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Abstract

Over the past decade, f(R) theories have been extensively studied as one of the simplest
modifications to General Relativity. In this article we review various applications of f(R)
theories to cosmology and gravity–such as inflation, dark energy, local gravity constraints,
cosmological perturbations, and spherically symmetric solutions in weak and strong gravita-
tional backgrounds. We present a number of ways to distinguish those theories from General
Relativity observationally and experimentally. We also discuss the extension to other modified
gravity theories such as Brans-Dicke theory, Gauss-Bonnet gravity, extra dimensional mod-
els, Galileon theory, and address models that can satisfy both cosmological and local gravity
constraints.
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1 Introduction

General Relativity (GR) [1] is widely accepted as a fundamental theory to describe the geometric
properties of space-time. In a homogeneous and isotropic space-time the Einstein field equations
give rise to the so-called Friedmann equations that describe the evolution of the Universe. In fact,
the standard big-bang cosmology based on radiation and matter dominated epochs can be well
described within the framework of General Relativity.

However, the rapid development of observational cosmology which started from 1990s shows
that the Universe has undergone two phases of cosmic acceleration. The first one is called inflation
[2, 3, 4, 5], which is believed to have occurred prior to the radiation domination (see [6, 7, 8] for
reviews). This phase is required not only to solve the flatness and horizon problems plagued in big-
bang cosmology, but also to explain a nearly flat spectrum of temperature anisotropies observed
in Cosmic Microwave Background (CMB) [9]. The second accelerating phase has started after the
matter domination. The unknown component giving rise to this late-time cosmic acceleration is
called dark energy [10] (see Refs. [11, 12, 13, 14, 15, 16] for reviews). The existence of dark energy
has been confirmed by a number of observations—such as supernovae Ia (SN Ia) [17, 18, 19], large-
scale structure (LSS) [20, 21], baryon acoustic oscillations (BAO) [22, 23], and CMB [24, 25, 26].

These two phases of cosmic acceleration cannot be explained by the presence of standard matter
whose equation of state w = P/ρ satisfies the condition w ≥ 0 (here P and ρ are the pressure
and the energy density of matter, respectively). In fact, we further require some component of
negative pressure, with w < −1/3, to realize the acceleration of the Universe. A scalar field φ
with a slowly varying potential can be one of those candidates. While many scalar-field potentials
for inflation have been constructed in the framework of string theory and supergravity, the CMB
observations still do not show particular evidence to favor one of such models. This situation
is also similar in the context of dark energy—there is a degeneracy as for the potential of the
scalar field (“quintessence” [27, 28, 29, 30, 31, 32, 33, 34]) due to the observational degeneracy to
the dark energy equation of state around w = −1. Moreover it is generally difficult to construct
viable quintessence potentials motivated from particle physics because the field mass responsible
for cosmic acceleration today is very small (mφ ≃ 10−33 eV) [35, 36].

While scalar-field models of inflation and dark energy correspond to a modification of the energy
momentum tensor in Einstein equations, there is another approach to explain the acceleration of
the Universe. This corresponds to the so-called modified gravity in which the gravitational theory
is modified compared to GR. The Lagrangian density for GR is given by f(R) = R − 2Λ, where
R is the Ricci scalar and Λ is the cosmological constant (corresponding to the equation of state
w = −1). The presence of Λ gives rise to an exponential expansion of the Universe, but we cannot
use it for inflation because the inflationary period needs to connect to the radiation era. It is
possible to use the cosmological constant for dark energy since the acceleration today does not
need to end. However, if the cosmological constant originates from a vacuum energy of particle
physics, its energy density would be enormously larger than the today’s dark energy density.
While the Λ-Cold-Dark-Matter (ΛCDM) model (f(R) = R − 2Λ) fits a number of observational
data well [26, 37], there is also a possibility for the time-varying equation of state of dark energy
[38, 39, 40, 41, 42].

One of the simplest modifications to GR is the so-called f(R) gravity in which the Lagrangian
density f is an arbitrary function of R [43, 44, 45, 46]. There are two formalisms in deriving field
equations from the action in f(R) gravity. The first is the standard metric formalism in which the
field equations are derived by the variation of the action with respect to the metric tensor gµν . In
this formalism the affine connection Γα

βγ depends on gµν
1. The second is the Palatini formalism

[47] in which gµν and Γα
βγ are treated as independent variables when we vary the action. These

two approaches give rise to different field equations for a non-linear Lagrangian density in R, while

1We will consider here and in the remaining sections only torsion-free theories.
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for the GR action they are identical with each other. In this article we mainly review the former
approach unless otherwise stated. In Sec. 9 we discuss the Palatini formalism in detail.

The model with f(R) = R+αR2 (α > 0) can lead to the accelerated expansion of the Universe
because of the presence of the αR2 term. In fact, this is the first model of inflation proposed by
Starobinsky in 1980 [2]. As we will see in Sec. 7, this model is well consistent with the temperature
anisotropies observed in CMB and thus it can be a viable alternative to the scalar-field models
of inflation. Reheating after inflation proceeds by a gravitational particle production during the
oscillating phase of the Ricci scalar [48, 49, 50].

The discovery of dark energy in 1998 also stimulated the idea that cosmic acceleration today may
originate from some modification of gravity to GR. Dark energy models based on f(R) theories
have been extensively studied as the simplest modified gravity scenario to realize the late-time
acceleration. The model with a Lagrangian density f(R) = R−α/Rn (α > 0, n > 0) was proposed
for dark energy in the metric formalism [51, 52, 53, 54, 55]. However it was shown that this model is
plagued by a matter instability [56, 57] as well as by a difficulty to satisfy local gravity constraints
[58, 59, 60, 61, 62, 63, 64]. Moreover it does not possess a standard matter-dominated epoch
because of a large coupling between dark energy and dark matter [65, 66]. These results show how
non-trivial it is to obtain a viable f(R) model. Amendola et al. [67] derived conditions for the
cosmological viability of f(R) dark energy models. In local regions whose densities are much larger
than the homogeneous cosmological density, the models need to be close to GR for consistency with
local gravity constraints. A number of viable f(R) models that can satisfy both cosmological and
local gravity constraints have been proposed in Refs. [67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. Since
the law of gravity gets modified on large distances in f(R) models, this leaves several interesting
observational signatures such as the modification to the spectra of galaxy clustering [77, 78, 79,
80, 81, 82, 83], CMB [84, 79, 68, 85], and weak lensing [86, 87]. In this review we will discuss
these topics in detail, paying particular attention to the construction of viable f(R) models and
resulting observational consequences.

The f(R) gravity in the metric formalism corresponds to generalized Brans-Dicke (BD) theory
[88] with a BD parameter ωBD = 0 [89, 90, 91]. Unlike original BD theory [88], there exists a
potential for a scalar-field degree of freedom (called “scalaron” [2]) with a gravitational origin. If
the mass of the scalaron always remains as light as the present Hubble parameter H0, it is not
possible to satisfy local gravity constraints due to the appearance of a long-range fifth force with
a coupling of the order of unity. One can design the field potential of f(R) gravity such that
the mass of the field is heavy in the region of high density. The viable f(R) models mentioned
above have been constructed to satisfy such a condition. Then the interaction range of the fifth
force becomes short in the region of high density, which allows the possibility that the models
are compatible with local gravity tests. More precisely the existence of a matter coupling, in the
Einstein frame, gives rise to an extremum of the effective field potential around which the field
can be stabilized. As long as a spherically symmetric body has a “thin-shell” around its surface,
the field is nearly frozen in most regions inside the body. Then the effective coupling between the
field and non-relativistic matter outside the body can be strongly suppressed through the so-called
chameleon mechanism [92, 93]. The experiments for the violation of equivalence principle as well
as a number of solar system experiments place tight constraints on dark energy models based on
f(R) theories [70, 81, 73, 64, 94].

The spherically symmetric solutions mentioned above have been derived under the weak gravity
backgrounds where the background metric is described by a Minkowski space-time. In strong
gravitational backgrounds such as neutron stars and white dwarfs, we need to take into account
the backreaction of gravitational potentials to the field equation. The structure of relativistic
stars in f(R) gravity has been studied by a number of authors [95, 96, 97, 98, 99, 100, 101, 102].
Originally the difficulty of obtaining relativistic stars was pointed out in Ref. [95] in connection
to the singularity problem of f(R) dark energy models in the high-curvature regime [103]. For
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constant density stars, however, a thin-shell field profile has been analytically derived in Ref. [97]
for chameleon models in the Einstein frame. The existence of relativistic stars in f(R) gravity has
been also confirmed numerically for the stars with constant [98, 99] and varying [101] densities. In
this review we shall also discuss this issue.

It is possible to extend f(R) gravity to generalized BD theory with a field potential and an
arbitrary BD parameter ωBD. If we make a conformal transformation to the Einstein frame [104,
105, 106, 107, 108, 109], we can show that BD theory with a field potential corresponds to the
coupled quintessence scenario [110] with a coupling Q between the field and non-relativistic matter.
This coupling is related to the BD parameter via the relation 1/(2Q2) = 3 + 2ωBD [93, 111]. One
can recover GR by taking the limit Q→ 0, i.e. ωBD → ∞. The f(R) gravity in the metric formalism
corresponds to Q = −1/

√
6 [65], i.e. ωBD = 0. For large coupling models with |Q| = O(1) it is

possible to design scalar-field potentials such that the chameleon mechanism works to reduce the
effective matter coupling, while at the same time the field is sufficiently light to be responsible for
the late-time cosmic acceleration. This generalized BD theory also leaves a number of interesting
observational and experimental signatures [111].

In addition to the Ricci scalar R, one can construct other scalar quantities such as RµνR
µν and

RµνρσR
µνρσ from the Ricci tensor Rµν and Riemann tensor Rµνρσ [112]. For the Gauss-Bonnet

(GB) curvature invariant defined by G ≡ R2 − 4Rαβ R
αβ +Rαβγδ R

αβγδ, it is known that one can
avoid the appearance of spurious spin-2 ghosts [113, 114, 115, 116, 117, 118, 119, 120, 121, 122].
In order to give rise to some contribution of the GB term to the Friedmann equation, we require
that (i) the GB term couples to a scalar field φ, i.e., F (φ)G or (ii) the Lagrangian density f
is a function of G, i.e., f(G). The GB coupling in the case (i) appears in low-energy string
effective action [123] and cosmological solutions in such theory have been studied extensively
[124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140]. In the case (ii)
it is possible to construct viable models that are consistent with both the background cosmological
evolution and local gravity constraints [141, 142] (see also Refs. [143, 144, 145, 146, 147, 148,
149]). However density perturbations in perfect fluids exhibit negative instabilities during both
the radiation and the matter domination, irrespective of the form of f(G) [147, 150]. This growth of
perturbations gets stronger on smaller scales, which is difficult to be compatible with the observed
galaxy spectrum unless the deviation from GR is very small. We shall review such theories as well
as other modified gravity theories.

This review is organized as follows. In Sec. 2 we present the field equations of f(R) gravity in the
metric formalism. In Sec. 3 we apply f(R) theories to the inflationary Universe. Sec. 4 is devoted
to the construction of cosmologically viable f(R) dark energy models. In Sec. 5 local gravity
constraints on viable f(R) dark energy models will be discussed. In Sec. 6 we provide the equations
of linear cosmological perturbations for general modified gravity theories including metric f(R)
gravity as a special case. In Sec. 7 we study the spectra of scalar and tensor metric perturbations
generated during inflation based on f(R) theories. In Sec. 8 we discuss the evolution of matter
density perturbations in f(R) dark energy models and place constraints on model parameters from
the observations of large-scale structure and CMB. Sec. 9 is devoted to the viability of the Palatini
variational approach in f(R) gravity. In Sec. 10 we construct viable dark energy models based on
BD theory with a potential as an extension of f(R) theories. In Sec. 11 the structure of relativistic
stars in f(R) theories will be discussed in detail. In Sec. 12 we provide a brief review of Gauss-
Bonnet gravity and resulting observational and experimental consequences. In Sec. 13 we discuss
a number of other aspects of f(R) gravity and modified gravity. Sec. 14 is devoted to conclusions.

There are other review articles on f(R) gravity and modified gravity [15, 151, 152, 153, 154, 155,
156, 157]. Compared to those articles, we put more weights on observational and experimental
aspects of f(R) theories. This is particularly useful to place constraints on inflation and dark
energy models based on f(R) theories.

In this review we use units such that c = ~ = kB = 1, where c is the speed of light, ~ is reduced
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Planck’s constant, and kB is Boltzmann’s constant. We define κ2 = 8πG = 8π/m2
pl = 1/M2

pl,

where G is the gravitational constant, mpl = 1.22× 1019GeV is the Planck mass with a reduced
value Mpl = mpl/

√
8π = 2.44× 1018GeV. Throughout this review, we use a dot for the derivative

with respect to cosmic time t and “,X” for the partial derivative with respect to the variableX , e.g.,
f,R ≡ ∂f/∂R and f,RR ≡ ∂2f/∂R2. We use the metric signature (−,+,+,+). The Greek indices
µ and ν run from 0 to 3, whereas the Latin indices i and j run from 1 to 3 (spatial components).

2 Field equations in the metric formalism

We start with the 4-dimensional action in f(R) gravity:

S =
1

2κ2

∫

d4x
√
−g f(R) +

∫

d4xLM (gµν ,ΨM ) , (1)

where κ2 = 8πG, g is the determinant of the metric gµν , and LM is a matter Lagrangian2 that
depends on gµν and matter fields ΨM . The Ricci scalar R is defined by R = gµνRµν , where the
Ricci tensor Rµν is

Rµν = Rα
µαν = ∂λΓ

λ
µν − ∂µΓ

λ
λν + Γλ

µνΓ
ρ
ρλ − Γλ

νρΓ
ρ
µλ . (2)

In the case of the torsion-less metric formalism, the connections Γα
βγ are the usual metric connec-

tions defined in terms of the metric tensor gµν , as

Γα
βγ =

1

2
gαλ

(

∂gγλ
∂xβ

+
∂gλβ
∂xγ

− ∂gβγ
∂xλ

)

. (3)

2.1 Equations of motion

The field equation can be derived by varying the action (1) with respect to gµν :

Σµν ≡ F (R)Rµν(g)−
1

2
f(R)gµν −∇µ∇νF (R) + gµν�F (R) = κ2T (M)

µν , (4)

where F (R) ≡ ∂f/∂R, and T
(M)
µν is the energy-momentum tensor of the matter fields defined by

T (M)
µν = − 2√−g

δLM

δgµν
. (5)

This satisfies the continuity equation
∇µT (M)

µν = 0 , (6)

as well as Σµν , i.e. ∇µΣµν = 0. The trace of Eq. (4) gives

3�F (R) + F (R)R− 2f(R) = κ2T , (7)

where T = gµνT
(M)
µν and �F = (1/

√−g)∂µ(
√−ggµν∂νF ).

Einstein gravity, without the cosmological constant, corresponds to f(R) = R and F (R) = 1, so
that the term �F (R) in Eq. (7) vanishes. In this case we have R = −κ2T and hence the Ricci scalar
R is directly determined by the matter (the trace T ). In modified gravity the term �F (R) does
not vanish in Eq. (7), which means that there is a propagating scalar degree of freedom, ϕ ≡ F (R).
The trace equation (7) determines the dynamics of the scalar field ϕ (dubbed “scalaron” [2]).

2Note that we do not take into account a direct coupling between the Ricci scalar and matter (such as f1(R)LM )
considered in Ref. [158, 159, 160, 161, 162].
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The field equation (4) can be written in the following form [71]

Gµν = κ2
(

T (M)
µν + T (D)

µν

)

, (8)

where Gµν ≡ Rµν − (1/2)gµνR and

κ2T (D)
µν ≡ gµν(f −R)/2 +∇µ∇νF − gµν�F + (1 − F )Rµν . (9)

Since ∇µGµν = 0 and ∇µT
(M)
µν = 0, it follows that

∇µT (D)
µν = 0 . (10)

Hence the continuity equation holds for the “dark” component T
(D)
µν defined in Eq. (9). This is

sometimes convenient when we study the dark energy equation of state [70, 71] as well as the
equilibrium description of thermodynamics for the horizon entropy [163].

There exists a de Sitter point that corresponds to a vacuum solution (T = 0) at which the Ricci
scalar is constant. Since �F (R) = 0 at this point, we obtain

F (R)R− 2f(R) = 0 . (11)

The model f(R) = αR2 satisfies this condition, so that it gives rise to the exact de Sitter solution
[2]. In the model f(R) = R + αR2, because of the linear term in R, the inflationary expansion
ends when the term αR2 becomes smaller than the linear term R (as we will see in Sec. 3). This
is followed by a reheating stage in which the oscillation of R leads to the gravitational particle
production. It is also possible to use the de Sitter point given by Eq. (11) for dark energy.

We consider the spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) space-time with
a time-dependent scale factor a(t) and a metric

ds2 = gµνdx
µdxν = −dt2 + a2(t) dx2 , (12)

where t is cosmic time. For this metric the Ricci scalar R is given by

R = 6(2H2 + Ḣ) , (13)

where H ≡ ȧ/a is the Hubble parameter and a dot stands for a derivative with respect to t. The
present value of H is given by

H0 = 100 h km sec−1Mpc−1 = 2.1332 h× 10−42GeV , (14)

where h = 0.72± 0.08 describes the uncertainty of H0 [164].

The energy-momentum tensor of matter is given by T µ(M)
ν = diag (−ρM , PM , PM , PM ), where

ρM is the energy density and PM is the pressure respectively. The field equations (4) in the flat
FLRW background give

3FH2 = (FR− f)/2− 3HḞ + κ2ρM , (15)

−2FḢ = F̈ −HḞ + κ2(ρM + PM ) , (16)

where the perfect fluid satisfies the continuity equation

ρ̇M + 3H(ρM + PM ) = 0 . (17)

We also introduce the equation of state of matter, wM ≡ PM/ρM . As long as wM is constant,
the integration of Eq. (17) gives ρM ∝ a−3(1+wM ). In Sec. 4 we shall take into account both
non-relativistic matter (wm = 0) and radiation (wr = 1/3) to discuss cosmological dynamics of
f(R) dark energy models.

Note that there are some works about the Einstein static Universes in f(R) gravity [165, 166].
Although Einstein static solutions exist for a wide variety of f(R) models in the presence of a
barotropic perfect fluid, these solutions have been shown to be unstable against either homogeneous
or inhomogeneous perturbations [166].
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2.2 Equivalence with Brans-Dicke theory

The f(R) theory in the metric formalism can be cast in the form of Brans-Dicke (BD) theory
[88] with a potential for the effective scalar-field degree of freedom (scalaron). Let us consider the
following action with a new field χ,

S =
1

2κ2

∫

d4x
√−g [f(χ) + f,χ(χ)(R − χ)] +

∫

d4xLM (gµν ,ΨM ) . (18)

Varying this action with respect to χ, we obtain

f,χχ(χ)(R− χ) = 0 . (19)

Provided f,χχ(χ) 6= 0 it follows that χ = R. Hence the action (18) recovers the action (1) in f(R)
gravity. If we define

ϕ ≡ f,χ(χ) , (20)

the action (18) can be expressed as

S =

∫

d4x
√−g

[

1

2κ2
ϕR− U(ϕ)

]

+

∫

d4xLM (gµν ,ΨM ) , (21)

where U(ϕ) is a field potential given by

U(ϕ) =
χ(ϕ)ϕ− f(χ(ϕ))

2κ2
. (22)

Meanwhile the action in BD theory [88] with a potential U(ϕ) is given by

S =

∫

d4x
√−g

[

1

2
ϕR− ωBD

2ϕ
(∇ϕ)2 − U(ϕ)

]

+

∫

d4xLM (gµν ,ΨM ) , (23)

where ωBD is the so-called BD parameter and (∇ϕ)2 ≡ gµν∂µϕ∂νϕ. Comparing Eq. (21) with
Eq. (23), it follows that f(R) theory in the metric formalism is equivalent to BD theory with the
parameter ωBD = 0 [89, 90, 91] (in the unit κ2 = 1). In Palatini f(R) theory where the metric gµν
and the connection Γα

βγ are treated as independent variables, the Ricci scalar is different from that
in metric f(R) theory. As we will see in Secs. 9.1 and 10.1, f(R) theory in the Palatini formalism
is equivalent to BD theory with the parameter ωBD = −3/2.

2.3 Conformal transformation

The action (1) in f(R) gravity corresponds to a non-linear function f in terms of R. It is possible
to derive an action in the Einstein frame under the conformal transformation [104, 105, 106, 107,
108, 109, 167]:

g̃µν = Ω2 gµν , (24)

where Ω2 is the so-called conformal factor and a tilde represents quantities in the Einstein frame.
The Ricci scalars R and R̃ in the two frames have the following relation

R = Ω2(R̃ + 6�̃ω − 6g̃µν∂µω∂νω) , (25)

where

ω ≡ ln Ω , ∂µω ≡ ∂ω

∂x̃µ
, �̃ω ≡ 1√−g̃ ∂µ(

√

−g̃ g̃µν∂νω) . (26)
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We rewrite the action (1) in the form

S =

∫

d4x
√−g

(

1

2κ2
FR− U

)

+

∫

d4xLM (gµν ,ΨM ) , (27)

where

U =
FR− f

2κ2
. (28)

Using Eq. (25) and the relation
√−g = Ω−4

√−g̃, the action (27) is transformed as

S =

∫

d4x
√

−g̃
[

1

2κ2
FΩ−2(R̃+ 6�̃ω − 6g̃µν∂µω∂νω)− Ω−4U

]

+

∫

d4xLM (Ω−2 g̃µν ,ΨM ) . (29)

We obtain the Einstein frame action (linear action in R̃) for the choice

Ω2 = F . (30)

This choice is consistent if F > 0. We introduce a new scalar field φ defined by

κφ ≡
√

3/2 lnF . (31)

From the definition of ω in Eq. (26) we have that ω = κφ/
√
6. Using Eq. (26), the integral

∫

d4x
√−g̃ �̃ω vanishes on account of the Gauss’s theorem. Then the action in the Einstein frame

is

SE =

∫

d4x
√

−g̃
[

1

2κ2
R̃− 1

2
g̃µν∂µφ∂νφ− V (φ)

]

+

∫

d4xLM (F−1(φ)g̃µν ,ΨM ) , (32)

where

V (φ) =
U

F 2
=
FR− f

2κ2F 2
. (33)

Hence the Lagrangian density of the field φ is given by Lφ = − 1
2 g̃

µν∂µφ∂νφ − V (φ) with the
energy-momentum tensor

T̃ (φ)
µν = − 2√−g̃

δ(
√−g̃Lφ)

δg̃µν
= ∂µφ∂νφ− g̃µν

[

1

2
g̃αβ∂αφ∂βφ+ V (φ)

]

. (34)

The conformal factor Ω2 = F = exp(
√

2/3κφ) is field-dependent. From the matter action (32)
the scalar field φ is directly coupled to matter in the Einstein frame. In order to see this more
explicitly, we take the variation of the action (32) with respect to the field φ:

−∂µ
(

∂(
√−g̃Lφ)

∂(∂µφ)

)

+
∂(
√−g̃Lφ)

∂φ
+
∂LM

∂φ
= 0 , (35)

that is

�̃φ− V,φ +
1√−g̃

∂LM

∂φ
= 0 , where �̃φ ≡ 1√−g̃ ∂µ(

√

−g̃ g̃µν∂νφ) . (36)

Using Eq. (24) and the relations
√−g̃ = F 2√−g and g̃µν = F−1gµν , the energy-momentum tensor

of matter is transformed as

T̃ (M)
µν = − 2√−g̃

δLM

δg̃µν
=
T

(M)
µν

F
. (37)

The energy-momentum tensor of perfect fluids in the Einstein frame is given by

T̃ µ(M)
ν = diag(−ρ̃M , P̃M , P̃M , P̃M ) = diag(−ρM/F 2, PM/F

2, PM/F
2, PM/F

2) . (38)
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The derivative of the Lagrangian density LM = LM (gµν) = LM (F−1(φ)g̃µν) with respect to φ is

∂LM

∂φ
=
δLM

δgµν
∂gµν

∂φ
=

1

F (φ)

δLM

δg̃µν
∂(F (φ)g̃µν)

∂φ
= −

√

−g̃ F,φ

2F
T̃ (M)
µν g̃µν . (39)

The strength of the coupling between the field and matter can be quantified by the following
quantity

Q ≡ − F,φ

2κF
= − 1√

6
, (40)

which is constant in f(R) gravity [65]. It then follows that

∂LM

∂φ
=
√

−g̃ κQT̃ , (41)

where T̃ = g̃µν T̃
µν(M) = −ρ̃M + 3P̃M . Substituting Eq. (41) into Eq. (36), we obtain the field

equation in the Einstein frame:
�̃φ− V,φ + κQT̃ = 0 . (42)

This shows that the field φ is directly coupled to matter apart from radiation (T̃ = 0).
Let us consider the flat FLRW space-time with the metric (12) in the Jordan frame. The metric

in the Einstein frame is given by

ds̃2 = Ω2ds2 = F (−dt2 + a2(t) dx2) ,

= −dt̃2 + ã2(t̃) dx2 , (43)

which leads to the following relations (for F > 0)

dt̃ =
√
Fdt , ã =

√
Fa , (44)

where
F = e−2Qκφ . (45)

Note that Eq. (45) comes from the integration of Eq. (40) for constant Q. The field equation (42)
can be expressed as

d2φ

dt̃2
+ 3H̃

dφ

dt̃
+ V,φ = −κQ(ρ̃M − 3P̃M ) , (46)

where

H̃ ≡ 1

ã

dã

dt̃
=

1√
F

(

H +
Ḟ

2F

)

. (47)

Defining the energy density ρ̃φ = 1
2 (dφ/dt̃)

2 + V (φ) and the pressure P̃φ = 1
2 (dφ/dt̃)

2 − V (φ),
Eq. (46) can be written as

dρ̃φ

dt̃
+ 3H̃(ρ̃φ + P̃φ) = −κQ(ρ̃M − 3P̃M )

dφ

dt̃
. (48)

Under the transformation (44) together with ρM = F 2ρ̃M , PM = F 2P̃M , and H = F 1/2[H̃ −
(dF/dt̃)/2F ], the continuity equation (17) is transformed as

dρ̃M

dt̃
+ 3H̃(ρ̃M + P̃M ) = κQ(ρ̃M − 3P̃M )

dφ

dt̃
. (49)

Equations (48) and (49) show that the field and matter interacts with each other, while the
total energy density ρ̃T = ρ̃φ+ ρ̃M and the pressure P̃T = P̃φ+ P̃M satisfy the continuity equation
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dρ̃T /dt̃+ 3H̃(ρ̃T + P̃T ) = 0. More generally, Eqs. (48) and (49) can be expressed in terms of the
energy-momentum tensors defined in Eqs. (34) and (37):

∇̃µT̃
µ(φ)
ν = −QT̃ ∇̃νφ , ∇̃µT̃

µ(M)
ν = QT̃ ∇̃νφ , (50)

which correspond to the same equations in coupled quintessence studied in Ref. [110] (see also
Ref. [168]).

In the absence of a field potential V (φ) (i.e. massless field) the field mediates a long-range fifth
force with a large coupling (|Q| ≃ 0.4), which contradicts with experimental tests in the solar
system. In f(R) gravity a field potential with gravitational origin is present, which allows the
possibility of compatibility with local gravity tests through the so-called chameleon mechanism
[92, 93].

In f(R) gravity the field φ is coupled to non-relativistic matter (dark matter, baryons) with a
universal coupling Q = −1/

√
6. We consider the frame in which the baryons obey the standard

continuity equation ρm ∝ a−3, i.e. the Jordan frame, as the “physical” frame in which physical
quantities are compared with observations. Sometimes we use the Einstein frame for mathematical
convenience.

3 Inflation in f(R) theories

Most models of inflation in the early Universe are based on scalar fields appearing in superstring
and supergravity theories. Meanwhile, the first inflation model proposed by Starobinsky [2] is
related to the conformal anomaly in quantum gravity3. Unlike the models such as “old inflation”
[3, 4, 5] this scenario is not plagued by the graceful exit problem—the period of cosmic acceleration
is followed by the radiation-dominated epoch with a transient matter-dominated phase [48, 49,
50]. Moreover it predicts nearly scale-invariant spectra of gravitational waves and temperature
anisotropies consistent with CMB observations [174, 175, 176, 177, 178]. In this section we review
the dynamics of inflation and reheating. In Sec. 7 we will discuss the power spectra of scalar and
tensor perturbations generated in f(R) inflation models.

3.1 Inflationary dynamics

We consider the models of the form

f(R) = R+ αRn , (α > 0, n > 0) , (51)

which include the Starobinsky’s model [2] as a specific case (n = 2). In the absence of the matter
fluid (ρM = 0), Eq. (15) gives

3(1 + nαRn−1)H2 =
1

2
(n− 1)αRn − 3n(n− 1)αHRn−2Ṙ . (52)

The cosmic acceleration can be realized in the regime F = 1 + nαRn−1 ≫ 1. Under the approxi-
mation F ≃ nαRn−1, it follows that

H2 ≃ n− 1

6n

(

R− 6nH
Ṙ

R

)

. (53)

3There are some other works about theoretical constructions of f(R) models based on quantum gravity or
supergravity [169, 170, 171, 172, 173].
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During inflation the Hubble parameter H evolves slowly so that one can use the approximation
|Ḣ/H2| ≪ 1 and |Ḧ/(HḢ)| ≪ 1. Then Eq. (53) reduces to

Ḣ

H2
≃ −ǫ1, ǫ1 =

2− n

(n− 1)(2n− 1)
. (54)

Integrating this equation for ǫ1 > 0, we obtain the solution

H ≃ 1

ǫ1t
, a ∝ t1/ǫ1 . (55)

The cosmic acceleration occurs for ǫ1 < 1, i.e. n > (1+
√
3)/2. When n = 2 one has ǫ1 = 0, so that

H is constant in the regime F ≫ 1. The models with n > 2 lead to super inflation characterized
by Ḣ > 0 and a ∝ |t0 − t|−1/|ǫ1| (t0 is a constant). Hence the standard inflation with decreasing
H occurs for (1 +

√
3)/2 < n < 2.

In the following let us focus on the Starobinsky’s model given by

f(R) = R+R2/(6M2) , (56)

where the constant M has a dimension of mass. The presence of the linear term in R eventually
causes inflation to end. Without neglecting this linear term, the combination of Eqs. (15) and (16)
gives

Ḧ − Ḣ2

2H
+

1

2
M2H = −3HḢ , (57)

R̈+ 3HṘ+M2R = 0 . (58)

During inflation the first two terms in Eq. (57) can be neglected relative to others, which gives
Ḣ ≃ −M2/6. We then obtain the solution

H ≃ Hi − (M2/6)(t− ti) , (59)

a ≃ ai exp
[

Hi(t− ti)− (M2/12)(t− ti)
2
]

, (60)

R ≃ 12H2 −M2 , (61)

where Hi and ai are the Hubble parameter and the scale factor at the onset of inflation (t = ti),
respectively. This inflationary solution is a transient attractor of the dynamical system [179]. The
accelerated expansion continues as long as the slow-roll parameter

ǫ1 = − Ḣ

H2
≃ M2

6H2
, (62)

is smaller than the order of unity, i.e. H2 & M2. One can also check that the approximate
relation 3HṘ +M2R ≃ 0 holds in Eq. (58) by using R ≃ 12H2. The end of inflation (at time
t = tf ) is characterized by the condition ǫf ≃ 1, i.e. Hf ≃M/

√
6. From Eq. (61) this corresponds

to the epoch at which the Ricci scalar decreases to R ≃ M2. As we will see later, the WMAP
normalization of the CMB temperature anisotropies constrains the mass scale to beM ≃ 1013GeV.
Note that the phase space analysis for the model (56) was carried out in Refs. [179, 180, 181].

We define the number of e-foldings from t = ti to t = tf :

N ≡
∫ tf

ti

H dt ≃ Hi(tf − ti)−
M2

12
(tf − ti)

2 . (63)
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Figure 1: The field potential (66) in the Einstein frame corresponding to the model (56). Inflation
is realized in the regime κφ≫ 1.

Since inflation ends at tf ≃ ti + 6Hi/M
2, it follows that

N ≃ 3H2
i

M2
≃ 1

2ǫ1(ti)
, (64)

where we used Eq. (62) in the last approximate equality. In order to solve horizon and flatness
problems of the big bang cosmology we require that N & 70 [7], i.e. ǫ1(ti) . 7 × 10−3. The CMB
temperature anisotropies correspond to the perturbations whose wavelengths crossed the Hubble
radius around N = 55-60 before the end of inflation.

3.2 Dynamics in the Einstein frame

Let us consider inflationary dynamics in the Einstein frame for the model (56) in the absence of
matter fluids (LM = 0). The action in the Einstein frame corresponds to (32) with a field φ defined
by

φ =

√

3

2

1

κ
lnF =

√

3

2

1

κ
ln

(

1 +
R

3M2

)

. (65)

Using this relation, the field potential (33) reads [106, 182, 183]

V (φ) =
3M2

4κ2

(

1− e−
√

2/3κφ
)2

. (66)

In Fig. 1 we illustrate the potential (66) as a function of φ. In the regime κφ≫ 1 the potential
is nearly constant (V (φ) ≃ 3M2/(4κ2)), which leads to slow-roll inflation. The potential in the
regime κφ ≪ 1 is given by V (φ) ≃ (1/2)M2φ2, so that the field oscillates around φ = 0 with a
Hubble damping. The second derivative of V with respect to φ is

V,φφ = −M2e−
√

2/3κφ
(

1− 2e−
√

2/3κφ
)

, (67)

14



which changes from negative to positive at φ = φ1 ≡
√

3/2(ln 2)/κ ≃ 0.169mpl.
Since F ≃ 4H2/M2 during inflation, the transformation (44) gives a relation between the

cosmic time t̃ in the Einstein frame and that in the Jordan frame:

t̃ =

∫ t

ti

√
F dt ≃ 2

M

[

Hi(t− ti)−
M2

12
(t− ti)

2

]

, (68)

where t = ti corresponds to t̃ = 0. The end of inflation (tf ≃ ti + 6Hi/M
2) corresponds to

t̃f = (2/M)N in the Einstein frame, where N is given in Eq. (63). On using Eqs. (60) and (68),

the scale factor ã =
√
Fa in the Einstein frame evolves as

ã(t̃) ≃
(

1− M2

12H2
i

Mt̃

)

ãi e
Mt̃/2 , (69)

where ãi = 2Hiai/M . Similarly the evolution of the Hubble parameter H̃ = (H/
√
F )[1+Ḟ /(2HF )]

is given by

H̃(t̃) ≃ M

2

[

1− M2

6H2
i

(

1− M2

12H2
i

Mt̃

)−2
]

, (70)

which decreases with time. Equations (69) and (70) show that the Universe expands quasi-
exponentially in the Einstein frame as well.

The field equations for the action (32) are given by

3H̃2 = κ2

[

1

2

(

dφ

dt̃

)2

+ V (φ)

]

, (71)

d2φ

dt̃2
+ 3H̃

dφ

dt̃
+ V,φ = 0 . (72)

Using the slow-roll approximations (dφ/dt̃)2 ≪ V (φ) and |d2φ/dt̃2| ≪ |H̃dφ/dt̃| during inflation,

one has 3H̃2 ≃ κ2V (φ) and 3H̃(dφ/dt̃) + V,φ ≃ 0. We define the slow-roll parameters

ǫ̃1 ≡ −dH̃/dt̃

H̃2
≃ 1

2κ2

(

V,φ
V

)2

, ǫ̃2 ≡ d2φ/dt̃2

H̃(dφ/dt̃)
≃ ǫ̃1 −

V,φφ

3H̃2
. (73)

For the potential (66) it follows that

ǫ̃1 ≃ 4

3
(e
√

2/3κφ − 1)−2 , ǫ̃2 ≃ ǫ̃1 +
M2

3H̃2
e−

√
2/3κφ(1 − 2e−

√
2/3κφ) , (74)

which are much smaller than 1 during inflation (κφ≫ 1). The end of inflation is characterized by
the condition {ǫ̃1, |ǫ̃2|} = O(1). Solving ǫ̃1 = 1, we obtain the field value φf ≃ 0.19mpl.

We define the number of e-foldings in the Einstein frame,

Ñ =

∫ t̃f

t̃i

H̃dt̃ ≃ κ2
∫ φi

φf

V

V,φ
dφ , (75)

where φi is the field value at the onset of inflation. Since H̃dt̃ = Hdt[1 + Ḟ /(2HF )], it follows
that Ñ is identical to N in the slow-roll limit: |Ḟ /(2HF )| ≃ |Ḣ/H2| ≪ 1. Under the condition
κφi ≫ 1 we have

Ñ ≃ 3

4
e
√

2/3κφi . (76)
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This shows that φi ≃ 1.11mpl for Ñ = 70. From Eqs. (74) and (76) together with the approximate

relation H̃ ≃M/2, we obtain

ǫ̃1 ≃ 3

4Ñ2
, ǫ̃2 ≃ 1

Ñ
, (77)

where, in the expression of ǫ̃2, we have dropped the terms of the order of 1/Ñ2. The results (77)
will be used to estimate the spectra of density perturbations in Sec. 7.

3.3 Reheating after inflation

We discuss the dynamics of reheating and the resulting particle production in the Jordan frame
for the model (56). The inflationary period is followed by a reheating phase in which the second
derivative R̈ can be no longer neglected in Eq. (58). Introducing R̂ = a3/2R, we have

¨̂
R+

(

M2 − 3

4
H2 − 3

2
Ḣ

)

R̂ = 0 . (78)

Since M2 ≫ {H2, |Ḣ |} during reheating, the solution to Eq. (78) is given by that of the harmonic
oscillator with a frequency M . Hence the Ricci scalar exhibits a damped oscillation around R = 0:

R ∝ a−3/2 sin(Mt) . (79)

Let us estimate the evolution of the Hubble parameter and the scale factor during reheating in
more detail. If we neglect the r.h.s. of Eq. (57), we get the solution H(t) = const × cos2(Mt/2).
Setting H(t) = f(t) cos2(Mt/2) to derive the solution of Eq. (57), we obtain [50]

f(t) =
1

C + (3/4)(t− tos) + 3/(4M) sin[M(t− tos)]
, (80)

where tos is the time at the onset of reheating. The constant C is determined by matching Eq. (80)
with the slow-roll inflationary solution Ḣ = −M2/6 at t = tos. Then we get C = 3/M and

H(t) =

[

3

M
+

3

4
(t− tos) +

3

4M
sinM(t− tos)

]−1

cos2
[

M

2
(t− tos)

]

. (81)

Taking the time average of oscillations in the regime M(t − tos) ≫ 1, it follows that 〈H〉 ≃
(2/3)(t − tos)

−1. This corresponds to the cosmic evolution during the matter-dominated epoch,
i.e. 〈a〉 ∝ (t− tos)

2/3. The gravitational effect of coherent oscillations of scalarons with mass M is
similar to that of a pressureless perfect fluid. During reheating the Ricci scalar is approximately
given by R ≃ 6Ḣ , i.e.

R ≃ −3

[

3

M
+

3

4
(t− tos) +

3

4M
sinM(t− tos)

]−1

M sin [M(t− tos)] . (82)

In the regime M(t− tos) ≫ 1 this behaves as

R ≃ − 4M

t− tos
sin [M(t− tos)] . (83)

In order to study particle production during reheating, we consider a scalar field χ with mass
mχ. We also introduce a nonminimal coupling (1/2)ξRχ2 between the field χ and the Ricci scalar
R [184]. Then the action is given by

S =

∫

d4x
√−g

[

f(R)

2κ2
− 1

2
gµν∂µχ∂νχ− 1

2
m2

χχ
2 − 1

2
ξRχ2

]

, (84)
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where f(R) = R +R2/(6M2). Taking the variation of this action with respect to χ gives

�χ−m2
χχ− ξRχ = 0 . (85)

We decompose the quantum field χ in terms of the Heisenberg representation:

χ(t,x) =
1

(2π)3/2

∫

d3k
(

âkχk(t)e
−ik·x + â†kχ

∗
k(t)e

ik·x
)

, (86)

where âk and â†k are annihilation and creation operators, respectively. Then each Fourier mode
χk(t) obeys the following equation of motion

χ̈k + 3Hχ̇k +

(

k2

a2
+m2

χ + ξR

)

χk = 0 , (87)

where k = |k| is a comoving wavenumber. Introducing a new field uk = aχk and conformal time
η =

∫

a−1dt, we obtain

d2uk
dη2

+

[

k2 +m2
χa

2 +

(

ξ − 1

6

)

a2R

]

uk = 0 , (88)

where the conformal coupling correspond to ξ = 1/6. This result states that, even though ξ = 0
(that is, the field is minimally coupled to gravity), R still gives a contribution to the effective
mass of uk. In the following we first review the reheating scenario based on a minimally coupled
massless field (ξ = 0 and mχ = 0). This corresponds to the gravitational particle production in
the perturbative regime [48, 49, 50]. We then study the case in which the nonminimal coupling |ξ|
is larger than the order of 1. In this case the non-adiabatic particle production so-called preheating

[185, 186, 187, 188] can occur via parametric resonance.

