satisfy a nonlinear field equation. For example, the gauge field equations of chromodynamics
must be nonlinear to allow the field to transport color charge. In the language of differential
forms (we use here the same notations and conventions of Ref. [5]), the Yang-Mills equation∗

is written as [6]
dH − j = J, (1)

∗The Yang-Mills theory will be adopted as the paradigm of nonlinear gauge theories.
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where H = −∂L/∂F is the excitation 2-form,† with L the gauge Lagrangian and F = DA the
field strength of the gauge potential A. In addition, j stands for the gauge pseudo-current,
and J is the source current. Due to the property

dd = 0, (2)

known as Poincaré lemma [8], the field equation implies the conservation of the total current:

d (j + J) = 0. (3)

Electromagnetism is a particular case of Yang-Mills theories, with the Abelian unitary
group U(1) as the gauge group. In this case, the Yang-Mills equation reduces to the linear
Maxwell equation

dH = J, (4)

where H = −∂L/∂F is the electromagnetic excitation 2-form, with L the Lagrangian and
F = dA the electromagnetic field strength. The source J in this case is the electric current,
which is conserved on account of the Poincaré lemma:

dJ = 0. (5)

This conservation law says that a source cannot lose electric charge when emitting electromag-
netic waves. In fact, remembering that currents are quadratic in the field variable, the linearity
of Maxwell equation restricts the gauge self-current j to be also linear, and consequently to
vanish

j = 0. (6)

This is the reason why an electromagnetic wave is unable to transport its own source, that
is, electric charge, a result consistent with the conservation law (5). Observe that the source
current J is quadratic in the source field variables, but linear in the electromagnetic field.
Differently from the self-current j, therefore, the linearity of Maxwell equation does not restrict
it to vanish. Then comes the crucial point: since neither energy nor momentum is source
of the electromagnetic field, the energy-momentum current does not appear explicitly in the
electromagnetic field equation, and for this reason the linearity of Maxwell equation does not
restrict the energy-momentum tensor of the electromagnetic field to be linear. This means that,
even though electromagnetic waves are unable to carry electric charge, they do carry energy
and momentum, whose intensity is given by the (quadratic) Poynting vector.

Let us consider now the gravitational case. Denoting by Lg the gravitational Lagrangian,
the potential (or Lagrangian) form of Einstein equation reads [9] (k = 8πG/c4)

dHα − k tα = k Tα, (7)

where

Hα = −
k

h

∂Lg

∂dhα
(8)

†In Yang-Mills theory, as well as in electromagnetism, the field excitation 2-form coincides with the field
strength. However, there are theories in which they do not coincide. This is the case, for example, of teleparallel
gravity, a gauge theory for the translation group [7].
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is the gravitational field excitation 2-form (also called superpotential), with hα the tetrad (or
coframe) field and h = det(hα). In addition,

tα = −
1

h

∂Lg

∂hα
(9)

stands for the gravitational self-current, which in this case represents the gravitational energy-
momentum pseudotensor, and

Tα = −
1

h

∂Ls

∂hα
(10)

is the source energy-momentum current, with Ls the source Lagrangian. Notice that in this
form, Einstein equation (7) is similar, in structure, to the Yang-Mills equation (1). Its main
property is to explicitly exhibit the complex defining the energy-momentum pseudo-current of
the gravitational field. From the Poincaré lemma (2), the total energy-momentum density is
found to be conserved as a consequence of the field equation:

d(tα + Tα) = 0. (11)

Now, owing to the weakness of the gravitational interaction, and considering that the
sources of gravitational waves are at enormous distances from Earth, it is sensible to assume
that the amplitude of a gravitational wave when reaching a detector on Earth will be very small.
These facts allow the use of a perturbative analysis, where the gravitational field variable is
expanded in powers of a small parameter. Namely,

hα = δα + h(1)α + h(2)α + · · · , (12)

where δα is a trivial tetrad related to Minkowski spacetime. In the linear, or first-order
approximation, the gravitational field equation becomes mathematically similar to Maxwell
equation. In fact, at this order the field equation (7) reduces to

dH (1)
α = k T (1)

α , (13)

which is mathematically similar to the Maxwell equation (4).
However, in spite of this similarity, there is a fundamental difference between the two cases.

