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Abstract

One of the most exciting things in recent theoretical physics is the suspicion that gravity may

be holographic, dual to some sort of quantum field theory living on the boundary with one less

dimension. Such a suspicion has been supported mainly by a variety of specific examples from

string theory. This paper is intended to purport the holographic gravity from a different perspective.

Namely we propose that such a holography can actually be observed within the context of Einstein’s

gravity, where neither is spacetime required to be asymptotically AdS nor the boundary to be located

at conformal infinity. We show that our holography works remarkably well at least at the level of

thermodynamics and hydrodynamics. In particular, a perfect matching between the bulk gravity

and boundary system is found not only for the equilibrium variation but also for the non-equilibrium

entropy production, where a method of conserved current is seen to be efficient in relating the black

hole perturbation in the bulk gravity and the non-equilibrium thermodynamics on the boundary.
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I. INTRODUCTION

Traditional black hole thermodynamics dealt with infinitesimal variations between sta-

tionary black hole configurations, until Iyer and Wald generalized the discussion to arbitrary

linear perturbations around a stationary black hole background by the method of conserved

current [1]. This situation is just like the generalization of equilibrium thermodynamics to

the non-equilibrium (but near equilibrium) case, which is nowadays standard in textbooks

[2]. In the black hole context, it eats up perturbations with an increase of its horizon area,

while in the thermodynamics context, transportation smoothes out non-equilibrium with

production of entropy. But can these two things be directly related to each other? Imag-

ine the thermodynamic system living on a constant r surface in a spherically symmetric

black hole, which is a holographic setup slightly generalizing the well studied ones based on

the AdS/CFT correspondence [3, 4]. Then one can check, under appropriate holographic

dictionary, whether the increase of the black hole entropy and the production of the ther-

modynamic entropy matches each other, which is the main motivation of this letter.

Our starting point is the following (Euclidean) holographic principle

Zbulk[φ̄] =

ˆ

Dψ exp(−IFT[φ̄, ψ]) (1)

for some quantum gravity theory with partition function Zbulk[φ̄] on some bulk space-time

region and the corresponding quantum field theory with action IFT[φ̄, ψ] on its boundary,

which is the refined and generalized version of Witten’s principle [4]. Here the partition

function Zbulk[φ̄] is evaluated by fixing the boundary value of the bulk field φ to be φ̄, which

acts as some background field on the boundary, and ψ denotes all the dynamical fields in

the boundary theory, which is integrated out to produce the partition function in the right

hand side of (1). To be more precise, if φ is the metric or form fields, then the pull back of

φ to the boundary is fixed to be φ̄. Infinitesimal variation of φ̄ in (1) gives

Zbulk[φ̄+ δφ̄] = Zbulk[φ̄]

〈

exp

ˆ

bdry

δφ̄Oφ

√
ḡddx

〉

FT

with
√
ḡddx the standard volume element on the boundary and

Oφ(x) = − 1√
ḡ

δIFT[φ̄, ψ]

δφ̄(x)
(2)

the “dual field”, which should be understood as the corresponding quantum operator in the

expression of expectation value.
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In the classical (saddle point) approximation, the bulk partition function is given by

Zbulk[φ̄] = exp(−Ibulk[φ̄])

with Ibulk[φ̄] the on-shell action (Hamilton’s principal functional). So the above holographic

principle leads to

− δIbulk[φ̄]

δφ̄(x)
=

√
ḡ 〈Oφ(x)〉FT , (3)

where the left hand side is just the canonical momentum conjugate to φ by virtue of the

Hamilton-Jacobi equation regarding the boundary as the “time” slice. Now turn to the

Minkowskian signature. The discussion in this case is similar to the above, but subtleties

arise when one further considers correlation functions [5], which does not concern us in the

present letter. For the bulk to be (asymptotic) AdS space-time and the boundary to be its

conformal boundary, it is well known that the dual field theory is a (local) CFT. But in more

general cases, e.g. asymptotically flat bulk and/or boundary at finite distance [6, 7], the field

theory may be both non-conformal and non-local [8], which is not easy to study. However,

macroscopic aspects of the general cases (called the general bulk/boundary correspondence)

can still be understood. In the macroscopic point of view, the boundary system is described

by thermodynamics and hydrodynamics, where we identify the expectation value in (3) with

the macroscopic (classical) mechanical quantity Oφ(x).

