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2 Laboratoire Univers et Théories, Observatoire de Paris, CNRS, Université Paris
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We present an introduction to mass and angular momentum in General Rela-
tivity. After briefly reviewing energy-momentum for matter fields, first in the
flat Minkowski case (Special Relativity) and then in curved spacetimes with
or without symmetries, we focus on the discussion of energy-momentum for
the gravitational field. We illustrate the difficulties rooted in the Equivalence
Principle for defining a local energy-momentum density for the gravitational
field. This leads to the understanding of gravitational energy-momentum and
angular momentum as non-local observables that make sense, at best, for ex-
tended domains of spacetime. After introducing Komar quantities associated
with spacetime symmetries, it is shown how total energy-momentum can be
unambiguously defined for isolated systems, providing fundamental tests for
the internal consistency of General Relativity as well as setting the concep-
tual basis for the understanding of energy loss by gravitational radiation.
Finally, several attempts to formulate quasi-local notions of mass and an-
gular momentum associated with extended but finite spacetime domains are
presented, together with some illustrations of the relations between total and
quasi-local quantities in the particular context of black hole spacetimes. This
article is not intended to be a rigorous and exhaustive review of the subject,
but rather an invitation to the topic for non-experts. In this sense we follow
essentially the expositions in [1, 2, 3, 4] and refer the reader interested in
further developments to the existing literature, in particular to the excellent
and comprehensive review by Szabados [1].

1 Issues around the notion of gravitational energy in

General Relativity

1.1 Energy-momentum density for matter fields

Let us first consider mass and angular momentum associated with matter in
the absence of gravity, in a flat Minkowski spacetime. The density of energy
and linear momentum associated with a distribution of matter are encoded in
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the energy-momentum tensor Tµν , corresponding to the Noether current con-
served under infinitesimal spacetime translations in a Lagrangian framework.
This general conservation property, namely ∂µT

µν = 0 in inertial Minkowski
coordinates, plays a key role in our discussion. Indeed, together with the
presence of symmetries, it permits the introduction of conserved quantities
or charges. Given a space-like hypersurface Σ and considering the unit time-
like vector nµ normal to it, we can define the conserved quantity associated
with the symmetry kµ and the domain D (⊂ Σ) as

QD[kµ] =

∫

D

kρTνρn
ν√γ d3x , (1)

where
√
γ d3x denotes the induced volume element in D. The conservation

of Tµν and the characterisation of kµ as a symmetry imply the conservation
of the vector T µ

νk
ν , i.e. ∂µ (T

µ
νk

ν) = 0. Applying then the Stokes theo-
rem, it follows the equality between the change in time of QD[k

µ] and the
flux of γµρT

ρνkν through the boundary of D (where γµν is the projector on
D). Minkowski spacetime symmetries are given by Poincaré transformations.
Therefore, we can associate conserved quantities with the infinitesimal gen-
erators corresponding to translations Tν

a, rotations J
µ
i , and boosts Kµ

i (here
the label a for translation generators runs in {0, 1, 2, 3}, whereas i is a space-
like index in {1, 2, 3}). In this manner, a 4-momentum Pa[D] and an angular
momentum Ji[D] associated with the distribution of matter in D ⊂ Σ can
be defined as

Pa[D] =

∫

D

TµνT
ν
an

µ√γ d3x , Ji[D] =

∫

D

TµνJ
ν
i n

µ√γ d3x . (2)

More generally, we can combine together the rotation and boost generators
Jµi and Kµ

i into a vector-field-valued antisymmetric matrix Mµ
[ab] (where J

µ
i =

3ǫi
jk
Mµ

[jk] and Kµ
i = Mµ

[0i]) and write the conserved quantities

J[ab][D] =

∫

D

TµνM
ν
[ab]n

µ√γ d3x . (3)

The mass and (Pauli-Lubanski) spin are constructed as

m2[D] := −ηabPa[D]Pb[D] , Sa[D] :=
1

2
4ǫabcdPb[D]J[cd][D] , (4)

in terms of which Poincaré Casimirs (invariant under Poincaré transforma-
tions) can be expressed.

In the non-flat case, (matter) energy-momentum tensor acts as the source
of gravity through the Einstein equation and, consistently with Bianchi iden-
tities, satisfies the divergence-free condition analogous to the flat conservation
law:

Gµν := 4Rµν − 1

2
4R gµν = 8πTµν , ∇νT

νµ = 0 . (5)
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The same strategy employed in the flat case for defining physical quantities
associated with matter, i.e. from conserved currents corresponding to some
symmetry, can be followed in non-flat spacetimes (M, gµν) presenting Killing
vectors kµ. The vector T µ

νk
ν is conserved, i.e. ∇µ (T

µ
νk

ν) = 0, and provides
a current-density for the conserved quantityQD[kµ] defined by expression (1).
The physical interpretation of QD[kµ] depends of course on the nature of the
Killing vector kµ. Actually, QD[kµ] does not actually depend on the slice Σ
in the sense that its value is the same in the domain of dependence of D (this
precisely corresponds to the conserved nature of this charge).

In a general spacetime with no symmetries the previous strategy ceases to
work, and ambiguities in the definition of mass and angular momentum enter
into scene. One can still calculate the flux of T µ

νξ
ν for a given vector ξν , and

define the associated quantity QD[ξµ]. However, the latter will now depend
on the slice Σ and, in addition, its explicit dependence on ξµ introduces
some degree of arbitrariness in the discussion. In this context, given a space-
like 3+1 foliation {Σt} of the spacetime with time-like normal vector nµ,
the current Pµ := −T µνnν can be interpreted as the energy-momentum
density associated with (Eulerian) observers at rest with respect to Σt. That
is, E := T µνnµnν stands as the matter energy density and pµ := −γµρT ρνnν

as the momentum density, where γµν is the induced metric on Σt (see Eq.
(12) below for the complete 3+1 decomposition of Tµν). In particular, we
can calculate the matter energy associated with observers nµ over the spatial
region D by direct integration

E[D] =

∫

D

E
√
γ d3x =

∫

D

T µνnµnν
√
γ d3x . (6)

By imposing the dominant energy condition on the matter energy-momentum
tensor (see section 3.3), the vector −T µνnν is future directed and non-space-
like. Its Lorentzian norm is therefore non-positive and an associated matter
mass density m can be given as m2 := −PµPµ = −(−T µρnρ)(−T νσnσ)gµν =
E2−pipi ≥ 0. The corresponding mass M[D] in the extended region D would
be

M[D] :=

∫

D

√

E2 − pipi
√
γ d3x . (7)

Note the difference between the construction of M[D] and that of m[D] in
the Minkowskian case: for the latter one first integrates to obtain the charges
and then calculates a Minkowskian norm, whereas for constructing M[D] that
order is reversed; in addition, different metrics are employed in each case (cf.
section 2.2. in [1]).

1.2 Problems when defining a gravitational energy-momentum

In the characterisation of the physical properties of the gravitational field,
in particular its energy-momentum and angular momentum, we could try to
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follow a similar strategy to that employed for the matter fields. This would
amount to identify appropriate local densities that would then be integrated
over finite spacetime regions. However such an approach rapidly meets im-
portant conceptual difficulties.

A local (point-like) density of energy associated with the gravitational
field cannot be defined in General Relativity. Reasons for this can be tracked
to the Equivalence Principle. Illustrated in a heuristic manner, this principle
can be used to get rid of the gravitational field on a given point of spacetime.
Namely, a free falling point-like particle does not feel any gravitational field
so that, in particular, no gravitational energy density can be identified at
spacetime points.

In a Lagrangian setting, these basic conceptual difficulties are reflected
in the attempts to construct a gravitational energy-momentum tensor, when
mimicking the methodological steps followed in the matter field case. We can
write generically the gravitational-matter action as

S = SEH + Sm =
1

16π

∫

M

4R
√
−g d4x+

∫

M

Lm(gµν , Φi,∇µΦi, ...)
√
−g d4x .