3.3.1 Case: ξ = 0 and mχ = 0

In this case there is no explicit coupling among the fields χ and R. Hence the χ particles are
produced only gravitationally. In fact, Eq. (88) reduces to

d2uk
dη2

+ k2uk = Uuk , (89)

where U = a2R/6. Since U is of the order of (aH)2, one has k2 ≫ U for the mode deep inside
the Hubble radius. Initially we choose the field in the vacuum state with the positive-frequency

solution [184]: u
(i)
k = e−ikη/

√
2k. The presence of the time-dependent term U(η) leads to the

creation of the particle χ. We can write the solution of Eq. (89) iteratively, as [189]

uk(η) = u
(i)
k +

1

k

∫ η

0

U(η′) sin[k(η − η′)]uk(η
′)dη′ . (90)

After the Universe enters the radiation-dominated epoch, the term U becomes small so that the
flat-space solution is recovered. The choice of decomposition of χ into âk and â†k is not unique. In
curved space-time it is possible to choose another decomposition in term of new ladder operators
Âk and Â†

k, which can be written in terms of âk and â†k, such as Âk = αkâk + β∗
k â

†
−k. Provided

that β∗
k 6= 0, even though âk |0〉 = 0, we have Âk |0〉 6= 0. Hence the vacuum in one basis is not the

vacuum in the new basis, and according to the new basis, the particles are created. The Bogoliubov
coefficient describing the particle production is

βk = − i

2k

∫ ∞

0

U(η′)e−2ikη′
dη′ . (91)
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The typical wavenumber in the η-coordinate is given by k, whereas in the t-coordinate it is k/a.
Then the energy density per unit comoving volume in the η-coordinate is [50]

ρη =
1

(2π)3

∫ ∞

0

4πk2dk · k |βk|2

=
1

8π2

∫ ∞

0

dη U(η)

∫ ∞

0

dη′U(η′)

∫ ∞

0

dk · ke2ik(η′−η)

=
1

32π2

∫ ∞

0

dη
dU

dη

∫ ∞

0

dη′
U(η′)

η′ − η
, (92)

where in the last equality we have used the fact that the term U approaches 0 in the early and
late times.

During the oscillating phase of the Ricci scalar the time-dependence of U is given by U =
I(η) sin(

∫ η

0
ωdη̄), where I(η) = ca(η)1/2 and ω = Ma (c is a constant). When we evaluate the

term dU/dη in Eq. (92), the time-dependence of I(η) can be neglected. Differentiating Eq. (92) in
terms of η and taking the limit

∫ η

0
ωdη̄ ≫ 1, it follows that

dρη
dη

≃ ω

32π
I2(η) cos2

(
∫ η

0

ωdη̄

)

, (93)

where we used the relation limk→∞ sin(kx)/x = πδ(x). Shifting the phase of the oscillating factor
by π/2, we obtain

dρη
dt

≃ MU2

32π
=
Ma4R2

1152π
. (94)

The proper energy density of the field χ is given by ρχ = (ρη/a)/a
3 = ρη/a

4. Taking into account
g∗ relativistic degrees of freedom, the total radiation density is

ρM =
g∗
a4
ρη =

g∗
a4

∫ t

tos

Ma4R2

1152π
dt , (95)

which obeys the following equation

ρ̇M + 4HρM =
g∗MR2

1152π
. (96)

Comparing this with the continuity equation (17) we obtain the pressure of the created particles,
as

PM =
1

3
ρM − g∗MR2

3456πH
. (97)

Now the dynamical equations are given by Eqs. (15) and (16) with the energy density (95) and
the pressure (97).

In the regime M(t − tos) ≫ 1 the evolution of the scale factor is given by a ≃ a0(t − tos)
2/3,

and hence

H2 ≃ 4

9(t− tos)2
, (98)

where we have neglected the backreaction of created particles. Meanwhile the integration of
Eq. (95) gives

ρM ≃ g∗M3

240π

1

t− tos
, (99)

where we have used the averaged relation 〈R2〉 ≃ 8M2/(t− tos)2 [which comes from Eq. (83)]. The
energy density ρM evolves slowly compared to H2 and finally it becomes a dominant contribution
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to the total energy density (3H2 ≃ 8πρM/m
2
pl) at the time tf ≃ tos+40m2

pl/(g∗M
3). In Ref. [50] it

was found that the transition from the oscillating phase to the radiation-dominated epoch occurs
slower compared to the estimation given above. Since the epoch of the transient matter-dominated
era is about one order of magnitude longer than the analytic estimation [50], we take the value tf ≃
tos + 400m2

pl/(g∗M
3) to estimate the reheating temperature Tr. Since the particle energy density

ρM (tf ) is converted to the radiation energy density ρr = g∗π2T 4
r /30, the reheating temperature

can be estimated as4

Tr . 3× 1017g
1/4
∗

(

M

mpl

)3/2

GeV . (100)

As we will see in Sec. 7, the WMAP normalization of the CMB temperature anisotropies determines
the mass scale to be M ≃ 3 × 10−6mpl. Taking the value g∗ = 100, we have Tr . 5 × 109 GeV.
For t > tf the Universe enters the radiation-dominated epoch characterized by a ∝ t1/2, R = 0,
and ρr ∝ t−2.

3.3.2 Case: |ξ| & 1

If |ξ| is larger than the order of unity, one can expect the explosive particle production called
preheating prior to the perturbative regime discussed above. Originally the dynamics of such
gravitational preheating was studied in Refs. [191, 192] for a massive chaotic inflation model in
Einstein gravity. Later this was extended to the f(R) model (56) [193].

Introducing a new field Xk = a3/2χk, Eq. (87) reads

Ẍk +

(

k2

a2
+m2

χ + ξR− 9

4
H2 − 3

2
Ḣ

)

Xk = 0 . (101)

As long as |ξ| is larger than the order of unity, the last two terms in the bracket of Eq. (101) can be
neglected relative to ξR. Since the Ricci scalar is given by Eq. (83) in the regime M(t− tos) ≫ 1,
it follows that

Ẍk +

[

k2

a2
+m2

χ − 4Mξ

t− tos
sin{M(t− tos)}

]

Xk ≃ 0 . (102)

The oscillating term gives rise to parametric amplification of the particle χk. In order to see
this we introduce the variable z defined by M(t− tos) = 2z± π/2, where the plus and minus signs
correspond to the cases ξ > 0 and ξ < 0 respectively. Then Eq. (102) reduces to the so-called
Mathieu equation

d2

dz2
Xk + [Ak − 2q cos(2z)]Xk ≃ 0 , (103)

where

Ak =
4k2

a2M2
+

4m2
χ

M2
, q =

8|ξ|
M(t− tos)

. (104)

The strength of parametric resonance depends on the parameters Ak and q. This can be described
by a stability-instability chart of the Mathieu equation [194, 186, 193]. In the Minkowski space-
time the parameters Ak and q are constant. If Ak and q are in an instability band, then the
perturbation Xk grows exponentially with a growth index µk, i.e. Xk ∝ eµkz. In the regime q ≪ 1
the resonance occurs only in narrow bands around Ak = ℓ2, where ℓ = 1, 2, ..., with the maximum
growth index µk = q/2 [186]. Meanwhile, for large q (≫ 1), a broad resonance can occur for a
wide range of parameter space and momentum modes [188].

4In Ref. [50] the reheating temperature is estimated by taking the maximum value of ρM reached around the
ten oscillations of R. Meanwhile we estimate Tr at the epoch where ρM becomes a dominant contribution to the
total energy density (as in [190]).
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In the expanding cosmological background both Ak and q vary in time. Initially the field Xk

is in the broad resonance regime (q ≫ 1) for |ξ| ≫ 1, but it gradually enters the narrow resonance
regime (q . 1). Since the field passes many instability and stability bands, the growth index
µk stochastically changes with the cosmic expansion. The non-adiabaticity of the change of the
frequency ω2

k = k2/a2 +m2
χ − 4Mξ sin{M(t− tos)}/(t− tos) can be estimated by the quantity

rna ≡
∣

∣

∣

∣

ω̇k

ω2
k

∣

∣

∣

∣

=M
|k2/a2 + 2Mξ cos{M(t− tos)}/(t− tos)|

|k2/a2 +m2
χ − 4Mξ sin{M(t− tos)}/(t− tos)|3/2

, (105)

where the non-adiabatic regime corresponds to rna & 1. For small k and mχ we have rna ≫ 1
around M(t − tos) = nπ, where n are positive integers. This corresponds to the time at which
the Ricci scalar vanishes. Hence, each time R crosses 0 during its oscillation, the non-adiabatic
particle production occurs most efficiently. The presence of the mass term mχ tends to suppress
the non-adiabaticity parameter rna, but still it is possible to satisfy the condition rna & 1 around
R = 0.

For the model (56) it was shown in Ref. [193] that massless χ particles are resonantly amplified
for |ξ| & 3. Massive particles with mχ of the order of M can be created for |ξ| & 10. Note that
in the preheating scenario based on the model V (φ, χ) = (1/2)m2

φφ
2 + (1/2)g2φ2χ2 the parameter

q decreases more rapidly (q ∝ 1/t2) than that in the model (56) [188]. Hence, in our geometric
preheating scenario, we do not require very large initial values of q [such as q > O(103)] to lead to
the efficient parametric resonance.

While the above discussion is based on the linear analysis, non-linear effects (such as the mode-
mode coupling of perturbations) can be important at the late stage of preheating (see e.g., [188,
195]). Also the energy density of created particles affects the background cosmological dynamics,
which works as a backreaction to the Ricci scalar. The process of the subsequent perturbative
reheating stage can be affected by the explosive particle production during preheating. It will be
of interest to take into account all these effects and study how the thermalization is reached at the
end of reheating. This certainly requires the detailed numerical investigation of lattice simulations,
as developed in Refs. [196, 197].

At the end of this section we should mention a number of interesting works about gravitational
baryogenesis based on the interaction (1/M2

∗ )
∫

d4x
√−g Jµ ∂µR between the baryon number cur-

rent Jµ and the Ricci scalar R (M∗ is the cut-off scale characterizing the effective theory) [198, 199].
This interaction can give rise to an equilibrium baryon asymmetry which is observationally accept-
able, even for the gravitational Lagrangian f(R) = Rn with n close to 1. It will be of interest to
extend the analysis to more general f(R) gravity models.

4 Dark energy in f(R) theories

In this section we apply f(R) theories to dark energy. Our interest is to construct viable f(R)
models that can realize the sequence of radiation, matter, and accelerated epochs. In this section
we do not attempt to find unified models of inflation and dark energy based on f(R) theories.

Originally the model f(R) = R − α/Rn (α > 0, n > 0) was proposed to explain the late-time
cosmic acceleration [51, 52, 53, 54, 55] (see also Refs. [200, 201, 202, 203, 204, 205, 206]). However,
this model suffers from a number of problems such as matter instability [56, 57], the instability of
cosmological perturbations [77, 78, 79, 80, 81], the absence of the matter era [65, 66, 207], and the
inability to satisfy local gravity constraints [58, 59, 60, 61, 62, 63, 64]. The main reason why this
model does not work is that the quantity f,RR ≡ ∂2f/∂R2 is negative. As we will see later, the
violation of the condition f,RR > 0 gives rise to the negative mass squaredM2 for the scalaron field.
Hence we require that f,RR > 0 to avoid a tachyonic instability. The condition f,R ≡ ∂f/∂R > 0
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is also required to avoid the appearance of ghosts (see Sec. 7.4). Thus viable f(R) dark energy
models need to satisfy [71]

f,R > 0 , f,RR > 0 , for R ≥ R0 (> 0) , (106)

where R0 is the Ricci scalar today.
In the following we shall derive other conditions for the cosmological viability of f(R) models.

This is based on the analysis of Ref. [67]. For the matter Lagrangian LM in Eq. (1) we take into
account non-relativistic matter and radiation, whose energy densities ρm and ρr satisfy

ρ̇m + 3Hρm = 0 , (107)

ρ̇r + 4Hρr = 0 , (108)

respectively. From Eqs. (15) and (16) it follows that

3FH2 = (FR− f)/2− 3HḞ + κ2(ρm + ρr) , (109)

−2FḢ = F̈ −HḞ + κ2 [ρm + (4/3)ρr] . (110)

4.1 Dynamical equations

We introduce the following variables

x1 ≡ − Ḟ

HF
, x2 ≡ − f

6FH2
, x3 ≡ R

6H2
, x4 ≡ κ2ρr

3FH2
, (111)

together with the density parameters

Ωm ≡ κ2ρm
3FH2

= 1− x1 − x2 − x3 − x4, Ωr ≡ x4 , ΩDE ≡ x1 + x2 + x3 . (112)

It is straightforward to derive the following equations

dx1
dN

= −1− x3 − 3x2 + x21 − x1x3 + x4 , (113)

dx2
dN

=
x1x3
m

− x2(2x3 − 4− x1) , (114)

dx3
dN

= −x1x3
m

− 2x3(x3 − 2) , (115)

dx4
dN

= −2x3x4 + x1 x4 , (116)

where N = ln a is the number of e-foldings, and

m ≡ d lnF

d lnR
=
Rf,RR

f,R
, (117)

r ≡ − d ln f

d lnR
= −Rf,R

f
=
x3
x2

. (118)

From Eq. (118) the Ricci scalar R can be expressed by x3/x2. Since m depends on R, this means
that m is a function of r, that is, m = m(r). The ΛCDM model, f(R) = R − 2Λ, corresponds
to m = 0. Hence the quantity m characterizes the deviation of the background dynamics from
the ΛCDM model. A number of authors carried out phase space analysis for specific f(R) models
[208, 68, 209, 69, 210, 211, 212, 213, 214, 215, 216].
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The effective equation of state of the system is defined by

weff ≡ −1− 2Ḣ/(3H2) , (119)

which is equivalent to weff = −(2x3 − 1)/3. In the absence of radiation (x4 = 0) the fixed points
for the above dynamical system are

P1 : (x1, x2, x3) = (0,−1, 2), Ωm = 0, weff = −1 , (120)

P2 : (x1, x2, x3) = (−1, 0, 0), Ωm = 2, weff = 1/3 , (121)

P3 : (x1, x2, x3) = (1, 0, 0), Ωm = 0, weff = 1/3 , (122)

P4 : (x1, x2, x3) = (−4, 5, 0), Ωm = 0, weff = 1/3 , (123)

P5 : (x1, x2, x3) =

(

3m

1 +m
,− 1 + 4m

2(1 +m)2
,

1 + 4m

2(1 +m)

)

, (124)

Ωm = 1− m(7 + 10m)

2(1 +m)2
, weff = − m

1 +m
, (125)

P6 : (x1, x2, x3) =

(

2(1−m)

1 + 2m
,

1− 4m

m(1 + 2m)
,− (1− 4m)(1 +m)

m(1 + 2m)

)

,

Ωm = 0, weff =
2− 5m− 6m2

3m(1 + 2m)
.

(126)

The points P5 and P6 are on the line m(r) = −r − 1 in the (r,m) plane.
The matter-dominated epoch (Ωm ≃ 1 and weff ≃ 0) can be realized only by the point P5 for

m close to 0. In the (r,m) plane this point exists around (r,m) = (−1, 0). Either the point P1

or P6 can be responsible for the late-time cosmic acceleration. The former is a de Sitter point
(weff = −1) with r = −2, in which case the condition (11) is satisfied. The point P6 can give rise
to the accelerated expansion (weff < −1/3) provided that m > (

√
3 − 1)/2, or −1/2 < m < 0, or

m < −(1 +
√
3)/2.

In order to analyze the stability of the above fixed points it is sufficient to consider only time-
dependent linear perturbations δxi(t) (i = 1, 2, 3) around them (see Ref. [217, 15] for the detail of
such analysis). For the point P5 the eigenvalues for the 3× 3 Jacobian matrix of perturbations are

3(1 +m′
5),

−3m5 ±
√

m5(256m3
5 + 160m2

5 − 31m5 − 16)

4m5(m5 + 1)
, (127)

where m5 ≡ m(r5) and m′
5 ≡ dm

dr (r5) with r5 ≈ −1. In the limit that |m5| ≪ 1 the latter

two eigenvalues reduce to −3/4 ±
√

−1/m5. For the models with m5 < 0, the solutions cannot
remain for a long time around the point P5 because of the divergent behavior of the eigenvalues
as m5 → −0. The model f(R) = R − α/Rn (α > 0, n > 0) falls into this category. On the other
hand, if 0 < m5 < 0.327, the latter two eigenvalues in Eq. (127) are complex with negative real
parts. Then, provided that m′

5 > −1, the point P5 corresponds to a saddle point with a damped
oscillation. Hence the solutions can stay around this point for some time and finally leave for the
late-time acceleration. Then the condition for the existence of the saddle matter era is

m(r) ≃ +0 ,
dm

dr
> −1 , at r = −1 . (128)

The first condition implies that viable f(R) models need to be close to the ΛCDM model during
the matter domination. This is also required for consistency with local gravity constraints, as we
will see in the next section.
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The eigenvalues for the Jacobian matrix of perturbations about the point P1 are

−3, −3

2
±
√

25− 16/m1

2
, (129)

where m1 = m(r = −2). This shows that the condition for the stability of the de Sitter point P1

is [218, 219, 220, 67]
0 < m(r = −2) ≤ 1 . (130)

The trajectories that start from the saddle matter point P5 satisfying the condition (128) and then
approach the stable de Sitter point P1 satisfying the condition (130) are, in general, cosmologically
viable.

One can also show that P6 is stable and accelerated for (a) m′
6 < −1, (

√
3 − 1)/2 < m6 < 1,

(b) m′
6 > −1, m6 < −(1 +

√
3)/2, (c) m′

6 > −1, −1/2 < m6 < 0, (d) m′
6 > −1, m6 ≥ 1. Since

both P5 and P6 are on the line m = −r − 1, only the trajectories from m′
5 > −1 to m′

6 < −1 are
allowed (see Fig. 2). This means that only the case (a) is viable as a stable and accelerated fixed
point P6. In this case the effective equation of state satisfies the condition weff > −1.

From the above discussion the following two classes of models are cosmologically viable.

• Class A: Models that connect P5 (r ≃ −1, m ≃ +0) to P1 (r = −2, 0 < m ≤ 1)

• Class B: Models that connect P5 (r ≃ −1, m ≃ +0) to P6 (m = −r− 1, (
√
3− 1)/2 < m < 1)

From Eq. (106) the viable f(R) dark energy models need to satisfy the condition m > 0, which is
consistent with the above argument.

4.2 Viable f(R) dark energy models

We present a number of viable f(R) models in the (r,m) plane. First we note that the ΛCDM
model corresponds to m = 0, in which case the trajectory is the straight line (i) in Fig. 2. The
trajectory (ii) in Fig. 2 represents the model f(R) = (Rb − Λ)c [69], which corresponds to the
straight line m(r) = [(1− c)/c]r+ b− 1 in the (r,m) plane. The existence of a saddle matter epoch
demands the condition c ≥ 1 and bc ≃ 1. The trajectory (iii) represents the model [67, 68]

f(R) = R− αRn (α > 0, 0 < n < 1) , (131)

which corresponds to the curve m = n(1 + r)/r. The trajectory (iv) represents the model m(r) =
−C(r + 1)(r2 + ar + b), in which case the late-time accelerated attractor is the point P6 with
(
√
3− 1)/2 < m < 1.
In Ref. [67] it was shown that m needs to be close to 0 during the radiation domination as well

as the matter domination. Hence the viable f(R) models are close to the ΛCDM model in the
region R ≫ R0. The Ricci scalar remains positive from the radiation era up to the present epoch,
as long as it does not oscillate around R = 0. The model f(R) = R− α/Rn (α > 0, n > 0) is not
viable because the condition f,RR > 0 is violated.

As we will see in the next section, the local gravity constraints provide tight bounds on the
deviation parameter m in the region of high density (R ≫ R0), e.g., m(R) . 10−15 for R = 105R0

[64, 111]. In order to realize a large deviation from the ΛCDM model such asm(R) > O(0.1) today
(R = R0) we require that the variable m changes rapidly from the past to the present. The f(R)
model given in Eq. (131), for example, does not allow such a rapid variation, because m evolves as
m ≃ n(−r − 1) in the region R ≫ R0. Instead, if the deviation parameter has the dependence

m = C(−r − 1)p , p > 1 , C > 0 , (132)
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Figure 2: Four trajectories in the (r,m) plane. Each trajectory corresponds to the models: (i)
ΛCDM, (ii) f(R) = (Rb − Λ)c, (iii) f(R) = R − αRn with α > 0, 0 < n < 1, and (iv) m(r) =
−C(r + 1)(r2 + ar + b). From Ref. [69].

it is possible to lead to the rapid decrease of m as we go back to the past. The models that behave
as Eq. (132) in the regime R ≫ R0 are

(A) f(R) = R− µRc
(R/Rc)

2n

(R/Rc)2n + 1
with n, µ,Rc > 0 , (133)

(B) f(R) = R− µRc

[

1−
(

1 +R2/R2
c

)−n
]

with n, µ,Rc > 0 . (134)

The models (A) and (B) have been proposed by Hu and Sawicki [70] and Starobinsky [71], re-
spectively. Note that Rc roughly corresponds to the order of R0 for µ = O(1). This means that
p = 2n+ 1 for R ≫ R0. In the next section we will show that both the models (A) and (B) are
consistent with local gravity constraints for n & 1.

In the model (A) the following relation holds at the de Sitter point:

µ =
(1 + x2nd )2

x2n−1
d (2 + 2x2nd − 2n)

, (135)

where xd ≡ R1/Rc and R1 is the Ricci scalar at the de Sitter point. The stability condition (130)
gives [73]

2x4nd − (2n− 1)(2n+ 4)x2nd + (2n− 1)(2n− 2) ≥ 0 . (136)

The parameter µ has a lower bound determined by the condition (136). When n = 1, for example,
one has xd ≥

√
3 and µ ≥ 8

√
3/9. Under Eq. (136) one can show that the conditions (106) are

also satisfied.
Similarly the model (B) satisfies [71]

(1 + x2d)
n+2 ≥ 1 + (n+ 2)x2d + (n+ 1)(2n+ 1)x4d, (137)
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with

µ =
xd(1 + x2d)

n+1

2[(1 + x2d)
n+1 − 1− (n+ 1)x2d]

. (138)

When n = 1 we have xd ≥
√
3 and µ ≥ 8

√
3/9, which is the same as in the model (A). For general

n, however, the bounds on µ in the model (B) are not identical to those in the model (A).
Another model that leads to an even faster evolution of m is given by [73]

(C) f(R) = R− µRctanh (R/Rc) with µ,Rc > 0 . (139)

A similar model was proposed by Appleby and Battye [72]. In the region R ≫ Rc the model (139)
behaves as f(R) ≃ R − µRc [1− exp(−2R/Rc)], which may be regarded as a special case of (132)
in the limit that p≫ 1 5. The Ricci scalar at the de-Sitter point is determined by µ, as

µ =
xd cosh

2(xd)

2 sinh(xd) cosh(xd)− xd
. (140)

From the stability condition (130) we obtain

µ > 0.905 , xd > 0.920 . (141)

The models (A), (B) and (C) are close to the ΛCDM model for R ≫ Rc, but the deviation
from it appears when R decreases to the order of Rc. This leaves a number of observational
signatures such as the phantom-like equation of state of dark energy and the modified evolution
of matter density perturbations. In the following we discuss the dark energy equation of state in
f(R) models. In Sec. 8 we study the evolution of density perturbations and resulting observational
consequences in detail.

4.3 Equation of state of dark energy

In order to confront viable f(R) models with SN Ia observations, we rewrite Eqs. (109) and (110)
as follows:

3AH2 = κ2 (ρm + ρr + ρDE) , (142)

−2AḢ = κ2 [ρm + (4/3)ρr + ρDE + PDE] , (143)

where A is some constant and

κ2ρDE ≡ (1/2)(FR− f)− 3HḞ + 3H2(A− F ) , (144)

κ2PDE ≡ F̈ + 2HḞ − (1/2)(FR− f)− (3H2 + 2Ḣ)(A − F ) . (145)

Defining ρDE and PDE in the above way, we find that these satisfy the usual continuity equation

ρ̇DE + 3H(ρDE + PDE) = 0 . (146)

Note that this holds as a consequence of the Bianchi identities, as we have already mentioned in
the discussion from Eq. (8) to Eq. (10).

The dark energy equation of state, wDE ≡ PDE/ρDE, is directly related to the one used in SN
Ia observations. From Eqs. (142) and (143) it is given by

wDE = −2AḢ + 3AH2 + κ2ρr/3

3AH2 − κ2(ρm + ρr)
≃ weff

1− (F/A)Ωm
, (147)

5The cosmological dynamics for the model f(R) = R− µRc [1− exp(−2R/Rc)] was studied in Ref. [76].
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where the last approximate equality is valid in the regime where the radiation density ρr is negligible
relative to the matter density ρm. The viable f(R) models approach the ΛCDM model in the past,
i.e. F → 1 as R → ∞. In order to reproduce the standard matter era (3H2 ≃ κ2ρm) for z ≫ 1,
we can choose A = 1 in Eqs. (142) and (143). Another possible choice is A = F0, where F0 is
the present value of F . This choice may be suitable if the deviation of F0 from 1 is small (as in
scalar-tensor theory with a nearly massless scalar field [221, 222]). In both cases the equation of
state wDE can be smaller than −1 before reaching the de Sitter attractor [70, 69, 73, 223], while the
effective equation of state weff is larger than −1. This comes from the fact that the denominator
in Eq. (147) becomes smaller than 1 in the presence of the matter fluid. Thus f(R) gravity models
give rise to the phantom equation of state of dark energy without violating any stability conditions
of the system. See Refs. [224, 225, 226, 227] for observational constraints on the models (133) and
(134) by using the background expansion history of the Universe. Note that as long as the late-
time attractor is the de Sitter point the cosmological constant boundary crossing of weff reported
in Refs. [228, 229] does not typically occur, apart from small oscillations of weff around the de
Sitter point.

There are some works that try to reconstruct the forms of f(R) by using some desired form for
the evolution of the scale factor a(t) or the observational data of SN Ia [230, 231, 232, 233, 234, 209].
We need to caution that the procedure of reconstruction does not in general guarantee the stability
of solutions. In scalar-tensor dark energy models, for example, it is known that a singular behavior
sometimes arises at low-redshifts in such a procedure [235, 236]. In addition to the fact that the
reconstruction method does not uniquely determine the forms of f(R), the observational data of
the background expansion history alone is not yet sufficient to reconstruct f(R) models in high
precision.

Finally we mention a number of works [237, 238, 239, 240, 241, 242, 243, 244] about the
use of metric f(R) gravity as dark matter instead of dark energy. In most of past works the
power-law f(R) model f = Rn has been used to obtain spherically symmetric solutions for galaxy
clustering. In Ref. [238] it was shown that the theoretical rotation curve of spiral galaxies show
good agreement with observational data for n = 1.7, while for broader samples the best-fit value of
the power was found to be n = 2.2 [240]. However, these values are not compatible with the bound
|n− 1| < 7.2× 10−19 derived in Refs. [206, 208] from a number of other observational constraints.
Hence it is unlikely that f(R) gravity works as the main source for dark matter.

5 Local gravity constraints

In this section we discuss the compatibility of f(R) models with local gravity constraints [58, 59,
60, 61, 62, 63, 64, 69, 70, 81, 94, 224, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256,
257, 258, 259]. In an environment of high density such as Earth or Sun, the Ricci scalar R is much
larger than the background cosmological value R0. If the outside of a spherically symmetric body
is a vacuum, the metric can be described by a Schwarzschild exterior solution with R = 0. In the
presence of non-relativistic matter with an energy density ρm, this gives rise to a contribution to
the Ricci scalar R of the order κ2ρm.

If we consider local perturbations δR on a background characterized by the curvature R0, the
validity of the linear approximation demands the condition δR ≪ R0. We first derive the solutions

of linear perturbations under the approximation that the background metric g
(0)
µν is described by

the Minkowski metric ηµν . In the case of Earth and Sun the perturbation δR is much larger than
R0, which means that the linear theory is no longer valid. In such a non-linear regime the effect
of the chameleon mechanism [92, 93] becomes important, so that f(R) models can be consistent
with local gravity tests.
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5.1 Linear expansions of perturbations in the spherically symmetric

background

First we decompose the quantities R, F (R), and Tµν into the background part and the perturbed
part: R = R0 + δR, F = F0(1 + δF ), and Tµν = (0)Tµν + δTµν about the approximate Minkowski

background (g
(0)
µν ≈ ηµν). In other words, although we consider R close to a mean-field value

R0, the metric is still very close to the Minkowski case. The linear expansion of Eq. (7) in a
time-independent background gives [59, 220, 62, 63]

∇2δF −M2δF =
κ2

3F0
δT , (148)

where δT ≡ ηµνδTµν and

M2 ≡ 1

3

[

f,R(R0)

f,RR(R0)
− R0

]

=
R0

3

[

1

m(R0)
− 1

]

. (149)

The variable m is defined in Eq. (117). Since 0 < m(R0) < 1 for viable f(R) models, it follows
that M2 > 0 (recall that R0 > 0).

We consider a spherically symmetric body with mass Mc, constant density ρ (= −δT ), radius
rc, and vanishing density outside the body. Since δF is a function of the distance r from the center
of the body, Eq. (148) reduces to the following form inside the body (r < rc):

d2

dr2
δF +

2

r

d

dr
δF −M2 δF = − κ2

3F0
ρ , (150)

whereas the r.h.s. vanishes outside the body (r > rc). The solution of the perturbation δF for
positive M2 is given by

(δF )r<rc = c1
e−Mr

r
+ c2

eMr

r
+

8πGρ

3F0M2
, (151)

(δF )r>rc = c3
e−Mr

r
+ c4

eMr

r
, (152)

where ci (i = 1, 2, 3, 4) are integration constants. The requirement that (δF )r>rc → 0 as r → ∞
gives c4 = 0. The regularity condition at r = 0 requires that c2 = −c1. We match two solutions
(151) and (152) at r = rc by demanding the regularities of δF (r) and δ′F (r). Since δF ∝ δR, this
implies that R is also continuous. If the mass M satisfies the condition Mrc ≪ 1, we obtain the
following solutions

(δF )r<rc ≃ 4πGρ

3F0

(

r2c −
r2

3

)

, (153)

(δF )r>rc ≃ 2GMc

3F0r
e−Mr . (154)

As we have seen in Sec. 2.3, the action (1) in f(R) gravity can be transformed to the so-called
Einstein frame action by a transformation of the metric. The Einstein frame action is given by
a linear action in R̃, where R̃ is a Ricci scalar in the new frame. The first-order solution for
the perturbation hµν of the metric g̃µν = F0 (ηµν + hµν) follows from the first-order linearized
Einstein equations in the Einstein frame. This leads to the solutions h00 = 2GMc/(F0r) and
hij = 2GMc/(F0r) δij . Including the perturbation δF to the quantity F , the actual metric gµν is
given by [63]

gµν =
g̃µν
F

≃ ηµν + hµν − δF ηµν . (155)
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Using the solution (154) outside the body, the (00) and (ii) components of the metric gµν are

g00 ≃ −1 +
2G

(N)
eff Mc

r
, gii ≃ 1 +

2G
(N)
eff Mc

r
γ , (156)

where G
(N)
eff and γ are the effective gravitational coupling and the post-Newtonian parameter,

respectively, defined by

G
(N)
eff ≡ G

F0

(

1 +
1

3
e−Mr

)

, γ ≡ 3− e−Mr

3 + e−Mr
. (157)

For the f(R) models whose deviation from the ΛCDM model is small (m ≪ 1), we have
M2 ≃ R0/[3m(R0)] and R ≃ 8πGρ. This gives the following estimate

(Mrc)
2 ≃ 2

Φc

m(R0)
, (158)

where Φc = GMc/(F0rc) = 4πGρr2c/(3F0) is the gravitational potential at the surface of the body.
The approximation Mrc ≪ 1 used to derive Eqs. (153) and (154) corresponds to the condition

m(R0) ≫ Φc . (159)

Since F0δF = f,RR(R0)δR, it follows that

δR =
f,R(R0)

f,RR(R0)
δF . (160)

The validity of the linear expansion requires that δR ≪ R0, which translates into δF ≪ m(R0).
Since δF ≃ 2GMc/(3F0rc) = 2Φc/3 at r = rc, one has δF ≪ m(R0) ≪ 1 under the condition
(159). Hence the linear analysis given above is valid for m(R0) ≫ Φc.

For the distance r close to rc the post Newtonian parameter in Eq. (157) is given by γ ≃ 1/2
(i.e. because Mr ≪ 1). The tightest experimental bound on γ is given by [260, 261, 262]:

|γ − 1| < 2.3× 10−5 , (161)

which comes from the time-delay effect of the Cassini tracking for Sun. This means that f(R)
gravity models with the light scalaron mass (Mrc ≪ 1) do not satisfy local gravity constraints
[58, 59, 60, 61, 62, 63, 245, 246]. The mean density of Earth or Sun is of the order of ρ ≃ 1-

10 g/cm3, which is much larger than the present cosmological density ρ
(0)
c ≃ 10−29 g/cm3. In such

an environment the condition δR ≪ R0 is violated and the field mass M becomes large such that
Mrc ≫ 1. The effect of the chameleon mechanism [92, 93] becomes important in this non-linear
regime (δR ≫ R0) [81, 70, 64, 94, 224]. In the next subsection we will show that the f(R) models
can be consistent with local gravity constraints provided that the chameleon mechanism is at work.

5.2 Chameleon mechanism in f(R) gravity

Let us discuss the chameleon mechanism [92, 93] in metric f(R) gravity. Unlike the linear expansion
approach given in the previous subsection, this corresponds to a non-linear effect arising from a
large departure of the Ricci scalar from its background valueR0. The mass of an effective scalar field
degree of freedom depends on the density of its environment. If the matter density is sufficiently
high, the field acquires a heavy mass about the potential minimum. Meanwhile the field has a
lighter mass in a low-density cosmological environment relevant to dark energy so that it can
propagate freely. As long as the spherically symmetric body has a thin-shell around its surface,
the effective coupling between the field and matter becomes much smaller than the bare coupling
|Q|. In the following we shall review the chameleon mechanism for general couplings Q and then
proceed to constrain f(R) dark energy models from local gravity tests.
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5.2.1 Field profile of the chameleon field

The action (1) in f(R) gravity can be transformed to the Einstein frame action (32) with the
coupling Q = −1/

√
6 between the scalaron field φ =

√

3/(2κ2) ln F and non-relativistic matter.
Let us consider a spherically symmetric body with radius r̃c in the Einstein frame. We approximate
that the background geometry is described by the Minkowski space-time. Varying the action (32)
with respect to the field φ, we obtain

d2φ

dr̃2
+

2

r̃

dφ

dr̃
− dVeff

dφ
= 0 , (162)

where r̃ is a distance from the center of symmetry that is related to the distance r in the Jordan
frame via r̃ =

√
Fr = e−Qκφr. The effective potential Veff is defined by

Veff(φ) = V (φ) + eQκφρ∗ , (163)

where ρ∗ is a conserved quantity in the Einstein frame [93]. Recall that the field potential V (φ) is
given in Eq. (33). The energy density ρ̃ in the Einstein frame is related with the energy density
ρ in the Jordan frame via the relation ρ̃ = ρ/F 2 = e4Qκφρ. Since the conformal transformation
gives rise to a coupling Q between matter and the field, ρ̃ is not a conserved quantity. Instead the
quantity ρ∗ = e3Qκφρ = e−Qκφρ̃ corresponds to a conserved quantity, which satisfies r̃3ρ∗ = r3ρ.
Note that Eq. (162) is consistent with Eq. (42).

In the following we assume that a spherically symmetric body has a constant density ρ∗ = ρA
inside the body (r̃ < r̃c) and that the energy density outside the body (r̃ > r̃c) is ρ∗ = ρB
(≪ ρA). The mass Mc of the body and the gravitational potential Φc at the radius r̃c are given
by Mc = (4π/3)r̃3cρA and Φc = GMc/r̃c, respectively. The effective potential has minima at the
field values φA and φB:

V,φ(φA) + κQeQκφAρA = 0 , (164)

V,φ(φB) + κQeQκφBρB = 0 . (165)

The former corresponds to the region of high density with a heavy mass squared m2
A ≡ Veff,φφ(φA),

whereas the latter to a lower density region with a lighter mass squared m2
B ≡ Veff,φφ(φB). In the

case of Sun, for example, the field value φB is determined by the homogeneous dark matter/baryon
density in our galaxy, i.e. ρB ≃ 10−24 g/cm3.

When Q > 0 the effective potential has a minimum for the models with V,φ < 0, which occurs,
e.g., for the inverse power-law potential V (φ) = M4+nφ−n. The f(R) gravity corresponds to a
negative coupling (Q = −1/

√
6), in which case the effective potential has a minimum for V,φ > 0.

As an example, let us consider the shape of the effective potential for the models (133) and (134).
In the region R ≫ Rc both models behave as

f(R) ≃ R− µRc

[

1− (Rc/R)
2n
]

. (166)

For this functional form it follows that

F = e
2√
6
κφ

= 1− 2nµ(R/Rc)
−(2n+1) , (167)

V (φ) =
µRc

2κ2
e
− 4√

6
κφ

[

1− (2n+ 1)

( −κφ√
6nµ

)
2n

2n+1

]

. (168)

The r.h.s. of Eq. (167) is smaller than 1, so that φ < 0. The limit R → ∞ corresponds to φ→ −0.
In the limit φ → −0 one has V → µRc/(2κ

2) and V,φ → ∞. This property can be seen in the
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Figure 3: (Top) The potential V (φ) = (FR−f)/(2κ2F 2) versus the field φ =
√

3/(16π)mpl lnF for
the Starobinsky’s dark energy model (134) with n = 1 and µ = 2. (Bottom) The inverted effective
potential −Veff for the same model parameters as the top with ρ∗ = 10Rcm

2
pl. The field value, at

which the inverted effective potential has a maximum, is different depending on the density ρ∗, see
Eq. (169). In the upper panel “de Sitter” corresponds to the minimum of the potential, whereas
“singular” means that the curvature diverges at φ = 0.

30



upper panel of Fig. 3, which shows the potential V (φ) for the model (134) with parameters n = 1

and µ = 2. Because of the existence of the coupling term e−κφ/
√
6ρ∗, the effective potential Veff(φ)

has a minimum at

κφM = −
√
6nµ

(

Rc

κ2ρ∗

)2n+1

. (169)

Since R ∼ κ2ρ∗ ≫ Rc in the region of high density, the condition |κφM | ≪ 1 is in fact justified (for
n and µ of the order of unity). The field mass mφ about the minimum of the effective potential is
given by

m2
φ =

1

6n(n+ 1)µ
Rc

(

κ2ρ∗

Rc

)2(n+1)

. (170)

This shows that, in the regime R ∼ κ2ρ∗ ≫ Rc, mφ is much larger than the present Hubble param-
eter H0 (∼

√
Rc). Cosmologically the field evolves along the instantaneous minima characterized

by Eq. (169) and then it approaches a de Sitter point which appears as a minimum of the potential
in the upper panel of Fig. 3.

In order to solve the “dynamics” of the field φ in Eq. (162), we need to consider the inverted
effective potential (−Veff). See the lower panel of Fig. 3 for illustration [which corresponds to the
model (134)]. We impose the following boundary conditions:

dφ

dr̃
(r̃ = 0) = 0 , (171)

φ(r̃ → ∞) = φB . (172)

The boundary condition (172) can be also understood as limr̃→∞ dφ/dr̃ = 0. The field φ is at
rest at r̃ = 0 and starts to roll down the potential when the matter-coupling term κQρAe

Qκφ in
Eq. (162) becomes important at a radius r̃1. If the field value at r̃ = 0 is close to φA, the field
stays around φA in the region 0 < r̃ < r̃1. The body has a thin-shell if r̃1 is close to the radius r̃c
of the body.

In the region 0 < r̃ < r̃1 one can approximate the r.h.s. of Eq. (162) as dVeff/dφ ≃ m2
A(φ−φA)

around φ = φA, where m
2
A = Rc(κ

2ρA/Rc)
2(n+1)/[6n(n+ 1)]. Hence the solution to Eq. (162) is

given by φ(r̃) = φA +Ae−mAr̃/r̃ +BemAr̃/r̃, where A and B are constants. In order to avoid the
divergence of φ at r̃ = 0 we demand the condition B = −A, in which case the solution is

φ(r̃) = φA +
A(e−mAr̃ − emAr̃)

r̃
(0 < r̃ < r̃1). (173)

In fact this satisfies the boundary condition (171).
In the region r̃1 < r̃ < r̃c the field |φ(r̃)| evolves toward larger values with the increase of r̃. In

the lower panel of Fig. 3 the field stays around the potential maximum for 0 < r̃ < r̃1, but in the
regime r̃1 < r̃ < r̃c it moves toward the left (largely negative φ region). Since |V,φ| ≪ |κQρAeQκφ|
in this regime we have that dVeff/dφ ≃ κQρA in Eq. (162), where we used the condition Qκφ≪ 1.
Hence we obtain the following solution

φ(r̃) =
1

6
κQρAr̃

2 − C

r̃
+D (r̃1 < r̃ < r̃c), (174)

where C and D are constants.
Since the field acquires a sufficient kinetic energy in the region r̃1 < r̃ < r̃c, the field climbs up

the potential hill toward the largely negative φ region outside the body (r̃ > r̃c). The shape of
the effective potential changes relative to that inside the body because the density drops from ρA
to ρB. The kinetic energy of the field dominates over the potential energy, which means that the
term dVeff/dφ in Eq. (162) can be neglected. Recall that one has |φB| ≫ |φA| under the condition
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ρA ≫ ρB [see Eq. (169)]. Taking into account the mass termm2
B = Rc(κ

2ρB/Rc)
2(n+1)/[6n(n+1)],

we have dVeff/dφ ≃ m2
B(φ − φB) on the r.h.s. of Eq. (162). Hence we obtain the solution φ(r̃) =

φB+Ee−mB(r̃−r̃c)/r̃+FemB(r̃−r̃c)/r̃ with constants E and F . Using the boundary condition (172),
it follows that F = 0 and hence

φ(r̃) = φB + E
e−mB(r̃−r̃c)

r̃
(r̃ > r̃c). (175)

Three solutions (173), (174) and (175) should be matched at r̃ = r̃1 and r̃ = r̃c by imposing
continuous conditions for φ and dφ/dr̃. The coefficients A, C, D and E are determined accordingly
[263]:

C =
s1s2[(φB − φA) + (r̃21 − r̃2c )κQρA/6] + [s2r̃

2
1(e

−mAr̃1 − emAr̃1)− s1r̃
2
c ]κQρA/3

mA(e−mAr̃1 + emAr̃1)s2 −mBs1
, (176)

A = − 1

s1
(C + κQρAr̃

3
1/3) , (177)

E = − 1

s2
(C + κQρAr̃

3
c/3) , (178)

D = φB − 1

6
κQρAr̃

2
c +

1

r̃c
(C + E) , (179)

where

s1 ≡ mAr̃1(e
−mAr̃1 + emAr̃1) + e−mAr̃1 − emAr̃1 , (180)

s2 ≡ 1 +mB r̃c . (181)

If the mass mB outside the body is small to satisfy the condition mB r̃c ≪ 1 and mA ≫ mB, we
can neglect the contribution of the mB-dependent terms in Eqs. (176)-(179). Then the field profile
is given by [263]

φ(r̃) = φA − 1

mA(e−mAr̃1 + emAr̃1)

[

φB − φA +
1

2
κQρA(r̃

2
1 − r̃2c )

]

e−mAr̃ − emAr̃

r̃
,

(0 < r̃ < r̃1) , (182)

φ(r̃) = φB +
1

6
κQρA(r̃

2 − 3r̃2c) +
κQρAr̃

3
1

3r̃

−
[

1 +
e−mAr̃1 − emAr̃1

mAr̃1(e−mAr̃1 + emAr̃1)

] [

φB − φA +
1

2
κQρA(r̃

2
1 − r̃2c )

]

r̃1
r̃
,

(r̃1 < r̃ < r̃c) , (183)

φ(r̃) = φB −
[

r̃1(φB − φA) +
1

6
κQρAr̃

3
c

(

2 +
r̃1
r̃c

)(

1− r̃1
r̃c

)2

+
e−mAr̃1 − emAr̃1

mA(e−mAr̃1 + emAr̃1)

{

φB − φA +
1

2
κQρA(r̃

2
1 − r̃2c )

}

]

e−mB(r̃−r̃c)

r̃
,

(r̃ > r̃c) . (184)

Originally a similar field profile was derived in Refs. [92, 93] by assuming that the field is frozen
at φ = φA in the region 0 < r̃ < r̃1.