Two examples are of special interest. One is the case of φ to be the metric gµν , where φ̄

is just the induced metric ḡab on the boundary. Then the Minkowskian version of (3) tells

us that the stress-energy tensor of the boundary system is given by the Brown-York tensor

(see (10) for the explicit form)

tab(x) =
2√−ḡ

δIbulk[ḡ]

δḡab(x)
, (4)

where the bulk action is taken to be the standard Einstein-Hilbert action plus the Gibbons-

Hawking term. The other is the case of φ to be the electromagnetic potential Aµ. Similarly,

the dictionary is that the electric current of the boundary system is given by

ja(x) =
1√−ḡ

δIbulk[Ā]

δĀa(x)
= −nµF

µa, (5)

where the bulk action is just the Maxwell one in addition to the gravitational part and nµ

the outward normal vector to the boundary. Now we explore the macroscopic aspects of the

general bulk/boundary correspondence in both equilibrium and non-equilibrium.
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II. THE CORRESPONDENCE IN EQUILIBRIUM: THERMODYNAMICS

First of all, we must check the consistency of basic thermodynamic relations in the cor-

respondence. Consider the (d+ 1)-dimensional Reissner-Nödstrom (RN) black hole

ds2d+1 =
dr2

f(r)
− f(r)dt2 + r2dΩ2

d−1,

f(r) = ε+
r2

l2
− 2m

rd−2
+

Q2

r2d−4
, dΩ2

d−1 = ĝ
(ε)
ij (x)dxidxj ,

A =

√

d− 1

8π(d− 2)G

Q

rd−2
dt (6)

with negative cosmological constant1 in the Einstein-Maxwell theory as our bulk space-

time (in equilibrium). Here m is the mass parameter, Q the charge parameter of the black

hole, and ĝ
(ε)
ij (x) the metric on the “unit” sphere, plane or hyperbola for ε equal to 1, 0

or −1 respectively, where in the planar or hyperbolic case some standard compactification

is assumed. The boundary is the hypersurface r = rc outside the outer horizon, with an

induced metric

ds2d = −fcdt2 + r2cdΩ
2
d−1, fc := f(rc). (7)

Due to static nature (with time-like Killing vector ∂t) of both the bulk space-time and the

boundary, and maximum symmetry on a time slice of the boundary, the boundary system

is obviously in equilibrium. From the identification (1) of the Euclidean partition function,

an argument of conical singularity leads to the conclusion that the entropy and temperature

of the boundary system are equal to the Bekestein-Hawking entropy

S =
Ω

(ε)
d−1r

d−1
h

4G
(8)

and local (red shifted) Hawking temperature [6]

T =
TH√
fc

=
f ′(rh)

4π
√
fc

(9)

of the bulk black hole. Here Ω
(ε)
d−1 is the volume of the “unit” sphere, plane or hyperbola, and

rh the radius of the outer horizon satisfying f(rh) = 0. Due to the bulk/boundary dictionary

(4), the stress-energy tensor of the boundary system is given by the Brown-York tensor

tab =
1

8πG
(Kgab −Kab − Cgab), K := Kabg

ab (10)

1 The case with positive or vanishing cosmological constant can also be included by formally allowing l2 < 0

or l2 → ∞ respectively, where ε can only be positive [16].
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on the boundary with Kab its extrinsic curvature and C some constant, which can be easily

shown to have a form of ideal fluid

tab = ǫuaub + p(uaub + gab)

with the velocity ua = (−√
fc, 0, · · · , 0), the energy density

ǫ = −d− 1

8πG

√
fc
rc

+ C, (11)

and the pressure

p =
d− 2

8πG

√
fc
rc

+
1

16πG

f ′
c√
fc

− C. (12)