(8)
where SEH denotes the Einstein-Hilbert action and Φi in the matter La-
grangian Lm account for the matter fields. The symmetric energy-momentum
for matter is obtained from the variation of the matter action Sm with respect
to the metric

Tµν :=
−2√−g

δSm

δgµν
, (9)

whereas the field equations for the matter fields follow from the variation
with respect to the matter fields Φi. On the contrary, the gravitational ac-
tion SEH only depends on the gravitational field, since any further background
structure would be precluded by diffeomorphism invariance (a feature closely
tied to the physical Equivalence Principle). Einstein equation for the grav-
itational field follows from the variation of the total action with respect to
the metric field gµν , with no gravitational analogue of the symmetric matter
energy-momentum tensor Tµν . Attempts to construct a symmetric energy-
momentum tensor for the gravitational field either recover the Einstein tensor
Gµν or can only be related to higher-order gravitational energy-momentum
objects, such as the Bel-Robinson tensor (see e.g. [5]). Again, the absence of a
tensorial (i.e. point-like geometric) quantity representing energy-momentum
for the gravitational field is consistent with, and actually a consequence of,
the Equivalence Principle.

The natural interpretation of the symmetric matter energy-momentum
tensor Tµν as introduced in Eq. (9) is that of the current-source for the
gravitational field, obtained as a conserved current associated with spacetime
translations. Alternative, in terms of the Noether theorem [6] it is natural to
introduce a (non-symmetric) canonical energy-momentum tensor for matter
from which a symmetric one can be constructed through the Belinfante-



Mass and Angular Momentum in General Relativity 5

Rosenfeld procedure [7, 8, 9]. The application of this construction to the
gravitational field naturally leads to the discussion of gravitational energy-
momentum pseudo-tensors [1]. The underlying idea consists in decomposing
the Einstein tensor Gµν into a part that can be identified with the energy-
momentum and a second piece that can be expressed in terms of a pseudo-
potential. That is [10]

Gµ
ν := −8π tµ

ν +
1

2
√−g∂λ(Hµ

νλ) , (10)

where tµν is the gravitational energy-momentum pseudo-tensor and Hµν
λ is

the superpotential. Einstein equation is then written as

∂λ(Hµ
νλ) = 16π

√−g (tµν + Tµ
ν) =: 16πTµν . (11)

Objects tµ
ν andHµ

νλ are not tensorial quantities. This means that their value
at a given spacetime point is not a well-defined notion. Moreover, their very
definition needs the introduction of some additional background structure and
some choice of preferred coordinates is naturally involved. Different pseudo-
tensors exist in the literature, e.g. those introduced by Einstein, Papapetrou,
Bergmann, Landau and Lifshitz, Moller or Weinberg (e.g. see references in
[10]).

As an alternative to the pseudo-tensor approach, there also exist attempts
in the literature aiming at constructing truly tensorial energy-momentum
quantities. However they also involve the introduction of some additional
structure, either in the form of a background object or by fixing a gauge in
some given formulation of General Relativity (cf. comments on the tetrad
formalism approach in [1]).

Non-local character of gravitational energy

As illustrated above, crucial conceptual and practical caveats are involved in
the association of energy and angular momentum with the gravitational field.
For these reasons, one might legitimately consider gravitational energy and
angular momentum in General Relativity as intrinsically meaningless notions
in generic situations, in such a way that the effort to derive explicit general
local expressions actually represents an ill-defined problem (cf. remarks in [11]
referring to the quest for a local expression of energy in General Relativity).
Having said this and after accepting the non-existence of a local (point-like)
notion of energy density for the gravitational field, one may also consider
gravitational energy-momentum and angular momentum as notions intrinsi-
cally associated with extended domains of the spacetime and then look for
restricted settings or appropriate limits where they can be properly defined.

In fact, making a sense of the energy and angular momentum for the
gravitational field in given regions of spacetime is extremely important in
different contexts of gravitational physics, as it can be illustrated with exam-
ples coming from mathematical relativity, black hole physics, lines of research
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in Quantum Gravity, or relativistic astrophysics. From a structural point of
view, having a well-defined mass positivity result is crucial for the internal
consistency of the theory, as well as for the discussion of the solutions sta-
bility. Moreover, the possibility of introducing appropriate positive-definite
(energy) quantities is often a key step in different developments in mathemat-
ical relativity, in particular when using variational principles. In the study of
the physical picture of black holes, appropriate notions of mass and angular
momentum are employed. In particular, they play a key role in the formu-
lation of black hole thermodynamics (e.g. [12]), a cornerstone in different
approaches to Quantum Gravity. In the context of relativistic astrophysics
and numerical relativity, the study of relativistic binary mergers, gravita-
tional collapse and the associated generation/propagation of gravitational
radiation also requires appropriate notions of energy and angular momentum
(see e.g. [13] for a further discussion on the intersection between numerical
and mathematical relativity).

Once the non-local nature of the gravitational energy-momentum and an-
gular momentum is realised, the conceptual challenge is translated into the
manner of determining the appropriate physical parameters associated with
the gravitational field in an extended region of spacetime. An unambiguous
answer has been given in the case of the total mass of an isolated system.
However, the situation is much less clear in the case of extended but finite
spacetime domains. In a broad sense, existing attempts either enforce some
additional structure that restricts the study to an appropriate subset of the
solution space of General Relativity, or alternatively they look for a genuinely
geometric characterisation aiming at fulfilling some expected physical require-
ments. In this article we present an overview of some of the relevant existing
attempts and illustrate the kind of additional structures they involve.

1.3 Notation

Before proceeding further, we set the notation, some of whose elements have
already been anticipated above. The signature of spacetime (M, gµν) is cho-
sen to be diag[ − 1, 1, 1, 1] and Greek letters are used for spacetime indices
in {0, 1, 2, 3}. We denote the Levi-Civita connection by ∇µ and the volume
element by 4ǫ =

√−g dx0 ∧dx1 ∧dx2 ∧dx3. We make G = c = 1 throughout.

3+1 decompositions

In our presentation of the subject, 3+1 foliations of spacetime (M, gµν) by
space-like 3-slices {Σt} will play an important role. Given a height-function
t, the time-like unit normal to Σt will be denoted by nµ and the 3+1 de-
composition of the evolution vector field by tµ = Nnµ + βµ, where N is the
lapse function and βµ is the shift vector. The induced metric on the space-
like 3-slice Σt is expressed as γµν = gµν + nµnν , with Dµ the associated
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Levi-Civita connection and volume element 3ǫ =
√
γdx1 ∧ dx2 ∧ dx3, so that

3ǫµνρ = nσ4ǫσµνρ. The extrinsic curvature of (Σt, γµν) in (M, gµν) is defined
as Kµν := − 1

2Lnγµν = −γµρ∇ρnν . The 3+1 decomposition of the (matter)
stress-energy tensor, in terms of an Eulerian observer nµ in rest with respect
to the foliation {Σt}, is

Tµν = E nµnν + p(µnν) + Sµν , (12)

where the matter energy and momentum densities are given by E := Tµνn
µnν

and pµ := −Tνρnνγρµ, respectively, whereas the matter stress tensor is Sµν :=
Tρσγ

ρ
µγ

σ
ν . Latin indices running in {1, 2, 3} will be employed in expressions

only involving objects intrinsic to space-like Σt slices.

