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Nonlinear multidimensional gravity
and the Australian dipole
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The existing observational data on possible variations of fundamental physical constants (FPC)
confirm more or less confidently only a variability of the fine structure constant α in space and
time. A model construction method is described, where variations of α and other FPCs (includ-
ing the gravitational constant G) follow from the dynamics of extra space-time dimensions in
the framework of curvature-nonlinear multidimensional theories of gravity. An advantage of this
method is a unified approach to variations of different FPCs. A particular model explaining the
observable variations of α in space and time has been constructed. It comprises a FRW cosmology
with accelerated expansion, perturbed due to slightly inhomogeneous initial data.

1 Introduction

The problem of possible variations of the fundamental physical constants (FPC) in time and space
is one of the most challenging problems of modern physics, directly related to the central problem of
unification of all interations. It traces back to Dirac’s and Eddington’s famous papers of the 1930s
and since then gains much attention in both theoretical and experimental studies.

However, to date, a variability of only one FPC has been revealed by observations more or less
confidently, it is the fine structure constant α . The analysis of absorption spectra of various ions in
the radiation of distant quasars, performed in the recent years (above all, from the data obtained at
the Keck telescope on the Hawayian islands), has led to a conclusion that α is changing with time,
so that in the past it was slightly smaller than now (the relative change δα/α is about 10−5 [1]).
In 2010, an analysis of new data obtained at the VLT (Very Large Telescope), located in Chile,
and their comparison with the Keck data led to a conclusion on spatial variations of α , i.e., on its
dependence on the direction of observations. The VLT observations in the Southern part of the
celestial sphere gave values of the parameter α in the past slightly larger than now. This anisotropy
has a dipole nature [2] and has been termed “the Australian dipole” [3]. The dipole axis is located
at a declination of −61±9◦ and at a right ascention of 17.3±0, 6 hours. The deflection of α value
at an arbitrary point r of space from its modern value α0 , measured on Earth, is

δα/α0 = (1.10± 0.25)× 10−6 r cosψ, (1)

where ψ is the angle between the direction of observation and the dipole axis, while the distance
r is measured in billions of light years. The confidence level of this result (as compared with a
“monopole” model where values of α are the same in all directions) has been estimated as 4.1σ .
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Let us also mention the laboratory experimental data on possible FPC variations in the modern
epoch. The tightest constraints on α variations have been obtained by comparison of readings of
atomic clocks using optical transitions in Al and Hg ions (without using cesium clocks that have
become classic) [4]: (dα/dt)/α = (−1.6± 2.3)× 10−17 per year. This result is of the same order of
magnitude as the tightest constraints obtained previously from an isotopic composition analysis of
the decay products in the natural nuclear reactor that operated in the Oklo region (Gabon) about
2 billion years ago. Unlike the laboratory data, the Oklo results [5] and, in particular, the tightest
constraint [6]

d(lnα)/dt = (−0.4 ± 0.5)× 10−17/yr (2)

rely in the assumption that during these 2 billion years the value of α changed uniformly, if changed
at all. This assumption looks rather natural but actually follows from nowhere.

Thus in the modern epoch, at least on Earth since the Oklo times, the parameter α did not
change more rapidly than by approximately 10−17 per year. If, on the other hand, we use the
distant quasar data and take a mean value of d(lnα)/dt for about 10 billion years, we shall obtain
a variation rate of about 10−15 per year. Therefore one can conclude that at times earlier (maybe
much earlier) than 2 billion years ago the value of α changed relatively rapidly but afterwards
stopped or almost stopped to change. The task of theory was to explain such a behavior; however,
if one takes into account the most recent observations [2,7], one should add the necessity of exlaining
the spatial variations of α . Though, one cannot exclude the opportunity that the variations of α
are purely spatial in nature whereas the time dependence is related to the finiteness of the velocity
of light: being located at a fixed point and at fixed time, we receive signals from distant regions
of the Universe emitted at earlier cosmological epochs, and it is therefore impossible to separate
spatial and temporal dependences of the parameters.

