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What tells Gravity on the shape and size of an electron 1
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Abstract

Gravitational field of an electron, fixed by experimental values of its mass,
spin, charge and magnetic moment, is given by the metric of Kerr-Newman
(KN) solution. Unexpectedly, this metric contains a singular ring of the
Compton radius, which should be regulated resulting in a weeak and smooth
source. The consistent source takes the form of an oblate vacuum bubble,
bounded by a closed string of the Compton radius. The bubble turns out
to be relativistically rotating and should be filled by a coherently oscillating
Higgs field in a false vacuum state. The Compton size of the bubble shrinks
sharply to a “point” for relativistic particle.

Introduction. It is commonly recognized now that black holes are akin
to elementary particles. The Kerr-Newman solution has gyromagnetic ratio
g = 2 as that of the Dirac electron, and the experimentally observable param-
eters of electron determine its asymptotical gravitational field in accord with
the Kerr-Newman solution. The spin/mass ration of the electron is extremely
high, J/m ∼ 1022 (we use the units G = c = h̄ = 1), and the black hole hori-

zons disappear, opening the naked Kerr singular ring of the Compton radius
∼ 10−11 cm. It is very far from the expected pointlike electron of quantum
theory. Besides, quantum theory supposes a flat minkowskian background,
and this singular region should be regularized by some procedure leading to
a finite and smooth source of the KN solution with a flat metric in vicinity of
the electron core. It is not a priory clear that such a source can be obtained,
and the aim of this paper is to describe basic elements of the given in [1]
electron model which is consistent with the external KN solution and the
above mentioned quantum requirements.

Structure of the KN solution. Metric of the KN solution has the
form

gµν = ηµν + 2Hkµkν , H =
mr − e2/2

r2 + a2 cos2 θ
, (1)

where ηµν is metric of auxiliary Minkowski space in the Cartesian coordinates
x ≡ (t, x, y, z) ∈ M4, and kµ(x) ∈ M4 is a lightlike vector field, forming
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a twisting congruence shown in Fig.1. Coordinates r, θ and φK are Kerr’s
oblate spheroidal coordinates (Fig.2). The KN metric is singular at the circle
r = cos θ = 0, which is branch line of the Kerr space into two sheets r+ for

r > 0 and r− for r < 0, so that the field kµ(x) and the aligned with kµ metric
and vector potential of the electromagnetic (em) field,

αµ
KN = Re

e

r + ia cos θ
kµ, (2)

turn out to be twosheeted, taking different values on the different sheets of
the same point x ∈ M4. Twosheetedness represents one of the main puzzles
of the KN space-time. For electron parameters, gravitational field of the
KN solution is concentrated very close to singular ring, forming a circular
waveguide – analog of the closed relativistic string. It has been shown in
[2, 3] that the KN solution in vicinity of the Kerr ring corresponds to the ob-
tained by Sen solution to low-energy heterotic string theory. Meanwhile, the
long-term attack on the mysterious twosheetedness (Keres, Israel, Hamity,
López at all, [3]) resulted in the gravitating soliton model in the form of
the consistent with KN solution rotating vacuum bubble, metric of which is
regularized, approaching the flat minkowskian background in the Compton
region. It fixes unambiguously the form and some details of the consistent
with KN gravity electron model. Following [1] we discuss basic features of
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Figure 1: Congruence of the lightlike
lines kµ(x) is focused on singular ring,
creating twosheeted Kerr space.
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Figure 2: Oblate co-
ordinate system (r, θ)
covers the Kerr space
twice, for r > 0 and
r < 0. Truncation of
the sheet r < 0 creates
the source at r = 0.

the regular KN electron model as a gravitating soliton. The most wonderful
fact is emergence of the quantum condition for spin of the KN soliton, as
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a consequence of the pure classical relations completed by the condition on
periodicity of the Wilson loop (analog of the Bohm-Aharonov effect). As a

new result, we obtain that the bubble electron, which has the Compton radius

at rest, is to be quickly shrinking in size by a relativistic boost.