Closed 2-surfaces

Closed 2-surfaces S, namely topological spheres in our discussion, will also be
relevant in the following. The normal bundle T⊥S can be spanned by a time-
like unit vector field nµ and a space-like unit vector field sµ, that we choose to
satisfy the orthogonality condition nµsµ = 0. When considering S as embed-
ded in a space-like 3-surface Σ, nµ can be identified with the time-like normal
to Σ and sµ with the normal to S tangent to Σ. In the generic case, nµ and
sµ can be defined up to a boost transformation: n′µ = cosh(η)nµ +sinh(η)sµ

and s′µ = sinh(η)nµ +cosh(η)sµ, with η a real parameter. Alternatively, one
can span T⊥

p S at p ∈ S in terms of the null normals defined by the inter-
section between the normal plane to S and the light-cone at the spacetime
point p. The directions defined by the outgoing ℓµ and the ingoing kµ null
normals (satisfying kµℓµ = −1) are uniquely determined, though it remains a
boost-normalization freedom: ℓ′µ = f ·ℓµ, k′µ = 1

f ·kµ. The induced metric on
S is given by: qµν = gµν +kµℓν + ℓµkν = gµν +nµnν −sµsν = γµν −sµsν , the
latter expression applying when S is embedded in (Σ, γµν). The Levi-Civita
connection associated with qµν will be denoted by 2Dµ and the volume ele-
ment by 2ǫ =

√
qdx1 ∧ dx2, i.e. 2ǫµν = nρsσ4ǫρσµν . When integrating tensors

on S with components normal to the sphere, it is convenient to express the
volume element as dSµν = (sµnν − nµsν)

√
qd2x (this is just a convenient

manner of re-expressing 4ǫµνρσ for integrating over S after a contraction with
the appropriate tensor; cf. for example Eq.(13)).

The second fundamental tensor of (S, qµν) in (M, gµν) is defined asKα
µν :=

qρµq
σ
ν∇ρq

α
σ, that can be expressed as Kα

µν = nαΘ
(n)
µν + sαΘ

(s)
µν = kαΘ

(ℓ)
µν +

ℓαΘ
(k)
µν , where the deformation tensor Θ

(v)
µν associated with a vector vµ normal

to S is defined as Θ
(v)
µν = qρµq

σ
ν∇ρvσ. We set a specific notation for the cases

corresponding to sµ and nµ, namely Hµν := Θ
(s)
µν , the extrinsic curvature of

(S, qµν) inside a 3-slice (Σ, γµν), and Lµν := −Θ(n)
µν .

Information about the extrinsic curvature of (S, qµν) in (M, gµν) is com-
pleted by the normal fundamental forms associated with normal vectors vµ. In
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particular, we define the 1-form Ω
(ℓ)
µ := kρqσµ∇σℓρ. This form is not invari-

ant under a boost transformation, and transforms as Ω
(ℓ′)
µ = Ω

(ℓ)
µ +2Dµlnf in

the notation above. Other normal fundamental forms can be defined in terms
of normals kµ, nµ and sµ, but they are all related up to total derivatives.

2 Spacetimes with Killing vectors: Komar quantities

As commented above, some additional structure is needed to introduce mean-
ingful notions of gravitational energy and angular momentum. Let us first
consider spacetimes admitting isometries. This represents the most straight-
forward generalization of the definition of physical parameters as conserved
quantities under existing symmetries. Requiring the presence of Killing vec-
tors represents our first example of the enforcement of an additional structure
on the considered spacetime.

Given a Killing vector field kµ in the spacetime (M, gµν) and S a space-
like closed 2-surface, let us define the Komar quantity [14] kK as

kK := − 1

8π

∮

S

∇µkν dSµν , (13)

(see previous section for the notation dSµν for the volume element on S).
Let us consider S as embedded in a space-like 3-slice Σ and let us take a
second closed 2-surface S ′ such that either S ′ is completely contained in S or
vice-versa, and let us denote by V the region in Σ contained between S and
S ′. The previously defined Komar quantity kK is then conserved in the sense
that its value does not depend on the chosen 2-surface as long as no matter
is present in the intermediate region V

kSK = 2

∫

V

(

Tµν − 1

2
Tgµν

)

nµkν
√
γ d3x+ kS

′

K , (14)

where T = Tµνg
µν .

Remark 1. Two important points must be stressed: a) the definition of kK
is geometric and therefore coordinate independent, and b) kK is associated
with a closed 2-surface with no need to refer to any particular embedding in
a 3-slice Σ (in the discussion above the latter has been only introduced for
pedagogical reasons).

2.1 Komar mass

Stationary spacetimes admit a time-like Killing vector field kµ. The associated
conserved Komar quantity is known as the Komar mass

MK := − 1

8π

∮

S

∇µkν dSµν . (15)
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This represents our first notion of mass in General Relativity. It is instructive
to write the Komar mass in terms of 3+1 quantities. Given a 3-slicing {Σt}
and choosing the evolution vector tµ = Nnµ + βµ to coincide with the time-
like Killing symmetry, we find

MK =
1

4π

∮

S

(

siDiN −Kijs
iβj

)√
q d2x . (16)

2.2 Komar angular momentum

Let us consider now an axisymmetric spacetime, where the axial Killing vector
is denoted by φµ. That is, φµ is a space-like Killing vector whose action on M
has compact orbits, two stationary points (the poles), and is normalized so
that its natural affine parameter takes values in [0, 2π). The Komar angular
momentum is defined as

JK :=
1

16π

∮

St

∇µφν dSµν . (17)

Note (apart from the sign choice) the factor 1/2 with respect to the Komar
quantity φK, known as the Komar anomalous factor (it can be explained in
the context of a bimetric formalism by writing the conserved quantities in
terms of an Einstein energy-momentum flux density that can be expressed as
the sum of half the Komar contribution plus a second term: in the angular
momentum case this second piece vanishes, whereas for the mass case it equals
half the Komar term; cf. [15]). Adopting a 3-slicing adapted to axisymmetry,
i.e. nµφµ = 0, we have:

JK =
1

8π

∮

S

Kijs
iφj

√
q d2x =

1

8π

∮

S

Ω(ℓ)
µ φµ

√
q d2x . (18)

3 Total mass of Isolated Systems in General Relativity

3.1 Asymptotic Flatness characterisation of Isolated Systems

The characterisation of an isolated system in General Relativity aims at cap-
turing the idea that spacetime becomes flat when we move sufficiently far
from the system, so that spacetime approaches that of Minkowski. However,
the very notion of far away becomes problematic due to the absence of an a
priori background spacetime. In addition, we must consider different kinds of
infinities, since we can move away from the system in space-like and also in
null directions. Different strategies exist in the literature for the formaliza-
tion of this asymptotic flatness idea, and not all of them are mathematically
equivalent. Traditional approaches attempt to specify the adequate fall-off
conditions of the curvature in appropriate coordinate systems at infinity.
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These approaches have the advantage of embodying the weakest versions
of asymptotic flatness. We will illustrate their use in the discussion of spa-
tial infinity in section 3.2. However, the use of coordinate expressions in
this strategy also introduces the need of verifying the intrinsic nature of the
obtained results, something that it is not always straightforward. For this
reason, a geometric manner of describing asymptotic flatness is also desir-
able, without relying on specific coordinates. This has led to the conformal
compactification picture, where infinity is brought to a finite distance by an
appropriate spacetime conformal transformation. More concretely, one works
with an unphysical spacetime (M̃, g̃µν) with boundary, such that the physi-

cal spacetime (M, gµν) is conformally equivalent to the interior of (M̃, g̃µν),

i.e. g̃µν = Ω2gµν . Infinity is captured by the boundary ∂M̃ and is charac-
terised by the vanishing of the conformal factor, Ω = 0. The whole picture
is inspired in the structure of the conformal compactification of Minkowski
spacetime. The conformal boundary is the union of different pieces, which
are classified according to the metric-type of the geodesics reaching their
points. This defines (past and future) null infinity I ±, spatial infinity i0 and
(past and future) time-like infinity i±, i.e. ∂M̃ = I ± ∪ i0 ∪ i±. The confor-
mal spacetime is represented in the so-called Carter-Penrose diagram. Fall-off
conditions for the characterisation of asymptotic flatness are substituted by
differentiability conditions on the fields at null and spatial infinity (isolated
systems do not require flatness conditions on time-like infinity). Null infinity
was introduced in the conformal picture by Penrose [16, 17], the discussion
of asymptotic flatness at spatial infinity was developed by Geroch [18] and
a unified treatment was presented in [19, 20]. We will briefly illustrate the
different approaches to asymptotic flatness in the following sections, but we
refer the reader to the existing bibliography (e.g. [21, 4]) for further details.