Let us briefly discuss the theoretical models describing variations of α . Thus, following the
pioneering ideas of Dirac and Eddington, Dicke and Peebles [8] in 1962 considered variations of
α in cosmological models admitting a variable gravitational interaction intensity. Staniukovich [9]
in 1965 discussed different variants of combined FPC variations in connection with Dirac’s Large
Number Hypothesis. Bekenstein [10] in 1982 described a model of α variations on the basis of the
most general assumptions on the electromagnetic interaction: covariance, gauge invariance, causality
and invariance with respect to time reversion. This led to a modified Maxwell electrodynamics and
provided a certain dynamics of α . There also appeared predictions of possible FPC variations in
cosmological models with Kaluza-Klein type extra dimensions, see, e.g., [11, 12].

Since the advent of astronomical evidence on possible time variations of α , there emerged a
whole class of new models describing such variations by introducing certain scalar fields. Thus,
Sandvik et al. [13] proposed a cosmological extension of Bekenstein’s theory [10] with a term of
the form −1

4
FµνF

µνe−2ψ in the initial Lagrangian, where the scalar field ψ interacts only with the
electromagnetic field F µν . The effect of the field ψ in the dynamics of the expanding Universe
was also considered. It was shown that in this model α remained almost constant in the radiation-
dominated epoch, slightly increased in the matter-dominated epoch and approaches a constant value
at times when the Universe expansion accelerates due to the presence of a positive cosmological
constant.

In attempts to explain both temporal and spatial variations of the fine structure constant, quite
popular are models assuming the existence of domain walls connected with scalar field dynamics
(see, e.g., [14, 15]). Thus, in [15] the initial action contains a dilaton-like scalar field φ interacting
with the electromagnetic field and having a potential of the form V (φ) = 1

4
λ(φ2 − η2)2 . A domain

wall is formed due to spontaneous symmetry breakdown. At points separated by the domain wall
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the values of α are different, which can explaing the observable variations if the wall intersects our
Hubble volume.

In [16] it has been shown that in F (R) gravity it is possible to obtain a static solution in the
form of an effective (gravitational) domain wall, and that the choice of a logarithmic nonminimal
interaction of the electromagnetic field with gravity in the form

−1

4

[
1 + ln

(
R

R0

)]
FµνF

µν

(where R0 is the modern value of the scalar curvature) makes it possible to describe variations of
α , whose value grows as the curvature R decreases.

Olive et al. [17] discuss a model with two domain walls, where the scalar field potential has three
minima:

V (φ) = λ

(
|Φ|2 − η2

2

)2

−
√
2iǫ

(
Φ3 − (Φ∗)3

)
+ V0

It turns out that such a model much better describes the observational data than a similar one [15]
with a single domain wall.

The paper [18] suggests an extension of the previous BSBM (Bekenstein-Sandvik-Barrow-
Magueijo) theory ( [10, 13]) by introducing a dependence of the coupling constant ω of the scalar

field ψ on the field itself, so that the Lagrangian contains the terms Lψ = −ω(ψ)
2
∂µψ∂µψ and

Lem = −1
4
FµνF

µνe−2ψ . The choice of ω(ψ) allows for obtaining both growing and falling time
dependences of α . This model differs from those with domain walls in that the variations of α are
smooth and continuous, and a choice between these models must be easy with future more precise
and reliable observational data.

Mariano and Perivolaropoulos [19] have reported on a correlation between the spatial distri-
bution of α values and the dipole anisotropy of the dark energy distribution. In the same paper
they have suggested a theoretical model explaining this correlation (named “extended topological
quintessence”) which naturally predicts inhomogeneous spherical distributions of both the dark en-
ergy and the values of α . The model assumes the existence of a huge global monopole with a size of
Hubble order, which nonminimally interacts with the electromagnetic field. There emerge mutually
related distributions of different parameters with a dipole anisotropy from the viewpoint of any
observer located outside the monopole center. The monopole is formed after a phase transition in
a set of three scalar fields with an O(3) symmetric Lagrangian.

In a later paper [20] the same authors support their inferences by the data on one more anisotropy
also seeming to exist and to be aligned with other “dipoles”, the so-called Large-Scale Velocity
Flows (Dark Flow), i.e., recent indications that there is a large-scale peculiar velocity flow with an
amplitude larger than 400 km/s on scales up to 100h−1 Mpc (z ≤ 0.03).

