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Abstract

The mechanism of gauge symmetry formation is discussed in the frame-

work of multidimensional gravity. It is shown that this process is strictly

connected to the entropy decrease of compact space. The existence of

gauge symmetries is not postulated from the beginning. They could be

absent during the inflationary stage. The conditions of this effect are

discussed.

1 Introduction

The idea of multidimensional space-time allows to clarify some fundamental
questions, such as the problems of modern cosmology and the Standard Model
which are discussed in terms of extra-dimensional gravity [1–7]. As was shown
in [8], the numerical values of the fundamental parameters depend on geometry
of extra dimensions. The existence of gauge symmetries may be related to
isometries of extra space1 [8–10].

(Maximally) symmetric metrics of extra space as a starting point are among
the most popular in the literature, see e.g. [9,11,12]. This assumption makes it
possible to obtain clear and valuable results. In particular, specific symmetries
of extra space manifest as gauge symmetries of effective low-energy physics. At
the same time we must take into account the quantum origin of space itself
due to fluctuations in the space-time foam. There is no reason to assume that
the geometry or/and topology of extra space is simple [13, 14]. Moreover it
seems obvious that a measure M of all symmetrical spaces equals zero so that
the probability of their nucleation P = 0. Hence some period of extra space
symmetrization has to exist [8, 15–18].
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In the present paper we investigate the entropic mechanism of space sym-
metrization after its nucleation. It is shown that the stabilization of the extra
space and its symmetrization are proceeding simultaneously. This process is
accompanied by a decrease in entropy for the extra space and an increase in
entropy for main one.

2 Time dependence of compact space geometry

As was mentioned above some mechanism of the extra space symmetrization
should exist. In this Section we consider some toy models to clarify the situation.

As a common basis, consider a Riemannian manifold

T ×M ×M ′ (1)

with the metric

ds2 = GABdX
AdXB = dt2 − gmn(t, x)dx

mdxn − γab(t, x, y)dy
adyb. (2)

Here M , M ′ are the manifolds with spacelike metrics gmn(t, x) and γab(t, x, y)
respectively, T denotes the timelike direction. The set of coordinates of the
subspaces M is denoted by x; y is the same for M ′. We will refer to M and M ′

as a main space and a compact extra space respectively. The curvature of the
manifold is assumed to be arbitrary.

Firstly, consider the (d + 1)-dimensional compact manifold M ′ × T with
metric

ds2 = dt2 − γab(t, y)dy
adyb; γab(y, t) = ηab + hab(t, y).

For the Einstein-Hilbert action

S =

∫

ddydt
√

|γ|R (3)

and in the limit hab ≪ 1, classical equations have the form [10]

�d+1hab = 0, (4)

where

�d+1 ≡
1√
γ
∂0(

√
γ∂0) +

1√
γ
∂a(

√
γγab∂b).

This wave equation has no static symmetrical solutions if initial conditions are
arbitrary. This would mean the absence of gauge symmetries even in the modern
epoch, which is unacceptable.

The situation changes considerably if we take into account the dynamics of
the main manifold M . Let it possess the Friedmann-Robertson-Walker (FRW)
metric and the scale factor a(t) (we assume ȧ(t) > 0). The equation of motion
for the metrics of the extra space M ′ acquires the form

�d+1hab + 3Hḣab = 0, (5)
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where the Hubble parameter H = ȧ/a > 0. We also took into account the form
of metrics (2) and equality

1√
g
∂0
√
g = 3

ȧ

a
= 3H > 0 (6)

valid for 4-dimensional FRW space. The term 3Hḣab in (5) indicates the pres-
ence of friction and gives the asymptotic γab → const for t → +∞.

So the dynamics of the main space M could cause the stabilization of the
extra space M ′. Note that friction usually means entropy increasing in any
system.

As a more complex example consider a gravity with higher order derivatives
and the action in the form

S =

∫

dD+1z
√
Gf(R), (7)

where z = (t, x, y) and G = | det g · det γ|. The metric of extra space (2) is

chosen in the form γab = eβ(t)γ
(1)
ab (y). We also use inequality

RM ≪ RM ′ (8)

for the Ricci scalar of the main space RM and the Ricci scalar of the extra space
RM ′ .

After some tedious calculation, see [7, 18] we obtain the following effective
lagrangian

L = RM +
1

2
K(φ)(∂φ)2 − V (φ) (9)

where we have introduced an effective scalar field

φ ≡ RM ′ = kd(d− 1)e−2β(t). (10)

Recall that we have k = ±1 for positive and negative curvature in extra dimen-
sions, respectively, so that φ has different signs in these cases by definition. The
forms of the functions V (φ) and K(φ) were obtained in [7, 18]. Their explicit
form is irrelevant in this case.

If φ oscillates near a minimum φm of the potential V , equation of motion is
rather simple

φ̈+ 3Hφ̇+ V ′

φ/K(φm) = 0. (11)

Due to the presence of friction, the Ricci scalar of extra space tends to a constant,

φ = RM ′ → φm (12)

and the extra space M ′ acquires maximally symmetrical form.
The Ricci scalar RM ∼ 1/a(t)2 → 0 for the FRW metric of the main space.