As we have already seen, the linearity of Maxwell equation restricts the electromagnetic self-
current to vanish. As a consequence, an electromagnetic wave is unable to transport electric
charge. Analogously, since the gravitational energy-momentum pseudotensor tα is at least
quadratic in the field variables [10], it vanishes in the linear approximation:

t(1)α = 0. (14)

This means that a linear gravitational wave is unable to transport its own source, that is,
energy and momentum. This is consistent with the Poincaré lemma, which when applied to
the first-order field equation (13) implies that the source energy-momentum tensor is conserved:

dT (1)
α = 0. (15)

Strictly speaking, this conservation law says that, at this order, a mechanical system cannot
lose energy in the form of gravitational waves. Since any wave must have energy to exist, what
this conservation law is saying is that linear (or dipole) gravitational radiation does not exist.
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3 The standard approach to gravitational waves

3.1 Linear or nonlinear: that is the question

Even though there seems to be a certain agreement that the transport of energy and momentum
by gravitational waves is a nonlinear phenomenon (see, for example, Ref. [11]), instead of going
to the second order, the standard approach to gravitational waves follows a kind of “mixed
procedure”, which consists basically in assuming that gravitational waves carry energy (are
nonlinear), but at the same time, because the amount of energy transported is so small, it is
also assumed that its dynamics can be approximately described by a linear equation [12]. More
precisely, it can be described by the (sourceless version of the) linear wave equation (13).

Conceptually speaking, however, this is a questionable assumption. The reason is that
either a gravitational wave does or does not carry energy. If it carries, it cannot satisfy a linear
equation. If applied to a Yang-Mills propagating field, it would correspond to assume that, for a
gauge field with small-enough amplitude, its evolution could be accurately described by a linear
equation. Of course, this is plainly wrong: a Yang-Mills propagating field must be nonlinear to
carry its own source, otherwise it is not a Yang-Mills field. Analogously, a gravitational wave
must be nonlinear to transport its own source, otherwise it is not a gravitational wave. This
is not a matter of approximation, but a conceptual question.‡

It is opportune at this point to recall some properties of solitary waves, whose existence
depends on a precise compensation between dispersion and nonlinearity [15]. In the specific
case of surface waves in shallow water, solitary waves are obtained from the Navier-Stokes
equation (for an inviscid fluid) through a perturbation scheme. At the first order, one obtains
a linear wave-equation whose solution determines the dispersion relation of the system, not
the physical wave. At the second order, the first-order solution appears multiplied by itself,
giving rise to a nonlinear evolution equation—the so-called Korteweg-de Vries equation. The
solitary wave, which is the physical wave observed in nature, is then obtained as a solution to
this nonlinear equation. Of course, in order to obtain a more precise solution, one has to go
to higher orders in the perturbation scheme. The important point is to observe that, even for
very small wave amplitudes, a solitary wave can never be approximately described by a linear
equation. This is a general property of nonlinear waves, of which gravitational waves are just
an example.

3.2 Messing with the perturbation scheme

The next step of the standard approach is to compute the energy and momentum transported
by these linear waves. The common procedure is to make use of the second-order energy-
momentum pseudo-current [12].§ The argument normally used to justify this procedure is
that this is similar to the electromagnetic wave, which in spite of being linear, its energy-
momentum tensor is quadratic in the field variables. However, this is a misleading argument.

‡It is interesting to remark that even the well-known exact plane gravitational wave solution of Einstein
equations [13] transports neither energy nor momentum [14]. This is in accordance with the nonlinear nature
of the transport of energy-momentum by gravitational waves.

§The problem of the non-localizability of the energy and momentum of the gravitational field [16] is not
relevant for the present discussion, and will not be considered here.
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In fact, as discussed in the previous section, the linearity of Maxwell equation does not im-
pose any restriction on the (quadratic) energy-momentum tensor of the electromagnetic field,
which can then be used to compute the energy and momentum transported by electromagnetic
waves. In the gravitational case, on the other hand, the linearity of the first-order gravita-
tional field equation (13) restricts the gravitational energy-momentum current to be linear,
and consequently to vanish at this order. A quadratic energy-momentum pseudo-tensor can
only appear in orders higher than one. This is the case, for example, of the second-order
gravitational field equation (17) below, where t(2)α represents the second-order gravitational
energy-momentum pseudotensor, which is quadratic in the first-order field variable. It must,
for this reason, represent the energy and momentum transported by second-order gravitational
waves. The simultaneous use of quantities belonging to different orders of the perturbation
scheme constitutes a permissive, unacceptable procedure.

4 Problems and obscure points

On account of some unjustifiable assumptions, as well as of the misuse of the perturbation
scheme, the standard approach to gravitational waves becomes plagued by many inconsistencies
and obscure points. In this section, some of these points are discussed.