It should be noted that all the above approaches, to explain variations of α , introduce scalar
fields whose existence and manner of interaction with the electromagnetic field are postulated from
the outset and are not explained in any way. In what follows, it will be shown how the scalar fields
and their interaction law with electromagnetism naturally follow from nonlinear multidimensional
gravity. What is postulated is just the existence of extra dimensions and actually nothing else. An
advantage of multidimensional gravity in the treatment of FPC variations is that such variations
are explained in a unified way from spatial and temporal variations of the size of extra dimensions
[21, 22].

The approach we are using has been formulated in [23], where a methodology was suggested
allowing for a transition from multidimensional gravity with higher derivatives to Einstein-Hilbert
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gravity with effective scalar fields. Later on this approach was successfully applied for a unified
description of the inflationary stage of the Universe and the modern secondary inflation [25] and an
explanation of the origin of the Higgs field [26]; a mechanism of cascade reduction of multidimen-
sional space to the observable one was suggested [24,27]. It has been shown under which conditions
the compact extra dimensions become stationary (i.e., have a constant volume), and the cause of
their maximum symmetry was found [28].

The present study has been performed in the framework of this approach and is an example of
its employment. The paper is organized as follows. Sec. 2 briefly describes the general formalism
used. In this framework, in Sec. 3 we build a homogeneous and isotropic cosmological model able
to describe the present accelerated Universe along with a time dependence of the fine structure
constant α . In Sec. 4, this cosmological model is slightly perturbed on large scale, which enables us
to explain spatial variations of α . Sec. 5 is a brief conclusion.

2 Multidimensional gravity and its reduction

Consider a (D = 4 + d1)-dimensional manifold with the metric

ds2 = gµνdx
µdxν + e2β(x)babdx

adxb (3)

where the extra-dimensional metric components bab are independent of xµ , the observable four
space-time coordinates.

The D -dimensional Riemann tensor has the nonzero components

Rµν
ρσ = R

µν
ρσ,

Rµa
νa = δab B

µ
ν , Bµ

ν := e−β∇ν( e
ββµ),

Rab
cd = e−2βR

ab
cd + δabcdβµβ

µ, (4)

where capital Latin indices cover all D coordinates, the bar marks quantities obtained from gµν
and bab taken separately, βµ ≡ ∂µβ and δabcd ≡ δac δ

b
d − δadδ

b
c . The nonzero components of the Ricci

tensor and the scalar curvature are

Rν
µ = R

ν

µ + d1B
ν
µ,

Rb
a = e−2βR

b

a + δba[✷β + d1(∂β)
2],

R = R[g] + e−2βR[b] + 2d1✷β + d1(d1 + 1)(∂β)2, (5)

where (∂β)2 ≡ βµβ
µ , ✷ = ∇µ∇µ is the d’Alembert operator while R[g] and R[b] are the Ricci

scalars corresponding to gµν and bab , respectively. Let us also present, using similar notations, the
expressions for two more curvature invariants, the Ricci tensor squared and the Kretschmann scalar
K = RABCDRABCD :

RABR
AB = RµνR

µν
+ 2d1RµνB

µν + d21BµνB
µν + e−4βRabR

ab

+ 2 e−2βR[b][✷β + d1(∂β)
2] + d1[✷β + d1(∂β)

2]2, (6)

K = K[g] + 4d1BµνB
µν + e−4βK[b] + 4 e−2βR[b](∂β)2 + 2d1(d1 − 1)[(∂β)2]2. (7)

Suppose now that bab describes a compact d1 -dimensional space of nonzero constant curvature,
i.e., a sphere (K = 1) or a compact d1 -dimensional hyperbolic space (K = −1) with a fixed
curvature radius r0 normalized to the D -dimensional analogue mD of the Planck mass, i.e., r0 =
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1/mD (we use the natural units, with the speed of light c and Planck’s constant ~ equal to unity).
We have

R
ab
cd = Km2

D
δabcd,

R
b

a = Km2
D
(d1 − 1)δba,

R[b] = Km2
D
d1(d1 − 1) = Rb. (8)

The scale factor b(x) ≡ eβ in (3) is thus kept dimensionless; Rb has the meaning of a characteristic
curvature scale of the extra dimensions.