The radius r1 is determined by the following condition

m2
A [φ(r̃1)− φA] = κQρA . (185)
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This translates into

φB − φA +
1

2
κQρA(r̃

2
1 − r̃2c ) =

6QΦc

κ(mAr̃c)2
mAr̃1(e

mAr̃1 + e−mAr̃1)

emAr̃1 − e−mAr̃1
, (186)

where Φc = κ2Mc/(8πr̃c) = κ2ρAr̃
2
c/6 is the gravitational potential at the surface of the body.

Using this relation, the field profile (184) outside the body reduces to

φ(r̃) = φB − 2QΦc

κ

[

1− r̃31
r̃3c

+ 3
r̃1
r̃c

1

(mAr̃c)2

{

mAr̃1(e
mAr̃1 + e−mAr̃1)

emAr̃1 − e−mAr̃1
− 1

}]

r̃ce
−mB(r̃−r̃c)

r̃
,

(r̃ > r̃c) . (187)

If the field value at r̃ = 0 is away from φA, the field rolls down the potential for r̃ > 0. This
corresponds to taking the limit r̃1 → 0 in Eq. (187), in which case the field profile outside the body
is given by

φ(r̃) = φB − 2Q

κ

GMc

r̃
e−mB(r̃−r̃c) . (188)

This shows that the effective coupling is of the order of Q and hence for |Q| = O(1) local gravity
constraints are not satisfied.

5.2.2 Thin-shell solutions

Let us consider the case in which r̃1 is close to r̃c, i.e.

∆r̃c ≡ r̃c − r̃1 ≪ r̃c . (189)

This corresponds to the thin-shell regime in which the field is stuck in most region of the star
except around its surface. If the field is sufficiently massive inside the star to satisfy the condition
mAr̃c ≫ 1, Eq. (186) gives the following relation

ǫth ≡ κ(φB − φA)

6QΦc
≃ ∆r̃c

r̃c
+

1

mAr̃c
, (190)

where ǫth is called the thin-shell parameter [92, 93]. Neglecting second-order terms with respect
to ∆r̃c/r̃c and 1/(mAr̃c) in Eq. (187), it follows that

φ(r̃) ≃ φB − 2Qeff

κ

GMc

r̃
e−mB(r̃−r̃c) , (191)

where Qeff is the effective coupling given by

Qeff = 3Qǫth . (192)

Since ǫth ≪ 1 under the conditions ∆r̃c/r̃c ≪ 1 and 1/(mAr̃c) ≪ 1, the amplitude of the
effective coupling Qeff becomes much smaller than 1. In the original papers of Khoury and Weltman
[92, 93] the thin-shell solution was derived by assuming that the field is frozen with the value
φ = φA in the region 0 < r̃ < r̃1. In this case the thin-shell parameter is given by ǫth ≃ ∆r̃c/r̃c,
which is different from Eq. (190). However, this difference is not important because the condition
∆r̃c/r̃c ≫ 1/(mAr̃c) is satisfied for most of viable models [263].
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5.2.3 Post Newtonian parameter

We derive the bound on the thin-shell parameter from experimental tests of the post Newtonian
parameter in the solar system. The spherically symmetric metric in the Einstein frame is described
by [81]

ds̃2 = g̃µνdx̃
µdx̃ν = −[1− 2Ã(r̃)]dt2 + [1 + 2B̃(r̃)]dr̃2 + r̃2dΩ2 , (193)

where Ã(r̃) and B̃(r̃) are functions of r̃ and dΩ2 = dθ2 + (sin2 θ) dφ2. In the weak gravitational
background (Ã(r̃) ≪ 1 and B̃(r̃) ≪ 1) the metric outside the spherically symmetric body with
mass Mc is given by Ã(r̃) ≃ B̃(r̃) ≃ GMc/r̃.

Let us transform the metric (193) back to that in the Jordan frame under the inverse of
the conformal transformation, gµν = e2Qκφg̃µν . Then the metric in the Jordan frame, ds2 =
e2Qκφds̃2 = gµνdx

µdxν , is given by

ds2 = −[1− 2A(r)]dt2 + [1 + 2B(r)]dr2 + r2dΩ2 . (194)

Under the condition |Qκφ| ≪ 1 we obtain the following relations

r̃ = eQκφr , A(r) ≃ Ã(r̃)−Qκφ(r̃) , B(r) ≃ B̃(r̃)−Qκr̃
dφ(r̃)

dr̃
. (195)

In the following we use the approximation r ≃ r̃, which is valid for |Qκφ| ≪ 1. Using the thin-shell
solution (191), it follows that

A(r) =
GMc

r

[

1 + 6Q2ǫth (1− r/rc)
]

, B(r) = GMc

r

(

1− 6Q2ǫth
)

, (196)

where we have used the approximation |φB| ≫ |φA| and hence φB ≃ 6QΦcǫth/κ.
The term QκφB in Eq. (195) is smaller than A(r) = GMc/r under the condition r/rc <

(6Q2ǫth)
−1. Provided that the field φ reaches the value φB with the distance rB satisfying the

condition rB/rc < (6Q2ǫth)
−1, the metric A(r) does not change its sign for r < rB . The post-

Newtonian parameter γ is given by

γ ≡ B(r)
A(r)

≃ 1− 6Q2ǫth
1 + 6Q2ǫth(1− r/rc)

. (197)

The experimental bound (161) can be satisfied as long as the thin-shell parameter ǫth is much
smaller than 1. If we take the distance r = rc, the constraint (161) translates into

ǫth,⊙ < 3.8× 10−6/Q2 , (198)

where ǫth,⊙ is the thin-shell parameter for Sun. In f(R) gravity (Q = −1/
√
6) this corresponds to

ǫth,⊙ < 2.3× 10−5.

5.2.4 Experimental bounds from the violation of equivalence principle

Let us next discuss constraints on the thin-shell parameter from the possible violation of equivalence
principle (EP). The tightest bound comes from the solar system tests of weak EP using the free-fall
acceleration of Earth (a⊕) and Moon (aMoon) toward Sun [93]. The experimental bound on the
difference of two accelerations is given by [260, 261, 262]

|a⊕ − aMoon|
|a⊕ + aMoon|/2

< 10−13 . (199)

Provided that Earth, Sun, and Moon have thin-shells, the field profiles outside the bodies are
given by Eq. (191) with the replacement of corresponding quantities. The presence of the field
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φ(r) with an effective coupling Qeff gives rise to an extra acceleration, afifth = |Qeff∇φ(r)|. Then
the accelerations a⊕ and aMoon toward Sun (mass M⊙) are [93]

a⊕ ≃ GM⊙
r2

[

1 + 18Q2ǫ2th,⊕
Φ⊕
Φ⊙

]

, (200)

aMoon ≃ GM⊙
r2

[

1 + 18Q2ǫ2th,⊕
Φ2

⊕
Φ⊙ΦMoon

]

, (201)

where ǫth,⊕ is the thin-shell parameter of Earth, and Φ⊙ ≃ 2.1×10−6, Φ⊕ ≃ 7.0×10−10, ΦMoon ≃
3.1 × 10−11 are the gravitational potentials of Sun, Earth and Moon, respectively. Hence the
condition (199) translates into [64, 111]

ǫth,⊕ < 8.8× 10−7/|Q| , (202)

which corresponds to ǫth,⊕ < 2.2× 10−6 in f(R) gravity. This bound provides a tighter bound on
model parameters compared to (198).

Since the condition |φB| ≫ |φA| is satisfied for ρA ≫ ρB, one has ǫth,⊕ ≃ κφB/(6QΦ⊕) from
Eq. (190). Then the bound (202) translates into

|κφB,⊕| < 3.7× 10−15 . (203)

5.2.5 Constraints on model parameters in f(R) gravity

We place constraints on the f(R) models given in Eqs. (133) and (134) by using the experimental
bounds discussed above. In the region of high density where R is much larger than Rc, one can use
the asymptotic form (166) to discuss local gravity constraints. Inside and outside the spherically
symmetric body the effective potential Veff for the model (166) has two minima at

κφA ≃ −
√
6nµ

(

Rc

κ2ρA

)2n+1

, κφB ≃ −
√
6nµ

(

Rc

κ2ρB

)2n+1

. (204)

The bound (203) translates into

nµ

x2n+1
d

(

R1

κ2ρB

)2n+1

< 1.5× 10−15 , (205)

where xd ≡ R1/Rc and R1 is the Ricci scalar at the late-time de Sitter point. In the following
we consider the case in which the Lagrangian density is given by (166) for R ≥ R1. If we use the
models (133) and (134), then there are some modifications for the estimation of R1. However this
change should be insignificant when we place constraints on model parameters.

At the de Sitter point the model (166) satisfies the condition µ = x2n+1
d /[2(x2nd − n − 1)].

Substituting this relation into Eq. (205), we find

n

2(x2nd − n− 1)

(

R1

κ2ρB

)2n+1

< 1.5× 10−15 . (206)

For the stability of the de Sitter point we require that m(R1) < 1, which translates into the
condition x2nd > 2n2 + 3n+1. Hence the term n/[2(x2nd − n− 1)] in Eq. (206) is smaller than 0.25
for n > 0.

We use the approximation that R1 and ρB are of the orders of the present cosmological density
10−29 g/cm3 and the baryonic/dark matter density 10−24 g/cm3 in our galaxy, respectively. From
Eq. (206) we obtain the bound [64]

n > 0.9 . (207)
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Under this condition one can see an appreciable deviation from the ΛCDM model cosmologically
as R decreases to the order of Rc.

If we consider the model (131), it was shown in Ref. [64] that the bound (203) gives the
constraint n < 3 × 10−10. This means that the deviation from the ΛCDM model is very small.
Meanwhile, for the models (133) and (134), the deviation from the ΛCDM model can be large
even for n = O(1), while satisfying local gravity constraints. We note that the model (139) is also
consistent with local gravity constraints.

6 Cosmological perturbations

The f(R) theories have one extra scalar degree of freedom compared to the ΛCDM model. This
feature results in more freedom for the background. As we have seen previously, a viable cosmo-
logical sequence of radiation, matter, and accelerated epochs is possible provided some conditions
hold for f(R). In principle, however, one can specify any given H = H(a) and solve Eqs. (15) and
(16) for those f(R(a)) compatible with the given H(a).

Therefore the background cosmological evolution is not in general enough to distinguish f(R)
theories from other theories. Even worse, for the same H(a), there may be some different forms
of f(R) which fulfill the Friedmann equations. Hence other observables are needed in order to
distinguish between different theories. In order to achieve this goal, perturbation theory turns out
to be of fundamental importance. More than this, perturbations theory in cosmology has become
as important as in particle physics, since it gives deep insight into these theories by providing
information regarding the number of independent degrees of freedom, their speed of propagation,
their time-evolution: all observables to be confronted with different data sets.

The main result of the perturbation analysis in f(R) gravity can be understood in the following
way. Since it is possible to express this theory into a form of scalar-tensor theory, this should
correspond to having a scalar-field degree of freedom which propagates with the speed of light.
Therefore no extra vector or tensor modes come from the f(R) gravitational sector. Introducing
matter fields will in general increase the number of degrees of freedom, e.g., a perfect fluid will only
add another propagating scalar mode and a vector mode as well. In this section we shall provide
perturbation equations for the general Lagrangian density f(R, φ) including metric f(R) gravity
as a special case.

6.1 Perturbation equations

We start with a general perturbed metric about the flat FLRW background [264, 265, 266, 267, 268]

ds2 = −(1+2α) dt2−2a(t) (∂iβ−Si)dt dx
i+a2(t)(δij+2ψδij+2∂i∂jγ+2∂jFi+hij) dx

i dxj , (208)

where α, β, ψ, γ are scalar perturbations, Si, Fi are vector perturbations, and hij is the tensor
perturbations, respectively. In this review we focus on scalar and tensor perturbations, because
vector perturbations are generally unimportant in cosmology [8].

For generality we consider the following action

S =

∫

d4x
√−g

[

1

2κ2
f(R, φ)− 1

2
ω(φ)gµν∂µφ∂νφ− V (φ)

]

+ SM (gµν ,ΨM ) , (209)

where f(R, φ) is a function of the Ricci scalar R and the scalar field φ, ω(φ) and V (φ) are functions
of φ, and SM is a matter action. We do not take into account an explicit coupling between the
field φ and matter. The action (209) covers not only f(R) gravity but also other modified gravity
theories such as Brans-Dicke theory, scalar-tensor theories, and dilaton gravity. We define the

36



quantity F (R, φ) ≡ ∂f/∂R. Varying the action (209) with respect to gµν and φ, we obtain the
following field equations

FRµν − 1

2
fgµν −∇µ∇νF + gµν�F

= κ2
[

ω

(

∇µφ∇νφ− 1

2
gµν∇λφ∇λφ

)

− V gµν + T (M)
µν

]

, (210)

�φ+
1

2ω

(

ω,φ∇λφ∇λφ− 2V,φ +
f,φ
κ2

)

= 0 , (211)

where T
(M)
µν is the energy-momentum tensor of matter.

We decompose φ and F into homogeneous and perturbed parts, φ = φ̄ + δφ and F = F̄ + δF ,
respectively. In the following we omit the bar for simplicity. The energy-momentum tensor of an
ideal fluid with perturbations is

T 0
0 = −(ρM + δρM ) , T 0

i = −(ρM + PM )∂iv , T i
j = (PM + δPM )δij , (212)

where v characterizes the velocity potential of the fluid. The conservation of the energy-momentum
tensor (∇µTµν = 0) holds for the theories with the action (209) [269].

For the action (209) the background equations (without metric perturbations) are given by

3FH2 =
1

2
(RF − f)− 3HḞ + κ2

[

1

2
ωφ̇2 + V (φ) + ρM

]

, (213)

−2FḢ = F̈ −HḞ + κ2ωφ̇2 + κ2(ρM + PM ) , (214)

φ̈+ 3Hφ̇+
1

2ω

(

ω,φφ̇
2 + 2V,φ − f,φ

κ2

)

= 0 , (215)

ρ̇M + 3H(ρM + PM ) = 0 , (216)

where R is given in Eq. (13).
For later convenience, we define the following perturbed quantities

χ ≡ a(β + aγ̇) , A ≡ 3(Hα− ψ̇)− ∆

a2
χ . (217)

Perturbing Einstein equations at linear order, we obtain the following equations [270, 271] (see
also Refs. [175, 176, 177, 272, 273, 274, 275, 276, 277, 278, 279])

∆

a2
ψ +HA = − 1

2F

[(

3H2 + 3Ḣ +
∆

a2

)

δF − 3H ˙δF +
1

2

(

κ2ω,φφ̇
2 + 2κ2V,φ − f,φ

)

δφ

+ κ2ωφ̇ ˙δφ+ (3HḞ − κ2ωφ̇2)α+ ḞA+ κ2δρM

]

, (218)

Hα− ψ̇ =
1

2F

[

κ2ωφ̇δφ+ ˙δF −HδF − Ḟα+ κ2(ρM + PM )v
]

, (219)

χ̇+Hχ− α− ψ =
1

F
(δF − Ḟχ) , (220)

Ȧ+ 2HA+

(

3H +
∆

a2

)

α =
1

2F

[

3δ̈F + 3H ˙δF −
(

6H2 +
∆

a2

)

δF + 4κ2ωφ̇ ˙δφ

+ (2κ2ω,φφ̇
2 − 2κ2V,φ + f,φ)δφ− 3Ḟ α̇− ḞA

− (4κ2ωφ̇2 + 3HḞ + 6F̈ )α+ κ2(δρM + δPM )

]

, (221)
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¨δF + 3H ˙δF −
(

∆

a2
+
R

3

)

δF +
2

3
κ2φ̇ ˙δφ+

1

3
(κ2ω,φφ̇

2 − 4κ2V,φ + 2f,φ)δφ

=
1

3
κ2(δρM − 3δPM ) + Ḟ (A+ α̇) +

(

2F̈ + 3HḞ +
2

3
κ2ωφ̇2

)

α− 1

3
FδR , (222)

δφ̈+
(

3H +
ω,φ

ω
φ̇
)

δφ̇+

[

−∆

a2
+
(ω,φ

ω

)

,φ

φ̇2

2
+

(

2V,φ − f,φ
2ω

)

,φ

]

δφ

= φ̇α̇+
(

2φ̈+ 3Hφ̇+
ω,φ

ω
φ̇2
)

α+ φ̇A+
1

2ω
F,φδR , (223)

˙δρM + 3H(δρM + δPM ) = (ρM + PM )

(

A− 3Hα+
∆

a2
v

)

, (224)

1

a3(ρM + PM )

d

dt
[a3(ρM + PM )v] = α+

δPM

ρM + PM
, (225)

where δR is given by

δR = −2

[

Ȧ+ 4HA+

(

∆

a2
+ 3Ḣ

)

α+ 2
∆

a2
ψ

]

. (226)

We shall solve the above equations in two different contexts: (i) inflation (Sec. 7), and (ii) the
matter dominated epoch followed by the late-time cosmic acceleration (Sec. 8).

6.2 Gauge-invariant quantities

Before discussing the detail for the evolution of cosmological perturbations, we construct a number
of gauge-invariant quantities. This is required to avoid the appearance of unphysical modes. Let
us consider the gauge transformation

t̂ = t+ δt , x̂i = xi + δij∂jδx , (227)

where δt and δx characterize the time slicing and the spatial threading, respectively. Then the
scalar metric perturbations α, β, ψ and E transform as [264, 8, 280]

α̂ = α− δ̇t , (228)

β̂ = β − a−1δt+ a ˙δx , (229)

ψ̂ = ψ −Hδt , (230)

γ̂ = γ − δx . (231)

Matter perturbations such as δφ and δρ obey the following transformation rule

δ̂φ = δφ− φ̇ δt , (232)

δ̂ρ = δρ− ρ̇ δt . (233)

Note that the quantity δF is also subject to the same transformation: ˆδF = δF − Ḟ δt. We express
the scalar part of the 3-momentum energy-momentum tensor δT 0

i as

δT 0
i = ∂iδq . (234)

For the scalar field and the perfect fluid one has δq = −φ̇δφ and δq = −(ρM + PM )v, respectively.
This quantity transforms as

δ̂q = δq + (ρ+ P )δt . (235)
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One can construct a number of gauge-invariant quantities unchanged under the transformation
(227):

Φ = α− d

dt

[

a2(γ + β/a)
]

, Ψ = −ψ + a2H(γ̇ + β/a) , (236)

R = ψ +
H

ρ+ P
δq , Rδφ = ψ − H

φ̇
δφ , RδF = ψ − H

Ḟ
δF , (237)

δρq = δρ− 3Hδq . (238)

Since δq = −φ̇δφ for single-field inflation with a potential V (φ), R is identical to Rδφ [where we

used ρ = φ̇2/2 + V (φ) and P = φ̇2/2 − V (φ)]. In f(R) gravity one can introduce a scalar field φ
as in Eq. (31), so that RδF = Rδφ. From the gauge-invariant quantity (238) it is also possible to
construct another gauge-invariant quantity for the matter perturbation of perfect fluids:

δM =
δρM
ρM

+ 3H(1 + wM )v , (239)

where wM = PM/ρM .
We note that the tensor perturbation hij is invariant under the gauge transformation [280].
We can choose specific gauge conditions to fix the gauge degree of freedom. After fixing a gauge,

two scalar variables δt and δx are determined accordingly. The Longitudinal gauge corresponds to
the gauge choice β̂ = 0 and γ̂ = 0, under which δt = a(β + aγ̇) and δx = γ. In this gauge one has

Φ̂ = α̂ and Ψ̂ = −ψ̂, so that the line element (without vector and tensor perturbations) is given by

ds2 = −(1 + 2Φ)dt2 + a2(t)(1− 2Ψ)δijdx
idxj , (240)

where we omitted the hat for perturbed quantities.
The uniform-field gauge corresponds to δ̂φ = 0 which fixes δt = δφ/φ̇. The spatial threading

δx is fixed by choosing either β̂ = 0 or γ̂ = 0 (up to an integration constant in the former case).

For this gauge choice one has R̂δφ = ψ̂. Since the spatial curvature (3)R on the constant-time
hypersurface is related to ψ via the relation (3)R = −4∇2ψ/a2, the quantity R is often called the
curvature perturbation on the uniform-field hypersurface. We can also choose the gauge condition
δ̂q = 0 or ˆδF = 0.

7 Perturbations generated during inflation

Let us consider scalar and tensor perturbations generated during inflation for the theories (209)
without taking into account the perfect fluid (SM = 0). In f(R) gravity the contribution of the
field φ such as δφ is absent in the perturbation equations (218)-(223). One can choose the gauge
condition δF = 0, so that RδF = ψ. In scalar-tensor theory in which F is the function of φ alone
(i.e., the coupling of the form F (φ)R without a non-linear term in R), the gauge choice δφ = 0
leads to Rδφ = ψ. Since δF = F,φδφ = 0 in this case, we have RδF = Rδφ = ψ.

We focus on the effective single-field theory such as f(R) gravity and scalar-tensor theory with
the coupling F (φ)R, by choosing the gauge condition δφ = 0 and δF = 0. We caution that this
analysis does not cover the theory such as L = ξ(φ)R+αR2 [281], because the quantity F depends
on both φ and R (in other words, δF = F,φδφ + F,RδR). In the following we write the curvature
perturbations RδF and Rδφ as R.
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7.1 Curvature perturbations

Since δφ = 0 and δF = 0 in Eq. (219) we obtain

α =
Ṙ

H + Ḟ /(2F )
. (241)

Plugging Eq. (241) into Eq. (218), we have

A = − 1

H + Ḟ /(2F )

[

∆

a2
R+

3HḞ − κ2ωφ̇2

2F{H + Ḟ /(2F )}
Ṙ
]

. (242)

Equation (221) gives

Ȧ+

(

2H +
Ḟ

2F

)

A+
3Ḟ

2F
α̇+

[

3F̈ + 6HḞ + κ2ωφ̇2

2F
+

∆

a2

]

α = 0 , (243)

where we have used the background equation (214). Plugging Eqs. (241) and (242) into Eq. (243),
we find that the curvature perturbation satisfies the following simple equation in Fourier space

R̈+
(a3Qs)

˙

a3Qs
Ṙ+

k2

a2
R = 0 , (244)

where k is a comoving wavenumber and

Qs ≡
ωφ̇2 + 3Ḟ 2/(2κ2F )

[H + Ḟ /(2F )]2
. (245)

Introducing the variables zs = a
√
Qs and v = zsR, Eq. (244) reduces to

v′′ +

(

k2 − z′′s
zs

)

v = 0 , (246)

where a prime represents a derivative with respect to the conformal time η =
∫

a−1dt.
In General Relativity with a canonical scalar field φ one has ω = 1 and F = 1, which corresponds

to Qs = φ̇2/H2. Then the perturbation v corresponds to v = a[−δφ + (φ̇/H)ψ]. In the spatially
flat gauge (ψ = 0) this reduces to v = −aδφ, which implies that the perturbation v corresponds
to a canonical scalar field δχ = aδφ. In modified gravity theories it is not clear at this stage
that the perturbation v = a

√
QsR corresponds a canonical field that should be quantized, because

Eq. (244) is unchanged by multiplying a constant term to the quantity Qs defined in Eq. (245).
As we will see in Sec. 7.4, this problem is overcome by considering a second-order perturbed action
for the theory (209) from the beginning.

In order to derive the spectrum of curvature perturbations generated during inflation, we in-
troduce the following variables [178]

ǫ1 ≡ − Ḣ

H2
, ǫ2 ≡ φ̈

Hφ̇
, ǫ3 ≡ Ḟ

2HF
, ǫ4 ≡ Ė

2HE
, (247)

where E ≡ F [ω + 3Ḟ 2/(2κ2φ̇2F )]. Then the quantity Qs can be expressed as

Qs = φ̇2
E

FH2(1 + ǫ3)2
. (248)
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If the parameter ǫ1 is constant, it follows that η = −1/[(1− ǫ1)aH ] [282]. If ǫ̇i = 0 (i = 1, 2, 3, 4)
one has

z′′s
zs

=
ν2R − 1/4

η2
, with ν2R =

1

4
+

(1 + ǫ1 + ǫ2 − ǫ3 + ǫ4)(2 + ǫ2 − ǫ3 + ǫ4)

(1 − ǫ1)2
. (249)

Then the solution to Eq. (246) can be expressed as a linear combination of Hankel functions,

v =

√

π|η|
2

ei(1+2νR)π/4
[

c1H
(1)
νR (k|η|) + c2H

(2)
νR (k|η|)

]

, (250)

where c1 and c2 are integration constants.
During inflation one has |ǫi| ≪ 1, so that z′′s /zs ≈ (aH)2. For the modes deep inside the Hubble

radius (k ≫ aH , i.e. |kη| ≫ 1) the perturbation v satisfies the standard equation of a canonical
field in the Minkowski space-time: v′′+k2v ≃ 0. After the Hubble radius crossing (k = aH) during
inflation, the effect of the gravitational term z′′s /zs becomes important. In the super-Hubble limit
(k ≪ aH , i.e. |kη| ≪ 1) the last term on the l.h.s. of Eq. (244) can be neglected, giving the
following solution

R = c1 + c2

∫

dt

a3Qs
, (251)

where c1 and c2 are integration constants. The second term can be identified as a decaying mode,
which rapidly decays during inflation (unless the field potential has abrupt features). Hence the
curvature perturbation approaches a constant value c1 after the Hubble radius crossing (k < aH).

In the asymptotic past (kη → −∞) the solution to Eq. (246) is determined by a vacuum state
in quantum field theory [184], as v → e−ikη/

√
2k. This fixes the coefficients to be c1 = 1 and

c2 = 0, giving the following solution

v =

√

π|η|
2

ei(1+2νR)π/4H(1)
νR (k|η|) . (252)

We define the power spectrum of curvature perturbations,

PR ≡ 4πk3

(2π)3
|R|2 . (253)

Using the solution (252), we obtain the power spectrum [271]

PR =
1

Qs

(

(1 − ǫ1)
Γ(νR)

Γ(3/2)

H

2π

)2( |kη|
2

)3−2νR

, (254)

where we have used the relations H
(1)
ν (k|η|) → −(i/π)Γ(ν)(k|η|/2)−ν for kη → 0 and Γ(3/2) =√

π/2. Since the curvature perturbation is frozen after the Hubble radius crossing, the spectrum
(254) should be evaluated at k = aH . The spectral index of R, which is defined by nR − 1 =
d lnPR/d lnk|k=aH , is

nR − 1 = 3− 2νR , (255)

where νR is given in Eq. (249). As long as |ǫi| (i = 1, 2, 3, 4) are much smaller than 1 during
inflation, the spectral index reduces to

nR − 1 ≃ −4ǫ1 − 2ǫ2 + 2ǫ3 − 2ǫ4 , (256)

where we have ignored those terms higher than the order of ǫi’s. Provided that |ǫi| ≪ 1 the
spectrum is close to scale-invariant (nR ≃ 1). From Eq. (254) the power spectrum of curvature
perturbations can be estimated as

PR ≃ 1

Qs

(

H

2π

)2

. (257)
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A minimally coupled scalar field φ in Einstein gravity corresponds to ǫ3 = 0, ǫ4 = 0 and Qs =
φ̇2/H2, in which case we obtain the standard results nR − 1 ≃ −4ǫ1 − 2ǫ2 and PR ≃ H4/(4π2φ̇2)
in slow-roll inflation [282, 283].

7.2 Tensor perturbations

Tensor perturbations hij have two polarization states, which are generally written as λ = +,× [7].
In terms of polarization tensors e+ij and e×ij they are given by

hij = h+e
+
ij + h×e

×
ij . (258)

If the direction of a momentum k is along the z-axis, the non-zero components of polarization
tensors are given by e+xx = −e+yy = 1 and e×xy = e×yx = 1.

For the action (209) the Fourier components hλ (λ = +,×) obey the following equation [275]

ḧλ +
(a3F )˙

a3F
ḣλ +

k2

a2
hλ = 0 . (259)

This is similar to Eq. (244) of curvature perturbations, apart from the difference of the factor F
instead of Qs. Defining new variables zt = a

√
F and uλ = zthλ/

√
16πG, it follows that

u′′λ +

(

k2 − z′′t
zt

)

uλ = 0 . (260)

We have introduced the factor 16πG to relate a dimensionless massless field hλ with a massless
scalar field uλ having a unit of mass.

If ǫ̇i = 0, we obtain

z′′t
zt

=
ν2t − 1/4

η2
, with ν2t =

1

4
+

(1 + ǫ3)(2− ǫ1 + ǫ3)

(1− ǫ1)2
. (261)

We follow the similar procedure to the one given in Sec. 7.1. Taking into account polarization
states, the spectrum of tensor perturbations after the Hubble radius crossing is given by

PT = 4× 16πG

a2F

4πk3

(2π)3
|uλ|2 ≃ 16

π

(

H

mpl

)2
1

F

(

(1− ǫ1)
Γ(νt)

Γ(3/2)

)2( |kη|
2

)3−2νt

, (262)

which should be evaluated at the Hubble radius crossing (k = aH). The spectral index of PT is

nT = 3− 2νt , (263)

where νt is given in Eq. (261). If |ǫi| ≪ 1, this reduces to

nT ≃ −2ǫ1 − 2ǫ3 . (264)

Then the amplitude of tensor perturbations is given by

PT ≃ 16

π

(

H

mpl

)2
1

F
. (265)

We define the tensor-to-scalar ratio

r ≡ PT

PR
≃ 64π

m2
pl

Qs

F
. (266)

For a minimally coupled scalar field φ in Einstein gravity, it follows that nT ≃ −2ǫ1, PT ≃
16H2/(πm2

pl), and r ≃ 16ǫ1.
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7.3 The spectra of perturbations in inflation based on f(R) gravity

Let us study the spectra of scalar and tensor perturbations generated during inflation in metric
f(R) gravity. Introducing the quantity E = 3Ḟ 2/(2κ2), we have ǫ4 = F̈ /(HḞ ) and

Qs =
6Fǫ23

κ2(1 + ǫ3)2
=

E

FH2(1 + ǫ3)2
. (267)

Since the field kinetic term φ̇2 is absent, one has ǫ2 = 0 in Eqs. (249) and (256). Under the
conditions |ǫi| ≪ 1 (i = 1, 3, 4), the spectral index of curvature perturbations is given by nR − 1 ≃
−4ǫ1 + 2ǫ3 − 2ǫ4.

In the absence of the matter fluid, Eq. (16) translates into

ǫ1 = −ǫ3(1 − ǫ4) , (268)

which gives ǫ1 ≃ −ǫ3 for |ǫ4| ≪ 1. Hence we obtain [178]

nR − 1 ≃ −6ǫ1 − 2ǫ4 . (269)

From Eqs. (257) and (267), the amplitude of R is estimated as

PR ≃ 1

3πF

(

H

mpl

)2
1

ǫ23
. (270)

Using the relation ǫ1 ≃ −ǫ3, the spectral index (264) of tensor perturbations is given by

nT ≃ 0 , (271)

which vanishes at first-order of slow-roll approximations. From Eqs. (265) and (270) we obtain the
tensor-to-scalar ratio

r ≃ 48ǫ23 ≃ 48ǫ21 . (272)

7.3.1 The model f(R) = αRn (n > 0)

Let us consider the inflation model: f(R) = αRn (n > 0). From the discussion given in Sec. 3.1
the slow-roll parameters ǫi (i = 1, 3, 4) are constants:

ǫ1 =
2− n

(n− 1)(2n− 1)
, ǫ3 = −(n− 1)ǫ1 , ǫ4 =

n− 2

n− 1
. (273)

In this case one can use the exact results (255) and (263) with νR and νt given in Eqs. (249) and
(261) (with ǫ2 = 0). Then the spectral indices are

nR − 1 = nT = − 2(n− 2)2

2n2 − 2n− 1
. (274)

If n = 2 we obtain the scale-invariant spectra with nR = 1 and nT = 0. Even the slight
deviation from n = 2 leads to a rather large deviation from the scale-invariance. If n = 1.7, for
example, one has nR− 1 = nT = −0.13, which does not match with the WMAP 5-year constraint:
nR = 0.960± 0.013 [26].
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7.3.2 The model f(R) = R+R2/(6M2)

For the model f(R) = R +R2/(6M2), the spectrum of the curvature perturbation R shows some
deviation from the scale-invariance. Since inflation occurs in the regime R ≫ M2 and |Ḣ | ≪ H2,
one can approximate F ≃ R/(3M2) ≃ 4H2/M2. Then the power spectra (270) and (265) yield

PR ≃ 1

12π

(

M

mpl

)2
1

ǫ21
, PT ≃ 4

π

(

M

mpl

)2

, (275)

where we have employed the relation ǫ3 ≃ −ǫ1.
Recall that the evolution of the Hubble parameter during inflation is given by Eq. (59). As long

as the time tk at the Hubble radius crossing (k = aH) satisfies the condition (M2/6)(tk−ti) ≪ Hi,
one can approximate H(tk) ≃ Hi. Using Eq. (59), the number of e-foldings from t = tk to the end
of inflation can be estimated as

Nk ≃ 1

2ǫ1(tk)
. (276)

Then the amplitude of the curvature perturbation is given by

PR ≃ N2
k

3π

(

M

mpl

)2

. (277)

The WMAP 5-year normalization corresponds to PR = (2.445 ± 0.096) × 10−9 at the scale k =
0.002Mpc−1 [26]. Taking the typical value Nk = 55, the mass M is constrained to be

M ≃ 3× 10−6mpl . (278)

Using the relation F ≃ 4H2/M2, it follows that ǫ4 ≃ −ǫ1. Hence the spectral index (269) reduces
to

nR − 1 ≃ −4ǫ1 ≃ − 2

Nk
= −3.6× 10−2

(

Nk

55

)−1

. (279)

For Nk = 55 we have nR ≃ 0.964, which is in the allowed region of the WMAP 5-year constraint
(nR = 0.960 ± 0.013 at the 68% confidence level [26]). The tensor-to-scalar ratio (272) can be
estimated as

r ≃ 12

N2
k

≃ 4.0× 10−3

(

Nk

55

)−2

, (280)

which satisfies the current observational bound r < 0.22 [26]. We note that a minimally coupled
field with the potential V (φ) = m2φ2/2 in Einstein gravity (chaotic inflation model [284]) gives rise
to a larger tensor-to-scalar ratio of the order of 0.1. Since future observations such as the Planck
satellite are expected to reach the level of r = O(10−2), they will be able to discriminate between
the chaotic inflation model and the Starobinsky’s f(R) model.

7.3.3 The power spectra in the Einstein frame

Let us consider the power spectra in the Einstein frame. Under the conformal transformation
g̃µν = Fgµν , the perturbed metric (208) is transformed as

ds̃2 = Fds2

= −(1 + 2α̃) dt̃2 − 2ã(t̃) (∂iβ̃ − S̃i)dt̃ dx̃
i

+ã2(t̃)(δij + 2ψ̃δij + 2∂i∂j γ̃ + 2∂jF̃i + h̃ij) dx̃
i dx̃j . (281)
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We decompose the conformal factor into the background and perturbed parts, as

F (t,x) = F̄ (t)

(

1 +
δF (t,x)

F̄ (t)

)

. (282)

In what follows we omit a bar from F . We recall that the background quantities are transformed
as Eqs. (44) and (47). The transformation of scalar metric perturbations is given by

α̃ = α+
δF

2F
, β̃ = β , ψ̃ = ψ +

δF

2F
, γ̃ = γ . (283)

Meanwhile vector and tensor perturbations are invariant under the conformal transformation (S̃i =
Si, F̃i = Fi, h̃ij = hij).

Using the above transformation law, one can easily show that the curvature perturbation R =
ψ −HδF/Ḟ in f(R) gravity is invariant under the conformal transformation:

R̃ = R . (284)

Since the tensor perturbation is also invariant, the tensor-to-scalar ratio r̃ in the Einstein frame is
identical to that in the Jordan frame. For example, let us consider the model f(R) = R+R2/(6M2).
Since the action in the Einstein frame is given by Eq. (32), the slow-roll parameters ǫ̃3 and ǫ̃4 vanish
in this frame. Using Eqs. (256) and (77), the spectral index of curvature perturbations is given by

ñR − 1 ≃ −4ǫ̃1 − 2ǫ̃2 ≃ − 2

Ñk

, (285)

where we have ignored the term of the order of 1/Ñ2
k . Since Ñk ≃ Nk in the slow-roll limit

(|Ḟ /(2HF )| ≪ 1), Eq. (285) agrees with the result (279) in the Jordan frame. Since Qs =
(dφ/dt̃)2/H̃2 in the Einstein frame, Eq. (266) gives the tensor-to-scalar ratio

r̃ =
64π

m2
pl

(

dφ

dt̃

)2
1

H̃2
≃ 16ǫ̃1 ≃

12

Ñ2
k

, (286)

where the background equations (71) and (72) are used with slow-roll approximations. Equation
(286) is consistent with the result (280) in the Jordan frame.

The equivalence of the curvature perturbation between the Jordan and Einstein frames also
holds for scalar-tensor theory with the Lagrangian L = F (φ)R/(2κ2)−(1/2)ω(φ)gµν∂µφ∂νφ−V (φ)
[285, 286]. For the non-minimally coupled scalar field with F (φ) = 1−ξκ2φ2 [287, 288] the spectral
indices of scalar and tensor perturbations have been derived by using such equivalence [289, 290].

7.4 The Lagrangian for cosmological perturbations

In Sec. 7.1 we used the fact that the field which should be quantized corresponds to v = a
√
QsR.

This can be justified by writing down the action (208) expanded at second-order in the perturba-
tions [268]. We recall again that we are considering an effective single-field theory such as f(R)
gravity and scalar-tensor theory with the coupling F (φ)R. Carrying out the expansion of the
action (209) in second order, we find that the action for the curvature perturbation R (either RδF

or Rδφ) is given by [291]

δS(2) =

∫

dt d3xa3Qs

[

1

2
Ṙ2 − 1

2

1

a2
(∇R)2

]

, (287)

where Qs is given in Eq. (245). In fact, the variation of this action in terms of the field R gives
rise to Eq. (244) in Fourier space.
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Introducing the quantities v = zsR and zs = a
√
Qs, the action (287) can be written as

δS(2) =

∫

dη d3x

[

1

2
v′2 − 1

2
(∇v)2 + 1

2

z′′s
zs
v2
]

, (288)

where a prime represents a derivative with respect to the conformal time η =
∫

a−1dt. The action
(288) leads to Eq. (246) in Fourier space. The transformation of the action (287) to (288) gives
rise to the effective mass6

M2
s ≡ − 1

a2
z′′s
zs

=
Q̇2

s

4Q2
s

− Q̈s

2Qs
− 3HQ̇s

2Qs
. (289)

We have seen in Eq. (249) that during inflation the quantity z′′s /zs can be estimated as z′′s /zs ≃
2(aH)2 in the slow-roll limit, so that M2

s ≃ −2H2. For the modes deep inside the Hubble radius
(k ≫ aH) the action (288) reduces to the one for a canonical scalar field v in the flat space-time.
Hence the quantization should be done for the field v = a

√
QsR, as we have done in Sec. 7.1.

From the action (288) we understand a number of physical properties in f(R) theories and
scalar-tensor theories with the coupling F (φ)R listed below.

1. Having a standard d’Alambertian operator, the mode has speed of propagation equal to the
speed of light. This leads to a standard dispersion relation ω = k/a for the high-k modes in
Fourier space.

2. The sign of Qs corresponds to the sign of the kinetic energy of R. The negative sign corre-
sponds to a ghost (phantom) scalar field. In f(R) gravity (with φ̇ = 0) the ghost appears
for F < 0. In so-called Brans-Dicke theory with F (φ) = κ2φ and ω(φ) = ωBD/φ [88] (where
φ > 0) the condition for the appearance of the ghost (ωφ̇2 + 3Ḟ 2/(2κ2F ) < 0) translates
into ωBD < −3/2. In these cases one would encounter serious problems related to vacuum
instability [292, 293].