As well, the electric current (5) of the boundary system is

ja = −nµF
µa(rc) = (−

√

(d− 1)(d− 2)

8πGfc

Q

rd−1
c

, 0, · · · , 0). (13)

Since the volume of the boundary system is

V = Ω
(ε)
d−1r

d−1
c , (14)

the energy density (11) gives the total energy

E = Ω
(ε)
d−1(−

d− 1

8πG

√

fcr
d−2
c + Crd−1

c ), (15)

while the electric current (13) gives the total charge

Ω
(ε)
d−1

√

(d− 1)(d− 2)

8πG
Q

that coincides with the physical charge of the black hole. The proportion coefficient here is

not essential, so we will take Q as the total charge in the following discussion.

From the expressions (8,9,12,14) above, recasting E in (15) as a function of (S, V,Q)

(eliminating m by the condition f(rh) = 0), one can check that the standard thermodynamic

relations
∂E

∂S
= T,

∂E

∂V
= −p (16)

hold. Furthermore, one can obtain

µ =
∂E

∂Q
= −d − 1

8πG

Ω
(ε)
d−1Q√
fc

(
1

rd−2
c

− 1

rd−2
h

), (17)
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which is proportional to the difference of electric potential between the horizon and the

boundary, and is the appropriate generalization of the familiar chemical potential in

AdS/CFT (rc → ∞). Thus, we see that the first law

dE + pdV = TdS + µdQ (18)

of thermodynamics holds for the boundary system.

III. THE CORRESPONDENCE IN NON-EQUILIBRIUM: ENTROPY PRODUC-

TION

If the boundary system is perturbed by some sort of external sources, various transport

processes occur intending to bring the system back to equilibrium, which causes entropy

production. From the bulk point of view, the ingoing boundary condition at the future

horizon implies that the (material or gravitational) perturbations at the boundary should

propagate to the black hole and be absorbed, which causes increase of the area of the black

hole horizon. Based on the equilibrium configuration we have discussed above, there are

three kinds of transport processes that we can consider, i.e. heat conduction, viscosity

of fluid and charge conduction. The heat conduction is energy transportation, caused by

temperature inhomogeneity. The viscosity of fluid is momentum transportation, caused

by velocity inhomogeneity (shear, more precisely). The charge conduction is caused by

external electric field or inhomogeneity of chemical potential. A non-relativistic framework

(but allowing a curved space) is enough for small perturbations around our equilibrium

configuration, with the total entropy production rate [2]

Σ = jq · ∇
1

T
− 1

T
Π : ∇u+

1

T
j · E = jiq∇i

1

T
− 1

T
Πijσij +

1

T
jiEi, (19)

where jq is the heat current, Πij the dissipative part of the stress-energy tensor, σij = ∇(iuj)

the shear (assuming ∇ · u = 0), j the electric current, E the electric field, and we have

assumed a homogeneous chemical potential. In fact, the physical laws of transportation tell

us that the transport current (jiq,Π
ij, ji, · · ·) is proportional (in the linear regime) to the

driving force (∇i
1
T
,− 1

T
σij ,

1
T
Ei, · · ·), while the entropy production rate is just their product.

In the holographic context, this proportion factor (matrix), i.e. the transport coefficients, is

determined by imposing the ingoing boundary condition at the horizon and then solving the
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bulk equations of motion (see e.g. [9, 10] for the traditional AdS/CFT case and [6, 11, 12]

for the “finite cutoff” case). However, we do not need the precise values of them here.

It is well known in AdS/CFT that the temperature inhomogeneity and shear can both

be realized by gravitational perturbations, at least for some special configurations (see e.g.

[9, 10] and [13] respectively). Now we generalize the analyses to arbitrary (but small) tem-

perature perturbation and shear field on the boundary hypersurface r = rc. The temperature

perturbation can be introduced by the metric perturbation

ds2d → ds2d + 2htidtdx
i,

generalizing the discussion in [9, 10], as

∇i

1

T
=

1

fcT
∂thti (20)

with ∇a the background covariant derivative on the boundary. Then, we insist on the frame

ua = (1/
√
fc, 0, · · · , 0), while turn on the shear by an off-diagonal space metric perturbation

ds2d → ds2d + hijdx
idxj , i 6= j.