Consider, in the above geometry, a sufficiently general curvature-nonlinear theory of gravity with
the action

S =
1

2
mD−2

D

∫ √
Dg dDx (Lg + Lm),

Lg = F (R) + c1R
ABRAB + c2K, (9)

where F (R) is an arbitrary smooth function, c1 and c2 are constants, Lm is a matter Lagrangian
and Dg = | det(gMN)| .

The extra coordinates are easily integrated out, reducing the action to four dimensions:

S =
1

2
V[d1]m2

D

∫ √
4g d4x ed1β [Lg + Lm], (10)

where 4g = | det(gµν)| and V[d1] is the volume of a compact d1 -dimensional space of unit curvature.
Eq. (10) describes a curvature-nonlinear theory with non-minimal coupling between the effective

scalar field β and the curvature. Let us simplify it in the following way (putting, for convenience,
mD = 1, so that all quantities are now expressed in (D -dimensional) Planck units:

(a) Express everything in terms of 4D variables and β(x); we have, in particular,

R = R4 + φ+ f1, R4 = R[g], f1 = 2d1✷β + d1(d1 + 1)(∂β)2, (11)

where we have introduced the effective scalar field

φ(x) = Rb e
−2β(x) = Kd1(d1 − 1) e−2β(x) (12)

The sign of φ coincides with k = ±1, the sign of curvature in the d1 extra dimensions.

(b) Suppose that all quantities are slowly varying, i.e., consider each derivative ∂µ (including those
in the definition of R) as an expression containing a small parameter ε ; neglect all quantities of
orders higher than O(ε2) (see [23, 24]).

(c) Perform a conformal mapping leading to the Einstein conformal frame, where the 4-curvature
appears to be minimally coupled to the scalar φ .

In the decomposition (11), both terms f1 and R4 are regarded small in our approach, which
actually means that all quantities, including the 4D curvature, are small as compared with the
D -dimensional Planck scale. The only term which is not small is φ , and we can use a Taylor
decomposition of the function F (R) = F (φ+R4 + f1):

F (R) = F (φ+R4 + f1) ≃ F (φ) + F ′(φ) · (R4 + f1) + ..., (13)
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with F ′(φ) ≡ dF/dφ . Substituting this, and the corresponding decompositions of the expressions
(6) and (7), into Eq. (10), we obtain, up to O(ε2), the following effective gravitational Lagrangian
Lg in Eq. (10):

Lg = F ′(φ)R4 + F (φ) + F ′(φ)f1 + c∗φ
2 + 2c1φ✷β + 2(c1d1 + 2c2)φ(∂β)

2 (14)

with c∗ = c1/d1 + 2c2/[d1(d1 − 1)].
The action (10) with (14) is typical of a scalar-tensor theory (STT) of gravity in a Jordan frame.

To study the dynamics of the system, it is helpful to pass on to the Einstein frame. Applying the
conformal mapping

gµν 7→ g̃µν = |f(φ)|gµν, f(φ) = ed1βF ′(φ), (15)

after a lengthy calculation, we obtain the action in the Einstein frame as

S =
1

2
V[d1]

∫ √
g̃ (signF ′)L,

L = R̃4 +KE(φ)(∂φ)
2 − 2VE(φ) + L̃m, (16)

L̃m = (signF ′)
e−d1β

F ′(φ)2
Lm; (17)

KE(φ) =
1

4φ2

[
6φ2

(F ′′

F ′

)2

− 2d1φ
F ′′

F ′
+

1

2
d1(d1+2) +

4(c1 + c2)φ

F ′

]
, (18)

−2VE(φ) = (signF ′)
e−d1β

F ′(φ)2
[F (φ) + c∗φ

2], (19)

where the tilde marks quantities obtained from or with g̃µν ; the indices are raised and lowered with
g̃µν ; everywhere F = F (φ) and F ′ = dF/dφ ; eβ is expressed in terms of φ using (12).