3. The field v has the effective mass squared given in Eq. (289). In f(R) gravity it can be
written as

M2
s = − 72F 2H4

(2FH + f,RRṘ)2
+

1

3
F

(

288H3 − 12HR

2FH + f,RRṘ
+

1

f,RR

)

+
f2
,RRṘ

2

4F 2
−24H2+

7

6
R , (290)

where we used the background equation (16) to write Ḣ in terms of R and H2. In Fourier
space the perturbation v obeys the equation of motion

v′′ +
(

k2 +M2
s a

2
)

v = 0 . (291)

For k2/a2 ≫ M2
s , the field v propagates with speed of light. For small k satisfying k2/a2 ≪

M2
s , we require a positive M2

s to avoid the tachyonic instability of perturbations. Recall
that the viable dark energy models based on f(R) theories need to satisfy Rf,RR ≪ F (i.e.
m = Rf,RR/f,R ≪ 1) at early times, in order to have successful cosmological evolution

6If we define X =
√
QsR and plugging it into Eq. (287), we obtain the perturbed action for the field X after the

partial integration:

δS(2) =

∫

dt d3x

√

−g(0)
[

1

2
Ẋ2 − 1

2

1

a2
(∇X)2 − 1

2
M2

sX
2

]

,

where
√

−g(0) = a3 and Ms is defined in Eq. (289). Then, for the field X, we obtain the Klein-Gordon equation
�X = M2

sX in the large-scale limit (k → 0), which defines the mass Ms in an invariant way in the FLRW
background.
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from radiation domination till matter domination. At these epochs the mass squared is
approximately given by

M2
s ≃ F

3f,RR
, (292)

which is consistent with the result (149) derived by the linear analysis about the Minkowski
background. Together with the ghost condition F > 0, this leads to f,RR > 0. Recall that
these correspond to the conditions presented in Eq. (106).

8 Observational signatures of dark energy models in f(R)

theories

In this section we discuss a number of observational signatures of dark energy models based on
metric f(R) gravity. Our main interest is to distinguish these models from the ΛCDM model
observationally. In particular we study the evolution of matter density perturbations as well as
the gravitational potential to confront f(R) models with the observations of large-scale structure
(LSS) and Cosmic Microwave Background (CMB). The effect on weak lensing will be discussed in
Sec. 13.1 in more general modified gravity theories including f(R) gravity.

8.1 Matter density perturbations

Let us consider the perturbations of non-relativistic matter with the background energy density
ρm and the negligible pressure (Pm = 0). In Fourier space Eqs. (224) and (225) give

˙δρm + 3Hδρm = ρm

(

A− 3Hα− k2

a2
v

)

, (293)

v̇ = α , (294)

where in the second line we have used the continuity equation, ρ̇m + 3Hρm = 0. The density
contrast defined in Eq. (239), i.e.

δm =
δρm
ρm

+ 3Hv , (295)

obeys the following equation from Eqs. (293) and (294):

δ̈m + 2Hδ̇m +
k2

a2
(α− χ̇) = 3B̈ + 6HḂ , (296)

where B ≡ Hv − ψ and we used the relation A = 3(Hα− ψ̇) + (k2/a2)χ.
In the following we consider the evolution of perturbations in f(R) gravity in the Longitudinal

gauge (240). Since χ = 0, α = Φ, ψ = −Ψ, and A = 3(HΦ + Ψ̇) in this case, Eqs. (218), (220),
(222), and (296) give

k2

a2
Ψ+ 3H(HΦ+ Ψ̇) = − 1

2F

[(

3H2 + 3Ḣ − k2

a2

)

δF − 3H ˙δF

+ 3HḞΦ+ 3Ḟ (HΦ+ Ψ̇) + κ2δρm

]

, (297)

Ψ− Φ =
δF

F
, (298)

¨δF + 3H ˙δF +

(

k2

a2
+M2

)

δF =
κ2

3
δρm + Ḟ (3HΦ+ 3Ψ̇ + Φ̇) + (2F̈ + 3HḞ )Φ , (299)

δ̈m + 2Hδ̇m +
k2

a2
Φ = 3B̈ + 6HḂ , (300)
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where B = Hv+Ψ. In order to derive Eq. (299), we have used the mass squared M2 = (F/F,R −
R)/3 introduced in Eq. (149) together with the relation δR = δF/F,R.

Let us consider the wavenumber k deep inside the Hubble radius (k ≫ aH). In order to derive
the equation of matter perturbations approximately, we use the quasi-static approximation under
which the dominant terms in Eqs. (297)-(300) correspond to those including k2/a2, δρm (or δm)
and M2. In General Relativity this approximation was first used by Starobinsky in the presence
of a minimally coupled scalar field [294], which was numerically confirmed in Ref. [295]. This
was further extended to scalar-tensor theories [222, 15, 296] and f(R) gravity [296, 82]. Precisely
speaking, in f(R) gravity, this approximation corresponds to

{

k2

a2
|Φ|, k

2

a2
|Ψ|, k

2

a2
|δF |,M2|δF |

}

≫
{

H2|Φ|, H2|Ψ|, H2|B|, H2|δF |
}

, (301)

and
|Ẋ| . |HX | , where X = Φ,Ψ, F, Ḟ , δF, ˙δF . (302)

From Eqs. (297) and (298) it then follows that

Ψ ≃ 1

2F

(

δF − a2

k2
κ2δρm

)

, Φ ≃ − 1

2F

(

δF +
a2

k2
κ2δρm

)

. (303)

Since (k2/a2 +M2)δF ≃ κ2δρm/3 from Eq. (299), we obtain

k2

a2
Ψ ≃ −κ

2δρm
2F

2 + 3M2a2/k2

3(1 +M2a2/k2)
,

k2

a2
Φ ≃ −κ

2δρm
2F

4 + 3M2a2/k2

3(1 +M2a2/k2)
. (304)

We also define the effective gravitational potential

Φeff ≡ (Φ + Ψ)/2 . (305)

This quantity characterizes the deviation of light rays, which is linked with the Integrated Sachs-
Wolfe (ISW) effect in CMB [79] and weak lensing observations [297]. From Eq. (304) we have

Φeff ≃ − κ2

2F

a2

k2
δρm . (306)

From Eq. (219) the term Hv is of the order of H2Φ/(κ2ρm) provided that the deviation from
the ΛCDM model is not significant. Using Eq. (304) we find that the ratio 3Hv/(δρm/ρm) is of
the order of (aH/k)2, which is much smaller than unity for sub-horizon modes. Then the gauge-
invariant perturbation δm given in Eq. (295) can be approximated as δm ≃ δρm/ρm. Neglecting
the r.h.s. of Eq. (300) relative to the l.h.s. and using Eq. (304) with δρm ≃ ρmδm, we get the
equation for matter perturbations:

δ̈m + 2Hδ̇m − 4πGeffρmδm ≃ 0 , (307)

where Geff is the effective (cosmological) gravitational coupling defined by [296, 82]

Geff ≡ G

F

4 + 3M2a2/k2

3(1 +M2a2/k2)
. (308)

We recall that viable f(R) dark energy models are constructed to have a large mass M in
the region of high density (R ≫ R0). During the radiation and deep matter eras the deviation
parameter m = Rf,RR/f,R is much smaller than 1, so that the mass squared satisfies

M2 =
R

3

(

1

m
− 1

)

≫ R . (309)
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If m grows to the order of 0.1 by the present epoch, then the mass M today can be of the order
of H0. In the regimes M2 ≫ k2/a2 and M2 ≪ k2/a2 the effective gravitational coupling has the
asymptotic forms Geff ≃ G/F and Geff ≃ 4G/(3F ), respectively. The former corresponds to the
“General Relativistic (GR) regime” in which the evolution of δm mimics that in GR, whereas the
latter corresponds to the “scalar-tensor regime” in which the evolution of δm is non-standard. For
the f(R) models (133) and (134) the transition from the former regime to the latter regime, which
is characterized by the condition M2 = k2/a2, can occur during the matter domination for the
wavenumbers relevant to the matter power spectrum [70, 71, 73, 298, 299].

In order to derive Eq. (307) we used the approximation that the time-derivative terms of δF
on the l.h.s. of Eq. (299) is neglected. In the regime M2 ≫ k2/a2, however, the large mass M
can induce rapid oscillations of δF . In the following we shall study the evolution of the oscillating
mode [71]. For sub-horizon perturbations Eq. (299) is approximately given by

¨δF + 3H ˙δF +

(

k2

a2
+M2

)

δF ≃ κ2

3
δρm . (310)

The solution of this equation is the sum of the matter induce mode δFind ≃ (κ2/3)δρm/(k
2/a2+M2)

and the oscillating mode δFosc satisfying

¨δF osc + 3H ˙δF osc +

(

k2

a2
+M2

)

δFosc = 0 . (311)

As long as the frequency ω =
√

k2/a2 +M2 satisfies the adiabatic condition |ω̇| ≪ ω2, we
obtain the solution of Eq. (311) under the WKB approximation:

δFosc ≃ ca−3/2 1√
2ω

cos

(
∫

ωdt

)

, (312)

where c is a constant. Hence the solution of the perturbation δR is expressed by [71, 73]

δR ≃ 1

3f,RR

κ2δρm
k2/a2 +M2

+ ca−3/2 1

f,RR

√
2ω

cos

(
∫

ωdt

)

. (313)

For viable f(R) models, the scale factor a and the background Ricci scalar R(0) evolve as
a ∝ t2/3 and R(0) ≃ 4/(3t2) during the matter era. Then the amplitude of δRosc relative to R(0)

has the time-dependence

|δRosc|
R(0)

∝ M2t

(k2/a2 +M2)1/4
. (314)

The f(R) models (133) and (134) behave as m(r) = C(−r − 1)p with p = 2n + 1 in the regime
R ≫ Rc. During the matter-dominated epoch the mass M evolves as M ∝ t−(p+1). In the
regime M2 ≫ k2/a2 one has |δRosc|/R(0) ∝ t−(3p+1)/2 and hence the amplitude of the oscillating
mode decreases faster than R(0). However the contribution of the oscillating mode tends to be
more important as we go back to the past. In fact this behavior was confirmed in the numerical
simulations of Refs. [73, 300]. This property persists in the radiation-dominated epoch as well. If
the condition |δR| < R(0) is violated, then R can be negative such that the condition f,R > 0 or
f,RR > 0 is violated for the models (133) and (134). Thus we require that |δR| is smaller than R(0)

at the beginning of the radiation era. This can be achieved by choosing the constant c in Eq. (313)
to be sufficiently small, which amounts to a fine tuning for these models.

For the models (133) and (134) one has F = 1−2nµ(R/Rc)
−2n−1 in the regime R≫ Rc. Then

the field φ defined in Eq. (31) rapidly approaches 0 as we go back to the past. Recall that in the
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Einstein frame the effective potential of the field has a potential minimum around φ = 0 because
of the presence of the matter coupling. Unless the oscillating mode of the field perturbation δφ
is strongly suppressed relative to the background field φ(0), the system can access the curvature
singularity at φ = 0 [103]. This is associated with the condition |δR| < R(0) discussed above.
This curvature singularity appears in the past, which is not related to the future singularities
studied in Refs. [301, 302]. The past singularity can be cured by taking into account the R2 term
[303], as we will see in Sec. 13.4. We note that the f(R) models proposed in Ref. [304] [e.g.,
f(R) = R − αRc ln(1 + R/Rc)] to cure the singularity problem satisfy neither the local gravity
constraints [305] nor observational constraints of large-scale structure [306].

As long as the oscillating mode δRosc is negligible relative to the matter-induced mode δRind,
we can estimate the evolution of matter perturbations δm as well as the effective gravitational
potential Φeff . Note that in Refs. [307, 308] the perturbation equations have been derived without
neglecting the oscillating mode. As long as the condition |δRosc| < |δRind| is satisfied initially, the
approximate equation (307) is accurate to reproduce the numerical solutions [307, 299]. Equation
(307) can be written as

d2δm
dN2

+

(

1

2
− 3

2
weff

)

dδm
dN

− 3

2
Ωm

4 + 3M2a2/k2

3(1 +M2a2/k2)
= 0 , (315)

where N = ln a, weff = −1−2Ḣ/(3H2), and Ωm = 8πGρm/(3FH
2). The matter-dominated epoch

corresponds to weff = 0 and Ωm = 1. In the regime M2 ≫ k2/a2 the evolution of δm and Φeff

during the matter dominance is given by

δm ∝ t2/3 , Φeff = constant , (316)

where we used Eq. (306). The matter-induced mode δRind relative to the background Ricci scalar
R(0) evolves as |δRind|/R(0) ∝ t2/3 ∝ δm. At late times the perturbations can enter the regime
M2 ≪ k2/a2, depending on the wavenumber k and the massM . WhenM2 ≪ k2/a2, the evolution
of δm and Φeff during the matter era is [71]

δm ∝ t(
√
33−1)/6 , Φeff ∝ t(

√
33−5)/6 . (317)

For the model m(r) = C(−r − 1)p, the evolution of the matter-induced mode in the region M2 ≪
k2/a2 is given by |δRind|/R(0) ∝ t−2p+(

√
33−5)/6. This decreases more slowly relative to the ratio

|δRosc|/R(0) [73], so the oscillating mode tends to be unimportant with time.

8.2 The impact on large-scale structure

We have shown that the evolution of matter perturbations during the matter dominance is given

by δm ∝ t2/3 for M2 ≫ k2/a2 (GR regime) and δm ∝ t(
√
33−1)/6 for M2 ≪ k2/a2 (scalar-tensor

regime), respectively. The existence of the latter phase gives rise to the modification to the matter
power spectrum [77, 78, 79, 80, 81, 82, 83, 309, 310, 311, 223]. The transition from the GR regime
to the scalar-tensor regime occurs at M2 = k2/a2. If it occurs during the matter dominance
(R ≃ 3H2), the condition M2 = k2/a2 translates into [299]

m ≃ (aH/k)2 , (318)

where we have used the relation M2 ≃ R/(3m) (valid for m≪ 1).
We are interested in the wavenumbers k relevant to the linear regime of the galaxy power

spectrum [20, 21]:
0.01 hMpc−1 . k . 0.2 hMpc−1 . (319)
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where h = 0.72± 0.08 corresponds to the uncertainty of the Hubble parameter today. Non-linear
effects are important for k & 0.2 hMpc−1. The current observations on large scales around k ∼
0.01 hMpc−1 are not so accurate but can be improved in future. The upper bound k = 0.2 hMpc−1

corresponds to k ≃ 600a0H0, where the subscript “0” represents quantities today. If the transition
from the GR regime to the scalar-tensor regime occurred by the present epoch (the redshift z = 0)
for the mode k = 600a0H0, then the parameter m today is constrained to be

m(z = 0) & 3× 10−6 . (320)

When m(z = 0) . 3× 10−6 the linear perturbations have been always in the GR regime by today,
in which case the models are not distinguished from the ΛCDM model. The bound (320) is relaxed
for non-linear perturbations with k & 0.2 hMpc−1, but the linear analysis is not valid in such cases.

If the transition characterized by the condition (318) occurs during the deep matter era (z ≫ 1),
we can estimate the critical redshift zk at the transition point. In the following let us consider the

models (133) and (134). In addition to the approximations H2 ≃ H2
0Ω

(0)
m (1 + z)3 and R ≃ 3H2

during the matter dominance, we use the the asymptotic forms m ≃ C(−r − 1)2n+1 and r ≃
−1− µRc/R with C = 2n(2n+1)/µ2n. Since the dark energy density today can be approximated

as ρ
(0)
DE ≈ µRc/2, it follows that µRc ≈ 6H2

0Ω
(0)
DE. Then the condition (318) translates into the

critical redshift [299]

zk =

[

(

k

a0H0

)2
2n(2n+ 1)

µ2n

(2Ω
(0)
DE)

2n+1

(Ω0
m)2(n+1)

]1/(6n+4)

− 1 . (321)

For n = 1, µ = 3, Ω
(0)
m = 0.28, and k = 300a0H0 the numerical value of the critical redshift is

zk = 4.5, which is in good agreement with the analytic value estimated by (321).
The estimation (321) shows that, for larger k, the transition occurs earlier. The time tk at the

transition has a k-dependence: tk ∝ k−3/(6n+4). For t > tk the matter perturbation evolves as

δm ∝ t(
√
33−1)/6 by the time t = tΛ at the onset of cosmic acceleration (ä = 0). The matter power

spectrum Pδm = |δm|2 at the time tΛ shows a difference compared to the case of the ΛCDM model
[71]:

Pδm(tΛ)

Pδm
ΛCDM(tΛ)

=

(

tΛ
tk

)2
(√

33−1
6 − 2

3

)

∝ k
√

33−5
6n+4 . (322)

We caution that, when zk is close to zΛ (the redshift at t = tΛ), the estimation (322) begins to
lose its accuracy. The ratio of the two power spectra today, i.e. Pδm(t0)/Pδm

ΛCDM(t0) is in general
different from Eq. (322). However, numerical simulations in Ref. [73] show that the difference is
small for n of the order of unity.

The modified evolution (317) of the effective gravitational potential for z < zk leads to the
integrated Sachs-Wolfe (ISW) effect in CMB anisotropies [79, 68, 85]. However this is limited to
very large scales (low multipoles) in the CMB spectrum. Meanwhile the galaxy power spectrum
is directly affected by the non-standard evolution of matter perturbations. From Eq. (322) there
should be a difference between the spectral indices of the CMB spectrum and the galaxy power
spectrum on the scale (319) [71]:

∆ns =

√
33− 5

6n+ 4
. (323)

Observationally we do not find any strong signature for the difference of slopes of the two spectra.
If we take the mild bound ∆ns < 0.05, we obtain the constraint n > 2. Note that in this case the
local gravity constraint (207) is also satisfied.
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Figure 4: Evolution of γ versus the redshift z in the model (133) with n = 1 and µ = 1.55 for
four different values of k. For these model parameters the dispersion of γ with respect to k is
very small. All the perturbation modes shown in the figure have reached the scalar-tensor regime
(M2 ≪ k2/a2) by today. From Ref. [299].

In order to estimate the growth rate of matter perturbations, we introduce the growth index γ
defined by [312]

fδ ≡
δ̇m
Hδm

= (Ω̃m)γ , (324)

where Ω̃m = κ2ρm/(3H
2) = FΩm. This choice of Ω̃m comes from writing Eq. (109) in the form

3H2 = ρDE +κ2ρm, where ρDE ≡ (FR− f)/2− 3HḞ +3H2(1−F ). Since the viable f(R) models
are close to the ΛCDM model in the region of high density, the quantity F approaches 1 in the
asymptotic past. Defining ρDE and Ω̃m in the above way, the Friedmann equation can be cast in
the usual GR form with non-relativistic matter and dark energy [71, 298, 299].

The growth index in the ΛCDM model corresponds to γ ≃ 0.55 [313, 314], which is nearly
constant for 0 < z < 1. In f(R) gravity, if the perturbations are in the GR regime (M2 ≫ k2/a2)
today, γ is close to the GR value. Meanwhile, if the transition to the scalar-tensor regime occurred
at the redshift zk larger than 1, the growth index becomes smaller than 0.55 [298]. Since 0 < Ω̃m <
1, the smaller γ implies a larger growth rate.

In Fig. 4 we plot the evolution of the growth index γ in the model (133) with n = 1 and
µ = 1.55 for a number of different wavenumbers. In this case the present value of γ is degenerate
around γ0 ≃ 0.41 independent of the scales of our interest. For the wavenumbers k = 0.1 hMpc−1

and k = 0.01 hMpc−1 the transition redshifts correspond to zk = 5.2 and zk = 2.7, respectively.
Hence these modes have already entered the scalar-tensor regime by today.

From Eq. (321) we find that zk gets smaller for larger n and µ. If the mode k = 0.2 hMpc−1

crossed the transition point at zk > O(1) and the mode k = 0.01 hMpc−1 has marginally entered
(or has not entered) the scalar-tensor regime by today, then the growth indices should be strongly
dispersed. For sufficiently large values of n and µ one can expect that the transition to the regime
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Figure 5: The regions (i), (ii) and (iii) for the model (134). We also show the bound n > 0.9
coming from the local gravity constraints as well as the condition (137) coming from the stability
of the de Sitter point. From Ref. [299].

M2 ≪ k2/a2 has not occurred by today. The following three cases appear depending on the values
of n and µ [299]:

• (i) All modes have the values of γ0 close to the ΛCDM value: γ0 = 0.55, i.e. 0.53 . γ0 . 0.55.

• (ii) All modes have the values of γ0 close to the value in the range 0.40 . γ0 . 0.43.

• (iii) The values of γ0 are dispersed in the range 0.40 . γ0 . 0.55.

The region (i) corresponds to the opposite of the inequality (320), i.e. m(z = 0) . 3 × 10−6, in
which case n and µ take large values. The border between (i) and (iii) is characterized by the
condition m(z = 0) ≈ 3 × 10−6. The region (ii) corresponds to small values of n and µ (as in the
numerical simulation of Fig. 4), in which case the mode k = 0.01 hMpc−1 entered the scalar-tensor
regime for zk > O(1).

The regions (i), (ii), (iii) can be found numerically by solving the perturbation equations. In
Fig. 5 we plot those regions for the model (134) together with the bounds coming from the local
gravity constraints as well as the stability of the late-time de Sitter point. Note that the result in
the model (133) is also similar to that in the model (134). The parameter space for n . 3 and
µ = O(1) is dominated by either the region (ii) or the region (iii). While the present observational
constraint on γ is quite weak, the unusual converged or dispersed spectra found above can be useful
to distinguish metric f(R) gravity from the ΛCDM model in future observations. We also note
that for other viable f(R) models such as (139) the growth index today can be as small as γ0 ≃ 0.4
[299]. If future observations detect such unusually small values of γ0, this can be a smoking gun
for f(R) models.
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8.3 Non-linear matter perturbations

So far we have discussed the evolution of linear perturbations relevant to the matter spectrum
for the scale k . 0.01-0.2 hMpc−1. For smaller scale perturbations the effect of non-linearity
becomes important. In GR there are some mapping formulas from the linear power spectrum to
the non-linear power spectrum such as the halo fitting by Smith et al. [315]. In the halo model the
non-linear power spectrum P (k) is defined by the sum of two pieces [316]:

P (k) = I1(k) + I2(k)
2PL(k) , (325)

where PL(k) is a linear power spectrum and

I1(k) =

∫

dM

M

(

M

ρ
(0)
m

)2
dn

d lnM
y2(M,k) , I2(k) =

∫

dM

M

(

M

ρ
(0)
m

)2
dn

d lnM
b(M)y(M,k) .

(326)

Here M is the mass of dark matter halos, ρ
(0)
m is the dark matter density today, dn/d lnM is the

mass function describing the comoving number density of halos, y(M,k) is the Fourier transform
of the halo density profile, and b(M) is the halo bias.

In modified gravity theories, Hu and Sawicki (HS) [317] provided a fitting formula to describe
a non-linear power spectrum based on the halo model. The mass function dn/d lnM and the
halo profile ρ depend on the root-mean-square σ(M) of a linear density field. The Sheth-Torman
mass function [318] and the Navarro-Frenk-White halo profile [319] are usually employed in GR.
Replacing σ for σGR obtained in the GR dark energy model that follows the same expansion history
as the modified gravity model, we obtain a non-linear power spectrum P (k) according to Eq. (325).
In Ref. [317] this non-linear spectrum is called P∞(k). It is also possible to obtain a non-linear
spectrum P0(k) by applying a usual (halo) mapping formula in GR to modified gravity. This
approach is based on the assumption that the growth rate in the linear regime determines the non-
linear spectrum. Hu and Sawicki proposed a parametrized non-linear spectrum that interpolates
between two spectra P∞(k) and P0(k) [317]:

P (k) =
P0(k) + cnlΣ

2(k)P∞(k)

1 + cnlΣ2(k)
, (327)

where cnl is a parameter which controls whether P (k) is close to P0(k) or P∞(k). In Ref. [317]
they have taken the form Σ2(k) = k3PL(k)/(2π

2).
The validity of the HS fitting formula (327) should be checked with N -body simulations in

modified gravity models. In Refs. [320, 321, 322] N -body simulations were carried out for the
f(R) model (133) with n = 1/2 (see also Refs. [323, 324] for N -body simulations in other modified
gravity models). The chameleon mechanism should be at work on small scales (solar-system scales)
for the consistency with local gravity constraints. In Ref. [321] it was found that the chameleon
mechanism tends to suppress the enhancement of the power spectrum in the non-linear regime
that corresponds to the recovery of GR. On the other hand, in the post Newtonian intermediate
regime, the power spectrum is enhanced compared to the GR case at the measurable level.

Koyama et al. [325] studied the validity of the HS fitting formula by comparing it with the
results of N -body simulations. Note that in this paper the parametrization (327) was used as a
fitting formula without employing the halo model explicitly. In their notation P0 corresponds to
“Pnon−GR” derived without non-linear interactions responsible for the recovery of GR (i.e. gravity is
modified down to small scales in the same manner as in the linear regime), whereas P∞ corresponds
to “PGR” obtained in the GR dark energy model following the same expansion history as that in
the modified gravity model. Note that cnl characterizes how the theory approaches GR by the
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Figure 6: Comparison between N -body simulations and the two fitting formulas in the f(R) model
(133) with n = 1/2. The circles and triangles show the results of N -body simulations with and
without the chameleon mechanism, respectively. The arrow represents the maximum value of
k (= 0.08 h Mpc−1) by which the perturbation theory is valid. (Left) The fitting formula by Smith
et al. [315] is used to predict Pnon−GR and PGR. The solid and dashed lines correspond to the power
spectra with and without the chameleon mechanism, respectively. For the chameleon case cnl(z)
is determined by the perturbation theory with cnl(z = 0) = 0.085. (Right) The N -body results
in Ref. [321] are interpolated to derive Pnon−GR without the chameleon mechanism. The obtained
Pnon−GR is used for the HS fitting formula to derive the power spectrum P in the chameleon case.
From Ref. [325].
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chameleon mechanism. Choosing Σ as

Σ2(k, z) =

(

k3

2π2
PL(k, z)

)1/3

, (328)

where PL is the linear power spectrum in the modified gravity model, they showed that, in the
f(R) model (133) with n = 1/2, the formula (327) can fit the solutions in perturbation theory
very well by allowing the time-dependence of the parameter cnl in terms of the redshift z. In the
regime 0 < z < 1 the parameter cnl is approximately given by cnl(z = 0) = 0.085.

In the left panel of Fig. 6 the relative difference of the non-linear power spectrum P (k) from
the GR spectrum PGR(k) is plotted as a dashed curve (“no chameleon” case with cnl = 0) and
as a solid curve (“chameleon” case with non-zero cnl derived in the perturbative regime). Note
that in this simulation the fitting formula by Smith et al. [315] is used to obtain the non-linear
power spectrum from the linear one. The agreement with N -body simulations is not very good
in the non-linear regime (k > 0.1 hMpc−1). In Ref. [325] the power spectrum Pnon−GR in the no
chameleon case (i.e. cnl = 0) was derived by interpolating the N -body results in Ref. [321]. This
is plotted as the dashed line in the right panel of Fig. 6. Using this spectrum Pnon−GR for cnl 6= 0,
the power spectrum in N -body simulations in the chameleon case can be well reproduced by the
fitting formula (327) for the scale k < 0.5hMpc−1 (see the solid line in Fig. 6). Although there
is some deviation in the regime k > 0.5hMpc−1, we caution that N -body simulations have large
errors in this regime. See Ref. [326] for clustered abundance constraints on the f(R) model (133)
derived by the calibration of N -body simulations.

In the quasi non-linear regime a normalized skewness, S3 = 〈δ3m〉/〈δ2m〉2, of matter perturbations
can provide a good test for the picture of gravitational instability from Gaussian initial conditions
[327]. If large-scale structure grows via gravitational instability from Gaussian initial perturbations,
it is known that the skewness in a Universe dominated by pressureless matter is known to be
S3 = 34/7 in GR [312]. In the ΛCDM model the skewness depends weakly on the expansion
history of the Universe (less than a few percent) [328]. In f(R) dark energy models the difference
of the skewness from the ΛCDM model is only less than a few percent [329], even if the growth rate
of matter perturbations is significantly different. This is related to the fact that in the Einstein
frame dark energy has a universal coupling Q = −1/

√
6 with all non-relativistic matter, unlike

the coupled quintessence scenario with different couplings between dark energy and matter species
(dark matter, baryons) [330].

8.4 Cosmic Microwave Background

The effective gravitational potential (305) is directly related to the ISW effect in CMB anisotropies.
This contributes to the temperature anisotropies today as an integral [331, 332]

ΘISW ≡
∫ η0

0

dηe−τ dΦeff

dη
jℓ[k(η0 − η)] , (329)

where τ is the optical depth, η =
∫

a−1dt is the conformal time with the present value η0, and
jℓ[k(η0 − η)] is the spherical Bessel function for CMB multipoles ℓ and the wavenumber k. In
the limit ℓ ≫ 1 (i.e. small-scale limit) the spherical Bessel function has a dependence jℓ(x) ≃
(1/ℓ)(x/ℓ)ℓ−1/2, which is suppressed for large ℓ. Hence the dominant contribution to the ISW
effect comes from the low ℓ modes (ℓ = O(1)).

In the ΛCDM model the effective gravitational potential is constant during the matter domi-
nance, but it begins to decay after the Universe enters the epoch of cosmic acceleration (see the left
panel of Fig. 7). This late-time variation of Φeff leads to the contribution to ΘISW, which works
as the ISW effect.
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Figure 7: (Left) Evolution of the effective gravitational potential Φeff (denoted as Φ− in the figure)
versus the scale factor a (with the present value a = 1) on the scale k−1 = 103Mpc for the ΛCDM
model and f(R) models with B0 = 0.5, 1.5, 3.0, 5.0. As the parameter B0 increases, the decay
of Φeff decreases and then turns into growth for B0 & 1.5. (Right) The CMB power spectrum
ℓ(ℓ + 1)Cℓ/(2π) for the ΛCDM model and f(R) models with B0 = 0.5, 1.5, 3.0, 5.0. As B0

increases, the ISW contributions to low multipoles decrease, reach the minimum around B0 = 1.5,
and then increase. The black points correspond to the WMAP 3-year data [25]. From Ref. [85].

For viable f(R) dark energy models the evolution of Φeff during the early stage of the matter
era is constant as in the ΛCDM model. After the transition to the scalar-tensor regime, the

effective gravitational potential evolves as Φeff ∝ t(
√
33−5)/6 during the matter dominance [as we

have shown in Eq. (317)]. The evolution of Φeff during the accelerated epoch is also subject to
change compared to the ΛCDM model. In the left panel of Fig. 7 we show the evolution of Φeff

versus the scale factor a for the wavenumber k = 10−3Mpc−1 in several different cases. In this
simulation the background cosmological evolution is fixed to be the same as that in the ΛCDM
model. In order to quantify the difference from the ΛCDM model at the level of perturbations,
Refs. [248, 79, 85] defined the following quantity

B ≡ m
Ṙ

R

H

Ḣ
, (330)

wherem = Rf,RR/f,R. If the effective equation of state weff defined in Eq. (119) is constant, it then
follows that R = 3H2(1 − 3weff) and hence B = 2m. The stability of cosmological perturbations
requires the condition B > 0 [79, 80]. The left panel of Fig. 7 shows that, as we increase the
values of B today (= B0), the evolution of Φeff at late times tends to be significantly different from
that in the ΛCDM model. This comes from the fact that, for increasing B, the transition to the
scalar-tensor regime occurs earlier.

From the right panel of Fig. 7 we find that, as B0 increases, the CMB spectrum for low
multipoles first decreases and then reaches the minimum around B0 = 1.5. This comes from the
reduction in the decay rate of Φeff relative to the ΛCDM model, see the left panel of Fig. 7. Around
B0 = 1.5 the effective gravitational potential is nearly constant, so that the ISW effect is almost
absent (i.e. ΘISW ≈ 0). For B0 & 1.5 the evolution of Φeff turns into growth. This leads to the
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increase of the large-scale CMB spectrum, as B0 increases. The spectrum in the case B0 = 3.0
is similar to that in the ΛCDM model. The WMAP 3-year data rule out B0 > 4.3 at the 95 %
confidence level because of the excessive ISW effect [85].

There is another observational constraint coming from the angular correlation between the
CMB temperature field and the galaxy number density field induced by the ISW effect [79]. The
f(R) models predict that, for B0 & 1, the galaxies are anticorrelated with the CMB because of the
sign change of the ISW effect. Since the anticorrelation has not been observed in the observational
data of CMB and LSS, this places an upper bound of B0 . 1 [85]. This is tighter than the bound
B0 < 4.3 coming from the CMB angular spectrum discussed above.

Finally we briefly mention stochastic gravitational waves produced in the early Universe [333,
334, 335, 336, 337, 338, 339]. For the inflation model f(R) = R+R2/(6M2) the primordial gravi-
tational waves are generated with the tensor-to-scalar ratio r of the order of 10−3, see Eq. (280).
It is also possible to generate stochastic gravitational waves after inflation under the modification
of gravity. Capozziello et al. [335, 336] studied the evolution of tensor perturbations for a toy
model f = R1+ǫ in the FLRW Universe with the power-law evolution of the scale factor. Since
the parameter ǫ is constrained to be very small (|ǫ| < 7.2 × 10−19) [206, 208], it is very difficult
to detect the signature of f(R) gravity in the stochastic gravitational wave background. This
property should hold for viable f(R) dark energy models in general, because the deviation from
GR during the radiation and the deep matter era is very small.

9 Palatini formalism

In this section we discuss f(R) theory in the Palatini formalism [47]. In this approach the action (1)
is varied with respect to both the metric gµν and the connection Γα

βγ . Unlike the metric approach,
gµν and Γα

βγ are treated as independent variables. Variations using the Palatini approach [340, 341,
342, 343, 344, 345] lead to second-order field equations which are free from the instability associated
with negative signs of f,RR [346, 347]. We note that even in 1930’s Lanczos [348] proposed a specific
combination of curvature-squared terms that lead to a second-order and divergence-free modified
Einstein equation.

The background cosmological dynamics of Palatini f(R) gravity has been investigated in
Refs. [349, 350, 351, 352, 353, 354, 355], which shows that the sequence of radiation, matter, and
accelerated epochs can be realized even for the model f(R) = R − α/Rn (n > 0). The equations
for matter density perturbations were derived in Ref. [356]. Because of a large coupling Q between
dark energy and non-relativistic matter dark energy models based on Palatini f(R) gravity are
not compatible with the observations of large-scale structure, unless the deviation from the ΛCDM
model is very small [357, 358, 359, 82]. Such a large coupling also gives rise to non-perturbative
corrections to the matter action, which leads to a conflict with the Standard Model of particle
physics [343, 344, 345, 360, 361, 362, 363, 364].

There are also a number of works about the Newtonian limit in the Palatini formalism [59, 247,
365, 366, 367, 368, 369, 370, 371, 372]. In particular it was shown in Refs. [364, 373] that the non-
dynamical nature of the scalar-field degree of freedom can lead to a divergence of non-vacuum static
spherically symmetric solutions at the surface of a compact object for commonly-used polytropic
equations of state. Hence Palatini f(R) theory is difficult to be compatible with a number of
observations and experiments, as long as the models are constructed to explain the late-time
cosmic acceleration. Moreover it is also known that in Palatini gravity the Cauchy problem [105]
is not well-formulated due to the presence of higher derivatives of matter fields in field equations
[374] (see also Refs. [375, 376] for related works). Even in this situation it will be useful to review
this theory because we can learn the way of modifications of gravity from GR to be consistent with
observations and experiments.
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9.1 Field equations

Let us derive field equations by treating gµν and Γα
βγ are independent variables. Varying the action

(1) with respect to gµν , we obtain

F (R)Rµν(Γ)−
1

2
f(R)gµν = κ2T (M)

µν , (331)

where F (R) = ∂f/∂R, Rµν(Γ) is the Ricci tensor corresponding to the connections Γα
βγ , and T

(M)
µν

is defined in Eq. (5). Note that Rµν(Γ) is in general different from the Ricci tensor calculated in
terms of metric connections Rµν(g). The trace of Eq. (331) gives

F (R)R − 2f(R) = κ2T , (332)

where T = gµνT
(M)
µν . Here the Ricci scalar R(T ) is directly related to T and it is different from

the Ricci scalar R(g) = gµνRµν(g) in the metric formalism. More explicitly we have the following
relation [154]

R(T ) = R(g) +
3

2(f ′(R(T )))2
(∇µf

′(R(T )))(∇µf ′(R(T ))) +
3

f ′(R(T ))
�f ′(R(T )) , (333)

where a prime represents a derivative in terms of R(T ). The variation of the action (1) with respect
to the connection leads to the following equation

Rµν(g)−
1

2
gµνR(g) =

κ2Tµν
F

− FR(T )− f

2F
gµν +

1

F
(∇µ∇νF − gµν�F )

− 3

2F 2

[

∂µF∂νF − 1

2
gµν(∇F )2

]

. (334)

In Einstein gravity (f(R) = R − 2Λ and F (R) = 1) the field equations (332) and (334) are
identical to the equations (7) and (4), respectively. However, the difference appears for the f(R)
models which include non-linear terms in R. While the kinetic term �F is present in Eq. (7), such
a term is absent in Palatini f(R) gravity. This has the important consequence that the oscillatory
mode, which appears in the metric formalism, does not exist in the Palatini formalism. As we will
see later on, Palatini f(R) theory corresponds to Brans-Dicke (BD) theory [88] with a parameter
ωBD = −3/2 in the presence of a field potential. Such a theory should be treated separately,
compared to BD theory with ωBD 6= −3/2 in which the field kinetic term is present.

As we have derived the action (21) from (18), the action in Palatini f(R) gravity is equivalent
to

S =

∫

d4x
√
−g
[

1

2κ2
ϕR(T )− U(ϕ)

]

+

∫

d4xLM (gµν ,ΨM ) , (335)

where

ϕ = f ′(R(T )) , U =
R(T )f ′(R(T ))− f(R(T ))

2κ2
. (336)

Since the derivative of U in terms of ϕ is U,ϕ = R/(2κ2), we obtain the following relation from
Eq. (332):

4U − 2ϕU,ϕ = T . (337)

Using the relation (333), the action (335) can be written as

S =

∫

d4x
√−g

[

1

2κ2
ϕR(g) +

3

4κ2
1

ϕ
(∇ϕ)2 − U(ϕ)

]

+

∫

d4xLM (gµν ,ΨM ) . (338)
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Comparing this with Eq. (23) in the unit κ2 = 1, we find that Palatini f(R) gravity is equivalent
to BD theory with the parameter ωBD = −3/2 [344, 59, 377]. As we will see in Sec. 10.1, this
equivalence can be also seen by comparing Eqs. (331) and (334) with those obtained by varying
the action (23) in BD theory. In the above discussion we have implicitly assumed that LM does
not explicitly depend on the Christoffel connections Γλ

µν . This is true for a scalar field or a perfect
fluid, but it is not necessarily so for other matter Lagrangians such as those describing vector fields.

There is another way for taking the variation of the action, known as the metric-affine formalism
[378, 379, 380, 381]. In this formalism the matter action SM depends not only on the metric gµν
but also on the connection Γλ

µν . Since the connection is independent of the metric in this approach,

one can define the quantity called hypermomentum [378], as ∆µν
λ ≡ (−2/

√−g)δLM/δΓλ
µν . The

usual assumption that the connection is symmetric is also dropped, so that the antisymmetric
quantity called the Cartan torsion tensor, Sλ

µν ≡ Γλ
[µν], is defined. The non-vanishing property of

Sλ
µν allows the presence of torsion in this theory. If the condition ∆

[µν]
λ = 0 holds, it follows that

the Cartan torsion tensor vanishes (Sλ
µν = 0) [379]. Hence the torsion is induced by matter fields

with the anti-symmetric hypermomentum. The f(R) Palatini gravity belong to f(R) theories in
the metric-affine formalism with ∆µν

λ = 0. In the following we do not discuss further f(R) theory
in the metric-affine formalism. Readers who are interested in those theories may refer to the papers
[380, 154].

9.2 Background cosmological dynamics

We discuss the background cosmological evolution of dark energy models based on Palatini f(R)
gravity. We shall carry out general analysis without specifying the forms of f(R). We take into
account non-relativistic matter and radiation whose energy densities are ρm and ρr, respectively.
In the flat FLRW background (12) we obtain the following equations

FR− 2f = −κ2ρm , (339)

6F

(

H +
Ḟ

2F

)2

− f = κ2(ρm + 2ρr) , (340)

together with the continuity equations, ρ̇m + 3Hρm = 0 and ρ̇r + 4Hρr = 0. Combing Eqs. (339)
and (340) together with continuity equations, it follows that

Ṙ =
3κ2Hρm
F,RR− F

= −3H
FR− 2f

F,RR− F
, (341)

H2 =
2κ2(ρm + ρr) + FR− f

6Fξ
, (342)

where

ξ ≡
[

1− 3

2

F,R(FR− 2f)

F (F,RR− F )

]2

. (343)

In order to discuss cosmological dynamics it is convenient to introduce the dimensionless vari-
ables:

y1 ≡ FR− f

6FξH2
, y2 ≡ κ2ρr

3FξH2
, (344)

by which Eq. (342) can be written as

κ2ρm
3FξH2

= 1− y1 − y2 . (345)
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Differentiating y1 and y2 with respect to N = ln a, we obtain [354]

dy1
dN

= y1 [3− 3y1 + y2 + C(R)(1 − y1)] , (346)

dy2
dN

= y2 [−1− 3y1 + y2 − C(R)y1] , (347)

where

C(R) ≡ RḞ

H(FR− f)
= −3

(FR− 2f)F,RR

(FR− f)(F,RR− F )
. (348)

The following constraint equation also holds

1− y1 − y2
2y1

= −FR− 2f

FR− f
. (349)

Hence the Ricci scalar R can be expressed in terms of y1 and y2.
Differentiating Eq. (341) with respect to t, it follows that

Ḣ

H2
= −3

2
+

3

2
y1 −

1

2
y2 −

Ḟ

2HF
− ξ̇

2Hξ
+

ḞR

12FξH3
, (350)

from which we get the effective equation of state:

weff = −1− 2

3

Ḣ

H2
= −y1 +

1

3
y2 +

Ḟ

3HF
+

ξ̇

3Hξ
− ḞR

18FξH3
. (351)

The cosmological dynamics is known by solving Eqs. (346) and (347) with Eq. (348). If C(R) is
not constant, then one can use Eq. (349) to express R and C(R) in terms of y1 and y2.