4.1 The question of the gravitational wave frequency

Gravitational waves are generated, and act on free particles through tidal effects (see, for
example, Ref. [3], page 310). These effects, described by the geodesic deviation equation, are
well-known to be produced by inhomogeneities in the gravitational field, and like the ocean tides
on Earth, occur twice for each complete cycle of the system Moon-Earth. In fact, according
to the quadrupole radiation formula, gravitational radiation comes out from the source with
a frequency that is twice the source frequency [17]. However, the plane gravitational wave
that emerges from the standard linear approach propagates with the same frequency of the
source. To circumvent this problem, one has to artificially adjust by hands the wave frequency,
as explained in side-note 8, page 105 of Ref. [2]. This is a drawback of the linear approach,
which seems to tell us that the first-order wave does not represent the physical, or quadrupole
gravitational wave.

4.2 The question of the effects on free particles

Similarly to the electromagnetic wave, the field components of the first-order gravitational
wave (in transverse-traceless coordinates) are orthogonal to the propagation direction. As
a consequence, by using the geodesic deviation equation it is concluded that, when passing
through two vertically separated particles, the first-order gravitational wave would make them
to oscillate orthogonally around the original point. A circumference of free particles would
be distorted in such a way that it would become an ellipse, first (let us say) vertically, then
horizontally, and so on. The question then arises: how a strictly attractive field like gravitation
could give rise to orthogonal oscillations around the original position? This orthogonal oscil-
lation can be easily understood in the electromagnetic case, where the Lorentz force is either
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attractive or repulsive depending on the sign of the field component. However, in the strictly
attractive case of gravitation, it is not clear at all how such orthogonal particles oscillation
could be possible.

4.3 The question of linear curvature

The existence of a non-vanishing first-order Riemann tensor is perhaps one of the main puzzles
of the gravitational wave theory. The usual lore is that, if a linear gravitational wave produces
a non-vanishing linear curvature tensor, it must exist physically. However, there are a number
of points that should be considered. As discussed in Section 2, due to the fact that the
gravitational energy-momentum current is at least quadratic in the field variables, the energy-
momentum density associated to any linear field configuration must vanish. A non-vanishing
energy density can only appear in orders higher than one. This does not mean that the first-
order gravitational field is physically meaningless. As a matter of fact, at the second-order the
first-order solutions will appear multiplied by itself, giving rise to nonlinear field configurations
with non-vanishing energy-momentum density.

Furthermore, recall that the components of the Riemann tensor themselves are not phys-
ically meaningful in the sense that they are different in different coordinate systems. For
example, starting with the “electric components” Ri0j0 of the Riemann tensor, through a
general coordinate transformation one can get non-vanishing “magnetic components” Ri0jk.
By inspecting the components of the Riemann tensor, therefore, it is not possible to know
whether they represent a true gravitomagnetic field produced by a rotating source, or just
effects of coordinates. This can only be done by inspecting the invariants constructed out
of the Riemann tensor (see Ref. [18], page 355). Now, as a simple computation shows, all
invariants constructed out of the first-order Riemann tensor of the linear gravitational waves
vanish identically [19–22]. This includes the Kretschmann and the pseudo-scalar invariants.
Considering that these invariants are proportional to the mass/energy and angular momen-
tum of the field configuration (see Ref. [18], page 356-357), it can be immediately concluded
that first-order gravitational waves are empty of physical meaning as neither mass/energy nor
angular momentum can be attributed to them.

5 Second-order gravitational waves

If, instead of the usual standard approach [12], we accept that all first-order equations are
fully correct up to that order, we arrive at the inexorable result that linear gravitational waves
transport neither energy nor momentum. In this case, it is straightforward to see that they
are unable to produce any effect on free particles [23]. The natural way to proceed is then to
go to the next order. At the second order, the source energy-momentum tensor is found to be
conserved in the covariant sense,

DT (2)
α ≡ dT (2)

α + Γ(1)
α

β
∧ T (1)

β = 0, (16)

with Γ(1)
α

β the first-order Levi-Civita connection. As is well-known, it is not a true conserva-
tion law, but just an identity (called Noether identity) governing the exchange of energy and
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momentum between the source and gravitation [24]. This means that, differently from what
happens at first order, at the second order a mechanical system can lose energy in the form of
gravitational waves. The amount of energy and momentum released is correctly predicted by
the (nonlinear) quadrupole radiation formula.