In this case the shear reads

σij = ∂(iuj) − γaijua =
1

2
√
fc
(∂igtj + ∂jgti)−

γtij√
fc

=
1

2
√
fc
∂thij . (21)

The heat current jiq is just the energy current −√
fct

ti, while Πij is just the traceless part of

tij . So from (19) we have the total entropy production rate

Σ = − 1

2
√
fcT

tab∂thab −
1√
fcT

nµF
µi(rc)Fti(rc), (22)

where the contribution from the charge conduction is simply realized by electromagnetic

perturbations under the holographic dictionary (5).

Our central task is to check whether (22) matches the black hole side. For clarity, we

first assume that the equilibrium background is uncharged, i.e. Q = 0. Since in this case

the gravitational perturbation and electromagnetic perturbation are decoupled from each

other, it turns out that the first two kinds of transport processes and the charge conduction

are decoupled, which allows us to discuss them separately. As a warm-up, we first consider

electromagnetic perturbations, which clearly illustrates our approach. For convenience, we

take the gauge nµAµ = 0, so the entropy production rate (22) on the boundary is obviously
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of order O(A2
a). On the bulk side, the physical picture is that the electromagnetic wave

caused by the boundary perturbation propagates to the black hole, which will be absorbed

and render the horizon area to increase. Here we use a conserved current to relate the

horizon and the boundary. Since ξ = ∂t is Killing and the stress-energy tensor Tµν of the

wave satisfies DµT
µν = 0 with respect to the background covariant derivative Dµ, we have

the conservation law

Dµ(T
µ
ν ξ

ν) = 0 (23)

of the current T µ
ν ξ

ν = T µ
t . Suppose the non-equilibrium region has compact support on the

boundary, which naturally gives rise to the corresponding compact support for both per-

turbed bulk and perturbed horizon. Then integrating the above equation over the perturbed

bulk and using Gauss law, we end up with
ˆ

H

T µ
t λµ =

ˆ

bdry

T µ
t nµ. (24)

where H is the perturbed horizon and λµ is the affinely parameterized null generators of H .

So we have The standard technique of Raychaudhuri equation implies [14]
ˆ

H

T µ
t λµ = THδS. (25)

The integrand in the right hand side of (24) is just

nµT
µ
t (rc) = −nµF

µi(rc)Fti(rc), (26)

which together with (25) and (22) without the gravitational part gives

δS =
1

TH

ˆ

bdry

nµT
µ
t (rc) =

ˆ

bdry

Σ, (27)

where we have used the relation TH =
√
fcT . Thus we conclude that the entropy increase

on the bulk side and the entropy production on the boundary side match exactly.

Next, we consider gravitational perturbations, realizing the heat conduction and viscosity

of fluid. We introduce the gravitational perturbation with gauge

gµν → gµν + hµν , nµhµν = 0 (28)

in the bulk,2 while in addition all diagonal elements of hµν vanish on the boundary. The

2 Rigorously speaking, the Schwarzschild coordinates are not perfect for our discussion that involves in-

falling processes. But our conclusion can be shown to hold in the Eddinton coordinates.
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above metric implies the extrinsic curvature

Kab =
1

2
Lngab =

1

2
nµ∂µgab →

1

2
nµ∂µ(gab + hab) (29)

for any hypersurface of constant r, up to O(hab) even after perturbation (28). On the

boundary side, since the background Brown-York tensor t(0)ab has no off-diagonal elements,

the entropy production rate (22) is of order O(h2ab). To leading order, the entropy production

rate (22) without the electromagnetic part can be worked out as

Σ = − 1

16πG
√
fcT

(−K(0)hab∂th
ab − 1

2
nµ∂µhab∂th

ab + 2K
(0)c
b hca∂th

ab), (30)

where we have used the fact that the trace of hab vanishes on the boundary. Here the indices