The fixed points of Eqs. (346) and (347) can be found by setting dy1/dN = 0 and dy2/dN = 0.
Even when C(R) is not constant, except for the cases C(R) = −3 and C(R) = −4, we obtain the
following fixed points [354]:

• (i) Pr: (y1, y2) = (0, 1) ,

• (ii) Pm: (y1, y2) = (0, 0) ,

• (iii) Pd: (y1, y2) = (1, 0) .

The stability of the fixed points can be analyzed by considering linear perturbations about them.
As long as dC/dy1 and dC/dy2 are bounded, the eigenvalues λ1 and λ2 of the Jacobian matrix of
linear perturbations are given by

• (i) Pr: (λ1, λ2) = (4 + C(R), 1) ,

• (ii) Pm: (λ1, λ2) = (3 + C(R),−1) ,

• (iii) Pd: (λ1, λ2) = (−3− C(R),−4− C(R)) .

In the ΛCDM model (f(R) = R − 2Λ) one has weff = −y1 + y2/3 and C(R) = 0. Then the
points Pr, Pm, and Pd correspond to weff = 1/3, (λ1, λ2) = (4, 1) (radiation domination, unstable),
weff = 0, (λ1, λ2) = (3,−1) (matter domination, saddle), and weff = −1, (λ1, λ2) = (−3,−4) (de
Sitter epoch, stable), respectively. Hence the sequence of radiation, matter, and de Sitter epochs
is in fact realized.
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Figure 8: The evolution of the variables y1 and y2 for the model f(R) = R− β/Rn with n = 0.02,
together with the effective equation of state weff . Initial conditions are chosen to be y1 = 10−40

and y2 = 1.0− 10−5. From Ref. [354].

Let us next consider the model f(R) = R − β/Rn with β > 0 and n > −1. In this case the
quantity C(R) is

C(R) = 3n
R1+n − (2 + n)β

R1+n + n(2 + n)β
. (352)

The constraint equation (349) gives

β

R1+n
=

2y1
3y1 + n(y1 − y2 + 1)− y2 + 1

. (353)

The late-time de Sitter point corresponds to R1+n = (2 + n)β, which exists for n > −2. Since
C(R) = 0 in this case, the de Sitter point Pd is stable with the eigenvalues (λ1, λ2) = (−3,−4).
During the radiation and matter domination we have β/R1+n ≪ 1 (i.e. f(R) ≃ R) and hence
C(R) = 3n. Pr corresponds to the radiation point (weff = 1/3) with the eigenvalues (λ1, λ2) =
(4+3n, 1), whereas Pm to the matter point (weff = 0) with the eigenvalues (λ1, λ2) = (3+3n,−1).
Provided that n > −1, Pr and Pm correspond to unstable and saddle points respectively, in
which case the sequence of radiation, matter, and de Sitter eras can be realized. For the models
f(R) = R + αRm − β/Rn, it was shown in Ref. [354] that unified models of inflation and dark
energy with radiation and matter eras are difficult to be realized.

In Fig. 8 we plot the evolution of weff as well as y1 and y2 for the model f(R) = R−β/Rn with
n = 0.02. This shows that the sequence of (Pr) radiation domination (weff = 1/3), (Pm) matter
domination (weff = 0), and de Sitter acceleration (weff = −1) is realized. Recall that in metric
f(R) gravity the model f(R) = R − β/Rn (β > 0, n > 0) is not viable because f,RR is negative.
In Palatini f(R) gravity the sign of f,RR does not matter because there is no propagating degree
of freedom with a mass M associated with the second derivative f,RR [382].

In Refs. [353, 354] the dark energy model f(R) = R− β/Rn was constrained by the combined
analysis of independent observational data. From the joint analysis of Super-Nova Legacy Survey
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[383], BAO [22] and the CMB shift parameter [25], the constraints on two parameters n and β are
n ∈ [−0.23, 0.42] and β ∈ [2.73, 10.6] at the 95% confidence level (in the unit of H0 = 1) [354].
Since the allowed values of n are close to 0, the above model is not particularly favored over the
ΛCDM model. See also Refs. [384, 385, 386, 387, 388] for observational constraints on f(R) dark
energy models based on the Palatini formalism.

9.3 Matter perturbations

We have shown that f(R) theory in the Palatini formalism can give rise to the late-time cosmic
acceleration preceded by radiation and matter eras. In this section we study the evolution of
matter density perturbations to confront Palatini f(R) gravity with the observations of large-scale
structure [356, 357, 389, 390, 391, 82]. Let us consider the perturbation δρm of non-relativistic
matter with a homogeneous energy density ρm. Koivisto and Kurki-Suonio [356] derived perturba-
tion equations in Palatini f(R) gravity. Using the perturbed metric (208) with the same variables
as those introduced in Sec. 6, the perturbation equations are given by

∆

a2
ψ +

(

H +
Ḟ

2F

)

A+
1

2F

(

3Ḟ 2

2F
+ 3HḞ

)

α

=
1

2F

[(

3H2 − 3Ḟ 2

4F 2
− R

2
− ∆

a2

)

δF +

(

3Ḟ

2F
+ 3H

)

˙δF − κ2δρm

]

, (354)

Hα− ψ̇ =
1

2F

[

˙δF −
(

H +
3Ḟ

2F

)

δF − Ḟα+ κ2ρmv

]

, (355)

χ̇+Hχ− α− ψ =
1

F
(δF − Ḟχ) , (356)

Ȧ+

(

2H +
Ḟ

2F

)

A+

(

3Ḣ +
3F̈

F
+

3HḞ

2F
− 3Ḟ 2

F 2
+

∆

a2

)

α+
3

2

Ḟ

F
α̇

=
1

2F

[

κ2δρm +

(

6H2 + 6Ḣ +
3Ḟ 2

F 2
−R − ∆

a2

)

δF +

(

3H − 6Ḟ

F

)

˙δF + 3δ̈F

]

, (357)

RδF − FδR = −κ2δρm , (358)

where the Ricci scalar R can be understood as R(T ).
From Eq. (358) the perturbation δF can be expressed by the matter perturbation δρm, as

δF =
F,R

R

κ2δρm
1−m

, (359)

wherem = RF,R/F . This equation clearly shows that the perturbation δF is sourced by the matter
perturbation only, unlike metric f(R) gravity in which the oscillating mode of δF is present. The
matter perturbation δρm and the velocity potential v obey the same equations as given in Eqs. (293)
and (294), which results in Eq. (296) in Fourier space.

Let us consider the perturbation equations in Fourier space. We choose the Longitudinal gauge
(χ = 0) with α = Φ and ψ = −Ψ. In this case Eq. (356) gives

Ψ− Φ =
δF

F
. (360)

Under the quasi-static approximation on sub-horizon scales we used in Sec. 8.1, Eqs. (354) and
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(296) reduce to

k2

a2
Ψ ≃ 1

2F

(

k2

a2
δF − κ2δρm

)

, (361)

δ̈m + 2Hδ̇m +
k2

a2
Φ ≃ 0 . (362)

Combining Eq. (360) with Eq. (361), we obtain

k2

a2
Ψ = −κ

2δρm
2F

(

1− ζ

1−m

)

,
k2

a2
Φ = −κ

2δρm
2F

(

1 +
ζ

1−m

)

, (363)

where

ζ ≡ k2

a2
F,R

F
=

k2

a2R
m . (364)

Then the matter perturbation satisfies the following equation [82]

δ̈m + 2Hδ̇m − κ2ρm
2F

(

1 +
ζ

1−m

)

δm ≃ 0 . (365)

The effective gravitational potential defined in Eq. (305) satisfies

Φeff ≃ −κ
2ρm
2F

a2

k2
δm . (366)

In the above approximation we do not need to worry about the dominance of the oscillating mode
of perturbations in the past. Note also that the same approximate equation of δm as Eq. (365) can
be derived for different gauge choices [82].

The parameter ζ is a crucial quantity to characterize the evolution of perturbations. This
quantity can be estimated as ζ ≈ (k/aH)2m, which is much larger than m for sub-horizon modes
(k ≫ aH). In the regime ζ ≪ 1 the matter perturbation evolves as δm ∝ t2/3. Meanwhile the
evolution of δm in the regime ζ ≫ 1 is completely different from that in GR. If the transition
characterized by ζ = 1 occurs before today, this gives rise to the modification to the matter
spectrum compared to the GR case.

In the regime ζ ≫ 1, let us study the evolution of matter perturbations during the matter
dominance. We shall consider the case in which the parameter m (with |m| ≪ 1) evolves as

m ∝ tp , (367)

where p is a constant. For the model f(R) = R − µRc(R/Rc)
n (n < 1) the power p corresponds

to p = 1 + n, whereas for the models (133) and (134) with n > 0 one has p = 1 + 2n. During the
matter dominance the parameter ζ evolves as ζ = ±(t/tk)

2p+2/3, where the subscript “k” denotes
the value at which the perturbation crosses ζ = ±1. Here + and − signs correspond to the cases
m > 0 and m < 0, respectively. Then the matter perturbation equation (365) reduces to

d2δm
dN2

+
1

2

dδm
dN

− 3

2

[

1± e(3p+1)(N−Nk)
]

δm = 0 . (368)

When m > 0, the growing mode solution to Eq. (368) is given by

δm ∝ exp

(√
6e(3p+1)(N−Nk)/2

3p+ 1

)

, fδ ≡
δ̇m
Hδm

=

√
6

2
e(3p+1)(N−Nk)/2 . (369)
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This shows that the perturbations exhibit violent growth for p > −1/3, which is not compatible
with observations of large-scale structure. In metric f(R) gravity the growth of matter perturba-
tions is much milder.

When m < 0, the perturbations show a damped oscillation:

δm ∝ e−(3p+2)(N−Nk)/4 cos(x+ θ) , fδ = −1

4
(3p+ 2)− 3p+ 1

2
x tan(x+ θ) , (370)

where x =
√
6e(3p+1)(N−Nk)/2/(3p + 1), and θ is a constant. The averaged value of the growth

rate fδ is given by f̄δ = −(3p+ 2)/4, but it shows a divergence every time x changes by π. These
negative values of fδ are also difficult to be compatible with observations.

The f(R) models can be consistent with observations of large-scale structure if the Universe
does not enter the regime |ζ| > 1 by today. This translates into the condition [82]

|m(z = 0)| . (a0H0/k)
2 . (371)

Let us consider the wavenumbers 0.01 hMpc−1 . k . 0.2 hMpc−1 that corresponds to the lin-
ear regime of the matter power spectrum. Since the wavenumber k = 0.2 hMpc−1 corresponds
to k ≈ 600a0H0 (where “0” represents present quantities), the condition (371) gives the bound
|m(z = 0)| . 3× 10−6.

If we use the observational constraint of the growth rate, fδ . 1.5 [392, 393, 394], then
the deviation parameter m today is constrained to be |m(z = 0)| . 10−5-10−4 for the model
f(R) = R − λRc(R/Rc)

n (n < 1) as well as for the models (133) and (134) [82]. Recall that, in
metric f(R) gravity, the deviation parameter m can grow to the order of 0.1 by today. Mean-
while f(R) dark energy models based on the Palatini formalism are hardly distinguishable from
the ΛCDM model [357, 358, 359, 82]. Note that the bound on m(z = 0) becomes even severer by
considering perturbations in non-linear regime. The above peculiar evolution of matter perturba-
tions is associated with the fact that the coupling between non-relativistic matter and a scalar-field
degree of freedom is very strong (as we will see in Sec. 10.1).

The above results are based on the fact that dark matter is described by a cold and prefect
fluid with no pressure. In Ref. [395] it was suggested that the tight bound on the parameter m
can be relaxed by considering imperfect dark matter with a shear stress. Although the approach
taken in Ref. [395] did not aim to explain the origin of a dark matter stress Π that cancels the
k-dependent term in Eq. (365), it will be of interest to further study whether some theoretically
motivated choice of Π really allows the possibility that Palatini f(R) dark energy models can be
distinguished from the ΛCDM model.

9.4 Shortcomings of Palatini f(R) gravity

In addition to the fact that Palatini f(R) dark energy models are hardly distinguished from the
ΛCDM model from observations of large-scale structure, there are a number of problems in Palatini
f(R) gravity associated with non-dynamical nature of the scalar-field degree of freedom.

The dark energy model f = R − µ4/R based on the Palatini formalism was shown to be
conflict with the Standard Model of particle physics [343, 344, 345, 360, 364] because of large
non-perturbative corrections to the matter Lagrangian [here we use R for the meaning of R(T )].
Let us consider this issue for a more general model f = R− µ2(n+1)/Rn. From the definition of ϕ
in Eq. (336) the field potential U(ϕ) is given by

U(ϕ) =
n+ 1

2nn/(n+1)

µ2

κ2
(ϕ− 1)n/(n+1) , (372)

where ϕ = 1 + nµ2(n+1)R−n−1. Using Eq. (337) for the vacuum (T = 0), we obtain the solution

ϕ(T = 0) =
2(n+ 1)

n+ 2
. (373)
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In the presence of matter we expand the field ϕ as ϕ = ϕ(T = 0) + δϕ. Substituting this into
Eq. (337), we obtain

δϕ ≃ n

(n+ 2)
n+2
n+1

κ2T

µ2
. (374)

For n = O(1) we have δϕ ≈ κ2T/µ2 = T/(µ2M2
pl) with ϕ(T = 0) ≈ 1. Let us consider a matter

action of a Higgs scalar field φ with mass mφ:

SM =

∫

d4x
√−g

[

−1

2
gµν∂µφ∂νφ− 1

2
m2

φφ
2

]

. (375)

Since T ≈ m2
φδφ

2 it follows that δϕ ≈ m2
φδφ

2/(µ2M2
pl). Perturbing the Jordan-frame action (338)

[which is equivalent to the action in Palatini f(R) gravity] to second-order and using the solution
ϕ ≈ 1 +m2

φδφ
2/(µ2M2

pl), we find that the effective action of the Higgs field φ for an energy scale
E much lower than mφ (= 100-1000 GeV) is given by [364]

δSM ≃
∫

d4x
√−g

[

−1

2
gµν∂µδφ∂νδφ− 1

2
m2

φδφ
2

]

(

1 +
m2

φδφ
2

µ2M2
pl

+ · · ·
)

. (376)

Since δφ ≈ mφ for E ≪ mφ, the correction term can be estimated as

δϕ ≈
m2

φδφ
2

µ2M2
pl

≈
(

mφ

µ

)2(
mφ

Mpl

)2

. (377)

In order to give rise to the late-time acceleration we require that µ ≈ H0 ≈ 10−42GeV. For the
Higgs mass mφ = 100GeV it follows that δϕ ≈ 1056 ≫ 1. This correction is too large to be
compatible with the Standard Model of particle physics.

The above result is based on the models f(R) = R−µ2(n+1)/Rn with n = O(1). Having a look
at Eq. (374), the only way to make the perturbation δϕ small is to choose n very close to 0. This
means that the deviation from the ΛCDM model is extremely small (see Ref. [404] for a related
work). In fact this property was already found by the analysis of matter density perturbations in
the previous section. While the above analysis is based on the calculation in the Jordan frame in
which test particles follow geodesics [364], the same result was also obtained by the analysis in the
Einstein frame [343, 344, 345, 360].

Another unusual property of Palatini f(R) gravity is that a singularity with the divergent
Ricci scalar can appear at the surface of a static spherically symmetric star with a polytropic
equation of state P = cρΓ0 with 3/2 < Γ < 2 (where P is the pressure and ρ0 is the rest-mass
density) [373, 364] (see also Refs. [369, 370]). Again this problem is intimately related with the
particular algebraic dependence (332) in Palatini f(R) gravity. In Ref. [373] it was claimed that the
appearance of the singularity does not very much depend on the functional forms of f(R) and that
the result is not specific to the choice of the polytropic equation of state. Meanwhile Ref. [396]
showed that the model f(R) = R + R2/(6M2), where M is of the order of the Planck mass,
is not plagued by such a singularity problem, while the singularity typically arises for the f(R)
models constructed to explain the late-time cosmic acceleration (see also Ref. [397] for a related
work). The Palatini gravity also has a close relation with an effective action which reproduces the
dynamics of loop quantum cosmology [398]. Since Planck-scale corrected Palatini f(R) models
may cure the singularity problem, it will be of interest to understand the connection with quantum
gravity around the cosmological singularity (or the black hole singularity). In fact, it was shown in
Ref. [399] that non-singular bouncing solutions can be obtained for power-law f(R) Lagrangians
with a finite number of terms.
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Finally we note that the extension of Palatini f(R) gravity to more general theories including
Ricci and Riemann tensors was carried out in Refs. [400, 401, 402, 403, 404, 405, 406]. While
such theories are more involved than Palatini f(R) gravity, it may be possible to construct viable
modified gravity models of inflation or dark energy.

10 Extension to Brans-Dicke theory

So far we have discussed f(R) gravity theories in the metric and Palatini formalisms. In this section
we will see that these theories are equivalent to Brans-Dicke (BD) theory [88] in the presence of
a scalar-field potential, by comparing field equations in f(R) theories with those in BD theory. It
is possible to construct viable dark energy models based on BD theory with a constant parameter
ωBD. We will discuss cosmological dynamics, local gravity constraints, and observational signatures
of such generalized theory.

10.1 Brans-Dicke theory and the equivalence with f(R) theories

Let us start with the following 4-dimensional action in BD theory

S =

∫

d4x
√−g

[

1

2
ϕR− ωBD

2ϕ
(∇ϕ)2 − U(ϕ)

]

+ SM (gµν ,ΨM ) , (378)

where ωBD is the so-called BD parameter, U(ϕ) is a potential of the scalar field ϕ, and SM is a
matter action that depends on the metric gµν and matter fields ΨM . In this section we use the
unit κ2 = 8πG = 1/M2

pl = 1, but we recover the gravitational constant G and the reduced Planck
mass Mpl when the discussion becomes transparent. The original BD theory [88] does not possess
the field potential U(ϕ).

Taking the variation of the action (378) with respect to gµν and ϕ, we obtain the following field
equations

Rµν(g)−
1

2
gµνR(g) =

1

ϕ
Tµν − 1

ϕ
gµνU(ϕ) +

1

ϕ
(∇µ∇νϕ− gµν�ϕ)

+
ωBD

ϕ2

[

∂µϕ∂νϕ− 1

2
gµν(∇ϕ)2

]

, (379)

(3 + 2ωBD)�ϕ+ 4U(ϕ)− 2ϕU,ϕ = T , (380)

where R(g) is the Ricci scalar in metric f(R) gravity, and Tµν is the energy-momentum tensor of
matter. In order to find the relation with f(R) theories in the metric and Palatini formalisms, we
consider the following correspondence

ϕ = F (R) , U(ϕ) =
RF − f

2
. (381)

Recall that this potential (which is the gravitational origin) already appeared in Eq. (28). We then
find that Eqs. (4) and (7) in metric f(R) gravity are equivalent to Eqs. (379) and (380) with the
BD parameter ωBD = 0. Hence f(R) theory in the metric formalism corresponds to BD theory
with ωBD = 0 [89, 90, 91, 407, 408]. In fact we already showed this by rewriting the action (1) in
the form (21). We also notice that Eqs. (334) and (332) in Palatini f(R) gravity are equivalent to
Eqs. (4) and (7) with the BD parameter ωBD = −3/2. Then f(R) theory in the Palatini formalism
corresponds to BD theory with ωBD = −3/2 [344, 59, 377]. Recall that we also showed this by
rewriting the action (1) in the form (338).
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One can consider more general theories called scalar-tensor theories [109] in which the Ricci
scalar R is coupled to a scalar field ϕ. The general 4-dimensional action for scalar-tensor theories
can be written as

S =

∫

d4x
√−g

[

1

2
F (ϕ)R − 1

2
ω(ϕ)(∇ϕ)2 − U(ϕ)

]

+ SM (gµν ,ΨM ) , (382)

where F (ϕ) and U(ϕ) are functions of ϕ. Under the conformal transformation g̃µν = Fgµν , we
obtain the action in the Einstein frame [106, 107]

SE =

∫

d4x
√

−g̃
[

1

2
R̃− 1

2
(∇̃φ)2 − V (φ)

]

+ SM (F−1g̃µν ,ΨM ) , (383)

where V = U/F 2. We have introduced a new scalar field φ to make the kinetic term canonical:

φ ≡
∫

dϕ

√

3

2

(

F,ϕ

F

)2

+
ω

F
. (384)

We define a quantity Q that characterizes the coupling between the field φ and non-relativistic
matter in the Einstein frame:

Q ≡ −F,φ

2F
= −F,ϕ

F

[

3

2

(

F,ϕ

F

)2

+
ω

F

]−1/2

. (385)

Recall that, in metric f(R) gravity, we introduced the same quantity Q in Eq. (40), which is
constant (Q = −1/

√
6). For theories with Q =constant, we obtain the following relations from

Eqs. (384) and (385):

F = e−2Qφ , ω = (1− 6Q2)F

(

dφ

dϕ

)2

. (386)

In this case the action (382) in the Jordan frame reduces to [111]

S =

∫

d4x
√
−g
[

1

2
F (φ)R−1

2
(1−6Q2)F (φ)(∇φ)2−U(φ)

]

+SM(gµν ,ΨM ) , with F (φ) = e−2Qφ .

(387)
In the limit that Q → 0 we have F (φ) → 1, so that Eq. (387) recovers the action of a minimally
coupled scalar field in GR.

Let us compare the action (387) with the action (378) in BD theory. Setting ϕ = F = e−2Qφ,
the former is equivalent to the latter if the parameter ωBD is related to Q via the relation [93, 111]

3 + 2ωBD =
1

2Q2
. (388)

This shows that the GR limit (ωBD → ∞) corresponds to the vanishing coupling (Q → 0). Since
Q = −1/

√
6 in metric f(R) gravity one has ωBD = 0, as expected. The Palatini f(R) gravity

corresponds to ωBD = −3/2, which corresponds to the infinite coupling (Q2 → ∞). In fact,
Palatini gravity can be regarded as an isolated “fixed point” of a transformation involving a special
conformal rescaling of the metric [409]. In the Einstein frame of the Palatini formalism, the scalar
field φ does not have a kinetic term and it can be integrated out. In general, this leads to a matter
action which is non-linear, depending on the potential U(φ). This large coupling poses a number
of problems such as the strong amplification of matter density perturbations and the conflict with
the Standard Model of particle physics, as we have discussed in the previous section.
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Note that BD theory is one of the examples in scalar-tensor theories and there are some theories
that give rise to non-constant values of Q. For example, the action of a nonminimally coupled scalar
field with a coupling ξ corresponds to F (ϕ) = 1−ξϕ2 and ω(ϕ) = 1, which gives the field-dependent
coupling Q(ϕ) = ξϕ/[1− ξϕ2(1− 6ξ)]1/2. In fact the dynamics of dark energy in such a theory has
been studied by a number of authors [168, 410, 411, 412, 413, 414, 415]. In the following we shall
focus on the constant coupling models with the action (387). We stress that this is equivalent to
the action (378) in BD theory.

10.2 Cosmological dynamics of dark energy models based on Brans-

Dicke theory

The first attempt to apply BD theory to cosmic acceleration is the so-called extended inflation
scenario in which the BD field ϕ is identified as an inflaton field [416, 417]. The first version of the
inflation model, which considered a first-order phase transition in BD theory, resulted in failure
due to the graceful exit problem [418, 419, 420]. This triggered further study of the possibility of
realizing inflation in the presence of another scalar field [421, 422]. In general the dynamics of such
a multi-field system is more involved than that in the single-field case [8]. The resulting power
spectrum of density perturbations generated during multi-field inflation in BD theory was studied
by a number of authors [423, 424, 425, 426].

In the context of dark energy it is possible to construct viable single-field models based on BD
theory. In what follows we discuss cosmological dynamics of dark energy models based on the action
(387) in the flat FLRW background given by (12) (see e.g., Refs. [111, 168, 427, 428, 429, 430, 431]
for dynamical analysis in scalar-tensor theories). Our interest is to find conditions under which a
sequence of radiation, matter, and accelerated epochs can be realized. This depends upon the form
of the field potential U(φ). We first carry out general analysis without specifying the forms of the
potential. We take into account non-relativistic matter with energy density ρm and radiation with
energy density ρr. The Jordan frame is regarded as a physical frame due to the usual conservation
of non-relativistic matter (ρm ∝ a−3). Varying the action (387) with respect to gµν and φ, we
obtain the following equations

3FH2 = (1 − 6Q2)Fφ̇2/2 + U − 3HḞ + ρm + ρr , (389)

2FḢ = −(1− 6Q2)Fφ̇2 − F̈ +HḞ − ρm − 4ρr/3 , (390)

(1− 6Q2)F
[

φ̈+ 3Hφ̇+ Ḟ /(2F )φ̇
]

+ U,φ +QFR = 0 , (391)

where F = e−2Qφ.
We introduce the following dimensionless variables

x1 ≡ φ̇√
6H

, x2 ≡ 1

H

√

U

3F
, x3 ≡ 1

H

√

ρr
3F

, (392)

and also the density parameters

Ωm ≡ ρm
3FH2

, Ωr ≡ x23 , ΩDE ≡ (1− 6Q2)x21 + x22 + 2
√
6Qx1 . (393)

These satisfy the relation Ωm +Ωr +ΩDE = 1 from Eq. (389). From Eq. (390) it follows that

Ḣ

H2
= −1− 6Q2

2

(

3 + 3x21 − 3x22 + x23 − 6Q2x21 + 2
√
6Qx1

)

+ 3Q(λx22 − 4Q) . (394)
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Name x1 x2 Ωm weff

(a) φMDE
√
6Q

3(2Q2−1) 0 3−2Q2

3(1−2Q2)2
4Q2

3(1−2Q2)

(b1) Kinetic 1 1√
6Q+1

0 0 3−
√
6Q

3(1+
√
6Q)

(b2) Kinetic 2 1√
6Q−1

0 0 3+
√
6Q

3(1−
√
6Q)

(c) Field dominated
√
6(4Q−λ)

6(4Q2−Qλ−1)

[

6−λ2+8Qλ−16Q2

6(4Q2−Qλ−1)2

]1/2

0 − 20Q2−9Qλ−3+λ2

3(4Q2−Qλ−1)

(d) Scaling solution
√
6

2λ

√

3+2Qλ−6Q2

2λ2 1− 3−12Q2+7Qλ
λ2 − 2Q

λ

(e) de Sitter 0 1 0 −1

Table 1: The critical points of dark energy models based on the action (387) in BD theory with
constant λ = −U,φ/U in the absence of radiation (x3 = 0). The effective equation of state

weff = −1− 2Ḣ/(3H2) is known from Eq. (394).

Taking the derivatives of x1, x2 and x3 with respect to N = ln a, we find

dx1
dN

=

√
6

2
(λx22 −

√
6x1)

+

√
6Q

2

[

(5− 6Q2)x21 + 2
√
6Qx1 − 3x22 + x23 − 1

]

− x1
Ḣ

H2
, (395)

dx2
dN

=

√
6

2
(2Q− λ)x1x2 − x2

Ḣ

H2
, (396)

dx3
dN

=
√
6Qx1x3 − 2x3 − x3

Ḣ

H2
, (397)

where λ ≡ −U,φ/U .
If λ is a constant, i.e. for the exponential potential U = U0e

−λφ, one can derive fixed points
for Eqs. (395)-(397) by setting dxi/dN = 0 (i = 1, 2, 3). In Table 1 we list the fixed points of
the system in the absence of radiation (x3 = 0). Note that the radiation point corresponds to
(x1, x2, x3) = (0, 0, 1). The point (a) is the so-called φ-matter-dominated epoch (φMDE) during
which the density of non-relativistic matter is a non-zero constant. Provided that Q2 ≪ 1 this
can be used for the matter-dominated epoch. The kinetic points (b1) and (b2) are responsible
neither for the matter era nor for the accelerated epoch (for |Q| . 1). The point (c) is the scalar-
field dominated solution, which can be used for the late-time acceleration for weff < −1/3. When
Q2 ≪ 1 this point yields the cosmic acceleration for −

√
2 + 4Q < λ <

√
2 + 4Q. The scaling

solution (d) can be responsible for the matter era for |Q| ≪ |λ|, but in this case the condition
weff < −1/3 for the point (c) leads to λ2 . 2. Then the energy fraction of the pressureless matter
for the point (d) does not satisfy the condition Ωm ≃ 1. The point (e) gives rise to the de Sitter
expansion, which exists for the special case with λ = 4Q [which can be also regarded as the special
case of the point (c)]. From the above discussion the viable cosmological trajectory for constant
λ is the sequence from the point (a) to the scalar-field dominated point (c) under the conditions
Q2 ≪ 1 and −

√
2 + 4Q < λ <

√
2 + 4Q. The analysis based on the Einstein frame action (383)

also gives rise to the φMDE followed by the scalar-field dominated solution [110, 168].
Let us consider the case of non-constant λ. The fixed points derived above may be regarded as

“instantaneous” points [432, 433] varying with the time-scale smaller than H−1. As in metric f(R)
gravity (Q = −1/

√
6) we are interested in large coupling models with |Q| of the order of unity.

In order for the potential U(φ) to satisfy local gravity constraints, the field needs to be heavy in
the region R ≫ R0 ∼ H2

0 such that |λ| ≫ 1. Then it is possible to realize the matter era by the
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point (d) with |Q| ≪ |λ|. Moreover the solutions can finally approach the de Sitter solution (e)
with λ = 4Q or the field-dominated solution (c). The stability of the point (e) was analyzed in
Ref. [111, 220, 434] by considering linear perturbations δx1, δx2 and δF . One can easily show that
the point (e) is stable for

Q
dλ

dF
(F1) > 0 → dλ

dφ
(φ1) < 0 , (398)

where F1 = e−2Qφ1 with φ1 being the field value at the de Sitter point. In metric f(R) gravity
(Q = −1/

√
6) this condition is equivalent to m = Rf,RR/f,R < 1.

For the f(R) model (166) the field φ is related to the Ricci scalar R via the relation e2φ/
√
6 =

1− 2nµ(R/Rc)
−(2n+1). Then the potential U = (FR− f)/2 in the Jordan frame can be expressed

as

U(φ) =
µRc

2

[

1− 2n+ 1

(2nµ)2n/(2n+1)

(

1− e2φ/
√
6
)2n/(2n+1)

]

. (399)

For theories with general couplings Q we consider the following potential [111]

U(φ) = U0

[

1− C(1 − e−2Qφ)p
]

(U0 > 0, C > 0, 0 < p < 1) , (400)

which includes the potential (399) in f(R) gravity as a specific case with the correspondence
U0 = µRc/2 and C = (2n+ 1)/(2nµ)2n/(2n+1), Q = −1/

√
6, and p = 2n/(2n+ 1). The potential

behaves as U(φ) → U0 for φ → 0 and U(φ) → U0(1 − C) in the limits φ → ∞ (for Q > 0) and
φ → −∞ (for Q < 0). This potential has a curvature singularity at φ = 0 as in the models (133)
and (134) of f(R) gravity, but the appearance of the singularity can be avoided by extending the
potential to the regions φ > 0 (Q < 0) or φ < 0 (Q > 0) with a field mass bounded from above.
The slope λ = −U,φ/U is given by

λ =
2CpQe−2Qφ(1− e−2Qφ)p−1

1− C(1 − e−2Qφ)p
. (401)

During the radiation and deep matter eras one has R = 6(2H2 + Ḣ) ≃ ρm/F from Eqs. (389)-
(390) by noting that U0 is negligibly small relative to the background fluid density. From Eq. (391)
the field is nearly frozen at a value satisfying the condition U,φ+Qρm ≃ 0. Then the field φ evolves
along the instantaneous minima given by

φm ≃ 1

2Q

(

2U0pC

ρm

)1/(1−p)

. (402)

As long as ρm ≫ 2U0pC we have that |φm| ≪ 1. In this regime the slope λ in Eq. (401) is much
larger than 1. The field value |φm| increases for decreasing ρm and hence the slope λ decreases
with time.

Since λ≫ 1 around φ = 0, the instantaneous fixed point (d) can be responsible for the matter-
dominated epoch provided that |Q| ≪ λ. The variable F = e−2Qφ decreases in time irrespective of
the sign of the coupling Q and hence 0 < F < 1. The de Sitter point is characterized by λ = 4Q,
i.e.

C =
2(1− F1)

1−p

2 + (p− 2)F1
. (403)

The de Sitter solution is present as long as the solution of this equation exists in the region
0 < F1 < 1. From Eq. (401) the derivative of λ in terms of φ is given by

dλ

dφ
= −4CpQ2F (1− F )p−2[1− pF − C(1− F )p]

[1− C(1 − F )p]2
. (404)
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When 0 < C < 1, we can show that the function g(F ) ≡ 1− pF −C(1−F )p is positive and hence
the condition dλ/dφ < 0 is satisfied. This means that the de Sitter point (e) is a stable attractor.
When C > 1, the function g(F ) can be negative. Plugging Eq. (403) into Eq. (404), we find that
the de Sitter point is stable for

F1 >
1

2− p
. (405)

If this condition is violated, the solutions choose another stable fixed point [such as the point (c)]
as an attractor.

The above discussion shows that for the model (400) the matter point (d) can be followed by
the stable de Sitter solution (e) for 0 < C < 1. In fact numerical simulations in Ref. [111] show
that the sequence of radiation, matter and de Sitter epochs can be in fact realized. Introducing the
energy density ρDE and the pressure PDE of dark energy as we have done for metric f(R) gravity,
the dark energy equation of state wDE = PDE/ρDE is given by the same form as Eq. (147). Since
for the model (400) F increases toward the past, the phantom equation of state (wDE < −1) as
well as the cosmological constant boundary crossing (wDE = −1) occurs as in the case of metric
f(R) gravity [111].

As we will see in the next subsection, for a light scalar field, it is possible to satisfy local
gravity constraints for |Q| . 10−3. In those cases the potential does not need to be steep such that
λ≫ 1 in the region R≫ R0. The cosmological dynamics for such nearly flat potentials have been
discussed by a number of authors in several classes of scalar-tensor theories [435, 436, 437, 236].
It is also possible to realize the condition wDE < −1, while avoiding the appearance of a ghost
[437, 236].

10.3 Local gravity constraints

We study local gravity constraints (LGC) for BD theory given by the action (387). In the absence
of the potential U(φ) the BD parameter ωBD is constrained to be ωBD > 4× 104 from solar-system
experiments [260, 261, 262]. This bound also applies to the case of a nearly massless field with the
potential U(φ) in which the Yukawa correction e−Mr is close to unity (where M is a scalar-field
mass and r is an interaction length). Using the bound ωBD > 4× 104 in Eq. (388), we find that

|Q| < 2.5× 10−3 . (406)

This is a strong constraint under which the cosmological evolution for such theories is difficult to
be distinguished from the ΛCDM model (Q = 0).

If the field potential is present, the models with large couplings (|Q| = O(1)) can be consistent
with local gravity constraints as long as the mass M of the field φ is sufficiently large in the region
of high density. For example, the potential (400) is designed to have a large mass in the high-
density region so that it can be compatible with experimental tests for the violation of equivalence
principle through the chameleon mechanism [111]. In the following we study conditions under
which local gravity constraints can be satisfied for the model (400).

As in the case of metric f(R) gravity, let us consider a configuration in which a spherically sym-
metric body has a constant density ρA inside the body with a constant density ρ = ρB (≪ ρA) out-
side the body. For the potential V = U/F 2 in the Einstein frame one has V,φ ≃ −2U0QpC(2Qφ)

p−1

under the condition |Qφ| ≪ 1. Then the field values at the potential minima inside and outside
the body are

φi ≃
1

2Q

(

2U0 pC

ρi

)1/(1−p)

, i = A,B . (407)
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The field mass squared m2
i ≡ V,φφ at φ = φi (i = A,B) is approximately given by

m2
i ≃ 1− p

(2p pC)1/(1−p)
Q2

(

ρi
U0

)(2−p)/(1−p)

U0 . (408)

Recall that U0 is roughly the same order as the present cosmological density ρ0 ≃ 10−29 g/cm3.
The baryonic/dark matter density in our galaxy corresponds to ρB ≃ 10−24 g/cm3. The mean
density of Sun or Earth is about ρA = O(1) g/cm3. Hence mA and mB are in general much
larger than H0 for local gravity experiments in our environment. For mAr̃c ≫ 1 the chameleon
mechanism we discussed in Sec. 5.2 can be directly applied to BD theory whose Einstein frame
action is given by Eq. (383) with F = e−2Qφ.

The bound (203) coming from the possible violation of equivalence principle in the solar system
translates into

(2U0pC/ρB)
1/(1−p)

< 7.4× 10−15 |Q| . (409)

Let us consider the case in which the solutions finally approach the de Sitter point (e) in Table 1.
At this de Sitter point we have 3F1H

2
1 = U0[1−C(1− F1)

p] with C given in Eq. (403). Then the
following relation holds

U0 = 3H2
1 [2 + (p− 2)F1] /p . (410)

Substituting this into Eq. (409) we obtain

(R1/ρB)
1/(1−p)

(1− F1) < 7.4× 10−15|Q| , (411)

where R1 = 12H2
1 is the Ricci scalar at the de Sitter point. Since (1−F1) is smaller than 1/2 from

Eq. (405), it follows that (R1/ρB)
1/(1−p) < 1.5 × 10−14|Q|. Using the values R1 = 10−29 g/cm3

and ρB = 10−24 g/cm3, we get the bound for p [111]:

p > 1− 5

13.8− log10 |Q| . (412)

When |Q| = 10−1 and |Q| = 1 we have p > 0.66 and p > 0.64, respectively. Hence the model can
be compatible with local gravity experiments even for |Q| = O(1).

10.4 Evolution of matter density perturbations

Let us next study the evolution of perturbations in non-relativistic matter for the action (387)
with the potential U(φ) and the coupling F (φ) = e−2Qφ. As in metric f(R) gravity, the matter
perturbation δm satisfies Eq. (300) in the Longitudinal gauge. We define the field mass squared as
M2 ≡ U,φφ. For the potential consistent with local gravity constraints [such as (400)], the massM
is much larger than the present Hubble parameter H0 during the radiation and deep matter eras.
Note that the condition M2 ≫ R is satisfied in most of the cosmological epoch as in the case of
metric f(R) gravity.

The perturbation equations for the action (387) are given in Eqs. (218)-(225) with f = F (φ)R,
ω = (1 − 6Q2)F , and V = U . We use the unit κ2 = 1, but we restore κ2 when it is necessary. In
the Longitudinal gauge one has χ = 0, α = Φ, ψ = −Ψ, and A = 3(HΦ + Ψ̇) in these equations.
Since we are interested in sub-horizon modes, we use the approximation that the terms containing
k2/a2, δρm, δR, and M2 are the dominant contributions in Eqs. (218)-(226). We shall neglect the
contribution of the time-derivative terms of δφ in Eq. (223). As we have discussed for metric f(R)
gravity in Sec. 8.1, this amounts to neglecting the oscillating mode of perturbations. The initial
conditions of the field perturbation in the radiation era need to be chosen so that the oscillating
mode δφosc is smaller than the matter-induced mode δφind. In Fourier space Eq. (223) gives

(

k2

a2
+
M2

ω

)

δφind ≃ 1

2ω
F,φδR . (413)
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Using this relation together with Eqs. (220) and (225), it follows that

δφind ≃ 2QF

(k2/a2)(1− 2Q2)F +M2

k2

a2
Ψ . (414)

Combing this equation with Eqs. (218) and (220), we obtain [111, 438] (see also Refs. [439, 440, 441])

k2

a2
Ψ ≃ −κ

2δρm
2F

(k2/a2)(1 − 2Q2)F +M2

(k2/a2)F +M2
, (415)

k2

a2
Φ ≃ −κ

2δρm
2F

(k2/a2)(1 + 2Q2)F +M2

(k2/a2)F +M2
, (416)

where we have recovered κ2. Defining the effective gravitational potential Φeff = (Φ + Ψ)/2, we
find that Φeff satisfies the same form of equation as (306).

Substituting Eq. (416) into Eq. (300), we obtain the equation of matter perturbations on sub-
horizon scales [with the neglect of the r.h.s. of Eq. (300)]

δ̈m + 2Hδ̇m − 4πGeffρmδm ≃ 0 , (417)

where the effective gravitational coupling is

Geff =
G

F

(k2/a2)(1 + 2Q2)F +M2

(k2/a2)F +M2
. (418)

In the regime M2/F ≫ k2/a2 (“GR regime”) this reduces to Geff = G/F , so that the evolution
of δm and Φeff during the matter domination (Ωm = ρm/(3FH

2) ≃ 1) is standard: δm ∝ t2/3 and
Φeff ∝ constant.

In the regime M2/F ≪ k2/a2 (“scalar-tensor regime”) we have

Geff ≃ G

F
(1 + 2Q2) =

G

F

4 + 2ωBD

3 + 2ωBD
, (419)

where we used the relation (388) between the coupling Q and the BD parameter ωBD. Since
ωBD = 0 in f(R) gravity, it follows that Geff = 4G/(3F ). Note that the result (419) agrees with
the effective Newtonian gravitational coupling between two test masses [222, 442]. The evolution
of δm and Φeff during the matter dominance in the regime M2/F ≪ k2/a2 is

δm ∝ t(
√

25+48Q2−1)/6 , Φeff ∝ t(
√

25+48Q2−5)/6 . (420)

Hence the growth rate of δm for Q 6= 0 is larger than that for Q = 0.
As an example, let us consider the potential (400). During the matter era the field mass squared

around the potential minimum (induced by the matter coupling) is approximately given by

M2 ≃ 1− p

(2ppC)1/(1−p)
Q2

(

ρm
U0

)(2−p)/(1−p)

U0 , (421)

which decreases with time. The perturbations cross the pointM2/F = k2/a2 at time t = tk, which
depends on the wavenumber k. Since the evolution of the mass during the matter domination is

given byM ∝ t−
2−p
1−p , the time tk has a scale-dependence: tk ∝ k−

3(1−p)
4−p . More precisely the critical

redshift zk at time tk can be estimated as [111]

zk ≃
[

(

k

a0H0

1

|Q|

)2(1−p)
2ppC

(1− p)1−p

1

(3F0Ω
(0)
m )2−p

U0

H2
0

]
1

4−p

− 1 , (422)
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Figure 9: The allowed region of the parameter space in the (Q, p) plane for BD theory with the
potential (400). We show the allowed region coming from the bounds ∆ns(tΛ) < 0.05 and fδ < 2
as well as the the equivalence principle (EP) constraint (412).

where the subscript “0” represents present quantities. For the scales 30a0H0 . k . 600a0H0,
which correspond to the linear regime of the matter power spectrum, the critical redshift can be
in the region zk > 1. Note that, for larger p, zk decreases.