Relativistically rotating disk as source of the Kerr geometry.

Kerr’s coordinates r, θ, φK are related to Cartesian ones as follows

x+ iy = (r + ia) exp{iφK} sin θ, z = r cos θ, ρ = r − t. (3)

The null vector field kµ is determined by the differential form

kµdx
µ = dt+

z

r
dz +

r(xdx+ ydy)

r2 + a2
−

a(xdy − ydx)

r2 + a2
, (4)

where the function Y (x) is determined by the Kerr theorem. In Kerr’s coor-
dinates it is Y (x) = eiφK tan θ/2. In equatorial plane (z = cos θ = 0), the Kerr
congruence is focused on the Kerr ring, approaching the ring tangentially

k|r=cos θ=0 = dt− (xdy − ydx)/a = dt− adφ. (5)

Therefore, the Kerr ring is lightlike, similar to the DLCQ circle of M-theory.
Truncation of the ‘negative’ Kerr sheet (H.Keres, 1967; W.Israel, 1968)

created a disklike source, r = 0, spanned by the Kerr ring. V.Hamity (1976)
showed that the disklike source represents a rigid and relativistically rotating
membrane, with the lightlike boundary.

The regular bubble model was proposed by López, which suggested
to truncate the negative sheet along the ellipsoidal shell at r = re > 0, which
covers the singular ring. There appears a rotating bubble source with a flat
interior. One sees that the external KN metric 1 is matched with the flat
interior by the condition H = 0, which fixes the boundary of the bubble at

r = re = e2/(2m). (6)

It follows from (3) that the bubble takes the form of a highly oblate ellipsoid

of the Compton radius a ≈ h̄/m and thickness 2re = e2/m.2

Gravitating soliton. In [1], the bubble shell model was extended to
a smooth field model of the domain wall bubble interpolating between the
external KN background and a false vacuum state inside the bubble (for
details see [1]). The Kerr singular ring is suppressed by the supersymmetric

2The exact value of the disk radius is rb =
√

a2 + r2e ≈ a+ 1

2
δ, where δ

a
≈ 3 · 10−46.
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vacuum state with a flat metric inside the bubble, the Kerr closed string is
formed by the em field concentrating at the edge rim of the bubble.

Regularization of the em field. Regularization is performed by the
Higgs mechanism of broken symmetry. One of the complex chiral fields, say
Φ is considered as a Higgs field, which takes the non-zero vev Φ = Φ0 exp(iχ)
inside the bubble and pushes out the em field. The typical Lagrangian yields
the equation

χ,µ +eαµ = 0. (7)

The cut-off re determines maximum of the KN vector potential
αstr = αmax

KN = e/re = 2m/e, which is concentrated in the form of a
closed string at the edge border of the disklike bubble. In agreement with
(5), the longitudinal component of αstr forms a closed Wilson loop along the
boundary of the disk, which yields

∮

eαstr
µ dlµ = 4πma. Using Kerr’s relation

J = ma, we obtain for the loop integral of (7) over the disk boundary
∮

χ,µ dl
µ = 2πn = −4πJ, (8)

which indicates quantization of the spin-projection, |J | = n/2, n = 1, 2...
Similarly, the time component of (7) yields χ̇ = ω = 2m, resulting in

oscillations of the Higgs field with the frequency 2m, what is typical for the
”oscillon” type of the solitonic models.

Finally, let us consider one more important consequence of the Kerr
relation J = ma, which states that the electron should have at rest the
Compton radius a0 = h̄/2m0, corresponding to its rest mass m0. One can

rewrite it in the form J = mrelarel, where mrel = m0/
√

1− (v/c)2 and

arel = a0
√

1− (v/c)2, and reveal that the radius arel shrinks sharply by the
boost. Therefore, the Compton rest-size radius a0 can only be exhibited by
the very low-energy scattering.
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