3.2 Asymptotic Euclidean slices

The following two sections are devoted to the discussion of conserved quanti-
ties at spatial infinity, but they also illustrate the coordinate-based approach
to asymptotic flatness. A slice Σ endowed with a space-like 3-metric γij is
asymptotically Euclidean (flat), if there exists a Riemannian background met-
ric fij such that:

i) fij is flat, except possibly on a compact domain D of Σ.
ii) There exists a coordinate system (xi) = (x, y, z) such that outside D,

fij = diag(1, 1, 1) (Cartesian-type coordinates) and the variable r :=
√

x2 + y2 + z2 can take arbitrarily large values on Σ.
iii) When r → +∞

γij = fij +O(r−1) ,
∂γij
∂xk

= O(r−2) ;

Kij = O(r−2) ,
∂Kij

∂xk
= O(r−3) . (19)
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Given an asymptotically flat spacetime foliated by asymptotically Euclidean
slices {Σt}, spatial infinity is defined by r → +∞ and denoted as i0.

Asymptotic symmetries at spatial infinity

As commented in the discussion of the Komar quantities, the existence of
symmetries provides a natural manner of defining physical parameters as
conserved quantities. In the context of spatial infinity, the spacetime diffeo-
morphisms preserving the asymptotic Euclidean structure (19) are referred
to as asymptotic symmetries. Asymptotic symmetries close a Lie group.
Since the spacetime is asymptotically flat, one would expect this group to
be isomorphic to the Poincaré group. However, the set of diffeomorphisms
(xµ) = (t, xi) → (x′

µ
) = (t′, x′

i
) preserving conditions (19) is given by

x′
µ
= Λµ

νx
ν + cµ(θ, ϕ) +O(r−1) , (20)

where Λµ
ν is a Lorentz matrix and the cµ’s are four functions of the an-

gles (θ, ϕ) related to coordinates (xi) = (x, y, z) by the standard spherical
formulæ: x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. This group indeed
contains the Poincaré symmetry, but it is actually much larger due to the
presence of angle-dependent translations. The latter are known as supertrans-
lations and are defined by cµ(θ, ϕ) 6= const and Λµ

ν = δµν in the group rep-
resentation (20). The corresponding abstract infinite-dimensional symmetry
preserving the structure of spatial infinity (Spi) is referred to as the Spi group
[19, 20]. The existence of this (infinite-dimensional) Lie structure of asymp-
totic symmetries has implications in the definition of a global physical mass,
linear and angular momentum at spatial infinity (see below).

3.3 ADM quantities

Hamiltonian techniques are particularly powerful for the systematic study
of physical parameters, considered as conserved quantities under symmetries
acting as canonical transformations in the solution (phase) space of a theory.
In this sense, the Hamiltonian formulation of General Relativity provides a
natural framework for the discussion of global quantities at spatial infinity.
This was the original approach adopted by Arnowitt, Deser and Misner in
[22] and we outline here the basic steps.

First, a variational problem for the class of spacetimes we are considering
must be set. For a correct formulation we need to specify: a) the dynamical
fields we are varying, b) the domain V over which these fields are varied
together with the prescribed value of their variations at the boundary ∂V , and
c) the action functional S compatible with the field equations. As integration
domain V we consider the region bounded by two space-like 3-slices Σt1

and Σt2 and an outer time-like tube B. Σt1 and Σt2 can be seen as part
of a 3-slicing {Σt} with metric and extrinsic curvature given by (γij ,K

ij),
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whereas B has (χµν , P
µν) as induced metric and extrinsic curvature. That

is, χµν = gµν − uµuν and Pµν = −γµρ∇ρuν , where u
µ is the unit space-like

normal to B. The dynamical field whose variation we consider is the spacetime
metric gµν , under boundary conditions δgµν |∂V = 0 (note that we impose
nothing on variations of the derivatives of gµν). The appropriate gravitational
Einstein-Hilbert action then reads (cf. for example [3]; the discussion has a
straightforward extension to incorporate matter)

S =
1

16π

∫

V

4R
√−g d4x+

1

8π

{

−
∫

Σt2

(K −K0)
√
γ d3x (21)

+

∫

Σt1

(K −K0)
√
γ d3x+

∫

B

(P − P0)
√−χd3x

}

,

where K and P are the traces of the extrinsic curvatures of the hypersurfaces
Σti and B, respectively, as embedded in (M, gµν). The subindex 0 corre-
sponds to their extrinsic curvatures as embedded in (M, ηµν). The boundary
term guarantees the well-posedness of the variational principle, i.e. the func-
tional differentiability of the action and the recovery of the correct Einstein
field equation, under the assumed boundary conditions for the dynamical
fields.

Making use of the 3+1 fields decompositions, and considering the in-
tersections St := B ∩ Σt between space-like 3-slices Σt and the time-like
hypersurface B, we can express the action (21) as

S =
1

16π

∫ t2

t1

{
∫

Σt

N
(

3R +KijK
ij −K2

)√
γ d3x+ 2

∮

St

(H −H0)
√
q d2x

}

dt

(22)
whereH andH0 denote the trace of the extrinsic curvature of the 2-surface St

as embedded in (Σt, γij) and (Σt, fij), respectively. The Lagrangian density
L can be read from the form of the action (22). The 3-metric γij plays the
role of the dynamical variable and the dependence of L on γ̇ij follows from
the explicit expression of the extrinsic curvature Kij in terms of the lapse
and the shift, that is

Kij =
1

2N

(

γikDjβ
k + γjkDiβ

k − γ̇ij
)

. (23)

In particular no derivatives of N and βi appear in (22), indicating that the
lapse function and the shift vector are not dynamical variables. The Hamil-
tonian description is obtained by performing a Legendre transformation from
variables (γij , γ̇ij) to canonical ones (γij , π

ij), where

πij :=
δL

δγ̇ij
=

1

16π

√
γ
(

Kγij −Kij
)

. (24)

The Hamiltonian density H is then given by
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H = πij γ̇ij − L , (25)

and the Hamiltonian follows from an integration over a 3-slice, resulting in
(cf. [2, 3] for details)

H =
1

16π

{

−
∫

Σt

(

NC0 + 2βiCi

)√
γ d3x (26)

−2

∮

St

[

N(H −H0)− βi(Kij −Kγij)s
j
]√

q d2x

}

,

where

C0 := 3R +K2 −KijK
ij ,

Ci := DjK
j
i −DiK . (27)

Functionals C0 and Ci vanish on solutions of the Einstein equation (in vac-
uum). More specifically, equations C0 = 0 and Ci = 0 respectively represent
the Hamiltonian and momentum constraints of General Relativity, corre-
sponding to the contraction of the Einstein equation (5) with nµ. From a
geometric point of view, they are referred to as the Gauss-Codazzi relations
and represent conditions for the embedding of (Σt, γij) as a submanifold of
a spacetime (M, gµν) with vanishing nµGµν . The evaluation of the gravita-
tional Hamiltonian (26) on solutions to the Einstein equation yields

Hsolution = − 1

8π

∮

St

[

N(H −H0)− βi(Kij −Kγij)s
j
]√

q d2x . (28)

Remark 2. Note that in the absence of boundaries the gravitational Hamil-
tonian vanishes on physical solutions. This is a feature of diffeomorphism
invariant theories [23] and reflects the fact that the Hamiltonian, considered
as the generator of a canonical transformation, does not move points in the
solution space of the theory. In other words, it is a generator of gauge trans-
formations, something consistent with the interpretation of the Hamiltonian
as the generator of diffeomorphisms. Note also that the situation changes
in the presence of boundaries, where diffeomorphisms not preserving bound-
ary conditions do not correspond to gauge transformations, indicating the
presence of residual degrees of freedom (this is of relevance, for instance, in
certain aspects of the quantum theory).