When t < tk and t > tk the matter perturbation evolves as δm ∝ t2/3 and δm ∝ t(
√

25+48Q2−1)/6,
respectively (apart from the epoch of the late-time cosmic acceleration). The matter power spec-
trum Pδm at time t = tΛ (at which ä = 0) shows a difference compared to the ΛCDM model, which
is given by

Pδm(tΛ)

PΛCDM
δm

(tΛ)
=

(

tΛ
tk

)2

(√
25+48Q2−1

6 − 2
3

)

∝ k
(1−p)(

√
25+48Q2−5)
4−p . (423)

The CMB power spectrum is also modified by the non-standard evolution of the effective
gravitational potential Φeff for t > tk. This mainly affects the low multipoles of CMB anisotropies
through of the ISW effect. Hence there is a difference between the spectral indices of the matter
power spectrum and of the CMB spectrum on the scales (0.01 hMpc−1 . k . 0.2 hMpc−1) [111]:

∆ns(tΛ) =
(1 − p)(

√

25 + 48Q2 − 5)

4− p
. (424)

Note that this covers the result (323) in f(R) gravity (Q = −1/
√
6 and p = 2n/(2n+1)) as a special

case. Under the criterion ∆ns(tΛ) < 0.05 we obtain the bounds p > 0.957 for Q = 1 and p > 0.855
for Q = 0.5. As long as p is close to 1, the model can be consistent with both cosmological and
local gravity constraints. The allowed region coming from the bounds ∆ns(tΛ) < 0.05 and (412)
are illustrated in Fig. 9.

The growth rate of δm for t > tk is given by fδ = δ̇m/(Hδm) = (
√

25 + 48Q2 − 1)/4. As
we mentioned in Sec. 8, the observational bound on fδ is still weak in current observations. If
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we use the criterion fδ < 2 for the analytic estimation fδ = (
√

25 + 48Q2 − 1)/4, we obtain the
bound Q < 1.08 (see Fig. 9). The current observational data on the growth rate fδ as well as its
growth index γ is not enough to place tight bounds on Q and p, but this will be improved in future
observations.

11 Relativistic stars in f(R) gravity and chameleon theories

In Sec. 5 we discussed the existence of thin-shell solutions in metric f(R) gravity in the Minkowski
background, i.e. without the backreaction of metric perturbations. For the f(R) dark energy
models (133) and (134), Frolov [103] anticipated that the curvature singularity at φ = 0 (shown
in Fig. 3) can be accessed in a strong gravitational background such as neutron stars. Kobayashi
and Maeda [95, 96] studied spherically symmetric solutions for a constant density star with a
vacuum exterior and claimed the difficulty of obtaining thin-shell solutions in the presence of the
backreaction of metric perturbations. In Ref. [97] thin-shell solutions were derived analytically
in the Einstein frame of BD theory (including f(R) gravity) under the linear expansion of the
gravitational potential Φc at the surface of the body (valid for Φc < 0.3). In fact, the existence
of such solutions was numerically confirmed for the inverse power-law potential V (φ) =M4+nφ−n

[97].
For the f(R) models (133) and (134), it was numerically shown that thin-shell solutions exist

for Φc . 0.3 by the analysis in the Jordan frame [98, 99, 101] (see also Ref. [102]). In particular
Babichev and Langlois [98, 101] constructed static relativistic stars both for constant energy density
configurations and for a polytropic equation of state, provided that the pressure does not exceed
three times the energy density. Since the relativistic pressure tends to be stronger around the
center of the spherically symmetric body for larger Φc, the boundary conditions at the center
of the body need to be carefully chosen to obtain thin-shell solutions numerically. In this sense
the analytic estimation of thin-shell solutions carried out in Ref. [97] can be useful to show the
existence of static star configurations, although such analytic solutions have been so far derived
only for a constant density star.

In the following we shall discuss spherically symmetric solutions in a strong gravitational back-
ground with Φc . 0.3 for BD theory with the action (387). This analysis covers metric f(R) gravity
as a special case (the scalar-field degree of freedom φ defined in Eq. (31) with Q = −1/

√
6). While

field equations will be derived in the Einstein frame, we can transform back to the Jordan frame to
find the corresponding equations (as in the analysis of Babichev and Langlois [101]). In addition
to the papers mentioned above, there are also a number of works about spherically symmetric
solutions for some equation state of matter [245, 246, 443, 444, 445, 446].

11.1 Field equations

We already showed that under the conformal transformation g̃µν = e−2Qκφgµν the action (387) is
transformed to the Einstein frame action:

SE =

∫

d4x
√

−g̃
[

1

2κ2
R̃− 1

2
(∇̃φ)2 − V (φ)

]

+

∫

d4xLM (e2Qκφg̃µν ,ΨM ) . (425)

Recall that in the Einstein frame this gives rise to a constant coupling Q between non-relativistic
matter and the field φ. We use the unit κ2 = 8πG = 1, but we restore the gravitational constant
G when it is required.

Let us consider a spherically symmetric static metric in the Einstein frame:

ds̃2 = −e2Ψ(r̃)dt2 + e2Φ(r̃)dr̃2 + r̃2
(

dθ2 + sin2 θdφ2
)

, (426)
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where Ψ(r̃) and Φ(r̃) are functions of the distance r̃ from the center of symmetry. For the action
(425) the energy-momentum tensors for the scalar field φ and the matter are given, respectively,
by

T̃ (φ)
µν = ∂µφ∂νφ− g̃µν

[

1

2
g̃αβ∂αφ∂βφ+ V (φ)

]

, (427)

T̃ (M)
µν = − 2√−g̃

δLM

δg̃µν
. (428)

For the metric (426) the (00) and (11) components for the energy-momentum tensor of the field
are

T̃
0(φ)
0 = −1

2
e−2Φφ′2 − V (φ) , T̃

1(φ)
1 =

1

2
e−2Φφ′2 − V (φ) , (429)

where a prime represents a derivative with respect to r̃. The energy-momentum tensor of matter

in the Einstein frame is given by T̃ µ
ν = diag (−ρ̃M , P̃M , P̃M , P̃M ), which is related to T

µ(M)
ν in the

Jordan frame via T̃
µ(M)
ν = e4Qφ T

µ(M)
ν . Hence it follows that ρ̃M = e4QφρM and P̃M = e4QφPM .

Variation of the action (425) with respect to φ gives

−∂µ
(

∂(
√−g̃Lφ)

∂(∂µφ)

)

+
∂(
√−g̃Lφ)

∂φ
+
∂LM

∂φ
= 0 , (430)

where Lφ = −(∇̃φ)2/2−V (φ) is the field Lagrangian density. Since the derivative of LM in terms

of φ is given by Eq. (41), i.e. ∂LM/∂φ =
√−g̃Q(−ρ̃M +3P̃M ), we obtain the equation of the field

φ [97, 101]:

φ′′ +

(

2

r̃
+Ψ′ − Φ′

)

φ′ = e2Φ
[

V,φ +Q(ρ̃M − 3P̃M )
]

, (431)

where a tilde represents a derivative with respect to r̃. From the Einstein equations it follows that

Φ′ =
1− e2Φ

2r̃
+ 4πGr̃

[

1

2
φ′2 + e2ΦV (φ) + e2Φρ̃M

]

, (432)

Ψ′ =
e2Φ − 1

2r̃
+ 4πGr̃

[

1

2
φ′2 − e2ΦV (φ) + e2ΦP̃M

]

, (433)

Ψ′′ +Ψ′2 −Ψ′Φ′ +
Ψ′ − Φ′

r̃
= −8πG

[

1

2
φ′2 + e2ΦV (φ)− e2ΦP̃M

]

. (434)

Using the continuity equation ∇µT
µ
1 = 0 in the Jordan frame, we obtain

P̃ ′
M + (ρ̃M + P̃M )Ψ′ +Qφ′(ρ̃M − 3P̃M ) = 0 . (435)

In the absence of the coupling Q this reduces to the Tolman-Oppenheimer-Volkoff equation, P̃ ′
M +

(ρ̃M + P̃M )Ψ′ = 0.
If the field potential V (φ) is responsible for dark energy, we can neglect both V (φ) and φ′2

relative to ρ̃M in the local region whose density is much larger than the cosmological density
(ρ0 ∼ 10−29 g/cm3). In this case Eq. (432) is integrated to give

e2Φ(r̃) =

[

1− 2Gm(r̃)

r̃

]−1

, m(r̃) =

∫ r̃

0

4πr̄2ρ̃M dr̄ . (436)

Substituting Eqs. (432) and (433) into Eq. (431), it follows that

φ′′ +

[

1 + e2Φ

r̃
− 4πGr̃e2Φ(ρ̃M − P̃M )

]

φ′ = e2Φ
[

V,φ +Q(ρ̃M − 3P̃M )
]

. (437)
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The gravitational potential Φ around the surface of a compact object can be estimated as
Φ ≈ Gρ̃M r̃

2
c , where ρ̃M is the mean density of the star and r̃c is its radius. Provided that Φ ≪ 1,

Eq. (437) reduces to Eq. (162) in the Minkowski background (note that the pressure P̃M is also
much smaller than the density ρ̃M for non-relativistic matter).

11.2 Constant density star

Let us consider a constant density star with ρ̃M = ρ̃A. We also assume that the density outside

the star is constant, ρ̃M = ρ̃B. We caution that the conserved density ρ̃
(c)
M in the Einstein frame

is given by ρ̃
(c)
M = e−Qφρ̃M [93]. However, since the condition Qφ ≪ 1 holds in most cases of our

interest, we do not distinguish between ρ̃
(c)
M and ρ̃M in the following discussion.

Inside the spherically symmetric body (0 < r̃ < r̃c), Eq. (436) gives

e2Φ(r̃) =

(

1− 8πG

3
ρ̃Ar̃

2

)−1

. (438)

Neglecting the field contributions in Eqs. (432)-(435), the gravitational background for 0 < r̃ < r̃c
is characterized by the Schwarzschild interior solution. Then the pressure P̃M (r̃) inside the body
relative to the density ρ̃A can be analytically expressed as

P̃M (r̃)

ρ̃A
=

√

1− 2(r̃2/r̃2c )Φc −
√
1− 2Φc

3
√
1− 2Φc −

√

1− 2(r̃2/r̃2c )Φc

(0 < r̃ < r̃c) , (439)

where Φc is the gravitational potential at the surface of the body:

Φc ≡
GMc

r̃c
=

1

6
ρ̃Ar̃

2
c . (440)

Here Mc = 4πr̃3c ρ̃A/3 is the mass of the spherically symmetric body. The density ρ̃B is much
smaller than ρ̃A, so that the metric outside the body can be approximated by the Schwarzschild
exterior solution

Φ(r̃) ≃ GMc

r̃
= Φc

r̃c
r̃
, P̃M (r̃) ≃ 0 (r̃ > r̃c) . (441)

In the following we shall derive the analytic field profile by using the linear expansion in terms
of the gravitational potential Φc. This approximation is expected to be reliable for Φc < O(0.1).
From Eqs. (438)-(440) it follows that

Φ(r̃) ≃ Φc
r̃2

r̃2c
,

P̃M (r̃)

ρ̃A
≃ Φc

2

(

1− r̃2

r̃2c

)

(0 < r̃ < r̃c) . (442)

Substituting these relations into Eq. (437), the field equation inside the body is approximately
given by

φ′′ +
2

r̃

(

1− r̃2

2r̃2c
Φc

)

φ′ − (V,φ +Qρ̃A)

(

1 + 2Φc
r̃2

r̃2c

)

+
3

2
Qρ̃AΦc

(

1− r̃2

r̃2c

)

= 0 . (443)

If φ is close to φA at r̃ = 0, the field stays around φA in the region 0 < r̃ < r̃1. The body has a
thin-shell if r̃1 is close to the radius r̃c of the body.

In the region 0 < r̃ < r̃1 the field derivative of the effective potential around φ = φA can be
approximated by dVeff/dφ = V,φ +Qρ̃A ≃ m2

A(φ−φA). The solution to Eq. (443) can be obtained
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by writing the field as φ = φ0 + δφ, where φ0 is the solution in the Minkowski background and δφ
is the perturbation induced by Φc. At linear order in δφ and Φc we obtain

δφ′′ +
2

r̃
δφ′ −m2

Aδφ = Φc

[

2m2
Ar̃

2

r̃2c
(φ0 − φA) +

r̃

r̃2c
φ′0 −

3

2
Qρ̃A

(

1− r̃2

r̃2c

)]

, (444)

where φ0 satisfies the equation φ′′0 + (2/r̃)φ′0 − m2
A(φ0 − φA) = 0. The solution of φ0 with the

boundary conditions dφ0/dr̃ = 0 at r̃ = 0 is given by φ0(r̃) = φA + A(e−mAr̃ − emAr̃)/r̃, where A
is a constant. Plugging this into Eq. (444), we get the following solution for φ(r̃) [97]:

φ(r̃) = φA +
A(e−mAr̃ − emAr̃)

r̃

− AΦc

mAr̃2c

[(

1

3
m2

Ar̃
2 − 1

4
mAr̃ −

1

4
+

1

8mAr̃

)

emAr̃ +

(

1

3
m2

Ar̃
2 +

1

4
mAr̃ −

1

4
− 1

8mAr̃

)

e−mAr̃

]

− 3Qρ̃AΦc

2m4
Ar̃

2
c

[

m2
A(r̃

2 − r̃2c ) + 6
]

. (445)

In the region r̃1 < r̃ < r̃c the field |φ(r̃)| evolves towards larger values with increasing r̃. Since
the matter coupling term Qρ̃A dominates over V,φ in this regime, it follows that dVeff/dφ ≃ Qρ̃A.
Hence the field perturbation δφ satisfies

δφ′′ +
2

r̃
δφ′ = Φc

[

r̃

r̃2c
φ′0 −

1

2
Qρ̃A

(

3− 7
r̃2

r̃2c

)]

, (446)

where φ0 obeys the equation φ′′0 + (2/r̃)φ′0 −Qρ̃A = 0. Hence we obtain the solution

φ(r̃) = −B
r̃

(

1− Φc
r̃2

2r̃2c

)

+ C +
1

6
QρAr̃

2

(

1− 3

2
Φc +

23

20
Φc
r̃2

r̃2c

)

, (447)

where B and C are constants.
In the region outside the body (r̃ > r̃c) the field φ climbs up the potential hill after it acquires

sufficient kinetic energy in the regime r̃1 < r̃ < r̃c. Provided that the field kinetic energy dominates
over its potential energy, the r.h.s. of Eq. (437) can be neglected relative to its l.h.s. of it. Moreover
the terms that include ρ̃M and P̃M in the square bracket on the l.h.s. of Eq. (437) is much smaller
than the term (1 + e2Φ)/r̃. Using Eq. (441), it follows that

φ′′ +
2

r̃

(

1 +
GMc

r̃

)

φ′ ≃ 0 , (448)

whose solution satisfying the boundary condition φ(r̃ → ∞) = φB is

φ(r̃) = φB +
D

r̃

(

1 +
GMc

r̃

)

, (449)

where D is a constant.
The coefficients A,B,C,D are known by matching the solutions (445), (447), (449) and their

derivatives at r̃ = r̃1 and r̃ = r̃c. If the body has a thin-shell, then the condition ∆r̃c = r̃c− r̃1 ≪ r̃c
is satisfied. Under the linear expansion in terms of the three parameters ∆r̃c/r̃c, Φc, and 1/(mAr̃c)
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we obtain the following field profile [97]:

φ(r̃) = φA +
Qρ̃A

m2
Ae

mAr̃1

r̃1
r̃

(

1 +
mAr̃

3
1Φc

3r̃2c
− Φcr̃

2
1

4r̃2c

)−1

(emAr̃ − e−mAr̃)

+
3Qρ̃AΦc

2m2
A

[

1− r̃2

r̃2c
− 6

(mAr̃c)2

]

+
Φcr̃1
mAr̃2c

Qρ̃A
m2

Ae
mAr̃1

(

1 +
mAr̃

3
1Φc

3r̃2c
− Φcr̃

2
1

4r̃2c

)−1

×
[(

1

3
m2

Ar̃
2 − 1

4
mAr̃ −

1

4
+

1

8mAr̃

)

emAr̃ +

(

1

3
m2

Ar̃
2 +

1

4
mAr̃ −

1

4
− 1

8mAr̃

)

e−mAr̃

]

(0 < r̃ < r̃1), (450)

φ(r̃) = φA +
Qρ̃Ar̃

2
c

6

[

6ǫth + 6C1
r̃1
r̃

(

1− Φcr̃
2

2r̃2c

)

− 3

(

1− Φc

4

)

+

(

r̃

r̃c

)2(

1− 3

2
Φc +

23Φcr̃
2

20r̃2c

)

]

(r̃1 < r̃ < r̃c), (451)

φ(r̃) = φA +Qρ̃Ar̃
2
c

[

ǫth − C2
r̃c
r̃

(

1 + Φc
r̃c
r̃

)]

(r̃ > r̃c), (452)

where ǫth = (φB − φA)/(6QΦc) is the thin-shell parameter, and

C1 ≡ (1− α)

[

−ǫth
(

1 +
Φcr̃

2
1

2r̃2c

)

+
1

2

(

1− Φc

4
+

Φcr̃
2
1

2r̃2c

)

− r̃21
2r̃2c

(

1− 3

2
Φc +

7Φcr̃
2
1

4r̃2c

)]

+
r̃21
3r̃2c

(

1− 3

2
Φc +

9Φcr̃
2
1

5r̃2c

)

, (453)

C2 ≡ (1− α)

[

ǫth
r̃1
r̃c

(

1 +
Φcr̃

2
1

2r̃2c
− 3Φc

2

)

− r̃1
2r̃c

(

1− 7

4
Φc +

Φcr̃
2
1

2r̃2c

)

+
r̃31
2r̃3c

(

1− 3Φc +
7Φcr̃

2
1

4r̃2c

)]

+
1

3

(

1− 6

5
Φc

)

− r̃31
3r̃3c

(

1− 3Φc +
9Φcr̃

2
1

5r̃2c

)

, (454)

where

α ≡ (r̃21/3r̃
2
c)Φc + 1/(mAr̃1)

1 + (r̃21/4r̃
2
c)Φc + (mAr̃31Φc/3r̃2c)[1− (r̃21/2r̃

2
c)Φc]

. (455)

As long as mAr̃1Φc ≫ 1, the parameter α is much smaller than 1.
In order to derive the above field profile we have used the fact that the radius r̃1 is determined

by the condition m2
A [φ(r̃1)− φA] = Qρ̃A, and hence

φA − φB = −Qρ̃Ar̃2c
[

∆r̃c
r̃c

(

1 + Φc −
1

2

∆r̃c
r̃c

)

+
1

mAr̃c

(

1− ∆r̃c
r̃c

)

(1− β)

]

, (456)

where β is defined by

β ≡ (mAr̃
3
1Φc/3r̃

2
c)(r̃

2
1/r̃

2
c)Φc

1 + (mAr̃31Φc/3r̃2c)− (r̃21/4r̃
2
c)Φc

, (457)

which is much smaller than 1. Using Eq. (456) we obtain the thin-shell parameter

ǫth =
∆r̃c
r̃c

(

1 + Φc −
1

2

∆r̃c
r̃c

)

+
1

mAr̃c

(

1− ∆r̃c
r̃c

)

(1− β) . (458)

In terms of a linear expansion of α, β,∆r̃c/r̃c,Φc, the field profile (452) outside the body is

φ(r̃) ≃ φB − 2Qeff
GMc

r̃

(

1 +
GMc

r̃

)

, (459)
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where the effective coupling is

Qeff = 3Q

[

∆r̃c
r̃c

(

1− ∆r̃c
r̃c

)

+
1

mAr̃c

(

1− 2
∆r̃c
r̃c

− Φc − α− β

)]

. (460)

To leading-order this gives Qeff = 3Q [∆r̃c/r̃c + 1/(mAr̃c)] = 3Qǫth, which agrees with the result
(192) in the Minkowski background. As long as ∆r̃c/r̃c ≪ 1 and 1/(mAr̃c) ≪ 1, the effective
coupling |Qeff | can be much smaller than the bare coupling |Q|, even in a strong gravitational
background.

From Eq. (450) the field value and its derivative around the center of the body with radius
r̃ ≪ 1/mA are given by

φ(r̃) ≃ φA +
2Qρ̃Ar̃1
mAemAr̃1

(

1 +
mAr̃

3
1Φc

3r̃2c
− Φcr̃

2
1

4r̃2c

)−1 [

1 +
1

6
(mAr̃)

2 +
Φc

2(mAr̃c)2

]

+
3Qρ̃AΦc

2m2
A

[

1− r̃2

r̃2c
− 6

(mAr̃c)2

]

, (461)

φ′(r̃) ≃ Qρ̃Ar̃
2
c

[

2mAr̃1
3emAr̃1

(

1 +
mAr̃

3
1Φc

3r̃2c
− Φcr̃

2
1

4r̃2c

)−1

− 3Φc

(mAr̃c)2

]

r̃

r̃2c
. (462)

In the Minkowski background (Φc = 0), Eq. (462) gives φ′(r̃) > 0 for Q > 0 (or φ′(r̃) < 0 for
Q < 0). In the strong gravitational background (Φc 6= 0) the second term in the square bracket
of Eq. (462) can lead to negative φ′(r̃) for Q > 0 (or positive φ′(r̃) for Q < 0), which leads to
the evolution of |φ(r̃)| toward 0. This effects comes from the presence of the strong relativistic
pressure around the center of the body. Unless the boundary conditions at r̃ = 0 are appropriately
chosen, the field tends to evolve toward |φ(r̃)| = 0. This can be the reason of numerical simulations
in Ref. [95, 96] in which the evolution of the field toward the curvature singularity at φ = 0 was
reported for the f(R) model (134). We note, however, that there exists a thin-shell field profile
even for φ′(r̃) > 0 (and Q = −1/

√
6) around the center of the body. In fact the derivative φ′(r̃)

can change its sign in the regime 1/mA < r̃ < r̃1 for thin-shell solutions, so that the field does not
reach the curvature singularity at φ = 0 [97].

For the inverse power-law potential V (φ) =M4+nφ−n, the existence of thin-shell solutions was
numerically confirmed in Ref. [97] for Φc < 0.3. Note that the analytic field profile (450) was used
to set boundary conditions around the center of the body. In Fig. 10 we show the normalized field
ϕ = φ/φA versus r̃/r̃c for the model V (φ) = M6φ−2 with Φc = 0.2, ∆r̃c/r̃c = 0.1, mAr̃c = 20,
and Q = 1. While we have neglected the term V,φ relative to Qρ̃A to estimate the solution in the
region r̃1 < r̃ < r̃c analytically, we find that this leads to some overestimation for the field value
outside the body (r̃ > r̃c). In order to obtain a numerical field profile similar to the analytic one
in the region r̃ > r̃c, we need to choose a field value slightly larger than the analytic value around
the center of the body. The numerical simulation in Fig. 10 corresponds to the choice of such a
boundary condition, which explicitly shows the presence of thin-shell solutions even for a strong
gravitational background.

11.3 Relativistic stars in metric f(R) gravity

The results presented above are valid for BD theory including metric f(R) gravity with the coupling
Q = −1/

√
6. While the analysis was carried out in the Einstein frame, thin-shell solutions were

numerically found in the Jordan frame of metric f(R) gravity for the models (133) and (134)
[98, 99, 101]. In these models the field φ =

√

3/2 ln F in the region of high density (R ≫ Rc) is
very close to the curvature singularity at φ = 0. Originally it was claimed in Refs. [103, 95] that
relativistic stars are absent because of the presence of this accessible singularity. However, as we
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Figure 10: The thin-shell field profile for the model V = M6φ−2 with Φc = 0.2, ∆r̃c/r̃c = 0.1,
mAr̃c = 20, and Q = 1. This case corresponds to ρ̃A/ρ̃B = 1.04 × 104, φA = 8.99 × 10−3,
φB = 1.97×10−1 and ǫth = 1.56×10−1. The boundary condition of ϕ = φ/φA at xi = r̃i/r̃c = 10−5

is ϕ(xi) = 1.2539010, which is larger than the analytic value ϕ(xi) = 1.09850009. The derivative
ϕ′(xi) is the same as the analytic value. The left and right panels show ϕ(r̃) for 0 < r̃/r̃c < 10 and
0 < r̃/r̃c < 2, respectively. The black and dotted curves correspond to the numerically integrated
solution and the analytic field profile (450)-(452), respectively. From Ref. [97].

have discussed in the previous subsection, the crucial point for obtaining thin-shell solutions is not
the existence of the curvature singularity but the choice of appropriate boundary conditions around
the center of the star. For the correct choice of boundary conditions the field does not reach the
singularity and thin-shell field profiles can be instead realized. In the Starobinsky’s model (134),
static configurations of a constant density star have been found for the gravitational potential Φc

smaller than 0.345 [99].
For the star with an equation of state ρ̃M < 3P̃M , the effective potential of the field φ (in

the presence of a matter coupling) does not have an extremum, see Eq. (431). In those cases the
analytic results in the previous subsection are no longer valid. For the equation of state ρ̃M < 3P̃M

there is a tachyonic instability that tends to prevent the existence of a static star configuration
[101]. For realistic neutron stars, however, the equation of state proposed in the literature satisfies
the condition ρ̃M > 3P̃M throughout the star.

Babichev and Langlois [98, 101] chose a polytropic equation of state for the energy density ρM
and the pressure PM in the Jordan frame:

ρM (n) = mB

(

n+K
n2

n0

)

, PM (n) = KmB
n2

n0
, (463)

where mB = 1.66 × 10−27 kg, n0 = 0.1 fm−1, and K = 0.1. Solving the continuity equation
∇µT

µ
ν = 0 coupled with Einstein equations, Refs. [98, 101] showed that 3P̃M can remain smaller

than ρ̃M for realistic neutron stars. Note that the energy density is a decreasing function with
respect to the distance from the center of star. Even for such a varying energy density, static star
configurations have been shown to exist [98, 101].

The ratio between the central density ρcenter and the cosmological density at infinity is pa-
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Figure 11: The profile of the field φ =
√

3/2 ln F (in units of Mpl) versus the radius r̃ (denoted as

r in the figure, in units ofMplρ
−1/2
center) for the model (134) with n = 1, R∞/Rc = 3.6, and v0 = 10−4

(shown as a solid line). The dashed line corresponds to the value φmin for the minimum of the
effective potential. (Inset) The enlarged figure in the region 0 < r̃ < 2.5. From Ref. [98].

rameterized by the quantity v0 = M2
plRc/ρcenter. Realistic values of v0 are extremely small and

it is a challenging to perform precise numerical simulations in such cases. We also note that the
field mass mA in the relativistic star is very much larger than its cosmological mass and hence a
very high accuracy is required for solving the field equation numerically [99, 447]. The authors in
Refs. [98, 99, 101] carried out numerical simulations for the values of v0 of the order of 10−3-10−4.
Figure 11 illustrates an example of the thin-shell field profile for the polytropic equation of state
(463) in the model (134) with n = 1 and v0 = 10−4 [98]. In the regime 0 < r̃ < 1.5 the field
is nearly frozen around the extremum of the effective potential, but it starts to evolve toward its
asymptotic value φ = φB for r̃ > 1.5.

Although the above analysis is based on the f(R) models (133) and (134) having a curvature
singularity at φ = 0, such a singularity can be cured by adding the R2 term [96]. The presence
of the R2 term has an advantage of realizing inflation in the early Universe. However, the f(R)
models (133) and (134) plus the R2 term cannot relate the epoch of two accelerations smoothly
[303]. An example of viable models that can allow a smooth transition with a curvature singularity
is [303]

f(R) = (1− c)R + cǫ ln

[

cosh(R/ǫ− b)

cosh b

]

+
R2

6M2
, ǫ ≡ Rc

b + ln(2 cosh b)
, (464)

where b, c (0 < c < 1/2), Rc, and M are constants. In Ref. [101] a static field profile was
numerically obtained even for the model (464).

Although we have focused on the stellar configuration with Φc . 0.3, there are also works of
finding static or rotating black hole solutions in f(R) gravity [448, 449]. Cruz-Dombriz et al. [448]
studied general solutions using a perturbative approach around the Einstein-Hilbert action. They
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found that only solutions of the Schwarzschild-(Anti) de Sitter type exist up to second-order in
perturbations. It will be also of interest to study the transition from neutron stars to a strong-
scalar-field state in f(R) gravity [450]. While such an analysis was carried out for a massless field
in scalar-tensor theory, we need to take into account the field mass in the region of high density
for realistic models of f(R) gravity.

Pun et al. [451] studied physical properties of matter forming an accretion disk in the spheri-
cally symmetric metric in f(R) models and found that specific signatures of modified gravity can
appear in the electromagnetic spectrum. In Ref. [452] the virial theorem for galaxy clustering
in metric f(R) gravity was derived by using the collisionless Boltzmann equation. In Ref. [453]
the construction of traversable wormhole geometries was discussed in metric f(R) gravity. It was
found that the choice of specific shape functions and several equations of state gives rise to some
exact solutions for f(R).

12 Gauss-Bonnet gravity

So far we have studied modification to the Einstein-Hilbert action via the introduction of a general
function of the Ricci scalar. Among the possible modifications of gravity this may be indeed a very
special case. Indeed, one could think of a Lagrangian with all the infinite and possible scalars made
out of the Riemann tensor and its derivatives. If one considers such a Lagrangian as a fundamental
action for gravity, one usually encounters serious problems in the particle representations of such
theories. It is well known that such a modification would introduce extra tensor degrees of freedom
[454, 455, 456]. In fact, it is possible to show that these theories in general introduce other particles
and that some of them may lead to problems.

For example, besides the graviton, another spin-2 particle typically appears, which however, has
a kinetic term opposite in sign with respect to the standard one [113, 114, 115, 117, 118, 124, 463,
464]. The graviton does interact with this new particle, and with all the other standard particles
too. The presence of ghosts, implies the existence of particles propagating with negative energy.
This, in turn, implies that out of the vacuum a particle (or more than one) and a ghost (or more
than one) can appear at the same time without violating energy conservation. This sort of vacuum
decay makes each single background unstable, unless one considers some explicit Lorentz-violating
cutoff in order to set a typical energy/time scale at which this phenomenon occurs [292, 293].

However, one can treat these higher-order gravity Lagrangians only as effective theories, and
consider the free propagating mode only coming from the strongest contribution in the action, the
Einstein-Hilbert one, for which all the modes are well behaved. The remaining higher-derivative
parts of the Lagrangian can be regarded as corrections at energies below a certain fundamental
scale. This scale is usually set to be equal to the Planck scale, but it can be lower, for example,
in some models of extra dimensions. This scale cannot be nonetheless equal to the dark energy
density today, as otherwise, one would need to consider all these corrections for energies above
this scale. This means that one needs to re-sum all these contributions at all times before the
dark energy dominance. Another possible approach to dealing with the ghost degrees of freedom
consists of using the Euclidean-action path formalism, for which, one can indeed introduce a notion
of probability amplitude for these spurious degrees of freedom [465, 466].

The late-time modifications of gravity considered in this review correspond to those in low
energy scales. Therefore we have a correction which begins to be important at very low energy
scales compared to the Planck mass. In general this means that somehow these corrections cannot
be treated any longer as corrections to the background, but they become the dominant contribution.
In this case the theory cannot be treated as an effective one, but we need to assume that the form
of the Lagrangian is exact, and the theory becomes a fundamental theory for gravity. In this
sense these theories are similar to quintessence, that is, a minimally coupled scalar field with a
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suitable potential. The potential is usually chosen such that its energy scale matches with the
dark energy density today. However, for this theory as well, one needs to consider this potential as
fundamental, i.e. it does not get quantum corrections that can spoil the form of the potential itself.
Still it may not be renormalizable, but so far we do not know any 4-dimensional renormalizable
theory of gravity. In this case then, if we introduce a general modification of gravity responsible for
the late-time cosmic acceleration, we should prevent this theory from introducing spurious ghost
degrees of freedom.

12.1 Lovelock scalar invariants

One may wonder whether it is possible to remove these spin-2 ghosts. To answer this point,
one should first introduce the Lovelock scalars [467]. These scalars are particular combina-
tions/contractions of the Riemann tensor which have a fundamental property: if present in the
Lagrangian, they only introduce second-order derivative contributions to the equations of motion.
Let us give an example of this property [467]. Soon after Einstein proposed General Relativity [1]
and Hilbert found the Lagrangian to describe it [468], Kretschmann [469] pointed out that general
covariance alone cannot explain the form of the Lagrangian for gravity. In the action he intro-
duced, instead of the Ricci scalar, the scalar which now has been named after him, the so-called
Kretschmann scalar:

S =

∫

d4x
√
−g Rαβγδ R

αβγδ . (465)

At first glance this action looks well motivated. The Riemann tensor Rαβγδ is a fundamental
tensor for gravitation, and the scalar quantity P1 ≡ Rαβγδ R

αβγδ can be constructed by just
squaring it. Furthermore, it is a theory for which Bianchi identities hold, as the equations of
motion have both sides covariantly conserved. However, in the equations of motion, there are
terms proportional to ∇µ∇νR

µ
αβ

ν together with its symmetric partner (α ↔ β). This forces us to
give in general at a particular slice of space-time, together with the metric elements gµν , their first,
second, and third derivatives. Hence the theory has many more degrees of freedom with respect
to GR.

In addition to the Kretschmann scalar there is another scalar P2 ≡ RαβR
αβ which is quadratic

in the Riemann tensor Rαβ . One can avoid the appearance of terms proportional to ∇µ∇νR
µ
(αβ)

ν

for the scalar quantity,
G ≡ R2 − 4Rαβ R

αβ +Rαβγδ R
αβγδ , (466)

which is called the Gauss-Bonnet (GB) term [113, 114]. If one uses this invariant in the action of
D dimensions, as

S =

∫

dDx
√−g G , (467)

then the equations of motion coming from this Lagrangian include only the terms up to second
derivatives of the metric. The difference between this scalar and the Einstein-Hilbert term is that
this tensor is not linear in the second derivatives of the metric itself. It seems then an interesting
theory to study in detail. Nonetheless, it is a topological property of four-dimensional manifolds
that

√−g G can be expressed in terms of a total derivative [470], as

√
−g G = ∂αDα , (468)

where
Dα =

√−g ǫαβγδǫρσµνΓρ
µβ

[

Rσ
νγδ/2 + Γσ

λγ Γ
λ
νσ/3

]

. (469)

Then the contribution to the equations of motion disappears for any boundaryless manifold in four
dimensions.
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In order to see the contribution of the GB term to the equations of motion one way is to couple
it with a scalar field φ, i.e. f(φ)G, where f(φ) is a function of φ. More explicitly the action of such
theories is in general given by

S =

∫

d4x
√−g

[

1

2
F (φ)R − 1

2
ω(φ)(∇φ)2 − V (φ)− f(φ)G

]

, (470)

where F (φ), ω(φ), and V (φ) are functions of φ. The GB coupling of this form appears in the low
energy effective action of string-theory [123, 125], due to the presence of dilaton-graviton mixing
terms.

There is another class of general GB theories with a self-coupling of the form [143],

S =

∫

d4x
√−g

[

1

2
R+ f(G)

]

, (471)

where f(G) is a function in terms of the GB term (here we used the unit κ2 = 1). The equations
of motion, besides the standard GR contribution, will get contributions proportional to ∇µ∇νf,G
[141, 142]. This theory possesses more degrees of freedom than GR, but the extra information
appears only in a scalar quantity f,G and its derivative. Hence it has less degrees of freedom
compared to Kretschmann gravity, and in particular these extra degrees of freedom are not tensor-
like. This property comes from the fact that the GB term is a Lovelock scalar. Theories with the
more general Lagrangian density R/2+f(R,P1, P2) have been studied by many people in connection
to the dark energy problem [112, 120, 457, 458, 459, 460, 461, 462, 145]. These theories are plagued
by the appearance of spurious spin-2 ghosts, unless the Gauss-Bonnet (GB) combination is chosen
as in the action (471) [117, 118, 119, 120, 121, 122].

Let us go back to discuss the Lovelock scalars. How many are they? The answer is infinite
(each of them consists of linear combinations of equal powers of the Riemann tensor). However,
because of topological reasons, the only non-zero Lovelock scalars in four dimensions are the Ricci
scalar R and the GB term G. Therefore, for the same reasons as for the GB term, a general
function of f(R) will only introduce terms in the equations of motion of the form ∇µ∇νF , where
F ≡ ∂f/∂R. Once more, the new extra degrees of freedom introduced into the theory comes from
a scalar quantity, F .

In summary, the Lovelock scalars in the Lagrangian prevent the equations of motion from
getting extra tensor degrees of freedom. A more detailed analysis of perturbations on maximally
symmetric space-times shows that, if non-Lovelock scalars are used in the action, then new extra
tensor-like degrees of freedom begin to propagate [113, 114, 115, 117, 118, 124, 463, 464]. Effectively
these theories, such as Kretschmann gravity, introduce two gravitons, which have kinetic operators
with opposite sign. Hence one of the two gravitons is a ghost. In order to get rid of this ghost
we need to use the Lovelock scalars. Therefore, in four dimensions, one can in principle study the
following action

S =

∫

d4x
√−g f(R,G) . (472)

This theory will not introduce spin-2 ghosts. Even so, the scalar modes need to be considered more
in detail: they may still become ghosts. Let us discuss more in detail what a ghost is and why we
need to avoid it in a sensible theory of gravity.

12.2 Ghosts

What is a ghost for these theories? A ghost mode is a propagating degree of freedom with a
kinetic term in the action with opposite sign. In order to see if a ghost is propagating on a given
background, one needs to expand the action at second order around the background in terms of the
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perturbation fields. After integrating out all auxiliary fields, one is left with a minimal number of
gauge-invariant fields ~φ. These are not unique, as we can always perform a field redefinition (e.g.,
a field rotation). However, no matter which fields are used, we typically need—for non-singular
Lagrangians—to define the kinetic operator, the operator which in the Lagrangian appears as

L = ~̇φtA~̇φ + . . . [471, 472]. Then the sign of the eigenvalues of the matrix A defines whether a
mode is a ghost or not. A negative eigenvalue would correspond to a ghost particle. On a FLRW
background the matrix A will be in general time-dependent and so does the sign of the eigenvalues.
Therefore one should make sure that the extra scalar modes introduced for these theories do not
possess wrong signs in the kinetic term at any time during the evolution of the Universe, at least
up to today.

An overall sign in the Lagrangian does not affect the classical equations of motion. However,
at the quantum level, if we want to preserve causality by keeping the optical theorem to be valid,
then the ghost can be interpreted as a particle which propagates with negative energy, as already
stated above. In other words, in special relativity, the ghost would have a four-momentum (Eg, ~pg)
with Eg < 0. However it would still be a timelike particle as E2

g − ~p 2
g > 0, whether Eg is negative

or not. The problem arises when this particle is coupled to some other normal particle, because in
this case the process 0 = Eg + E1 + E2 + . . . with Eg < 0 can be allowed. This means in general
that for such a theory one would expect the pair creation of ghost and normal particles out of
the vacuum. Notice that the energy is still conserved, but the energy is pumped out of the ghost
particle.

Since all the particles are coupled at least to gravity, one would think that out of the vacuum
particles could be created via the decay of a couple of gravitons emitted in the vacuum into ghosts
and non-ghosts particles. This process does lead to an infinite contribution unless one introduces
a cutoff for the theory [292, 293], for which one can set observational constraints.

We have already seen that, for metric f(R) gravity, the kinetic operator in the FLRW back-
ground reduces to Qs given in Eq. (267) with the perturbed action (287). Since the sign of Qs is
determined by F , one needs to impose F > 0 in order to avoid the propagation of a ghost mode.

12.3 f(G) gravity

Let us consider the theory (471) in the presence of matter, i.e.

S =
1

κ2

∫

d4x
√−g

[

1

2
R+ f(G)

]

+ SM , (473)

where we have recovered κ2. For the matter action SM we consider perfect fluids with an equation
of state w. The variation of the action (473) leads to the following field equations [146, 147]

Gµν + 8
[

Rµρνσ +Rρνgσµ −Rρσgνµ −Rµνgσρ +Rµσgνρ + (R/2) (gµνgσρ − gµσgνρ)
]

∇ρ∇σf,G

+ (Gf,G − f) gµν = κ2 Tµν , (474)

where Tµν is the energy momentum tensor of matter. If f ∝ G, then it is clear that the theory
reduces to GR.