At this order, instead of the Maxwell-type field equation (13), the gravitational field equa-
tion acquires the Yang-Mills form

dH (2)
α − k t(2)α = k T (2)

α , (17)

with t(2)α the second-order gravitational energy-momentum pseudotensor, which (we repeat) is
quadratic in the first-order field variable. Similarly to a gluon field, which is able to transport
color charge, the radiative solution of the sourceless version of the gravitational field equa-
tion (17) is able to transport energy and momentum. It must, for this reason, represent the
physical gravitational wave.

Nonlinear evolution equations are far more difficult to deal with than linear equations. In
spite of this difficulty, it has already been possible to get a glimpse of the properties of the
second-order gravitational waves [25]. To begin with, owing to its quadratic nonlinearity, the
second-order gravitational wave naturally emerges propagating with a frequency that is twice
the source frequency. This is in agreement with the quadrupole radiation formula, as well as
with the tidal nature of the gravitational radiation (see the discussion of Section 4.1). This
result can be considered an additional evidence that second-order gravitational waves might
represent the physical wave.

In general, the amplitude of second-order effects are considered to fall off with 1/r2, where
r is the distance from the source. Due to the large distances from the sources, second-order
effects in gravitational wave theory are usually considered to be neglectful. However, owing
to the intricacies of nonlinear equations, the sourceless version of the field equation (17) has
a wave solution whose amplitude falls off with 1/r [25]. Of course, this is not enough to
affirm that such waves are detectable because their intensities depend also on the parameters
appearing in the amplitude definition. In particular, like in all nonlinear waves, the amplitude
of the second-order gravitational wave depends explicitly on the frequency of the wave. The
magnitude of such amplitudes is as yet a question to be explored.

Using the second-order wave solution, it is possible to compute the components of the
second-order Riemann tensor components. Substituting these components in the geodesic
deviation equation, one can find the effects of the second-order gravitational wave on free
particles. Following this procedure, it has been found that when a gravitational wave passes
through two particles separated by a small distance along the direction of propagation of the
wave, both particles begin moving towards the source due to the attraction of gravitation. In
addition, owing to the inhomogeneity of the gravitational field of the wave, their distance will
oscillate as they move. Observe that the particles will not oscillate around an equilibrium
point, but will move towards the source with different velocities in such a way that their
distance oscillates along the direction of propagation of the wave. This means that second-
order gravitational waves are longitudinal waves [25]. Such property is consistent with the tidal
origin of gravitational waves, as well as with the strictly attractive character of gravitation.
According to the second-order approach, therefore, this longitudinal oscillation is the sign to
be looked for in the search of gravitational waves.
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6 Final remarks

In spite of its beauty, the traditional form of Einstein equation hides important aspects of
general relativity. In addition, it may not be the appropriate form to deal with certain problems
of gravitation. On the other hand, owing to its mathematical similarity to the Yang-Mills
equation, the potential form of Einstein equation unveils important aspects of general relativity.
In particular, because the energy-momentum pseudotensor of the gravitational field appears
explicitly in this field equation, the similarities and mainly the differences in relation to Maxwell
equation become much more visible. The reason why such form of Einstein equation has seldom
been used in gravitation is probably the non-existence of an invariant Lagrangian for general
relativity that depends on the tetrad and on the first derivative of the tetrad only.

Taking advantage of the potential form of Einstein equation, a critical review of the foun-
dations of the standard approach to the gravitational waves theory has shown the existence
of several obscure points and inconsistencies, which are not easily visible in the standard ap-
proach. It has also shown that a natural way to circumvent all these problems is to resignedly
accept all results emerging from the first-order expansion of Einstein equation, which in turn
amounts to accept that gravitational waves cannot be described by a linear equation, even ap-
proximately. One should then go to the second order to look for the physical gravitational
waves. Even though the first-order solution, which does not represent the physical wave, is
transverse, the physically relevant second-order gravitational wave is longitudinal. This is con-
sistent with both the tidal origin of gravitational waves and the strictly attractive character of
gravitation. The second-order wave is furthermore found to propagate with a frequency that
is twice the source frequency, in agreement with the quadrupole radiation formula.

It is clear by now that none of the existing antennas has succeeded in detecting any sign
of gravitational waves. Of course, it is possible that the detectors did not meet the necessary
sensibility to detect them, or that the magnitude of the gravitational waves when reaching a
detector on Earth is smaller than originally expected. However, it is also possible that a faulty
approach has led all detectors to look for the wrong sign. The analysis presented in these
notes, whose purpose was to call the attention for potential problems in the currently accepted
theory, suggests that this possibility should not be neglected. After all, one call always ask:
where are the waves?
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