Let us consider the electromagnetic field Fµν as matter in the initial Lagrangian, putting

Lm = α−1
1 FµνF

µν , (20)

where α1 is a constant. After reduction to four dimensions this expression acquires the factor ed1β

arising from the metric determinant:
√

Dg =
√

4g ed1β . In the subsequent transition to the Einstein

picture the expression
√

4gFµνF
µν remains the same (it is the well-known conformal invariance of

the electromagnetic field), hence the Lagrangian (17) takes the form

L̃m = α−1
1 ed1βFµνF

µν , (21)

and for the effective fine structure constant α we obtain

α

α0

= ed1(β0−β), (22)

where α0 and β0 are values of the respective quantities at a fixed space-time point, for instance,
where and when the observation is taking place.
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3 The cosmological model

Depending on the choice of F (R), the parameter c1 and c2 and the matter Lagrangian in the action
(9), the theory under consideration can lead to a great variety of cosmological models. Some of
them were discussed in [23], mostly those related to minima of the effective potential (19) at nonzero
values of φ . Such minima correspond to stationary states of the scalar φ and consequently of the
scale factor b = eβ of the extra dimensions. If the minimum value of the potential is positive, it
can play the role of a cosmological constant that launches an accelerated expansion of the Universe.

Here, we would like to focus on another minimum of the potential VEin , existing for generic
choices of the function F (R) with F ′ > 0 and located at the point φ = 0. The asymptotic φ → 0
corresponds to growing rather than stabilized extra dimensions: b = eβ ∼ 1/

√
|φ| → ∞ . A model

with such an asymptotic growth at late times may still be of interest if the growth is sufficiently
slow and the size b does not reach detectable values by now. Let us recall that the admissible range
of such growth comprises as many as 16 orders of magnitudes if the D -dimensional Planck length
1/mD coincides with the 4D one, i.e., about 10−33 cm: the upper bound corresponds to lengths
about 10−17 cm or energies of the order of a few TeV. This estimate certainly changes if there is no
such coincidence.

One should note that small values of φ to be considered here are still very large as compared to
4D quantities, and so our general assumptions are well justified. Indeed, according to (12),

|φ| = d1(d1 − 1)

b2
,

where b . 1016 , hence |φ| & d21 · 10−32 , while the quantity R̃4 , if identified with the curvature of
the modern Universe, is of the order 10−122 in Planck units (that is, close to the Hubble parameter
squared, or (the Hubble time)−2 , see also Eq. (34) below.

Let us check whether it is possible to describe the modern state of the Universe by an asymptotic
form of the solution for φ → 0 as a spatially flat cosmology with the 4D Einstein-frame metric

ds̃24 = dt2 − a2(t)d~x2, (23)

where a(t) is the Einstein-frame scale factor. At small φ , assuming a smooth function F (φ), we
can use its Taylor decomposition5

F (φ) = −2ΛD + F1φ+ F2φ
2 + . . . , (24)

where ΛD is the initial cosmological constant. For simplicity, we suppose in this paper6 F1 = 0,
F2 = 1. Then, substituting F ′ = 2φ and F ′′ = 2, we obtain for the kinetic and potential terms in
the Lagrangian (16) in the first approximation in φ :

KE ≈ K0/(2φ
2), K0 =

1

2

[1
2
d21 − d1 + 6 + 2(c1 + c2)

]
;

VE ≈ V0 e
−2dβ, V0 =

ΛD
4d21(d1 − 1)2

, 2d = d1 − 4. (25)

It is clear that this model can work only if d1 > 4. In terms of β instead of φ , the Lagrangian
takes the form

L = R̃4 + 2K0(∂β)
2 − 2V0 e

−2dβ + L̃m, (26)

5We assume for certainty φ > 0, or, which is the same according to (12), K = +1, but everything can be easily
reformulated for φ < 0.