ADM energy

We focus on solutions corresponding to isolated systems and consider 3-slices
Σt that are asymptotically Euclidean in the sense of conditions (19). We
choose the lapse and the shift so that the evolution vector tµ is associated
with some asymptotically inertial observer for which N = 1 and βi = 0
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at spatial infinity. In particular, this flow vector tµ generates asymptotic
time translations that, in this asymptotically flat context, constitute actual
(asymptotic) symmetries. Conserved quantities under time translations have
the physical meaning of an energy. In the present case, the conserved quantity
is referred to as the ADM energy. The latter is obtained from expression (28)
by making N = 1 and βi = 0 and taking the limit to spatial infinity, namely
r → ∞ in the well-defined sense of section 3.2. That is

EADM := − 1

8π
lim

S(t,r→∞)

∮

St

(H −H0)
√
q d2x . (29)

This ADM energy represents the total energy contained in the slice Σt. Using
the explicit expression of the extrinsic curvature in terms of metric compo-
nents, the ADM energy can be written as

EADM =
1

16π
lim

S(t,r→∞)

∮

St

[

Djγij −Di(f
klγkl)

]

si
√
q d2x , (30)

where Di stands for the connection associated with the metric fij and, con-
sistently with notation in section 1.3, si corresponds to the unit normal to
St tangent to Σt and oriented towards the exterior of St (note that when
r → ∞ the normalization with respect to γij and fij are equivalent). In par-
ticular, if we use the Cartesian-like coordinates employed in (19) we recover
the standard form (see e.g, [4])

EADM =
1

16π
lim

S(t,r→∞)

∮

St

(

∂γij
∂xj

− ∂γjj
∂xi

)

si
√
q d2x . (31)

Remark 3. We note that asymptotic flatness conditions (19) guarantee the
finite value of the integral since the O(r2) part of the measure

√
q d2x is com-

pensated by the O(r−2) parts of ∂γij/∂x
j and ∂γjj/∂x

i. It is very important
to point out that finiteness of the ADM energy relies on the subtraction of
the reference value H0 in Eq. (29).

Conformal decomposition expression of the ADM energy.

A useful expression for the ADM energy in certain formulations of the Ein-
stein equation is given in terms of a conformal decomposition of the 3-metric

γij = Ψ4γ̃ij . (32)

Choosing the representative γ̃ij of the conformal class by the unimodular
condition det(γ̃ij) = det(fij) = 1, conditions (19) translate into

Ψ = 1 +O(r−1) ,
∂Ψ

∂xk
= O(r−2) ;

γ̃ij = fij +O(r−1) ,
∂γ̃ij
∂xk

= O(r−2) , (33)
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for the conformal factor and the conformal metric. Then it follows [2]

EADM = − 1

2π
lim

S(t,r→∞)

∮

St

si
(

DiΨ − 1

8
Dj γ̃ij

)√
q d2x . (34)

Note that, whereas in the time-symmetric (Kµν = 0) conformally flat case
the Komar mass is given in terms of the monopolar term in the asymptotic
expansion of the (adapted) lapse, the ADM energy is given by the monopolar
term in ψ (the latter holds more generally under a vanishing Dirac-like gauge
condition on Dj γ̃ij).

Example 1 (Newtonian limit). As an application of expression (34) we check
that the ADM energy recovers the standard result in the Newtonian limit.
For this we assume that the gravitational field is weak and static. In this
setting it is always possible to find a coordinate system (xµ) = (x0 = ct, xi)
such that the metric components take the form

−dτ2 = gµνdx
µdxν = − (1 + 2Φ) dt2 + (1− 2Φ) fij dx

idxj , (35)

where again fij is the flat Euclidean metric in the 3-dimensional slice and
Φ is the Newtonian gravitational potential, solution of the Poisson equation
∆Φ = 4πρ where ρ is the mass density (we recall that we use units in which
the Newton’s gravitational constant G and the light velocity c are unity).
Then, using Ψ = (1− 2Φ)1/4 ≈ 1− 1

2Φ, Eq. (34) translates into

EADM =
1

4π
lim

S(t,r→∞)

∮

St

siDiΦ
√
q d2x =

1

4π

∫

Σt

∆Φ
√

f d3x . (36)

where in the second step we have assumed that Σt has the topology of R3

and have applied the Gauss-Ostrogradsky theorem (with ∆ = DiDi). Using
now that Φ is a solution of the Poisson equation, we can write

EADM =

∫

Σt

ρ
√

f d3x , (37)

and we recover the standard expression for the total mass of the system at
the Newtonian limit (as it will be seen in next section, in a non-boosted slice
like this, mass is directly given by the energy expression).

ADM 4-momentum. ADM mass

ADM linear momentum

Linear momentum corresponds to the conserved quantity associated with
an invariance under spatial translations. In the asymptotically flat case, the
ADM momentum is associated with space translations preserving the fall-off
conditions (19) expressed in terms of the Cartesian-type coordinates (xi).
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Given one of such coordinate systems, the three vectors (∂i)i∈{1,2,3} repre-
sent asymptotic symmetries generating asymptotic spatial translations that
correspond to a choice N = 0 and βi

(∂j)
= δij in the evolution vector tµ.

Substituting these values for the lapse and shift in the Hamiltonian expres-
sion evaluated on solutions (28), we obtain the conserved quantity under the
infinitesimal translation ∂i:

Pi :=
1

8π
lim

S(t,r→∞)

∮

St

(Kik −Kγik) s
k√q d2x . (38)

Remark 4. Asymptotic fall-off conditions (19) guarantee the finiteness of ex-
pression (38) for Pi.

The ADM momentum associated with the hypersurface Σt is defined as the
linear form (Pi) = (P1, P2, P3). Its components actually transform as those

of a linear form under changes of Cartesian coordinates (xi) → (x′
i
) which

asymptotically correspond to a rotation and/or a translation. For discussing
transformations under the full Poincaré group, we must introduce the ADM
4-momentum defined as

(PADM
µ ) := (−EADM, P1, P2, P3) . (39)

Under a coordinate change (xµ) = (t, xi) → (x′
µ
) = (t′, x′

i
) which preserves

the asymptotic conditions (19), i.e. any coordinate change of the form (20),
components PADM

µ transform under the vector linear representation of the
Lorentz group

P ′ADM
µ = (Λ−1)νµ P

ADM
ν , (40)

as first shown by Arnowitt, Deser and Misner in [22]. Therefore (PADM
µ ) can

be seen as a linear form acting on vectors at spatial infinity i0 and is called
the ADM 4-momentum.

ADM mass

Having introduced the ADM 4-momentum, its Minkowskian length provides
a notion of mass. The ADM mass is therefore defined as:

M2
ADM := −PADM

µ Pµ
ADM , MADM =

√

E2
ADM − PiP i . (41)

Remark 5. In the literature, references are found where the term ADM mass
actually refers to this length of the ADM 4-momentum and other references
where it refers to its time component, that we have named here as the ADM
energy. These differences somehow reflect traditional usages in Special Rel-
ativity where the term mass is sometimes reserved to refer to the Poincaré
invariant (rest-mass) quantity, and in other occasions is used to denote the
boost-dependent time component of the energy-momentum.
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The ADM mass is a time independent quantity. Time evolution is generated
by the Hamiltonian in expression (26). The time variation of a given quantity
F defined on the phase space is expressed as the sum of its Poisson bracket
with the Hamiltonian (accounting for the implicit time dependence through
the time variation of the phase space variables) and the partial derivative
of F with respect to time. Since in expression (26) there is no explicit time
dependence, constancy of the ADM mass follows:

d

dt
MADM = 0 . (42)

As a consequence of this, the ADM mass is a property of the whole (asymp-
totically flat) spacetime.

Remark 6 (Relation between ADM and Komar masses). Komar mass is de-
fined only in the presence of a time-like Killing vector kµ. However, in the
asymptotically flat case we can discuss the relation between the ADM energy
and the Komar mass associated with an asymptotic inertial observer. Though
the relation is not straightforward from explicit expressions (18) and (30), it
can be shown [24, 25] that, for any foliation {Σt} such that the associated
unit normal nµ coincides with the time-like Killing vector kµ at infinity (i.e.
N → 1 and βi → 0) we have

MK =MADM . (43)

As a practical application, this relation has been used as a quasi-equilibrium
condition in the construction of initial data for compact objects in quasi-
circular orbits (e.g. [26]).