are lowered (or raised) with the background metric gab. From the theory of gravitational

waves (see, e.g. [15]), we know that the effective stress-energy tensor Tµν of the wave is

just − 1
8πG

times G(2)
µν , the second order contribution of hµν to the Einstein tensor, which

satisfies DµT
µν = 0 to order O(h2ab). Then similar strategy as in the electromagnetic case

follows. Especially, to evaluate the right hand side of (24), we should know the explicit form

of G(2)µ
t nµ. Some lengthy but straightforward calculation [16] gives

nµG
(2)µ
t (rc) =

1

2
√
fc
(−1

2
nµ∂µhab∇th

ab + 2K(0)c
a hcb∇th

ab −K
(0)a
t hbc∇ahbc +∇aJ

a), (31)

where ∇t = ∂t in our case and we do not need the explicit form of the order O(h2ab) current

Ja. Substituting the above equation into (24) and noting the “momentum constraints”

∇at
(0)ab =

1

8πG
∇a(K

(0)gab −K(0)ab) = 0 (32)

when comparing with (30), we again obtain

δS =

ˆ

bdry

Σ.

To sum up, for the uncharged background, we see perfect matching between the entropy

production from the above three kinds of transport processes on the boundary and the

entropy increase of the black hole in the bulk.

The charged case (Q 6= 0) is a little more complicated, which corresponds to a non-

vanishing chemical potential (17) on the boundary side. From the transportation point of

view, in this case the heat conduction and charge conduction are coupled to each other,

which has a nice dual description on the bulk side [9]. So we must treat the electromagnetic
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and gravitational perturbations altogether here. Fortunately, it turns out that we still have

a conserved current of the form

Jµ
EM + Jµ

G − 1

2
qµνG(0)

µν δ
µ
t − qµνG

(0)
νt +

1

2
qννG

(0)µ
t , (33)

where Jµ
EM and Jµ

G are the electromagnetic and gravitational conserved current, respectively,

qµν the induced second order metric perturbation, and G(0)
µν the background Einstein tensor

[16]. However, under the gauge nµqµν = 0 and using the concrete configuration (6), the last

three terms in (33) do not contribute in (24). Eventually, it can be shown that Jµ
EM + Jµ

G

correctly gives the bulk entropy increase on one hand and the boundary entropy production

on the other.

IV. DISCUSSION

We have shown the bulk/boundary correspondence at least at the level of thermodynam-

ics and hydrodynamics, where in particular, a perfect matching between the bulk gravity

and boundary system is exactly derived for entropy production on both sides by resort-

ing to the conserved current. Compared to AdS/CFT correspondence, our bulk/boundary

correspondence is more general in the following sense. First, we do not require the bulk

space-time to be asymptotically AdS. Second, our boundary is not required to be located

at conformal infinity. Actually our discussion can be applied to any bulk space-time with

metric

ds2d+1 =
dr2

f(r)
− f(r)dt2 + a(r)dΩ2

d−1,

i.e. static with spatial (excluding r) homogeneity and isotropy, satisfying Einstein’s equa-

tion. The Rindler case recently introduced in the gravity/fluid correspondence [7] belongs to

this class, in which our approach can be checked to work. On the other hand, our boundary

system, by construction, is not necessarily conformal, which implies that the entropy can

also been produced by the bulk viscosity on the boundary. Using the same approach, one

can actually show that the bulk/boundary correspondence also exists for such an entropy

production [16].

We conclude with various issues worthy of further investigation. For one thing, we have

worked only to second order perturbation so far. It is interesting to see if the whole procedure

can be made to any higher order. For another, we have worked merely within the context of
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Einstein’s gravity with Maxwell field. It is worthwhile to see if our correspondence can also

be valid for the cases with other matter fields and even higher derivative gravity theories.

Finally, it is interesting to explore the relation between the conserved current in [1] and

ours. Moreover, the meaning of the conserved current (33) in the charged case seems rather

unclear, as well as the corresponding conserved quantity. We hope to address these issues

elsewhere.
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