It means that inequality (8) holds true at large times.
As in the previous case, see (5), it is the dynamics of the main space that is

responsible for the friction in the extra space and its stabilization. This indicates
the presence of entropy flow from the extra space M ′ to the main one M [19,20].
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3 Entropy and symmetry formation

In the previous section we saw that stabilization of an extra space occurs
simultaneously with an influx of entropy into the main space which acts as a
thermostat. At the same time a symmetrization of extra space takes place. This
means that an entropy decrease leads to an extension of the symmetry group of
the compact extra space. Let us see to what extent this observation is general.
More definitely, we prove the following

Statement

Let M be a smooth manifold, G1 and G2 are two given metrics on it. If the

number of Killing vectors of metric G1 is less then the number of Killing vectors

of metric G2 then the entropy of G1 is greater than the entropy of G2.

We will use the well known definition of the Boltzmann entropy S. It links
entropy to a number of microstates Ω, S = kB lnΩ. Other definitions are
discussed in [21, 22] for example.

Let us consider a compact smooth manifold M . We suppose that every
metric G on M defines a microstate. More definitely, two metrics G1 and G2 on
M define the same microstate if and only if they are equal in each of the points
P ∈ M .

The definition of a macrostate is as follows. Let v be an arbitrary smooth
vector field defined globally on the smooth manifold M . Any shift along the
integral path of vector field v corresponds to a diffeomorphism M on itself.
We define a macrostate as a set of metrics G that are connected by shifts. As
an example, a 2-dim torus with a bulge, being shifted, still represents the same
macrostate. Another macrostate is determined by the addition of another bulge.
So this definition seems reasonable.

The statistical weight of a given macrostate is the number of microstates.
The latter is a continuum set for any classical system. The concept of mi-
crostates is correctly defined at a quantum level where the set of energy levels
is known. However, the quantization of geometry is a yet unsolved problem.
That is why any discussion of a metric on scale less than the Planck scale LP is
pointless. Thus shifts less than Planck scale should not be taken into account
when counting statistical weight (see discussion in [23]). Therefore a number of
shifts along various integral paths is assumed to be finite.

Let us compare statistical weights of two metrics G1 and G2 with the same
number of shifts at manifold M . Let G1 have no Killing vectors and G2 pos-
sesses a global Killing field. Shifts along Killing vector of G2 lead to the same
microstate by definition. So the statistical weight of G1 is greater than the
statistical weight of G2. A similar argument is correct in the general case as
well when the number of Killing vectors of metrics G1 is less then the number
of Killing vectors of metrics G2. This statement is also valid for the entropy
which is the nondecreasing function of the statistical weight. Therefore

S1 > S2. (13)
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The statement is proved.
Taking into account the results of the previous sections we can conclude

that the entropy of the extra space decreases with time while its isometry group
becomes larger. The existence of gauge symmetries turns out to be the con-
sequence of entropy increasing in the whole space. Entropy of compact extra
space is decreasing however and the main space acts as a thermostat.

4 Consequences

According to condition (12) a Ricci scalar of internal metric of extra space
is a constant with good accuracy whenever condition (8) holds. Meantime the
latter can be violated at the inflationary stage due to metric fluctuations of the
main space.

Let us estimate the characteristic size Lextra of extra space, insensitive to
this fluctuations. During the inflationary stage we have [14]

R3 = 12H2 =
32π

M2
Pl

V (φ) = 16π

(

m

MPl

)2

φ2.

The last equality holds for a quadratic inflaton potential V (φ) = 1
2m

2φ2. Metric
fluctuations of the main space have the form

δR3 = 32π

(

m

MPl

)2

φ δφ ∼ m

MPl
m2.

Here we take into account the approximate equality φ ∼ MPl during the in-
flationary stage. Field fluctuations |δφ| = H/(2π) are connected to the scale
factor

H =

√

8π

3

V (φ)

M2
Pl

=

√

4π

3

m

MPl
φ

in the usual manner. For the size of extra space not to be disturbed, it should
satisfy the inequality

Lextra ∼
1√
RM ′

<
1√
δR3

∼ 1

m

√

MPl

m
∼ 10−24 cm. (14)

Otherwise metric fluctuations of the main space would influence the geometry
of the extra space and any symmetries would be absent during inflation.

Let us suppose that a relaxation time trel of dynamical processes in the
extra space is less than the period of inflation tinfl ≈ 10−37, one can obtain the
estimation

Lextra ∼ trel < tinfl ∼ 10−27cm.

LHC collider could find extra space provided its size is larger than ∼ 10−18

cm. Evidently if the LHC succeeds in finding an extra space it would mean the
absence of gauge symmetries at the inflationary stage. They arise during the
stage of reheating or later.
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5 Discussion

It is known that the idea of extra space leads to a set of observational effects.
One of the most important is the connection between the gauge symmetries of
the low-energy theory with the symmetries of the extra space. We elaborated
the mechanism for the gauge symmetries formation related to the entropy flow
from the extra space to the main one.

Due to the entropy increasing in the whole space, a compact subspace un-
dergoes the process of symmetrization during some time after its quantum nu-
cleation. Relaxation time of symmetry restoration depends on many aspects
and could overcome the period of inflation.

One could reasonably suppose that the entropy of the extra space decreases
until a widest symmetry is restored. On the other side we need specific isome-
tries to explain observable symmetries of low energy physics, SU(2)× U(1) for
example. Could they be represented by a most widest symmetry mentioned
above? The answer is not evident. From this point of view the result of the
paper [24] is rather promising: every compact Lie group can be realized as the
full isometry group of a compact, connected, smooth Riemannian manifold.

The authors are grateful to V. Berezin, S. Bolokhov, V. Dokuchaev and
Yu. Eroshenko for fruitful discussions and valuable comments. This work was
supported in part by the Russian Foundation for Basic Research (project no.
09-02-00677-a).
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