Positivity of the ADM mass.

One of the most important results in General Relativity is the proof of the
positivity of the ADM mass under appropriate energy conditions for the mat-
ter energy-momentum tensor. This is important first on conceptual grounds,
since it represents a crucial test of the internal consistency of the theory. A vi-
olation of this result would evidence an essential instability of the solutions of
the theory. It is also relevant on a practical level, since this theorem (and/or
related results) pervades the everyday practice of (mathematical) relativists.

The theorem states that, under the dominant energy condition, the ADM
mass cannot be negative, i.e. MADM ≥ 0. Moreover, MADM = 0 if and only
if the spacetime is Minkowski. This result was first obtained by Schoen and
Yau [27, 28] and then recovered using spinorial techniques by Witten [29].

The dominant energy condition essentially states that the local energy
measured by a causal observer is always positive, and that the flow of energy
associated with this observer cannot travel faster than light. More precisely,
given a future-directed time-like vector vµ, this conditions states that the
vector −T µ

νv
ν is a future-oriented causal vector. Vector −T µ

νv
ν represents
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the energy-momentum 4-current density as seen by the observer associated
with vµ, in an analogous decomposition to that in (12). From the dominant
energy condition it follows E := Tµνv

µvν ≥ 0, i.e. the local density cannot
be negative (weak energy condition) and, more generally, E ≥

√
P iPi.

ADM angular momentum

Pushing forward the strategy followed for defining the ADM mass and linear
momentum, one would attempt to introduce total angular momentum as the
conserved quantity associated with rotations at spatial infinity. More specif-
ically, in the Cartesian-type coordinates used for characterising asymptoti-
cally Euclidean slices (19), infinitesimal generators (φi)i∈{1,2,3} for rotations
around the three spatial axes are

φx = −z∂y + y∂z , φy = −x∂z + z∂x , φz = −y∂x + x∂y , (44)

which constitute Killing symmetries of the asymptotically flat metric. When
using the associated lapse functions and shift vectors in the Hamiltonian ex-
pression (28), namely N = 0 and βi

(φj)
= (φj)

i, the following three quantities

result

Ji :=
1

8π
lim

S(t,r→∞)

∮

St

(Kjk −Kγjk) (φi)
j sk

√
q d2x, i ∈ {1, 2, 3} . (45)

However, the interpretation of Ji as the components of an angular momentum
faces two problems:

1. First, asymptotic fall-off conditions (19) are not sufficient to guarantee
the finiteness of expressions (45).

2. Second, in contrast with the linear momentum case, the quantity (Ji) =
(J1, J2, J3) does not transform appropriately under transformations (20)
preserving (19). This can be tracked to the existence of supertranslations.
In particular, the so-defined angular-momentum vector (Ji) depends non-
covariantly on the particular coordinates we have chosen.

For this reason, it is not appropriate to refer to an ADM angular momentum
in the same sense that we use the ADM term for mass and linear momen-
tum quantities. A manner of removing the above-commented ambiguities
consists in identifying an appropriate subclass of Cartesian-type coordinates
where, first, the Ji components are finite and, second, they transform as the
components of a linear form. Among the different strategies proposed in the
literature, we comment here on the one proposed by York [30] in terms of
further conditions on the conformal metric γ̃ij introduced in (32) and the
trace of the extrinsic curvature K. Namely

∂γ̃ij
∂xj

= O(r−3) , K = O(r−3) , (46)
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representing asymptotic gauge conditions. That is, they actually impose re-
strictions on the choice of coordinates but not on the geometric properties of
spacetime at spatial infinity. First condition in (46) is known as the quasi-
isotropic gauge, whereas the second one is referred to as the asymptotic max-
imal gauge.

Remark 7. Note that, in contrast with the total angular momentum defined
at spatial infinity, no ambiguity shows up in the definition of the Komar
angular momentum in Eq. (17).

3.4 Bondi energy and linear momentum

We could introduce Bondi (or Trautman-Bondi-Sachs) energy at null infinity
following the same approach we have employed for the ADM energy, i.e. by
taking the appropriate limit of (28) with N = 1 and βi = 0. In the present
case, instead of keeping t constant and making r → ∞ as we did in (29),
we should introduce retarded and advanced time coordinates (respectively,
u = t− r and v = t+ r) and consider the limit

EBS := − 1

8π
lim

S(u,v→∞)

∮

Su

(H −H0)
√
q d2x . (47)

The full discussion of this limit would require the introduction of the ap-
propriate fall-off conditions for the metric components in a special class of
coordinate system adapted to null infinity (Bondi coordinates). This is in the
spirit of the original discussion on the energy flux of gravitational radiation
from an isolated system by Bondi, Van der Burg and Metzner [31], and Sachs
[32]. However, aiming at providing some flavour of the geometric approach
to asymptotic flatness, we rather outline here a discussion in the setting of
the conformal compactification approach.

Null infinity

A smooth spacetime (M, g) is asymptotically simple [33] (see e.g. also [21]) if
there exists another (unphysical) smooth Lorentz manifold (M̃, g̃) such that:

i) M is an open submanifold of M̃ with (smooth) boundary ∂M̃.
ii) There is a smooth scalar field Ω on M̃, such that: Ω > 0, g̃µν = Ω2gµν

on M, and Ω = 0, ∂µΩ 6= 0 on ∂M̃.

iii) Every null geodesic in M begins and ends on ∂M̃.

An asymptotically simple spacetime is asymptotically flat (at null infinity) if,
in addition, Einstein vacuum equation is satisfied in a neighbourhood of ∂M̃
(or the energy-momentum decreases sufficiently fast in the matter case). In
this case the boundary ∂M̃ consists, at least, of a null hypersurface with two
connected components I = I

− ∪I
+, each one with topology S2 ×R (note

that in Minkowski ∂M̃ also contains the points i0, i±). Boundaries I − and
I + represent past and future null infinity, respectively.
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Symmetries at null infinity

In order to characterise a vector ξµ in M as an infinitesimal asymptotic
symmetry at (future) null infinity I +, we must assess the vanishing of Lξgµν
as one gets to I +. For this, we require first that ξµ, considered as a vector
field in the unphysical spacetime (i.e. under the immersion of M into M̃),
can be smoothly extended to I +. Then ξµ is characterised as an asymptotic
symmetry by demanding that Ω2Lξgµν can also be smoothly extended to
I + and vanishes there, that is

(

∇̃µξν + ∇̃νξµ − 2Ω−1ξρ∇̃ρΩ g̃µν

)∣

∣

∣

I +
= 0 . (48)

Two vector fields ξµ and ξ′µ are considered to generate the same infinites-
imal asymptotic symmetry if their extensions to I

+ coincide. The equiva-
lence class of such vector fields, that we will still denote by ξµ, generates the
asymptotic symmetry group at I +. This is known as the Bondi-Metzner-
Sachs (BMS) group and is universal in the sense that it is same for every
asymptotically flat spacetime. The BMS group is infinite-dimensional, as it
was the case of the Spi group at spatial infinity. It does not only contain the
Poincaré group, but actually is a semi-direct product of the Lorentz group
and the infinite-dimensional group of angle dependent supertranslations (see
details in e.g. [4]). The key point for the present discussion is that it possesses
a unique canonical set of asymptotic 4-translations characterised as the only
4-parameter subgroup of the supertranslations that is a normal subgroup of
the BMS group. This leads us to the Bondi-Sachs 4-momentum.