12.3.1 Cosmology at the background level and viable f(G) models

In the flat FLRW background the (00) component of Eq. (474) leads to

3H2 = Gf,G − f − 24H3 ˙f,G + κ2 (ρm + ρr) , (475)

where ρm and ρr are the energy densities of non-relativistic matter and radiation, respectively.
The cosmological dynamics in f(G) dark energy models have been discussed in Refs. [143, 144,
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147, 141, 148, 473]. We can realize the late-time cosmic acceleration by the existence of a de Sitter
point satisfying the condition [143]

3H2
1 = G1f,G(G1)− f(G1) , (476)

where H1 and G1 are the Hubble parameter and the GB term at the de Sitter point, respectively.
From the stability of the de Sitter point we require the following condition [141]

0 < H6
1f,GG(H1) < 1/384 . (477)

The GB term is given by

G = 24H2(H2 + Ḣ) = −12H4(1 + 3weff) , (478)

where weff = −1 − 2Ḣ/(3H2) is the effective equation of state. We have G < 0 and Ġ > 0
during both radiation and matter domination. The GB term changes its sign from negative to
positive during the transition from the matter era (G = −12H4) to the de Sitter epoch (G =
24H4). Perturbing Eq. (475) about the background radiation and matter dominated solutions, the
perturbations in the Hubble parameter involve the mass squared given by M2 ≡ 1/(96H4f,GG)
[141]. For the stability of background solutions we require that M2 > 0, i.e. f,GG > 0. Since

the term 24H3ḟG in Eq. (475) is of the order of H8f,GG , this is suppressed relative to 3H2 for
H6f,GG ≪ 1 during the radiation and matter dominated epochs. In order to satisfy this condition
we require that f,GG approaches 0 in the limit |G| → ∞. The deviation from the ΛCDM model
can be quantified by the following quantity [150]

µ ≡ H ˙f,G = HĠf,GG = 72H6f,GG [(1 + weff)(1 + 3weff)− w′
eff/2] , (479)

where a prime represents a derivative with respect to N = ln a. During the radiation and matter
eras we have µ = 192H6f,GG and µ = 72H6f,GG , respectively, whereas at the de Sitter attractor
µ = 0.

The GB term inside and outside a spherically symmetric body (mass M⊙ and radius r⊙) with
a homogeneous density is given by G = −48(GM⊙)2/r6⊙ and G = 48(GM⊙)2/r6, respectively (r is
a distance from the center of symmetry). In the vicinity of Sun or Earth, |G| is much larger than
the present cosmological GB term, G0. As we move from the interior to the exterior of the star,
the GB term crosses 0 from negative to positive. This means that f(G) and its derivatives with
respect to G need to be regular for both negative and positive values of G whose amplitudes are
much larger than G0.

The above discussions show that viable f(G) models need to obey the following conditions:

• (i) f(G) and its derivatives f,G , f,GG , . . . are regular.

• (ii) f,GG > 0 for all G and f,GG approaches +0 in the limit |G| → ∞.

• (iii) 0 < H6
1f,GG(H1) < 1/384 at the de Sitter point.

A couple of representative models that can satisfy these conditions are [141]

(A) f(G) = λ
G√
G∗

arctan

( G
G∗

)

− 1

2
λ
√

G∗ ln

(

1 +
G2

G2
∗

)

− αλ
√

G∗ , (480)

(B) f(G) = λ
G√
G∗

arctan

( G
G∗

)

− αλ
√

G∗ , (481)

where α, λ and G∗ ∼ H4
0 are positive constants. The second derivatives of f in terms of G

for the models (A) and (B) are f,GG = λ/[G3/2
∗ (1 + G2/G2

∗)] and f,GG = 2λ/[G3/2
∗ (1 + G2/G2

∗)
2],
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respectively. They are constructed to give rise to the positive f,GG for all G. Of course other models
can be introduced by following the same prescription. These models can pass the constraint of
successful expansion history that allows the smooth transition from radiation and matter eras to
the accelerated epoch [141, 148]. Although it is possible to have a viable expansion history at
the background level, the study of matter density perturbations places tight constraints on these
models. We shall address this issue in Sec. 12.3.4.

12.3.2 Numerical analysis

In order to discuss cosmological solutions in the low-redshift regime numerically for the models
(480) and (481), it is convenient to introduce the following dimensionless quantities

x ≡ Ḣ

H2
, y ≡ H

H∗
, Ωm ≡ κ2ρm

3H2
, Ωr ≡ κ2ρr

3H2
, (482)

where H∗ = G
1/4
∗ . We then obtain the following equations of motion [141]

x′ = −4x2 − 4x+
1

242H6f,GG

[Gf,G − f

H2
− 3(1− Ωm − Ωr)

]

, (483)

y′ = xy , (484)

Ω′
m = −(3 + 2x)Ωm , (485)

Ω′
r = −(4 + 2x)Ωr , (486)

where a prime represents a derivative with respect to N = ln a. The quantities H6f,GG and
(Gf,G − f)/H2 can be expressed by x and y once the model is specified.

Figure 12: The evolution of µ (multiplied by 104) and weff versus the redshift z = a0/a − 1 for
the model (480) with parameters α = 100 and λ = 3 × 10−4. The initial conditions are chosen
to be x = −1.499985, y = 20, and Ωm = 0.99999. We do not take into account radiation in this
simulation. From Ref. [150].

Figure 12 shows the evolution of µ and weff without radiation for the model (480) with param-
eters α = 100 and λ = 3 × 10−4. The quantity µ is much smaller than unity in the deep matter
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era (weff ≃ 0) and it reaches a maximum value prior to the accelerated epoch. This is followed
by the decrease of µ toward 0, as the solution approaches the de Sitter attractor with weff = −1.
While the maximum value of µ in this case is of the order of 10−4, it is also possible to realize
larger maximum values of µ such as µmax & 0.1.

For high redshifts the equations become too stiff to be integrated directly. This comes from
the fact that, as we go back to the past, the quantity f,GG (or µ) becomes smaller and smaller. In
fact, this also occurs for viable f(R) dark energy models in which f,RR decreases rapidly for higher
z. Here we show an iterative method (known as the “fixed-point” method) [458, 141] that can be
used in these cases, provided no singularity is present in the high redshift regime [141]. We define
H̄2 and Ḡ to be H̄2 ≡ H2/H2

0 and Ḡ ≡ G/H4
0 , where the subscript “0” represents present values.

The models (A) and (B) can be written in the form

f(G) = f̄(G)H2
0 − Λ̄H2

0 , (487)

where Λ̄ = αλ
√
G∗/H2

0 and f̄(G) is a function of G. The modified Friedmann equation reduces to

H̄2 − H̄2
Λ =

1

3
(f̄,ḠḠ − f̄)− 8

df̄,Ḡ
dN

H̄4 , (488)

where H̄2
Λ = Ω

(0)
m /a3+Ω

(0)
r /a4+Λ̄/3 (which represents the Hubble parameter in the ΛCDM model).

In the following we omit the tilde for simplicity.
In Eq. (488) there are derivatives of H in terms of N up to second-order. Then we write

Eq. (488) in the form

H2 −H2
Λ = C

(

H2, H2′, H2′′
)

, (489)

where C = (f,GG−f)/3−8H4 (df,G/dN). At high redshifts (a . 0.01) the models (A) and (B) are
close to the ΛCDM model, i.e., H2 ≃ H2

Λ. As a starting guess we set the solution to be H2
(0) = H2

Λ.

The first iteration is then H2
(1) = H2

Λ + C(0), where C(0) ≡ C
(

H2
(0), H

2
(0)

′
, H2

(0)

′′)
. The second

iteration is H2
(2) = H2

Λ + C(1), where C(1) ≡ C
(

H2
(1), H

2
(1)

′
, H2

(1)

′′)
.

If the starting guess is in the basin of a fixed point, H2
(i) will converge to the solution of the

equation after the i-th iteration. For the convergence we need the following condition

H2
i+1 −H2

i

H2
i+1 +H2

i

<
H2

i −H2
i−1

H2
i +H2

i−1

, (490)

which means that each correction decreases for larger i. The following relation is also required to
be satisfied:

H2
i+1 −H2

Λ − Ci+1

H2
i+1 −H2

Λ + Ci+1
<
H2

i −H2
Λ − Ci

H2
i −H2

Λ + Ci
. (491)

Once the solution begins to converge, one can stop the iteration up to the required/available level
of precision. In Fig. 13 we plot absolute errors for the model (480), which shows that the iterative
method can produce solutions accurately in the high-redshift regime. Typically this method stops
working when the initial guess is outside the basin of convergence. This happen for low redshifts
in which the modifications of gravity come into play. In this regime we just need to integrate
Eqs. (483)-(486) directly.

12.3.3 Solar system constraints

We study local gravity constraints on cosmologically viable f(G) models. First of all there is a big
difference between f(G) and f(R) theories. The vacuum GR solution of a spherically symmetric
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Figure 13: Plot of the absolute errors log10(|H2
i −H2

Λ −Ci|) (left) and log10

[

|H2
i −H2

Λ−Ci|
|H2

i −H2
Λ+Ci|

]

(right)

versus N = ln a for the model (480) with i = 0, 1, · · · , 6. The model parameters are α = 10 and
λ = 0.075. The iterative method provides the solutions with high accuracy in the regime N . −4.
From Ref. [141].

manifold, the Schwarzschild metric, corresponds to a vanishing Ricci scalar (R = 0) outside the
star. In the presence of non-relativistic matter, R approximately equals to the matter density κ2ρm
for viable f(R) models.

On the other hand, even for the vacuum exterior of the Schwarzschild metric, the GB term
has a non-vanishing value G = RαβγδR

αβγδ = 12 r2s/r
6 [146, 472], where rs = 2GM⊙/r⊙ is the

Schwarzschild radius of the object. In the regime |G| ≫ G∗ the models (A) and (B) have a correction
term of the order λ

√
G∗ G2

∗/G2 plus a cosmological constant term −(α+1)λ
√
G∗. Since G does not

vanish even in the vacuum, the correction term G2
∗/G2 can be much smaller than 1 even in the

absence of non-relativistic matter. If matter is present, this gives rise to the contribution of the
order of R2 ≈ (κ2ρm)2 to the GB term. The ratio of the matter contribution to the vacuum G
value G(0) = 12 r2s/r

6 is estimated as

Rm ≡ R2

G(0)
≈ (8π)2

48

ρ2mr
6

M2
⊙
. (492)

At the surface of Sun (radius r⊙ = 6.96 × 1010 cm= 3.53 × 1024GeV−1 and mass M⊙ = 1.99 ×
1033 g = 1.12 × 1057GeV), the density ρm drops down rapidly from the order ρm ≈ 10−2 g/cm3

to the order ρm ≈ 10−16 g/cm3. If we take the value ρm = 10−2 g/cm3 we have Rm ≈ 4 × 10−5

(where we have used 1 g/cm3 = 4.31 × 10−18GeV4). Taking the value ρm = 10−16 g/cm3 leads
to a much smaller ratio: Rm ≈ 4 × 10−33. The matter density approaches a constant value
ρm ≈ 10−24 g/cm3 around the distance r = 103r⊙ from the center of Sun. Even at this distance we
have Rm ≈ 4× 10−31, which means that the matter contribution to the GB term can be neglected
in the solar system we are interested in.

In order to discuss the effect of the correction term G2
∗/G2 on the Schwarzschild metric, we

introduce a dimensionless parameter
ε =

√

G∗/Gs , (493)

where Gs = 12/r4s is the scale of the GB term in the solar system. Since
√
G∗ is of the order of the
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Hubble parameter H0 ≈ 70 km sec−1 Mpc−1, the parameter for the Sun is approximately given by
ε ≈ 10−46. We can then decompose the vacuum equations in the form

Gµν + εΣµν = 0 , (494)

where Gµν is the Einstein tensor and

Σµν = 8 [Rµρνσ +Rρνgσµ −Rρσgνµ −Rµνgσρ +Rµσgνρ +R(gµνgσρ − gµσgνρ)/2]∇ρ∇σ f̃,G

+ (Gf̃,G − f̃)gµν . (495)

Here f̃ is defined by f = εf̃ .
We introduce the following ansatz for the metric

ds2 = −A(r, ε) dt2 +B−1(r, ε)dr2 + r2(dθ2 + sin2 θdφ2) , (496)

where the functions A and B are expanded as power series in ε, as

A = A0(r) +A1(r)ε+O(ε2) , B = B0(r) +B1(r)ε +O(ε2) . (497)

Then we can solve Eq. (494) as follows. At zero-th order the equations read

Gµ
ν
(0)(A0, B0) = 0 , (498)

which leads to the usual Schwarzschild solution, A0 = B0 = 1− rs/r. At linear order one has

ε [Gµ
ν
(1)(A1, B1, A0, B0) + Σµ

ν
(0)(A0, B0)] = 0 . (499)

Since A0 and B0 are known, one can solve the differential equations for A1 and B1. This process
can be iterated order by order in ε.

For the model (A) introduced in (480), we obtain the following differential equations for A1

and B1 [472]:

ρ
dB1

dρ
+B1 = 32

√
3λρ3 + 12

√
3λρ2 ln(ρ) + (4 ln ε− 2α− 28)

√
3λρ2 , (500)

(ρ− ρ2)
dA1

dρ
+A1 = 8

√
3λρ4 − 2

√
3(10 + 6 ln ρ+ 2 ln ε− α)λρ3

− 2
√
3(α− 6 ln ρ− 2 ln ε− 6)λρ2 + ρB1, (501)

where ρ ≡ r/rs. The solutions to these equations are

B1 = 8
√
3λρ3 + 4

√
3λρ2 ln ρ+

2

3

√
3 (2 ln ε− α− 16)λρ2 , (502)

A1 = −16

3

√
3λρ3 +

2

3

√
3 (4− α+ 6 ln ρ+ 2 ln ε)λρ2 . (503)

Here we have neglected the contribution coming from the homogeneous solution, as this would
correspond to an order ε renormalization contribution to the mass of the system. Although ε≪ 1,
the term in ln ε only contributes by a factor of order 102. Since ρ ≫ 1 the largest contributions
to B1 and A1 correspond to those proportional to ρ3, which are different from the Schwarzschild-
de Sitter contribution (which grows as ρ2). Hence the model (480) gives rise to the corrections
larger than that in the cosmological constant case by a factor of ρ. Since ε is very small, the
contributions to the solar-system experiments due to this modification are too weak to be detected.
The strongest bound comes from the shift of the perihelion of Mercury, which gives the very mild
bound λ < 2 × 105 [472]. For the model (481) the constraint is even weaker, λ(1 + α) < 1014. In
other words, the corrections look similar to the Schwarzschild-de Sitter metric on which only very
weak bounds can be placed.
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12.3.4 Ghost conditions in the FLRW background

In the following we shall discuss ghost conditions for the action (473). For simplicity let us consider
the vacuum case (SM = 0) in the FLRW background. The action (473) can be expanded at second
order in perturbations for the perturbed metric (208), as we have done for the action (209) in
Sec. 7.4. Before doing so, we introduce the gauge-invariant perturbed quantity

R = ψ − H

ξ̇
δξ , where ξ ≡ f,G . (504)

This quantity completely describes the dynamics of all the scalar perturbations. Note that for
the gauge choice δξ = 0 one has R = ψ. Integrating out all the auxiliary fields, we obtain the
second-order perturbed action [471]

δS(2) =

∫

dt d3xa3Qs

[

1

2
Ṙ2 − 1

2

c2s
a2

(∇R)2
]

, (505)

where we have defined

Qs ≡
24(1 + 4µ)µ2

κ2(1 + 6µ)2
, (506)

c2s ≡ 1 +
2Ḣ

H2
= −2− 3weff . (507)

Recall that µ has been introduced in Eq. (479).
In order to avoid that the scalar mode becomes a ghost, one requires that Qs > 0, i.e.

µ > −1/4 . (508)

This relation is dynamical, as one requires to know how H and its derivatives change in time.
Therefore whatever f(G) is, the propagating scalar mode can still become a ghost. If ˙f,G > 0
and H > 0, then µ > 0 and hence the ghost does not appear. The quantity cs characterizes
the speed of propagation for the scalar mode, which is again dependent on the dynamics. For
any GB theory, one can give initial conditions of H and Ḣ such that c2s becomes negative. This
instability, if present, governs the high momentum modes in Fourier space, which corresponds to
an Ultra-Violet (UV) instability. In order to avoid this UV instability in the vacuum, we require
that the effective equation of state satisfies weff < −2/3. At the de Sitter point (weff = −1) the
speed cs is time-independent and reduces to the speed of light (cs = 1).

Suppose that the scalar mode does not have a ghost mode, i.e. Qs > 0. Making the field
redefinition v = zsR and zs = a

√
Qs, the action (505) can be written as

δS(2) =

∫

dη d3x

[

1

2
v′2 − 1

2
c2s(∇v)2 −

1

2
a2M2

s v
2

]

, (509)

where a prime represents a derivative with respect to η =
∫

a−1dt and M2
s ≡ −z′′s /(a2zs). In order

to realize the positive mass squared (M2
s > 0), the condition f,GG > 0 needs to be satisfied in the

regime µ≪ 1 (analogous to the condition f,RR > 0 in metric f(R) gravity).

12.3.5 Viability of f(G) gravity in the presence of matter

In the presence of matter, other degrees of freedom appear in the action. Let us take into account
a perfect fluid with the barotropic equation of state wM = PM/ρM . It can be proved that, for
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small scales (i.e. for large momenta k) in Fourier space, there are two different propagation speeds
given by [150]

c21 = wM , (510)

c22 = 1 +
2Ḣ

H2
+

1 + wM

1 + 4µ

κ2ρM
3H2

. (511)

The first result is expected, as it corresponds to the matter propagation speed. Meanwhile
the presence of matter gives rise to a correction term to c22 in Eq. (507). This latter result is due
to the fact that the background equations of motion are different between the two cases. Recall
that for viable f(G) models one has |µ| ≪ 1 at high redshifts. Since the background evolution is
approximately given by 3H2 ≃ 8πGρM and Ḣ/H2 ≃ −(3/2)(1 + wM ), it follows that

c22 ≃ −1− 2wM . (512)

Hence the UV instability can be avoided for wM < −1/2. During the radiation era (wM = 1/3) and
the matter era (wM = 0), the large momentum modes are unstable. In particular this leads to the
violent growth of matter density perturbations incompatible with the observations of large-scale
structure [147, 150]. The onset of the negative instability can be characterized by the condition
[150]

µ ≈ (aH/k)2 . (513)

As long as µ 6= 0 we can always find a wavenumber k (≫ aH) satisfying the condition (513).
For those scales linear perturbation theory breaks down, and in principle one should look for all
higher-order contributions. Hence the background solutions cannot be trusted any longer, at least
for small scales, which makes the theory unpredictable. In the same regime, one can easily see that
the scalar mode is not a ghost, as Eq. (508) is satisfied (see Fig. 12). Therefore the instability is
purely classical. This kind of UV instability sets serious problems for any theory, including f(G)
gravity.

12.3.6 The speed of propagation in more general modifications of gravity

We shall also discuss more general theories given by Eq. (472), i.e.

S =

∫

d4x
√−g f(R,G) , (514)

where we do not take into account the matter term here. It is clear that this function allows more
freedom with respect to the background cosmological evolution7, as now one needs a two-parameter
function to choose. However, once more the behavior of perturbations proves to be a strong tool
in order to have a deep insight into the theory.

The second-order action for perturbations is given by

S =

∫

dt d3xa3Qs

[

1

2
Ṙ2 − 1

2

B1

a2
(∇R)2 − 1

2

B2

a4
(∇2R)2

]

, (515)

where we have introduced the gauge-invariant field

R = ψ − H(δF + 4H2δξ)

Ḟ + 4H2ξ̇
, (516)

with F ≡ f,R and ξ ≡ f,G . The forms of Qs(t), B1(t) and B2(t) are given explicitly in Ref. [471].

7There are several works about the background cosmological dynamics for some f(R, G) models [474, 475, 476].
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The quantity B2 vanishes either on the de Sitter solution or for those theories satisfying

∆ ≡ ∂2f

∂R2

∂2f

∂G2
−
(

∂2f

∂R∂G

)2

= 0 . (517)

If ∆ 6= 0, then the modes with high momenta k have a very different propagation. Indeed the
frequency ω becomes k-dependent, that is [471]

ω2 = B2
k4

a4
. (518)

If B2 < 0, then a violent instability arises. If B2 > 0, then these modes propagate with a group
velocity

vg = 2
√

B2
k

a
. (519)

This result implies that the superluminal propagation is always present in these theories, and
the speed is scale-dependent. On the other hand, when ∆ = 0, this behavior is not present at
all. Therefore, there is a physical property by which different modifications of gravity can be
distinguished. The presence of an extra matter scalar field does not change this regime at high k
[472], because the Laplacian of the gravitational field is not modified by the field coupled to gravity
in the form f(φ,R,G).

12.4 Gauss-Bonnet gravity coupled to a scalar field

At the end of this section we shall briefly discuss theories with a GB term coupled to a scalar field
with the action given in Eq. (470). The scalar coupling with the GB term often appears as higher-
order corrections to low-energy, tree-level effective string theory based on toroidal compactifications
[123, 477]. More explicitly the low-energy string effective action in four dimensions is given by

S =

∫

d4x
√−ge−φ

[

1

2
R+

1

2
(∇φ)2 + LM + Lc · · ·

]

, (520)

where φ is a dilaton field that controls the string coupling parameter, g2s = eφ. The above action
is so-called the string frame action in which the dilaton is directly coupled to a scalar curvature,
R. The Lagrangian LM is that of additional matter fields (fluids, axion, modulus etc.). The
Lagrangian Lc corresponds to higher-order string corrections including the coupling between the
GB term and the dilaton. A possible set of corrections include terms of the form [125, 126, 127]

Lc = −1

2
α′λζ(φ)

[

cG + d(∇φ)4
]

, (521)

where α′ is a string expansion parameter and ζ(φ) is a general function of φ. The constant λ is
an additional parameter which depends on the types of string theories: λ = −1/4,−1/8, and 0
correspond to bosonic, heterotic, and superstrings, respectively. If we require that the full action
agrees with the three-graviton scattering amplitude, the coefficients c and d are fixed to be c = −1,
d = 1, and ζ(φ) = −e−φ [478].

In the so-called Pre-Big-Bang (PBB) scenario [123] the dilaton evolves from a weakly coupled
regime (gs ≪ 1) toward a strongly coupled region (gs & 1) during which the Hubble parameter
grows in the string frame (superinflation). This superinflation is driven by a kinetic energy of
the dilaton field and it is called a PBB branch. There exists another Friedmann branch with a
decreasing curvature. If Lc = 0 these branches are disconnected to each other with the appearance
of a curvature singularity. However the presence of the correction Lc allows the existence of non-
singular solutions that connect two branches [125, 126, 127].
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The corrections Lc are the sum of the tree-level α′ corrections and the quantum n-loop cor-
rections (n = 1, 2, 3, · · · ) with the function ζ(φ) given by ζ(φ) = −∑n=0 Cne

(n−1)φ, where Cn

(n ≥ 1) are coefficients of n-loop corrections (with C0 = 1). In the context of the PBB cosmology
it was shown in Ref. [126] there exist regular cosmological solutions in the presence of tree-level and
one-loop corrections, but this is not realistic in that the Hubble rate in Einstein frame continues
to increase after the bounce. Nonsingular solutions that connect to a Friedmann branch can be
obtained by accounting for the corrections up to two-loop with a negative coefficient (C2 < 0)
[126, 127]. In the context of Ekpyrotic cosmology where a negative potential V (φ) is present in
the Einstein frame, it is possible to realize nonsingular solutions by taking into account corrections
similar to Lc given above [128]. For a system in which a modulus field is coupled to the GB term,
one can also realize regular solutions even without the higher-derivative term (∇φ)4 in Eq. (521)
[124, 479, 480, 481, 482, 483, 484, 485]. These results show that the GB term can play a crucial
role to eliminate the curvature singularity.

In the context of dark energy there are some works which studied the effect of the GB term
on the late-time cosmic acceleration. A simple model that can give rise to cosmic acceleration is
provided by the action [131]

S =

∫

d4x
√−g

[

1

2
R − 1

2
(∇φ)2 − V (φ)− f(φ)G

]

+ SM , (522)

where V (φ) and f(φ) are functions of a scalar field φ. This can be viewed as the action in the
Einstein frame corresponding to the Jordan frame action (520). We note that the conformal
transformation gives rise to a coupling between the field φ and non-relativistic matter in the
Einstein frame. Such a coupling is assumed to be negligibly small at low energy scales, as in the
case of the runaway dilaton scenario [486, 487]. For the exponential potential V (φ) = V0e

−λφ and
the coupling f(φ) = (f0/µ)e

µφ, cosmological dynamics has been extensively studied in Refs. [131,
132, 133, 134, 135, 136, 137, 138]. In particular it was found in Refs. [132, 134] that a scaling
matter era can be followed by a late-time de Sitter solution which appears due to the presence of
the GB term.

Koivisto and Mota [132] placed observational constraints on the above model using the Gold
data set of Supernovae Ia together with the CMB shift parameter data of WMAP. The parameter
λ is constrained to be 3.5 < λ < 4.5 at the 95% confidence level. In the second paper [133], they
included the constraints coming from the BBN, LSS, BAO and solar system data and showed that
these data strongly disfavor the GB model discussed above. Moreover, it was shown in Ref. [134]
that tensor perturbations are subject to negative instabilities in the above model when the GB
term dominates the dynamics (see also Ref. [488]). Amendola et al. [139, 140] studied local gravity
constraints on the model (522) and showed that the energy contribution coming from the GB term
needs to be strongly suppressed for consistency with solar-system experiments. This is typically
of the order of ΩGB . 10−30 and hence the GB term of the coupling f(φ)G cannot be responsible
for the current accelerated expansion of the Universe.

In summary the GB gravity with a scalar field coupling allows nonsingular solutions in the high
curvature regime, but such a coupling is difficult to be compatible with the cosmic acceleration
at low energy scales. Recall that dark energy models based on f(G) gravity also suffers from the
UV instability problem. This shows how the presence of the GB term makes it difficult to satisfy
all experimental and observational constraints if such a modification is responsible for the late-
time acceleration. This property is different from metric f(R) gravity in which viable dark energy
models can be constructed.
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13 Other aspects of f(R) theories and modified gravity

In this section we discuss a number of topics related with f(R) theories and modified gravity.
These include weak lensing, thermodynamics and horizon entropy, exact solutions and Noether
symmetries, unified models of inflation and dark energy, f(R) theories in the extra dimensions,
Vainshtein mechanism, DGP model, and Galileon cosmology.

13.1 Weak lensing

Weak gravitational lensing is sensitive to the growth of large scale structure as well as the relation
between matter and gravitational potentials. Since the evolution of matter perturbations and
gravitational potentials is different from that of GR, the observations of weak lensing can provide
us an important test for probing modified gravity on galactic scales.[489, 490, 491, 492, 493, 494,
495, 496, 497, 498, 297, 86, 87, 499, 500]. In particular a number of wide-field galaxy surveys are
planned to measure galaxy counts and weak lensing shear with high accuracy, so these will be
useful to distinguish between modified gravity and the ΛCDM model in future observations.

Let us consider BD theory with the action (387), which includes f(R) gravity as a specific case.
Note that the method explained below can be applied to other modified gravity models as well.
The equations of matter perturbations δm and gravitational potentials Φ,Ψ in BD theory have
been already derived under the quasi-static approximation on sub-horizon scales (k ≫ aH), see
Eqs. (415), (416), and (417). In order to discuss weak lensing observables, we define the lensing
deflecting potential

Φwl ≡ Φ +Ψ , (523)

and the effective density field

δeff ≡ − a

3H2
0Ω

(0)
m

k2Φwl , (524)

where the subscript “0” represents present values with a0 = 1. Using the relation ρm = 3F0H
2
0Ω

(0)
m /a3

with Eqs. (523) and (524), it follows that

Φwl = −a
2

k2
ρm
F
δm , δeff =

F0

F
δm . (525)

Writing the angular position of a source and the direction of weak lensing observation to be ~θS
and ~θI , respectively, the deformation of the shape of galaxies can be quantified by the amplification
matrix A = d~θS/d~θI . The components of the matrix A are given by [501]

Aµν = Iµν −
∫ χ

0

χ′(χ− χ′)

χ
∂µνΦwl[χ

′~θ, χ′]dχ′ , (526)

where χ =
∫ z

0 dz′/H(z′) is a comoving radial distance (z is a redshift). The convergence κwl and the
shear ~γ = (γ1, γ2) can be derived from the components of the 2×2 matrix A, as κwl = 1−(1/2)TrA
and ~γ = ([A22 −A11]/2,A12). For a redshift distribution p(χ)dχ of the source, the convergence

can be expressed as κwl(~θ) =
∫

p(χ)κwl(~θ, χ)dχ. Using Eqs. (524) and (526) it follows that

κwl(~θ) =
3

2
H2

0Ω
(0)
m

∫ χH

0

g(χ)χ
δeff [χ ~θ, χ]

a
dχ , (527)

where χH is the maximum distance to the source and g(χ) ≡
∫ χH

χ p(χ′) (χ′ − χ)/χ′dχ′.
The convergence is a function on the 2-sphere and hence it can be expanded in the form

κwl(~θ) =
∫

κ̂wl(~ℓ)e
i~ℓ·~θ d2~ℓ

2π , where ~ℓ = (ℓ1, ℓ2) with ℓ1 and ℓ2 integers. We define the power spectrum
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of the shear to be 〈κ̂wl(~ℓ)κ̂
∗
wl(
~ℓ′)〉 = Pκ(ℓ)δ

(2)(~ℓ − ~ℓ′). Then the convergence has a same power
spectrum as Pκ, which is given by [501, 410]

Pκ(ℓ) =
9H4

0 (Ω
(0)
m )2

4

∫ χH

0

[

g(χ)

a(χ)

]2

Pδeff

[

ℓ

χ
, χ

]

dχ . (528)

We assume that the sources are located at the distance χs (corresponding to the redshift zs), giving
the relations p(χ) = δ(χ− χs) and g(χ) = (χs − χ)/χs. From Eq. (525) Pδeff can be expressed as
Pδeff = (F0/F )

2Pδm , where Pδm is the matter power spectrum. Hence the convergence spectrum
(528) reads

Pκ(ℓ) =
9H4

0 (Ω
(0)
m )2

4

∫ χs

0

(

χs − χ

χsa

F0

F

)2

Pδm

[

ℓ

χ
, χ

]

dχ. (529)

We recall that, during the matter era, the transition from the GR regime (δm ∝ t2/3 and

Φwl =constant) to the scalar-tensor regime (δm ∝ t(
√

25+48Q2−1)/6 and Φwl ∝ t(
√

25+48Q2−5)/6)
occurs at the redshift zk characterized by the condition (422). Since the early evolution of pertur-
bations is similar to that in the ΛCDM model, the weak lensing potential at late times is given by
the formula [332]

Φwl(k, a) =
9

10
Φwl(k, ai)T (k)

D(k, a)

a
, (530)

where Φwl(k, ai) ≃ 2Φ(k, ai) is the initial potential generated during inflation, T (k) is a transfer
function describing the epochs of horizon crossing and radiation/matter transition (50 . z .

106), and D(k, a) is the growth function at late times defined by D(k, a)/a = Φwl(a)/Φwl(aI) (aI
corresponds to the scale factor at a redshift 1 ≪ zI < 50). Our interest is the case in which
the transition redshift zk is smaller than 50, so that we can use the standard transfer function of
Bardeen-Bond-Kaiser-Szalay [502]:

T (x) =
ln(1 + 0.171x)

0.171x

[

1.0 + 0.284x+ (1.18x)2 + (0.399x)3 + (0.490x)4
]−0.25

, (531)

where x ≡ k/kEQ and kEQ = 0.073Ω
(0)
m h2 Mpc−1. In the ΛCDM model the growth function D(k, a)

during the matter dominance is scale-independent (D(a) = a), but in BD theory with the action
(387) the growth of perturbations is generally scale-dependent.

From Eqs. (524) and (530) we obtain the matter perturbation δm for z < zI :

δm(k, a) = − 3

10

F

F0

k2

Ω
(0)
m H2

0

Φwl(k, ai)T (k)D(k, a) . (532)

The initial power spectrum generated during inflation is PΦwl
≡ 4|Φ|2 = (200π2/9k3)(k/H0)

nΦ−1δ2H ,
where nΦ is the spectral index and δ2H is the amplitude of Φwl [8, 332]. Therefore we obtain the
power spectrum of matter perturbations, as

Pδm(k, a) ≡ |δm|2 = 2π2

(

F

F0

)2
knΦ

(Ω
(0)
m )2HnΦ+3

0

δ2HT
2(k)D2(k, a). (533)

Plugging Eq. (533) into Eq. (529), we find that the convergence spectrum is given by

Pκ(ℓ) =
9π2

2

∫ zs

0

(

1− X

Xs

)2
1

E(z)
δ2H

(

ℓ

X

)nΦ

T 2(x)

(

Φwl(z)

Φwl(zI)

)2

dz , (534)
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Figure 14: The convergence power spectrum Pκ(ℓ) in f(R) gravity (Q = −1/
√
6) for the model

(166). This model corresponds to the field potential (400). Each case corresponds to (a) p = 0.5,
C = 0.9, (b) p = 0.7, C = 0.9, and (c) the ΛCDM model. The model parameters are chosen to be

Ω
(0)
m = 0.28, nΦ = 1, and δ2H = 3.2× 10−10. From Ref. [86].

where

E(z) =
H(z)

H0
, X = H0χ , x =

H0

kEQ

ℓ

X
. (535)

Note that X satisfies the differential equation dX/dz = 1/E(z).
In Fig. 14 we plot the convergence spectrum in f(R) gravity with the potential (400) for two

different values of p together with the ΛCDM spectrum. Recall that this model corresponds to the
f(R) model f(R) = R−µRc

[

1− (R/Rc)
−2n
]

with the correspondence p = 2n/(2n+1). Figure 14
shows the convergence spectrum in the linear regime characterized by ℓ . 200. The ΛCDM model
corresponds to the limit n → ∞, i.e. p→ 1. The deviation from the ΛCDM model becomes more
significant for smaller p away from 1. Since the evolution of Φwl changes from Φwl = constant to

Φwl ∝ t(
√

25+48Q2−5)/6 at the transition time tℓ characterized by the conditionM2/F = (ℓ/χ)2/a2,
this leads to a difference of the spectral index of the convergence spectrum compared to that of
the ΛCDM model [86]:

Pκ(ℓ)

PΛCDM
κ (ℓ)

∝ ℓ∆ns , where ∆ns =
(1− p)(

√

25 + 48Q2 − 5)

4− p
. (536)

This estimation is reliable for the transition redshift zℓ much larger than 1. In the simulation of
Fig. 14 the numerical value of ∆ns for p = 0.7 at ℓ = 200 is 0.056 (with zℓ = 3.26), which is
slightly smaller than the analytic value ∆ns = 0.068 estimated by Eq. (536). The deviation of
the spectral index of Pκ from the ΛCDM model will be useful to probe modified gravity in future
high-precision observations. Note that the galaxy-shear correlation spectrum will be also useful to
constrain modified gravity models [87].

Recent data analysis of the weak lensing shear field from the Hubble Space Telescope’s COSMOS
survey along with the ISW effect of CMB and the cross-correlation between the ISW and galaxy
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distributions from 2MASS and SDSS surveys shows that the anisotropic parameter η ≡ Ψ/Φ is
constrained to be η < 1 at the 98 % confidence level [500]. For BD theory with the action (387)
the quasi-static results (415) and (416) of the gravitational potentials give

η ≃ (k2/a2)(1− 2Q2)F +M2

(k2/a2)(1 + 2Q2)F +M2
. (537)

Since η ≃ (1− 2Q2)/(1+ 2Q2) in the scalar-tensor regime (k2/a2 ≫M2/F ), one can realize η < 1
in BD theory. Of course we need to wait for further observational data to reach the conclusion
that modified gravity is favored over the ΛCDM model.

To conclude this session we would like to point out the possibility of using the method of
gravitational lensing tomography [503]. This method consists of considering lensing on different
redshift data-bins. In order to use this method, one needs to know the evolution of both the
linear growth rate and the non-linear one (typically found through a standard linear-to-non-linear
mapping). Afterward, from observational data, one can separate different bins in order to make
fits to the models. Having good data sets, this procedure is strong enough to further constrain the
models, especially together with other probes such as CMB [493, 504, 505, 506].

13.2 Thermodynamics and horizon entropy

It is known that in Einstein gravity the gravitational entropy S of stationary black holes is pro-
portional to the horizon area A, such that S = A/(4G), where G is gravitational constant [507].
A black hole with mass M obeys the first law of thermodynamics, TdS = dM [508], where
T = κs/(2π) is a Hawking temperature determined by the surface gravity κs [509]. This shows
a deep physical connection between gravity and thermodynamics. In fact Jacobson [510] showed
that Einstein equations can be derived by using the Clausius relation TdS = dQ on local horizons
in the Rindler space-time together with the relation S ∝ A, where dQ and T are the energy flux
across the horizon and the Unruh temperature seen by an accelerating observer just inside the
horizon respectively.

Unlike stationary black holes the expanding Universe with a cosmic curvature K has a dynam-
ically changing apparent horizon with the radius r̄A = (H2 + K/a2)−1/2, where K is a cosmic
curvature [511] (see also Ref. [512]). Even in the FLRW space-time, however, the Friedmann equa-
tion can be written in the thermodynamical form TdS = −dE + WdV , where W is the work
density present in the dynamical background [513]. For matter contents of the Universe with en-
ergy density ρ and pressure P , the work density is given byW = (ρ−P )/2 [514, 515]. This method
is identical to the one established by Jacobson [510], that is, dQ = −dE +WdV .

In metric f(R) gravity Eling et al. [516] showed that a non-equilibrium treatment is required
such that the Clausius relation is modified to dS = dQ/T + diS, where S = FA/(4G) is the
Wald horizon entropy [517] and diS is the bulk viscosity entropy production term. Note that S
corresponds to a Noether charge entropy. Motivated by this work, the connections between ther-
modynamics and modified gravity have been extensively discussed–including metric f(R) gravity
[518, 519, 520, 521, 522, 523, 524, 525, 229] and scalar-tensor theory [520, 521, 522, 526].

Let us discuss the relation between thermodynamics and modified gravity for the following
general action [163]

I =

∫

d4x
√
−g
[

f(R, φ,X)

16πG
+ LM

]

, (538)

where X ≡ − (1/2) gµν∇µφ∇νφ is a kinetic term of a scalar field φ. For the matter Lagrangian
LM we take into account perfect fluids (radiation and non-relativistic matter) with energy density
ρM and pressure PM . In the FLRW background with the metric ds2 = hαβdx

αdxβ+ r̄2dΩ2, where
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r̄ = a(t)r and x0 = t, x1 = r with the two dimensional metric hαβ = diag(−1, a2(t)/[1 −Kr2]),
the Friedmann equations are given by

H2 +
K

a2
=

8πG

3F
(ρd + ρM ) , (539)

Ḣ − K

a2
= −4πG

F
(ρd + Pd + ρM + PM ) , (540)

ρ̇M + 3H(ρM + PM ) = 0 , (541)

where F ≡ ∂f/∂R and

ρd ≡ 1

8πG

[

f,XX +
1

2
(FR− f)− 3HḞ

]

, (542)

Pd ≡ 1

8πG

[

F̈ + 2HḞ − 1

2
(FR− f)

]

. (543)

Note that ρd and Pd originate from the energy-momentum tensor T
(d)
µν defined by

T (d)
µν ≡ 1

8πG

[

1

2
gµν(f −RF ) +∇µ∇νF − gµν�F +

1

2
f,X∇µφ∇νφ

]

, (544)

where the Einstein equation is given by

Gµν =
8πG

F

(

T (d)
µν + T (M)

µν

)

. (545)

Defining the density ρd and the pressure Pd of “dark” components in this way, they obey the
following equation

ρ̇d + 3H(ρd + Pd) =
3

8πG
(H2 +K/a2)Ḟ , (546)

For the theories with Ḟ 6= 0 (including f(R) gravity and scalar-tensor theory) the standard conti-
nuity equation does not hold because of the presence of the last term in Eq. (546).

In the following we discuss the thermodynamical property of the theories given above. The ap-

parent horizon is determined by the condition hαβ∂αr̄∂β r̄ = 0, which gives r̄A =
(

H2 +K/a2
)−1/2

in the FLRW space-time. Taking the differentiation of this relation with respect to t and using
Eq. (540), we obtain

Fdr̄A
4πG

= r̄3AH (ρd + Pd + ρM + PM ) dt . (547)

In Einstein gravity the horizon entropy is given by the Bekenstein-Hawking entropy S =
A/(4G), where A = 4πr̄2A is the area of the apparent horizon [508, 507, 509]. In modified gravity
theories one can introduce the Wald entropy associated with the Noether charge [517]:

S =
AF

4G
, (548)

Then, from Eqs. (547) and (548), it follows that

1

2πr̄A
dS = 4πr̄3AH (ρd + Pd + ρM + PM ) dt+

r̄A
2G

dF . (549)

The apparent horizon has the Hawking temperature T = |κs|/(2π), where κs is the surface gravity
given by

κs = − 1

r̄A

(

1−
˙̄rA

2Hr̄A

)

= − r̄A
2

(

Ḣ + 2H2 +
K

a2

)

= −2πG

3F
r̄A (ρT − 3PT ) . (550)
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Here we have defined ρT ≡ ρd+ρM and PT ≡ Pd+PM . For the total equation of state wT = PT /ρT
less than 1/3, as is the case for standard cosmology, one has κs ≤ 0 so that the horizon temperature
is given by

T =
1

2πr̄A

(

1−
˙̄rA

2Hr̄A

)

. (551)

Multiplying the term 1− ˙̄rA/(2Hr̄A) for Eq. (549), we obtain

TdS = 4πr̄3AH(ρd + Pd + ρM + PM )dt− 2πr̄2A(ρd + Pd + ρM + PM )dr̄A +
T

G
πr̄2AdF. (552)

In Einstein gravity the Misner-Sharp energy [527] is defined by E = r̄A/(2G). In f(R) gravity
and scalar-tensor theory this can be extended to E = r̄AF/(2G) [520]. Using this expression for
f(R, φ,X) theory, we have

E =
r̄AF

2G
= V

3F (H2 +K/a2)

8πG
= V (ρd + ρM ) , (553)

where V = 4πr̄3A/3 is the volume inside the apparent horizon. Using Eqs. (541) and (546), we find

dE = −4πr̄3AH(ρd + Pd + ρM + PM )dt+ 4πr̄2A(ρd + ρM )dr̄A +
r̄A
2G

dF . (554)

From Eqs. (552) and (554) it follows that

TdS = −dE + 2πr̄2A(ρd + ρM − Pd − PM )dr̄A +
r̄A
2G

(1 + 2πr̄AT ) dF . (555)

Following Refs. [514, 515, 526] we introduce the work density W = (ρd + ρM − Pd −PM )/2. Then
Eq. (555) reduces to

TdS = −dE +WdV +
r̄A
2G

(1 + 2πr̄AT ) dF , (556)

which can be written in the form [163]

TdS + TdiS = −dE +WdV , (557)

where

diS = − 1

T

r̄A
2G

(1 + 2πr̄AT ) dF = −
(

E

T
+ S

)

dF

F
. (558)

The modified first-law of thermodynamics (557) suggests a deep connection between the horizon
thermodynamics and Friedmann equations in modified gravity. The term diS can be interpreted
as a term of entropy production in the non-equilibrium thermodynamics [516]. The theories with
F = constant lead to diŜ = 0, which means that the first-law of equilibrium thermodynamics
holds. The theories with dF 6= 0, including f(R) gravity and scalar-tensor theory, give rise to the
additional non-equilibrium term (558) [518, 519, 520, 521, 522, 526, 229, 163].