6The theory is insensitive to multiplying the action by a constant, and we use this freedom to fix F2 = 1.
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Neglecting the gravitational influence of the electromagnetic field (that is, considering only vacuum
models), one can write down the independent components of the Einstein and scalar field equations
with the unknowns β(t) and a(t) in the form

3
ȧ2

a2
= K0β̇

2 + V0 e
−2dβ, (27)

β̈ + 3
ȧ

a
β̇ =

V0d

K0
e−2dβ . (28)

These equations, corresponding to a scalar field with an exponential potential, can be solved
exactly but the solution looks rather involved, and for our purpose more preferable is the compar-
atively simple approximate solution that can be obtained in the slow-rolling approximation; the
latter should be acceptable at late times. Let us suppose that

|β̈| ≪ 3
ȧ

a
β̇, K0β̇

2 ≪ V0 e
−2dβ, (29)

and neglect the corresponding terms in Eqs. (27) and (28). Then, expressing the quantity ȧ/a from
(27) and substituting it into (28), we obtain

β̇ =
d
√
V0

K0

√
3
e−dβ , (30)

whence

edβ =
d
2

K0

√
V0
3
(t + t1), (31)

where t1 is an integration constant. For the scale factor a(t) we have

ȧ

a
=

p

t+ t1
⇒ a = a1(t+ t1)

p, a1 = const, p =
K0

d
2 . (32)

Substituting the solution to the slow-rolling conditions (29), we make sure that they hold as
long as p≫ 1, or in terms of the input parameters of the theory,

p =
d21 − 2d1 + 12 + 4(c1 + c2)

(d1 − 4)2
≫ 1. (33)

We will assume that this condition holds.
A further interpretation of the results depends on which conformal frame is regarded physical

(observational) [29, 30], and this in turn depends on the manner in which fermions appear in the
(so far unknown) underlying unification theory involving all interactions.

Let us adopt the simplest hypothesis that the observational picture coincides with the Einstein
picture and make some estimates. Thus, the inverse of the modern value of the Hubble parameter
(the Hubble time) is estimated as

tH = 1/H0 = a0/ȧ0 ≈ 4, 4× 1017 s ≈ 8× 1060 tpl, (34)

where tpl is the Planck time and the index “0” marks quantities belonging to the present time,
which is a usual notation in cosmology. From (32) it follows that H0 = p/(t0 + t1), whence

t∗ := t0 + t1 = ptH ≫ tH . (35)
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With p ≫ 1, the model satisfies the observational constraints on the factor w in the effective
equation of state p = wρ of dark energy that causes the accelerated expansion of the Universe: at
w = const we have a ∼ t2/(3+3w) , consequently, w = −1 + 2/(3p) is a number close to −1.

Furthermore, the “internal” scale factor b(t) = eβ grows much slower than a(t):

b(t) = b0

(t+ t1
t∗

)1/d

, b0 =
( 1

H0

√
V0
3

)1/d

. (36)

Using the expression for V0 from (25), one can estimate the initial parameter ΛD , connecting it
with the size of the extra factor space b0 : in Planck units,

ΛD = 12H2
0d

2
1(d1 − 1)2bd1−4

0 ≈ 3

16
d21(d1 − 1)2bd1−4

0 × 10−120. (37)

As already mentioned, the “internal” scale factor b = eβ should be in the range 1 ≪ b0 . 1016

in Planck units. The estimate (37) shows that the present model makes much easier the well-
known “cosmological constant problem” (the difficulty of explaining why in standard cosmology
Λstandard ∼ 10−122 in Planck units). For instance, if (in the admissible range) b0 = 1015 and
d1 = 12, it follows ΛD = 3267 without any indication of fine tuning.

Let us estimate the possible range of the parameters c1 and c2 in the action (9). The present
model describes only the modern stage of the Universe evolution, but it should admit an improve-
ment after which it will account for other stages, including the early inflation. Then one should
require that the curvature-nonlinear terms in the initial Lagrangian should not violate our slow-
change approximation, see Sec. 2 This leads to the condition c1,2 ≪ 1011 . Indeed, during inflation,
the Hubble parameter is H ∼ 10−6 in Planck units, while the scalar curvature at inflation, when
the 4D geometry is approximately de Sitter, is estimated as R ≃ 12H2 ∼ 10−11 . Assuming that the
Ricci and Riemann tensor components have the same order of magnitude, we find that the condition
R ≫ c1R

ABRAB , used above in the framework of the slow-change approximation, will be violated
if c1 is too large. The upper bound of the parameter c2 is obtained in a similar way.