Bondi-Sachs 4-momentum

As mentioned above, the original introduction of the Bondi energy was based
in the identification of certain expansion coefficients in the line element of ra-
diative spacetimes in adapted (Bondi) coordinates [31]. A Hamiltonian anal-
ysis, counterpart of the approach adopted in section 3.3 for introducing the
ADM mass, can be found in [34]. Here we rather follow a construction based
on the Komar mass expression. Though Eq. (13) only defines a conserved
quantity for a Killing vector kµ, the vector fields ξµa (a ∈ {0, 1, 2, 3}) corre-
sponding to the 4-translations at I + get closer to an infinitesimal symmetry
as one approaches I +. Therefore, one can expect that a Komar-like expres-
sion makes sense for a given cross-section Su of I +. This is indeed the case
and the evaluation of the integral does not depend on how we get to Su.
However, the integral does depend on the representative ξµ in the class of
vectors corresponding to the asymptotic symmetry. This is cured by imposing
a divergence-free condition on ξµ [35]. Bondi-Sachs 4-momentum at Su ⊂ I +

is then defined as

PBS
a := − 1

8π
lim

(S→Su)

∮

S

∇µξνadSµν , ∇µξ
µ
a = 0 . (49)
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Alternatively, ambiguities in the Komar integral can be solved by dropping
the condition on the divergence and adding a term α∇µξ

µ
a to the surface

integral. When α = 1 the resulting integral is called the linkage [36]. The
discussion of Bondi-Sachs angular momentum is more delicate. We refer the
reader to the discussion in section 3.2.4 of [1].

Bondi energy and positivity of gravitational radiation energy

Bondi energy EBS (the zero component of the Bondi-Sachs 4-momentum) is
a decreasing function of the retarded time. More concretely, Bondi energy
satisfies a loss equation

dEBS

du
= −

∫

Su

F
√
q d2x , (50)

where F ≥ 0 can be expressed in terms of the squares of the so-called news
functions. In [25] it is shown that, if the news tensor satisfies the appropriate
conditions, then Bondi mass coincides initially with the ADM mass. Bondi
energy is interpreted as the remaining of the ADM energy in the process of
energy extraction by gravitational radiation. As for the ADM mass, a pos-
itivity result holds for the Bondi mass [37, 38]. These properties constitute
the underlying conceptual/structural justification of our understanding of en-
ergy radiation by gravitational waves: gravitational radiation carries positive
energy away from isolated radiating systems, and the total radiated energy
cannot be bigger than the original total ADM energy.

4 Notions of mass for bounded regions: quasi-local

masses

As commented in section 1.2, the convenience of associating energy-momentum
with the gravitational field in given regions of the spacetime is manifest in
very different contexts of gravity physics. More specifically, mathematical
and numerical General Relativity or approaches to Quantum Gravity pro-
vide examples where we need to associate such an energy-momentum with a
finite region of spacetime. This can be either motivated by the need to de-
fine appropriate physical/astrophysical quantities, or by the convenience of
finding quasi-local quantities with certain desirable mathematical properties
(e.g. positivity, monotonicity...) in the study of a specific problem.

There exist many different approaches for introducing quasi-local pre-
scriptions for the mass and angular momentum. Some of them can be seen
as quasi-localizations of successful notions for the physical parameters of the
total system, such as the ADM mass, whereas other attempts constitute gen-
uine ab initio methodological constructions, mainly based on Lagrangian or
Hamiltonian approaches. An important drawback of most of them in the con-
text of the present article is that, typically, they involve constructions that
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are difficult to capture in short mathematical definitions without losing the
underlying physical/geometrical insights. An excellent and comprehensive re-
view is reference [1] by Szabados.

Ingredients in the quasi-local constructions.

First, the relevant bounded spacetime domain must be identified. Typically,
these are compact space-like domains D with a boundary given by a closed
2-surface S. Explicit expressions, such as relevant associated integrals, are
formulated in terms of either the (3-dimensional) domain D itself or on its
boundary S. In particular, conserved-current strategies permit to pass from
the 3-volume integral to a conserved-charge-like 2-surface integral. In other
cases, 2-surface integrals are a consequence of the need of including boundary
terms for having a correct variational formulation (as it was the case in the
Hamiltonian formulation of section 3.3).

We have already presented an example of quasi-local quantity in sec-
tion 2, namely the Komar quantities. Since symmetries will be absent in the
generic case, an important ingredient in most quasi-local constructions is the
prescription of some vector field that plays the role that infinitesimal symme-
tries had played in case of being present. In connection with this, one usually
needs to introduce some background structure that can be interpreted as a
kind of gauge choice.

Finally, different plausibility criteria for the assessment of the proposed
quasi-local expressions (e.g. positivity, monotonicity, recovery of known lim-
its...) need to be considered (see [1]).

4.1 Some relevant quasi-local masses

Round spheres. Misner-Sharp energy

In some special situations, as it is the case of isolated systems above and
some exact solutions, there is agreement on the form of the gravitational field
energy-momentum. Another interesting case is that of spherically symmetric
spacetimes, where the rotation group SO(3) acts transitively as an isometry.
Orbits under this rotation group are round spheres S. Then, using the areal
radius rA as a coordinate (4πr2A = A), an appropriate notion of mass/energy
was given by Misner and Sharp [39]

E(S) := 1

8
r3ARµνρσ

2ǫµν 2ǫρσ , (51)

where 2ǫµν = nρsσ4ǫρσµν (cf. section 1.3) is the volume element on S. This
expression is related to the so-called Kodama vector Kµ, that can be defined
in spherically symmetric spacetimes and such that ∇µ(G

µνKν) = 0. The
current Sµ = GµνKν is thus conserved and, taking D as a solid ball of radius
rA, the flux of Sµ through the round boundary ∂D actually equals the change
in time of the mass expresion (51). Misner-Sharp proposal is considered as
the standard form of quasi-local mass for round spheres.
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Brown-York energy

The rationale of the approach in Ref. [40] to quasi-local energy strongly
relies on the well-posedness of a variational problem for the gravitational
action. The adopted variational formulation is essentially the one outlined in
section 3.3 (where the discussion was in fact based in the treatment in [3]
adapted from [40]). However, if the main interest is placed in the expressions
of quasi-local parameters and not in the details of the symplectic geometry
of the system phase space, a full Hamiltonian analysis does not need to be
undertaken and one can rather follow a Hamilton-Jacobi one. The latter
starts from action (21) defined on the spacetime domain V . We recall that
the boundary ∂V is given by two space-like hypersurfaces Σ1 and Σ2 and
a time-like tube B, such that the 2-spheres Si are the intersections between
Σi and B. The metric and extrinsic curvatures on Σi are given by γµν and
Kµν , whereas those on B are denoted by χµν and Pµν . A Hamilton-Jacobi
principal function can then be introduced by evaluating the action S on
classical trajectories. An arbitrary function S0 of the data on the boundaries
can be added to S [it is the responsible of the reference terms with subindex
0 in expression (21)]. The principal function is given by SCl :=

(

S − S0
)

|Cl

and Hamilton-Jacobi equations are obtained from its variation with respect
to the data at the final slice Σ2. One of the Hamilton-Jacobi equations leads
to the definition of a surface stress-energy-momentum tensor as

τµν :=
−2√−χ

δSCl

δχµν
=

1

8π
{(Pχµν − Pµν)− (P0χ

µν − Pµν
0 )} . (52)

This tensor satisfies a conservation-like equation with a source given in terms
of the matter energy-momentum tensor T µν . This motivates the definition of
the charge QS(ξ

µ) associated with a vector ξµ as

QS(ξ
µ) :=

∮

S

ξρτ
ρνnν

√
q d2x , (53)

whose change along the tube B is given by a matter flux. This expression is
analogous to (1) in the matter case (here S ⊂ B and nµ is the time-like unit
normal to S and tangent to B).