The main reason why the non-equilibrium term diS appears is that the energy density ρd and
the pressure Pd defined in Eqs. (542) and (543) do not satisfy the standard continuity equation for
Ḟ 6= 0. On the other hand, if we define the energy momentum tensor of the “dark” component as
Eq. (9) in Sec. 2, it satisfies the continuity equation (10). This correspond to rewriting the Einstein
equation in the form (8) instead of (545). Using this property, Ref. [163] showed that equilibrium
description of thermodynamics can be possible by introducing the Bekenstein-Hawking entropy
Ŝ = A/(4G). In this case the horizon entropy Ŝ takes into account the contribution of both the
Wald entropy S in the non-equilibrium thermodynamics and the entropy production term.
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13.3 Exact solutions and Noether symmetries

In Sec. 12.3.2 we found approximate solutions at high-redshifts in f(G) dark energy models. Note
that the same method can be applied straightforwardly to f(R) dark energy models as well. In a
different context, however, such a method may not work. Then one may find either a numerical
solution or, luckily, an exact analytical solution. Usually the possibility of obtaining analytic
solutions occurs when some symmetries are present. One example of this possibility is given by
the use of Noether symmetry approach. If a Noether symmetry is present, then a constant of
motion exists. Hence the degree of differential equations can be reduced. This sometimes leads to
exact solutions or to a deeper insight of the theory. In the following we will describe how Noether
symmetries can be used, in order to find exact solutions on the FLRW backgrounds. For other
backgrounds, see Refs. [528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539].

In order to use the Noether method it is useful to evaluate the field action in the flat FLRW
space-time, so that the action becomes a point-like action in the variables a (scale factor) and R
(Ricci scalar). Using the technique of Lagrange multipliers, the f(R) action in the presence of
matter perfect fluids can be written as

S =

∫

dt a3

{

f

2κ2
− f,R

2κ2

[

R− 6

(

ȧ2

a2
+
ä

a

)]

− ρ
(0)
m

a3
− ρ

(0)
r

a4

}

, (559)

where ρ
(0)
m and ρ

(0)
r represent the present energy densities of dust and radiation fluids, respectively.

Introducing the Lagrangian L in the form S =
∫

dtL, it follows, after integrating by parts ä, that

L =
1

2κ2

[

a3 (f − f,RR)− 6 a2 f,RR Ṙ ȧ− 6 f,R a ȧ
2
]

− ρ(0)m − ρ
(0)
r

a
, (560)

The Lagrangian (560) is a canonical function of two coupled fields a and R. The energy conserva-
tion, which is equivalent to the (00) component of Einstein equations, is

E ≡ −6 f,RR a
2 ȧ Ṙ− 6 f,R a ȧ

2 − a3 (f − f,RR) + 2κ2
(

ρ(0)m + ρ(0)r /a
)

= 0 , (561)

which corresponds to Eq. (15). Varying the Lagrangian (560) with respect to R, we obtain the
trivial equation R = 6ȧ2/a2 +6ä/a for f,RR 6= 0. The variation of the same action with respect to
a gives

−6 f,RRR Ṙ
2 − 6 f,RR R̈− 6 f,RH

2 − 12 f,R ä/a = 3 (f − f,RR)+ 12 f,RRH Ṙ+2κ2ρ(0)r /a4 , (562)

which corresponds to the equation derived from Eqs. (15) and (16) by eliminating the term ρ
(0)
m .

Let us consider a general non-singular point-like Lagrangian L(qi, q̇i) and its Euler-Lagrange
equation, (∂L/∂q̇i)· − ∂L/∂qi = 0. Contracting this equation with a vector function αj(qi), we
obtain

αi

(

d

dt

∂L
∂q̇i

− ∂L
∂qi

)

= 0 . → d

dt

(

αi ∂L
∂q̇i

)

= LXL , (563)

where LXF is the Lie derivative of F , with respect to the vector field

X = αi(q)
∂

∂qi
+

(

d

dt
αi(q)

)

∂

∂q̇i
. (564)

If LXL = 0, the Noether Theorem states that the function Σ0 = αi(∂L/∂q̇i) is a constant of
motion.
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In metric f(R) gravity the configuration space is Q = {a,R}, while the tangent space for the
related tangent bundle is T Q = {a, ȧ, R, Ṙ}. The Lagrangian is an application, L : T Q −→ ℜ,
where ℜ is the set of real numbers. The generator of symmetry is

X = α
∂

∂a
+ β

∂

∂R
+ α̇

∂

∂ȧ
+ β̇

∂

∂Ṙ
. (565)

A symmetry exists if the equation LXL = 0 has non-trivial solutions. As a byproduct, the form
of f(R), not specified in the point-like Lagrangian (560), is determined in correspondence to such
a symmetry.

For the existence of a symmetry, we can write the following system of equations (linear in α
and β),

f,R (α + 2a ∂aα) + a f,RR (β + a ∂aβ) = 0 , (566)

a2 f,RR ∂Rα = 0 , (567)

2 f,R ∂Rα+ f,RR (2α+ a ∂aα+ a ∂Rβ) + a β f,RRR = 0 , (568)

which are obtained by setting to zero the coefficients of the terms ȧ2, Ṙ2 and ȧṘ in LXL = 0. In
order to make terms in the equation LXL = 0 vanish completely, we need to impose the following
constraint

3α (f −Rf,R)− a β R f,RR + 2κ2ρ(0)r α/a4 = 0 . (569)

This procedure is different from the usual Noether symmetry approach, in the sense that now the
equation LXL = 0 will be solved not for all dynamics (which solve the Euler-Lagrange equations),
but only for the function f which also allows Euler solutions to solve the constraint (569). Imposing
such a constraint on the form of f will turn out to be a sufficient condition to find solutions of
the Euler-Lagrange equation which also possess a constant of motion, i.e. a Noether symmetry.
Having a non-trivial solution of α and β for this system, one finds a constant of motion if also
the constraint (569) is satisfied. In fact, with these α and β, only those Euler-Lagrange solutions
which also satisfy Eq. (569) will have a constant of motion. However this does not happen for all
f(R)’s. The task is to find such forms of f .

From Eq. (567) it follows that α is independent of R, i.e. α = α(a). Then Eqs. (566) and (568)
can be solved as [539]

α = c1 a+
c2
a
, β = −

[

3 c1 +
c2
a2

] f,R
f,RR

+
c3

a f,RR
, (570)

where c1, c2, c3 are constants. Substituting the expressions of α and β into Eq. (569), we obtain

f,R =
3(c1 a

2 + c2) f − c3aR

2c2R
+

(c1a
2 + c2)κ

2ρ
(0)
r

a4c2R
, (571)

provided that c2R 6= 0. For a general f it is not possible to solve the Euler-Lagrange equation and
the constraint equation (571) at the same time. Hence we have to use the Noether constraint in
order to find the subset of those f which make this possible.

This Noether symmetry implies the existence of the following constant of motion

α (6 f,RR a
2 Ṙ+ 12 f,R a ȧ) + β (6 f,RR a

2 ȧ) = 6µ3
0 = constant , (572)

where µ0 has a dimension of mass. Equation (572) can be recast in the form

f,RR Ṙ =
µ3
0

a (c1 a2 + c2)
+
c1 a

2 − c2
c1 a2 + c2

f,RH − c3 a

c1 a2 + c2
H . (573)
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In order to use this result, one can substitute f,R and f,RRṘ [following from Eqs. (571) and (573)
respectively] into the Friedmann equation (561), so that the function f is expressed in terms of R,
a, and H . Then one can substitute f,R and f,RRṘ [following from Eq. (573))] into the Friedmann
equation (561), so that the function f is expressed in terms of R, a, and H . For consistency, by
considering Eq. (571) as a differential equation for f (such that f,R = ḟ /Ṙ), one finds a second-
order differential equation for H(a). The solutions of this differential equation correspond to those
in f(R) models which satisfy at the same time the Friedmann and the constraint equations. Having
imposed the symmetry, then instead of studying the full set of functions of f(R), one is left with
a class of solution, which depends on three parameters (c2, c3, µ0, as c1 can be absorbed into the
others). However, to solve this differential equation is not an easy task, and its general solution is
known only for µ0 = 0 [539]. The hope is that such a symmetry may have a deeper meaning, so
that this symmetric approach can distinguish between f(R) models among infinite sets of f .

We note, however, that viable f(R) models of inflation or dark energy do not respect such a
symmetry in general. Another symmetry which is invariant under a Galilean shift [540] may be
more useful to avoid the appearance of ghosts in modified gravity theories, by keeping the equations
of motion up to second order. We shall discuss such a Galilean symmetry in Sec. 13.8.

13.4 Curing the curvature singularity in f(R) dark energy models, uni-

fied models of inflation and dark energy

In Secs. 5.2 and 8.1 we showed that there is a curvature singularity for viable f(R) models such
as (133) and (134). More precisely this singularity appears for the models having the asymptotic
behavior (166) in the region of high density (R ≫ Rc). As we see in Fig. 3, the field potential
V (φ) = (FR − f)/(2κ2F ) has a finite value µRc/(2κ

2) in the limit φ =
√

3/(16π)mpl ln F → 0.
In this limit one has f,RR → 0, so that the scalaron mass 1/(3f,RR) goes to infinity.

This problem of the past singularity can be cured by adding the term R2/(6M2) to the La-
grangian in f(R) dark energy models [303]. Let us then consider the modified version of the model
(133):

f(R) = R − µRc
(R/Rc)

2n

(R/Rc)2n + 1
+

R2

6M2
. (574)

For this model one can easily show that the potential V (φ) = (FR − f)/(2κ2F ) extends to the
region φ > 0 and that the curvature singularity disappears accordingly. Also the scalaron mass
approaches the finite value M in the limit φ → ∞. The perturbation δR is bounded from above,
which can evade the problem of the dominance of the oscillation mode in the past.

Since the presence of the term R2/(6M2) can drive inflation in the early Universe, one may
anticipate that both inflation and the late-time acceleration can be realized for the model of the
type (574). This is like a modified gravity version of quintessential inflation based on a single scalar
field [541, 542, 543, 544]. However, we have to caution that the transition between two accelerated
epochs needs to occur smoothly for successful cosmology. In other words, after inflation, we require
a mechanism in which the Universe is reheated and then the radiation/matter dominated epochs
follow. However, for the model (574), the Ricci scalar R evolves to the point f,RR = 0 and it
enters the region f,RR < 0. Crossing the point f,RR = 0 implies the divergence of the scalaron
mass. Moreover, in the region f,RR < 0, the Minkowski space is not a stable vacuum state. This is
problematic for the particle creation from the vacuum during reheating. The similar problem arises
for the models (134) and (139) in addition to the model proposed by Appleby and Battye [72].
Thus unified f(R) models of inflation and dark energy cannot be constructed easily in general
(unlike a number of related works [55, 545, 546]). Brookfield et al. [547] studied the viability
of the model f(R) = R − α/Rn + βRm (n,m > 0) by using the constraints coming from Big
Bang Nucleosynthesis and fifth-force experiments and showed that it is difficult to find a unique
parameter range for consistency of this model.
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In order to cure the above mentioned problem, Appleby et al. [303] proposed the f(R) model
(464). Note that the case c = 0 corresponds to the Starobinsky inflationary model f(R) = R +
R2/(6M2) [2] and the case c = 1/2 corresponds to the model of Appleby and Battye [72] plus
the R2/(6M2) term. Although the above mentioned problem can be evaded in this model, the
reheating proceeds in a different way compared to that in the model f(R) = R+R2/(6M2) [which
we discussed in Sec. 3.3]. Since the Hubble parameter periodically evolves between H = 1/(2t)
and H = ǫ/M , the reheating mechanism does not occur very efficiently [303]. The reheating
temperature can be significantly lower than that in the model f(R) = R + R2/(6M2). It will be
of interest to study observational signatures in such unified models of inflation and dark energy.

13.5 f(R) theories in extra dimensions

Although f(R) theories have been introduced mainly in 4 dimensions, the same models may appear
in the context of braneworld [548, 549] in which our universe is described by a brane embedded in
extra dimensions (see Ref. [550] for a review). This scenario implies a careful use of f(R) theories,
because a boundary (brane) appears. Before looking at the real working scenario in braneworld, it
is necessary to focus on the mathematical description of f(R) models through a sensible definition
of boundary conditions for the metric elements on the surface of the brane.

Some works appeared regarding the possibility of introducing f(R) theories in the context of
braneworld scenarios [551, 552, 553, 554, 555]. In doing so one requires a surface term [556, 557,
558, 559, 560], which is known as the Hawking-Luttrell term [561] (analogous to the York-Gibbons-
Hawking one for General Relativity). The action we consider is given by

S =

∫

Ω

dnx
√−gf(R) + 2

∫

∂Ω

dn−1x
√

|γ|FK , (575)

where F ≡ ∂f/∂R, γ is the determinant of the induced metric on the n− 1 dimensional boundary,
and K is the trace of the extrinsic curvature tensor.

In this case particular attention should be paid to boundary conditions on the brane, that
is, the Israel junction conditions. Usually one requires the metric to be continuous, but its first
derivative may be discontinuous. Typically this would lead to discontinuities in R in the form of a
delta function. However, one can show that this discontinuity of R leads to inconsistencies. Hence
one should add this extra-constraint as a junction condition. In other words, one needs to impose
that, although the metric derivative might be discontinuous, the Ricci scalar should still remain
continuous on the brane.

This is tantamount to imposing that the extra scalar degree of freedom introduced is continuous
on the brane. We use Gaussian normal coordinates with the metric

ds2 = dy2 + γµν dx
µdxν . (576)

In terms of the extrinsic curvature tensor Kµν = −∂yγµν/2 for a brane lying at y = 0, the l.h.s.
of the equations of motion tensor [which is analogous to the l.h.s. of Eq. (4) in 4 dimensions] is
defined by

ΣAB ≡ FRAB − 1

2
fgAB −∇A∇BF (R) + gAB�F (R) . (577)

This has a delta function behavior for the µ-ν components, leading to [562]

Dµν ≡ [F (Kµν −K γµν) + γµν F,R ∂yR]
+
− = Tµν , (578)

where Tµν is the matter stress-energy tensor on the brane. Hence R is continuous, whereas its first
derivative is not, in general. This imposes an extra condition on the metric crossing the brane at
y = 0, compared to General Relativity in which the condition for the continuity of R is not present.
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However, it is not easy to find a solution for which the metric derivative is discontinuous but R is
not. Therefore some authors considered matter on the brane which is not universally coupled with
the induced metric. This approach leads to the relaxation of the condition that R is continuous.
Such a matter action can be found by analyzing the action in the Einstein frame and introducing
a scalar field ψ coupled to the scalaron φ on the brane as follows [562]

SM =

∫

dn−1x
√−γ exp[(n− 1)C(φ)]

[

−1

2
exp[−2C(φ)]γµν∇µψ∇νψ − V (ψ)

]

. (579)

The presence of the coupling C(φ) with the field φ modifies the Israel junction conditions. Indeed,
if C = 0, then R must be continuous, but if C 6= 0, R can have a delta function profile. This
method may help for finding a solution for the bulk that satisfies boundary conditions on the brane.

13.6 Vainshtein mechanism

Modifications of gravity in recent works have been introduced mostly in order to explain the
late-time cosmic acceleration. This corresponds to the large-distance modification of gravity, but
gravity at small distances is subject to change as well. Modified gravity models of dark energy
must pass local gravity tests in the solar system. The f(R) models discussed in Sec. 4 are designed
to satisfy local gravity constraints by having a large scalar-field mass, while at the same time they
are responsible for dark energy with a small mass compatible with the Hubble parameter today.

It is interesting to see which modified gravity theories have successful Newton limits. There are
two known mechanisms for satisfying local gravity constraints, (i) the Vainshtein mechanism [563],
and (ii) the chameleon mechanism [92, 93] (already discussed in Sec. 5.2). Both consist of using
non-linearities in order to prevent any other fifth force from propagating freely. The chameleon
mechanism uses the non-linearities coming from matter couplings, whereas the Vainshtein mecha-
nism uses the self-coupling of a scalar-field degree of freedom as a source for the non-linear effect.

There are several examples where the Vainshtein mechanism plays an important role. One
is the so-called massive gravity in which a consistent free massive graviton is uniquely defined
by Pauli-Fierz theory [564, 565]. The massive gravity described by the Fierz-Pauli action cannot
be studied through the linearization close to a point-like mass source, because of the crossing of
the so-called Vainshtein radius, that is the distance under which the linearization fails to study
the metric properly [563]. Then the theory is in the strong-coupling regime, and things become
obscure as the theory cannot be understood well mathematically. A similar behavior also appears
for the Dvali-Gabadadze-Porrati (DGP) model (we will discuss in the next section), in which the
Vainshtein mechanism plays a key role for the small-scale behavior of this model.

Besides a standard massive term, other possible operators which could give rise to the Vainshtein
mechanism come from non-linear self-interactions in the kinetic term of a matter field φ. One of
such terms is given by

∇µφ∇µφ�φ , (580)

which respects the Galilean invariance under which φ’s gradient shifts by a constant [540] (treated in
section 13.8). This allows a robust implementation of the Vainshtein mechanism in that nonlinear
self-interacting term can allow the decoupling of the field φ from matter in the gravitationally
bounded system without introducing ghosts.

Another example of the Vainshtein mechanism may be seen in f(G) gravity. Recall that in
this theory the contribution to the GB term from matter can be neglected relative to the vacuum
value G(0) = 12 (2GM)2/r6. In Sec. 12.3.3 we showed that on the Schwarzschild geometry the
modification of gravity is very small for the models (480) and (481), because the GB term has a
value much larger than its cosmological value today. The scalar-field degree of freedom acquires a
large mass in the region of high density, so that it does not propagate freely. For the model (480)
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we already showed that at the linear level the coefficients A and B of the spherically symmetric
metric (496) are

A = 1− 1

ρ
+A1(ρ) ε+O(ε2) , B = 1− 1

ρ
+B1(ρ) ε+O(ε2) , (581)

where ρ ≡ r/(2GM), A1(ρ) and B1(ρ) are given by Eqs. (502) and (503), and ε ≈ 10−46 for our
solar system. Of course this result is trustable only in the region for which A1ε ≪ 1/ρ. Outside
this region non-linearities are important and one cannot rely on approximate methods any longer.
Therefore, for this model, we can define the Vainshtein radius rV as

λερ3V ∼ 1

ρV
→ rV ∼ 2GM(λε)−1/4 . (582)

For λ ∼ 1, this value is well outside the region in which solar-system experiments are carried out.
This example shows that the Vainshtein radius is generally model-dependent.

In metric f(R) gravity a non-linear effect coming from the coupling to matter fields (in the Ein-
stein frame) is crucially important, because R vanishes in the vacuum Schwarzschild background.
The local gravity constraints can be satisfied under the chameleon mechanism rather than the
non-linear self coupling of the Vainshtein mechanism.

13.7 DGP model

The Dvali-Gabadadze-Porrati (DGP) [566] braneworld model has been considered as a model which
could modify gravity because of the existence of the extra-dimensions. In the DGP model the 3-
brane is embedded in a Minkowski bulk space-time with infinitely large 5-th extra dimensions. The
Newton’s law can be recovered by adding a 4-dimensional (4D) Einstein-Hilbert action sourced by
the brane curvature to the 5D action [567]. While the DGP model recovers the standard 4D gravity
for small distances, the effect from the 5D gravity manifests itself for large distances. Remarkably
it is possible to realize the late-time cosmic acceleration without introducing an exotic matter
source [568, 569].

The DGP model is given by the action

S =
1

2κ2(5)

∫

d5X
√

−g̃ R̃+
1

2κ2(4)

∫

d4x
√−g R+

∫

d4x
√−gLbrane

M , (583)

where g̃AB is the metric in the 5D bulk and gµν = ∂µX
A∂νX

B g̃AB is the induced metric on the
brane with XA(xc) being the coordinates of an event on the brane labeled by xc. The first and
second terms in Eq. (583) correspond to Einstein-Hilbert actions in the 5D bulk and on the brane,
respectively. Note that κ2(5) and κ2(4) are 5D and 4D gravitational constants, respectively, which

are related with 5D and 4D Planck masses, M(5) and M(4), via κ
2
(5) = 1/M3

(5) and κ
2
(4) = 1/M2

(4).

The Lagrangian Lbrane
M describes matter localized on the 3-brane.

The equations of motion read

G
(5)
AB = 0 , (584)

where G
(5)
AB is the 5D Einstein tensor. The Israel junction conditions on the brane, under which a

Z2 symmetry is imposed, read [570]

Gµν − 1

rc
(Kµν − gµνK) = κ2(4)Tµν , (585)

whereKµν is the extrinsic curvature [105] calculated on the brane and Tµν is the energy momentum
tensor of localized matter. Since ∇µ(Kµν − gµνK) = 0, the continuity equation ∇µTµν = 0 follows
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from Eq. (585). The length scale rc is defined by

rc ≡
κ2(5)

2κ2(4)
=

M2
(4)

2M3
(5)

. (586)

If we consider the flat FLRW brane (K = 0), we obtain the modified Friedmann equation
[568, 569]

H2 − ǫ

rc
H =

κ2(4)

3
ρM , (587)

where ǫ = ±1, H and ρM are the Hubble parameter and the matter energy density on the brane,
respectively. In the regime rc ≫ H−1 the first term in Eq. (587) dominates over the second one
and hence the standard Friedmann equation is recovered. Meanwhile, in the regime rc . H−1, the
second term in Eq. (587) leads to a modification to the standard Friedmann equation. If ǫ = 1,
there is a de Sitter solution characterized by

HdS = 1/rc . (588)

One can realize the cosmic acceleration today if rc is of the order of the present Hubble radius
H−1

0 . This self acceleration is the result of gravitational leakage into extra dimensions at large
distances. In another branch (ǫ = −1) such cosmic acceleration is not realized.

In the DGP model the modification of gravity comes from a scalar-field degree of freedom,
usually called π, which is identified as a brane bending mode in the bulk. Then one may wonder if
such a field mediates a fifth force incompatible with local gravity constraints. However, this is not
the case, as the Vainshtein mechanism is at work in the DGP model for the length scale smaller
than the Vainshtein radius r∗ = (rgr

2
c )

1/3, where rg is the Schwarzschild radius of a source. The
model can evade solar system constraints at least under some range of conditions on the energy-
momentum tensor [571, 572, 573]. The Vainshtein mechanism in the DGP model originates from
a non-linear self-interaction of the scalar-field degree of freedom.

Although the DGP model is appealing and elegant, it is also plagued by some problems. The
first one is that, although the model does not possess ghosts on asymptotically flat manifolds,
at the quantum level, it does have the problem of strong coupling for typical distances smaller
than 1000 km, so that the theory is not easily under control [574]. Besides the model typically
possesses superluminal modes. This may not directly violate causality, but it implies a non-trivial
non-Lorentzian UV completion of the theory [570]. Also, on scales relevant for structure formation
(between cluster scales and the Hubble radius), a quasi-static approximation to linear cosmological
perturbations shows that the DGP model contains a ghost mode [575]. This linear analysis is valid
as long as the Vainshtein radius r∗ is smaller than the cluster scales.

The original DGP model has been tested by using a number of observational data at the
background level [576, 577, 578, 579, 580]. The joint constraints from the data of SN Ia, BAO, and
the CMB shift parameter show that the flat DGP model is under strong observational pressure,
while the open DGP model gives a slightly better fit [578, 580]. Xia [581] showed that the parameter
α in the modified Friedmann equation H2 − Hα/r2−α

c = κ2(4)ρM/3 [582] is constrained to be

α = 0.254 ± 0.153 (68 % confidence level) by using the data of SN Ia, BAO, CMB, gamma ray
bursts, and the linear growth factor of matter perturbations. Hence the flat DGP model (α = 1)
is not compatible with current observations.

On the sub-horizon scales larger than the Vainshtein radius, the equation for linear matter per-
turbations δm in the DGP model was derived in Ref. [583, 575] under a quasi-static approximation:

δ̈m + 2Hδ̇m − 4πGeffρmδm ≃ 0 , (589)
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where ρm is the non-relativistic matter density on the brane and

Geff =

(

1 +
1

3β

)

G , β(t) ≡ 1− 2Hrc

(

1 +
Ḣ

3H2

)

. (590)

In the deep matter era one has Hrc ≫ 1 and hence β ≃ −Hrc, so that β is largely negative
(|β| ≫ 1). In this regime the evolution of δm is similar to that in GR (δm ∝ t2/3). Since the
background solution finally approaches the de Sitter solution characterized by Eq. (588), it follows
that β ≃ 1− 2Hrc ≃ −1 asymptotically. Since 1 + 1/(3β) ≃ 2/3, the growth rate in this regime is
smaller than that in GR.

The index γ of the growth rate fδ = (Ωm)γ is approximated by γ ≈ 0.68 [314]. This is quite
different from the value γ ≃ 0.55 for the ΛCDM model. If the future imaging survey of galaxies
can constrain γ within 20 %, it will be possible to distinguish the ΛCDM model from the DGP
model observationally [584]. We recall that in metric f(R) gravity the growth index today can be
as small as γ = 0.4 because of the enhanced growth rate, which is very different from the value in
the DGP model.

Comparing Eq. (590) with the effective gravitational constant (419) in BD theory with a mass-
less limit (or the absence of the field potential), we find that the parameter ωBD has the following
relation with β:

ωBD =
3

2
(β − 1) . (591)

Since β < 0 for the self-accelerating DGP solution, it follows that ωBD < −3/2. This corresponds
to the theory with ghosts, because the kinetic energy of a scalar-field degree of freedom becomes
negative in the Einstein frame [442]. There is a claim that the ghost may disappear for the
Vainshtein radius r∗ of the order of H−1

0 , because the linear perturbation theory is no longer
applicable [585]. In fact a ghost does not appear in a Minkowski brane in the DGP model. In
Ref. [586] it was shown that the Vainshtein radius in the early Universe is much smaller than the
one in the Minkowski background, while in the self accelerating Universe they agree with each
other. Hence the perturbative approach seems to be still possible for the weak gravity regime
beyond the Vainshtein radius.

There have been studies regarding a possible regularization in order to avoid the ghost/strong
coupling limit. Some of these studies have focused on smoothing out the delta profile of the Ricci
scalar on the brane, by coupling the Ricci scalar to some other scalar field with a given profile
[587, 588]. A monopole in seven dimensions generated by a SO(3) invariant matter Lagrangian is
able to change the gravitational law at its core, leading to a lower dimensional gravitational law.
This is a first approach to an explanation of trapping of gravitons, due to topological defects in
classical field theory [589, 590]. Other studies have focused on re-using the delta function profile
but in a higher-dimensional brane [591]. There is also an interesting work about the possibility of
self-acceleration in the normal DGP branch [ǫ = −1 in Eq. (587)] by considering an f(R) term on
the brane action [555]. All these attempts indeed point to the direction that some mechanism, if
not exactly DGP rather similar to it, may avoid a number of problems associated with the original
DGP model.

13.8 Galileon field

The DGP mechanism motivated other approaches to the ghost-like gravitational scalar field in
more detail. In particular much attention has been paid to introduce a scalar-field Lagrangian
decoupled from matter due to non-linearities without the appearance of ghost degrees of freedom
[540].

In order to achieve this goal, keeping a universal coupling with matter (achieved through a pure
nonminimal coupling with R), Nicolis et al. [540] imposed a symmetry called the Galilean invariance
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on a scalar field, π. If the equations of motion are invariant under a constant gradient-shift on
Minkowski space-time, that is

π → π + c+ bµx
µ , (592)

where both c and bµ are constants, we call π a Galileon field. This implies that the equations
of motion fix the field up to such a transformation. The point is that the Lagrangian must
implement the Vainshtein mechanism in order to pass solar-system constraints. This is achieved
by introducing self-interacting non-linear terms in the Lagrangian. It should be noted that the
Lagrangian is studied only at second order in the fields (having a nonminimal coupling with R)
and the metric itself, whereas the non-linearities are fully kept by neglecting their backreaction on
the metric (as the biggest contribution should come only from standard matter). The equations
of motion respecting the Galileon symmetry contain terms such as a constant, � π (up to fourth
power), and other power contraction of the tensor ∇µ∇νπ. It is due to these non-linear derivative
terms by which the Vainshtein mechanism can be implemented, as it happens in the DGP model
[592].

Nicolis et al. [540] found that there are only five terms Li with i = 1, . . . , 5 which can be
inserted into a Lagrangian, such that the equations of motion respect the Galileon symmetry in
4-dimensional Minkowski space-time. The first three terms are given by

L1 = π , (593)

L2 = ∇µπ∇µπ , (594)

L3 = �π∇µπ∇µπ . (595)

All these terms generate second-order derivative terms only in the equations of motion. The
approach in the Minkowski space-time has motivated to try to find a fully covariant framework in
the curved space-time. In particular, Deffayet et al. [593] found that all the previous 5-terms can
be written in a fully covariant way. However, if we want to write down L4 and L5 covariantly in
curved space-time and keep the equations of motion free from higher-derivative terms, we need to
introduce couplings between the field π and the Riemann tensor [593]. The following two terms
keep the field equations to second-order,

L4 = (∇µπ∇µπ)
[

2(�π)2 − 2(∇αβπ) (∇αβπ)− (1/2)R∇µπ∇µπ
]

, (596)

L5 = (∇λπ∇λπ)
[

(�π)3 − 3�π (∇αβπ) (∇αβπ) + 2(∇µ∇νπ) (∇ν∇ρπ) (∇ρ∇µπ)

− 6(∇µπ) (∇µ∇νπ) (∇ρπ)Gνρ

]

, (597)

where the last terms in Eqs. (596) and (597) are newly introduced in the curved space-time. These
terms possess the required symmetry in Minkowski space-time, but mostly, they do not introduce
derivatives higher than two into the equations of motion. In this sense, although originated from
an implementation of the DGP idea, the covariant Galileon field is closer to the approach of the
modifications of gravity in f(R,G), that is, a formalism which would introduce only second-order
equations of motion.

This result can be extended to arbitrary D dimensions [594]. One can find, analogously to the
Lovelock action-terms, an infinite tower of terms that can be introduced with the same property
of keeping the equations of motion at second order. In particular, let us consider the action

S =

∫

dDx
√−g

pmax
∑

p=0

C(n+1,p)L(n+1,p) , (598)

where pmax is the integer part of (n− 1)/2 (n ≤ D),

C(n+1,p) =

(

−1

8

)p
(n− 1)!

(n− 1− 2p)!(p!)2
, (599)
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and

L(n+1,p) = − 1

(D − n)!
εµ1µ3...µ2n−1ν1...νD−nεµ2µ4...µ2n

ν1...νD−n
π;µ1π;µ2 (π

;λπ;λ)
p

×
p
∏

i=1

Rµ4i−1µ4i+1µ4iµ4i+2

n−2−2p
∏

j=0

π;µ2n−1−2jµ2n−2j . (600)

Here ε1···n is the Levi-Civita tensor. The first product in Eq. (600) is defined to be one when p=0
and 0 for p < 0, and the second product is one when n = 1 + 2p, and 0 when n < 2 + 2p. In
L(n+1,p) there will be n+1 powers of π, and p powers of the Riemann tensor. In four dimensions,
for example, L(1,0) and L(2,0) are identical to L1 and L2 introduced before, respectively. Instead,
L(3,0), L(4,0)−(1/4)L(4,1), and L(5,0)−(3/4)L(5,1) reduce to L3, L4, and L5, up to total derivatives,
respectively.

In general non-linear terms discussed above may introduce the Vainshtein mechanism to de-
couple the scalar field from matter around a star, so that solar-system constraints can be satisfied.
However the modes can have superluminal propagation, which is not surprising as the kinetic terms
get heavily modified in the covariant formalism. Some studies have focused especially on the L3

term only, as this corresponds to the simplest case. For some models the background cosmological
evolution is similar to that in the DGP model, although there are ghostlike modes depending on
the sign of the time-velocity of the field π [595]. There are some works for cosmological dynamics
in Brans-Dicke theory in the presence of the non-linear term L3 [596, 597] (although the original
Galileon symmetry is not preserved in this scenario). Interestingly the ghost can disappear even
for the case in which the Brans-Dicke parameter ωBD is smaller than −3/2. Moreover this theory
leaves a number of distinct observational signatures such as the enhanced growth rate of matter
perturbations and the significant ISW effect in CMB anisotropies.

14 Conclusions

We have reviewed many aspects of f(R) theories studied extensively over the past decade. This
burst of activities is strongly motivated by the observational discovery of dark energy. The idea
is that the gravitational law may be modified on cosmological scales to give rise to the late-time
acceleration, while Newton’s gravity needs to be recovered on solar-system scales. In fact f(R)
theories can be regarded as the simplest extension of General Relativity.

The possibility of the late-time cosmic acceleration in metric f(R) gravity was first suggested
by Capozziello in 2002 [51]. Even if f(R) gravity looks like a simple theory, successful f(R) dark
energy models need to satisfy a number of conditions for consistency with successful cosmological
evolution (a late-time accelerated epoch preceded by a matter era) and with local gravity tests on
solar-system scales. We summarize the conditions under which metric f(R) dark energy models
are viable:

• (i) f,R > 0 for R ≥ R0, where R0 is the Ricci scalar today. This is required to avoid a ghost
state.

• (ii) f,RR > 0 for R ≥ R0. This is required to avoid the negative mass squared of a scalar-field
degree of freedom (tachyon).

• (iii) f(R) → R− 2Λ for R ≥ R0. This is required for the presence of the matter era and for
consistency with local gravity constraints.

• (iv) 0 <
Rf,RR

f,R
(r = −2) < 1 at r = −Rf,R

f = −2. This is required for the stability and the

presence of a late-time de Sitter solution. Note that there is another fixed point that can be
responsible for the cosmic acceleration (with an effective equation of state weff > −1).
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We clarified why the above conditions are required by providing detailed explanation about the
background cosmological dynamics (Sec. 4), local gravity constraints (Sec. 5), and cosmological
perturbations (Secs. 6-8).

After the first suggestion of dark energy scenarios based on metric f(R) gravity, it took almost
five years to construct viable models that satisfy all the above conditions [67, 68, 69, 70, 71, 72, 73].
In particular, the models (133), (134), and (139) allow appreciable deviation from the ΛCDM
model during the late cosmological evolution, while the early cosmological dynamics is similar to
that of the ΛCDM. The modification of gravity manifests itself in the evolution of cosmological
perturbations through the change of the effective gravitational coupling. As we discussed in Secs. 8
and 13, this leaves a number of interesting observational signatures such as the modification to
the galaxy and CMB power spectra and the effect on weak lensing. This is very important to
distinguish f(R) dark energy models from the ΛCDM model in future high-precision observations.

As we showed in Sec. 2, the action in metric f(R) gravity can be transformed to that in the
Einstein frame. In the Einstein frame, non-relativistic matter couples to a scalar-field degree of
freedom (scalaron) with a coupling Q of the order of unity (Q = −1/

√
6). For the consistency

of metric f(R) gravity with local gravity constraints, we require that the chameleon mechanism
[92, 93] is at work to suppress such a large coupling. This is a non-linear regime in which the linear
expansion of the Ricci scalar R into the (cosmological) background value R0 and the perturbation
δR is no longer valid, that is, the condition δR ≫ R0 holds in the region of high density. As long
as a spherically symmetric body has a thin-shell, the effective matter coupling Qeff is suppressed
to avoid the propagation of the fifth force. In Sec. 5 we provided detailed explanation about the
chameleon mechanism in f(R) gravity and showed that the models (133) and (134) are consistent
with present experimental bounds of local gravity tests for n > 0.9.

The construction of successful f(R) dark energy models triggered the study of spherically
symmetric solutions in those models. Originally it was claimed that a curvature singularity present
in the models (133) and (134) may be accessed in the strong gravitational background like neutron
stars [103, 95]. Meanwhile, for the Schwarzschild interior and exterior background with a constant
density star, one can approximately derive analytic thin-shell solutions in metric f(R) and Brans-
Dicke theory by taking into account the backreaction of gravitational potentials [97]. In fact, as
we discussed in Sec. 11, a static star configuration in the f(R) model (134) was numerically found
both for the constant density star and the star with a polytropic equation of state [98, 99, 101].
Since the relativistic pressure is strong around the center of the star, the choice of correct boundary
conditions along the line of Ref. [97] is important to obtain static solutions numerically.

The model f(R) = R + R2/(6M2) proposed by Starobinsky in 1980 is the first model of
inflation in the early Universe. Inflation occurs in the regime R ≫ M2, which is followed by the
reheating phase with an oscillating Ricci scalar. In Sec. 3 we studied the dynamics of inflation
and (p)reheating (with and without nonminimal couplings between a field χ and R) in detail. As
we showed in Sec. 7, this model is well consistent with the WMAP 5-year bounds of the spectral
index ns of curvature perturbations and of the tensor-to-scalar ratio r. It predicts the values of
r smaller than the order of 0.01, unlike the chaotic inflation model with r = O(0.1). It will be of
interest to see whether this model continues to be favored in future observations.

Besides metric f(R) gravity, there is another formalism dubbed the Palatini formalism in which
the metric gµν and the connection Γα

βγ are treated as independent variables when we vary the action
(see Sec. 9). The Palatini f(R) gravity gives rise to the specific trace equation (332) that does
not have a propagating degree of freedom. Cosmologically we showed that even for the model
f(R) = R− β/Rn (β > 0, n > −1) it is possible to realize a sequence of radiation, matter, and de
Sitter epochs (unlike the same model in metric f(R) gravity). However the Palatini f(R) gravity
is plagued by a number of shortcomings such as the inconsistency with observations of large-scale
structure, the conflict with Standard Model of particle physics, and the divergent behavior of the
Ricci scalar at the surface of a static spherically symmetric star with a polytropic equation of state
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P = cρΓ0 with 3/2 < Γ < 2. The only way to avoid these problems is that the f(R) models need
to be extremely close to the ΛCDM model. This property is different from metric f(R) gravity in
which the deviation from the ΛCDM model can be significant for R of the order of the Ricci scalar
today.

In Brans-Dicke (BD) theories with the action (378), expressed in the Einstein frame, non-
relativistic matter is coupled to a scalar field with a constant coupling Q. As we showed in in
Sec. 10.1, this coupling Q is related to the BD parameter ωBD with the relation 1/(2Q2) = 3+2ωBD.
These theories include metric and Palatini f(R) gravity theories as special cases where the coupling
is given by Q = −1/

√
6 (i.e. ωBD = 0) and Q = 0 (i.e. ωBD = −3/2), respectively. In BD theories

with the coupling Q of the order of unity we constructed a scalar-field potential responsible for
the late-time cosmic acceleration, while satisfying local gravity constraints through the chameleon
mechanism. This corresponds to the generalization of metric f(R) gravity, which covers the models
(133) and (134) as specific cases. We discussed a number of observational signatures in those models
such as the effects on the matter power spectrum and weak lensing.

Besides the Ricci scalar R, there are other scalar quantities such as RµνR
µν and RµνρσR

µνρσ

constructed from the Ricci tensor Rµν and the Riemann tensor Rµνρσ . For the Gauss-Bonnet
(GB) curvature invariant G ≡ R2 − 4RµνR

µν + RµνρσR
µνρσ one can avoid the appearance of

spurious spin-2 ghosts. There are dark energy models in which the Lagrangian density is given by
L = R+f(G), where f(G) is an arbitrary function in terms of G. In fact it is possible to explain the
late-time cosmic acceleration for the models such as (480) and (481), while at the same time local
gravity constraints are satisfied. However density perturbations in perfect fluids exhibit violent
negative instabilities during both the radiation and the matter domination, irrespective of the form
of f(G). The growth of perturbations gets stronger on smaller scales, which is incompatible with
the observed galaxy spectrum unless the deviation from GR is very small. Hence these models are
effectively ruled out from this Ultra-Violet instability. This implies that metric f(R) gravity may
correspond to the marginal theory that can avoid such instability problems.

In Sec. 13 we discussed other aspects of f(R) gravity and modified gravity theories–such as weak
lensing, thermodynamics and horizon entropy, Noether symmetry in f(R) gravity, unified f(R)
models of inflation and dark energy, f(R) theories in extra dimensions, Vainshtein mechanism,
DGP model, and Galileon field. Up to early 2010 the number of papers that include the word
“f(R)” in the title is over 460, and more than 1050 papers including the words “f(R)” or “modified
gravity” or “Gauss-Bonnet” have been written so far. This shows how this field is rich and fruitful
in application to many aspects to gravity and cosmology.

Although in this review we have focused on f(R) gravity and some extended theories such
as BD theory and Gauss-Bonnet gravity, there are other classes of modified gravity theories, e.g.,
Einstein-Aether theory [598], tensor-vector-scalar theory of gravity [599], ghost condensation [600],
Lorentz violating theories [601, 602, 603], and Horava-Lifshitz gravity [604]. There are also attempts
to study f(R) gravity in the context of Horava-Lifshitz gravity [605, 606]. We hope that future
high-precision observations can distinguish between these modified gravity theories, in connection
to solving the fundamental problems for the origin of inflation, dark matter, and dark energy.
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