The smallness of the observed variations of α leads to another constraint on c1 and c2 : according
to (22),

α/α0 = (b/b0)
−d1 =

( t+ t1
t0 + t1

)−2d1/(d1−4)

≈ 1− 2d1
d1 − 4

t− t0
t∗

, (38)

so that α̇/α ∼ 10−10/p per year. By the empirical data, this quantity cannot be larger than about
10−17 per year. A comparison leads to the constraint p & 107 . Taking into account the relation
(33) between p and the input parameters c1 and c2 , we obtain similar bounds on these parameters
if the number of extra dimensions d1 is not too large.

Thus the allowed range of c1 and c2 (assuming that they are of the same order of magnitude),

107 < c1,2 ≪ 1011 (39)

is wide enough, which means that any fine tuning is absent.
In the next section we shall see that the inequality c1,2 > 107 is substantially relaxed in the

perturbed model.



10

4 x-dependent perturbations and variations of α

In the previous section we discussed the properties of a homogeneous model which does not contain
any spatial variation of α (and any other physical quantity). Let us try to describe variations of
α by taking into account spatial perturbations of the scalar field and the metric. We take a metric
more general than (23),

ds2E = e2γdt2 − e2λdx2 − e2η(dy2 + dz2), (40)

where γ, λ, η are functions of x and t. We will not discuss the reasons why the metric perturbation
has a distinguished direction, only mentioning a possible weak inhomogeneity at the beginning of
the inflationary period and the opportunity of domain walls (mentioned in the introduction) that
can be thick on the cosmological scale.

The conditions that the metric (40) only slightly differs from (23) are

γ = δγ(x, t), λ = ln a(t) + δλ(x, t), η = ln a(t) + δη(x, t),

where all “deltas” are assumed to be small. In addition, we replace the effective scalar field β(t)
with β(t) + δβ(x, t). Then the relevant Einstein-scalar equations corresponding to the Lagrangian
(26) can be written as follows (preserving only terms linear in the “deltas”):

δβ̈ +
3ȧ

a
δβ̇ + β̇(δλ̇− δγ̇)− 1

a2
δβ ′′ +

1

2K0

δ(Vβ e
2γ) = 0, (41)

ȧ

a
(δλ̇− δγ̇) = δ(V e2γ), (42)

ȧ

a
δγ′ = K0β̇ δβ

′, (43)

where we have chosen the gauge (in other words, the reference frame in perturbed space-time)
δη ≡ 0, the dot and the prime stand for ∂/∂t and ∂/∂x, respectively. We have also denoted

V = VE = V0 e
−2dβ and Vβ = dV/dβ .

Integration of (43), without loss of generality, leads to

δγ =
K0

H
β̇δβ, (44)

where, as before, H = ȧ/a. Substituting this δγ to (41) and taking the difference δλ̇ − δγ̇ from
(42), we finally arrive at the following single wave equation for δβ :

δβ̈ +
3ȧ

a
δβ̇ − 1

a2
δβ ′′ + δβ

[2β̇2

H2
V K0 +

2β̇

H
Vβ +

1

2K0

Vββ

]
= 0. (45)

with an arbitrary constant K0 and an arbitrary potential V (β). In our case, with V = V0 e
−2dβ

and K0 given in (25), we obtain

δβ̈ +
3ȧ

a
δβ̇ − 1

a2
δβ ′′ +

2V0 e
−2dβ

p
δβ = 0, (46)

while the background quantities a(t) and β(t) are determined by the solution (32), (31). It remains
to find a solution for δβ which, being added to the background β(t), would be able to account for
the observed picture of variations of α .
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Since the background is x-independent, we can separate the variables and assume

δβ = y(t) sin k(x+ x0)

where k has the meaning of a wave number. Then y(t) obeys the equation

ÿ +
3p

t+ t1
ẏ +

[ k2

a21(t+ t1)2p
+

6p

(t+ t1)2

]
y = 0. (47)

Since the equation (47) has been derived in a certain approximation and describes only a restricted
period of time close to the present epoch, it is reasonable to seek the solution in the form of a Taylor
series:

y(t) = y0 + y1(t− t0) +
1

2
y2(t− t0)

2 + . . . , yi = const. (48)

Then y0 and y1 can be fixed at will as initial conditions, and Eq. (47) leads to expressions of
y2, y3, . . . in terms of y0 and y1 . Even more than that, for a certain neighborhood of t = t0
we can simply suppose y = y0 + y1(t − t0). Actually, this approximation is good enough for
t− t0 ≪ t∗ = t0 − t1 .

In this approximation we obtain the following expression for variations of α :

α

α0
≈ 1− d1

d

t− t0
t∗

− d1 sin[k(x+ x0)] [y0 + y1(t− t0)] +O(ǫ2), (49)

where O(ǫ2) means O((t− t0)
2/t2

∗
). Assuming that the observer is located at x = 0 and requiring

α/α0 = 1 +O(ǫ2) at x = 0, we obtain the condition

y1 sin(kx0) = −1/(d t∗). (50)

This explains very small, if any, variations of α on Earth at present and since the Oklo times. To
account for the “Australian dipole”, it is desirable to have an approximately linear dependence on
x on the past light cone of the point t = t0 , x = 0.

And indeed, a substitution of (50) into (49) at t− t0 = −x for x > 0 gives

α/α0 ≈ 1− d1y0 sin(kx0) + d1y0 kx cos(kx0) +O(ǫ2) (51)

at x≪ t∗ and kx≪ 1. The same result is obtained if we substitute t− t0 = x for x < 0. (In fact,
the measurement errors are rather large, and this x dependence should not necessarily be strictly
linear.) We are using the conventional normalization a0 = 1.

Evidently, our model, in addition to the input theoretical parameters like d1, c1, c2 , contains the
parameters k , x0 , y0 , y1 , depending on the initial form of the extra space metric. In the framework
of chaotic inflation, these parameters vary in different regions of the visible part of the Universe.
Their choice enables us to explain the spatial variations of α in agreement with the observations [2].
Actually, there are only two conditions imposed on them: (50) and the relationship identifying (51)
with the expression (1) at r = x and cosψ = 1, i.e., on the dipole axis. We obtain (in Planck units)

d1y0k cos(kx0) ≈ −2 × 10−66. (52)

The small constant shift of the α value at x = 0 against the background does not change the
interpretation of the results obtained.

As to the input parameters c1 and c2 , they are no longer constrained by the condition of slow
variations of α on Earth: this condition is already provided by the equality (50). We must only
take care of the validity of the approximation in which the solution is obtained, that is, p ≫ 1,
which holds fairly well if c1 + c2 & 100. Hence the inequality (39) is replaced with a much weaker
one:

100 . c1 ∼ c2 ≪ 1011. (53)

Fig. 1 presents the distance dependence of δα/α (see (49)) for some values of the parameters.
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Figure 1: The r dependence of δα/α0 (the distance r is measured in billions of light years). The
dashed lines correspond to Eq. (1), the solid lines to Eq. (49) at the parameter values d1 = 12,
p = 107 , y0 = −2×10−5 , y1 = −10−7 (bill. years)−1 , k = 0.005 (billion light years)−1 . Line 1
corresponds to x0 = 1 billion of light years, line 2 to x0 = 0.01 billion light years.

5 Conclusion

We have studied the possible effect of extra dimensions on large-scale variations of the fine structure
constant α in space and time. In the multidimensional paradigm under consideration, the observable
values of α and probably other physical quantities, including fundamental constants, depend on
the size of the extra factor space. Variations of the dark energy density can be mentioned as an
example. Indeed, the space-time variations of the energy density are dominated by those of the
potential V = VE given in (25). The relative variation δV/V = −2dδβ is of the same order of
magnitude as the space-time variations of α according to (22). They are too small to be observed
in the near future.

We have focused on the behavior of α because it is the only fundamental constant for which
there are more or less reliable data indicating its variations. We are also planning to analyze the
behavior of other constants, above all, the gravitational constant and the particle masses.

The agreement with observations is provided in our model by the choice of initial data, which
can be interpreted as random values of the extra-dimensional metric at the inflationary stage of the
Universe. Thus spatial and temporal variations of α can be manifestations of the multidimensional
space-time geometry.

The model described here is very simple, tentative and approximate and works fairly well for
times not too far from the present epoch. It does not consistently include other kinds of matter
than dark energy (represented by a scalar field of multidimensional origin). However, even such a
simple model shows a better agreement with observational data (see Fig. 1) than some other existing
models with some ad hoc scalar field potentials.
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