Using the 2+1 decomposition induced by a 3+1 space-like slicing {Σt},
we can decompose the tensor τµν as we did for the matter energy-momentum
tensor T µν in Eq. (12). Writing explicitly the time-like components, it results

ε := nµnντ
µν = − 1

8π
(H −H0) ,

jµ := −qµνnρτ
νρ =

1

8π
qµνsρ (Kγνρ −Kνρ)|Cl

0 . (54)

Expressing the vector ξµ in the 3+1 decomposition ξµ = ξnµ + ξµ⊥ and con-
sidering a 2-surface S lying in a slice of {Σt}, we have
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QS(ξ
µ) =

∮

S

ξρτ
ρνnν

√
q d2x =

∮

S

(ξε− ξρ⊥jρ)
√
q d2x . (55)

The Brown-York energy is then [cf. with the ADM mass expression (41)]

EBY(S, nµ) := QS(n
µ) = − 1

8π

∮

S

(H −H0)
√
q d2x . (56)

Note that this expression explicitly depends on the manner in which S is
inserted in some space-like 3-slice. In this sense, it corresponds to an energy
(depending on a boost) rather than a mass.

Kijowski, Epp, Liu-Yau and Kijowski-Liu-Yau expressions

We briefly comment on some expressions that can be related to the Brown-
York energy. Studying more general boundary conditions than the ones in
[40], Kijowski proposed the following quasi-local expression for the mass [41]

EKij :=
1

16π

∮

S

(H0)
2 − (H2 − L2)

H0

√
q d2x , (57)

where H = Hµνq
µν and L = Lµνq

µν are the traces of the extrinsic curvatures
of S with respect to unit orthogonal space-like sµ and time-like nµ vectors,
i.e. nµsµ = 0 (cf. notation in section 1.3). Apart from the choice of the
background terms H0, this expression only depends on S, and not in the
manner of embedding it into some space-like hypersurface. Using a different
set of boundary conditions, another quasi-local quantity was introduced by
Kijowski (referred to as a free energy). The same quantity was later derived
by Liu and Yau, using a different approach [42]. We will refer to the resulting
quasi-local energy as the Kijowski-Liu-Yau energy, having the form

EKLY :=
1

8π

∮

S

(

H0 −
√

H2 − L2
)

. (58)

On the other hand, aiming at removing the dependence of Brown-York en-
ergy on the space-like hypersurface, Epp [43] proposed the following boost-
invariant expression

EE :=
1

8π

∮

S

(

√

(H0)2 − (L0)2 −
√

H2 − L2
)

. (59)

Note that Brown-York energy can be seen as a gravitational field version
of the quasi-local matter energy (6), whereas Epp’s expression rather corre-
sponds to the matter mass (7). For further recent work along this approach
to quasi-local mass, see [44, 45].
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Hawking, Geroch and Hayward energies

Hawking energy.

Given a topological sphere S, its Hawking energy is defined as [46]

EH(S) =
√

A(S)
16π

(

1 +
1

8π

∮

S

θ+θ−

)√
q d2x , (60)

where θ+ = qµνΘ
(ℓ)
µν and θ− = qµνΘ

(k)
µν are the expansions associated with

outgoing and ingoing null normals (cf. notation in section 1.3). It can be
motivated by understanding the mass surrounded by the 2-sphere S as an
estimate of the bending of ingoing at outgoing light rays from S. An average,
boost-independent measure of this convergence-divergence behaviour of light
rays is given by

∮

S θ+θ−
2ǫ. Then, from the Ansatz A + B

∮

S θ+θ−
2ǫ, the

constants A and B are fixed from round spheres in Minkowski and from the
horizon sections in Schwarzschild spacetime.

Hawking energy depends only on the surface S and not on any particular
embedding of it in a space-like hypersurface. In the spherically symmetric case
it recovers the standard Misner-Sharp energy (51). For apparent horizons, or
more generally for marginally trapped surfaces, it reduces to the irreducible
mass accounting for the energy that cannot be extracted from a black hole
by a Penrose process and that is given entirely in terms of the area. Hawking
energy does not satisfy a positivity criterion, since it can be negative even
in Minkowski spacetime. However, for large spheres approaching null infinity,
EH(S) recovers Bondi-Sachs energy, whereas for spheres approaching spatial
infinity it tends to the ADM energy. Though it is not monotonic in the
generic case, monotonicity can be proved for sequences of spheres obtained
from appropriate geometric flows. This has a direct interest for the extension
of Huisken & Ilmanen proof [47] of the Riemaniann Penrose inequality to the
general case.

Geroch energy.

For a surface S embedded in a space-like hypersurface Σ, Geroch energy [48]
is defined as

EG(S) :=
1

16π

√

A(S)
16π

∮

S

(

2 2R−H2
)√

q d2x , (61)

where H is again the trace of the extrinsic curvature of S inside Σ. Geroch
energy is never larger than Hawking energy, but it can be proved that it also
tends to the ADM mass for spheres approaching spatial infinity.

The relevance of Geroch energy lies on its key role in the first proof of
the Riemaniann Penrose, by Huisken & Ilmanen [47] (see also section 5.1). In
particular, use is made of the monotonicity properties of EG under an inverse
mean curvature flow in Σ.
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Hayward energy.

Some generalizations of Hawking energy exist. A vanishing expression for flat
spacetimes can be obtained by considering the modified expression

E′
H(S) =

√

A(S)
16π

(

1 +
1

8π

∮

S

θ+θ− − 1

2
σ+
µνσ

µν
−

)√
q d2x , (62)

where the shears σ+
µν and σ−

µν are the traceless parts of Θ
(ℓ)
µν and Θ

(k)
µν , respec-

tively. E′
H still asymptotes to the ADM energy at spatial infinity, but does not

recover Bondi-Sachs energy at null infinity (but rather Newman-Unti one; cf.
references in [1]). Related to this modified Hawking energy, Hayward has pro-
posed [49] another quasi-local energy expression by taking into account the
anholonomicity form Ωµ, one of the normal fundamental 1-forms introduced
in section 1.3

EHay(S) =
√

A(S)
16π

(

1 +
1

8π

∮

S

θ+θ− − 1

2
σ+
µνσ

µν
− − 2ΩµΩ

µ

)√
q d2x . (63)

Though the divergence-free part of Ωµ can be related to angular momentum
(see below), this 1-form is a gauge dependent object changing by a total
differential under a boost transformation. Therefore, some natural gauge for
fixing the boost freedom is needed.

Bartnik mass

Bartnik quasi-local mass is an example of quasi-localization of a global quan-
tity, in particular the ADM mass. In very rough terms, the idea in Bartnik’s
construction consists in defining the mass of a compact space-like 3-domain
D as the ADM mass of that asymptotically Euclidean slice Σ that contains
D without any other source of energy. The strategy to address this absence
of further energy is to consider all plausible extensions of D into Euclidean
slices, calculate the ADM mass for all them, and then consider the infimum
of this set of ADM masses. In more precise terms, let us consider a compact,
connected 3-hypersurfaceD in spacetime, with boundary S and induced met-
ric γij . Bartnik’s construction actually focuses on time-symmetric Kij = 0
domains D. Let us also assume that a dominant energy condition (though
the original formulation in [50] makes use of a weak-energy-constraint con-
dition) is satisfied. In a time-symmetric context this amounts to the posi-
tivity of the Ricci scalar, 3R ≥ 0. One can then define P(D) as the set of
Euclidean time-symmetric initial data sets (Σ, γij) satisfying the dominant
energy condition, with a single asymptotic end, finite ADM massMADM(Σ),
not containing horizons (minimal surfaces in this context) and extending D
through its boundary S. Then, Bartnik’s mass [50] is defined as

MB(D) := inf {MADM(Σ), such that Σ ∈ P(D)} . (64)
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The no-horizon condition is needed to avoid extensions (Σ, γij) with arbi-
trarily small ADM mass. There is also a spacetime version of Bartnik’s con-
struction, not relying on an initial data set on D but only on the geometry of
2-surfaces S. Let us define P(S) as the set of globally hyperbolic spacetimes
(M, gµν) satisfying the dominant energy condition, admitting an asymptoti-
cally Euclidean Cauchy hypersurfaceΣ with finite ADM mass, not presenting
an event horizon and such that S is embedded (i.e. both its intrinsic and ex-
trinsic geometry) in (M, gµν). Then, one defines

MB(S) := inf {MADM(M), such that M ∈ P(S)} . (65)

The comparison between MB(D) and MB(∂D) is not straightforward, due
to issues regarding the horizon characterisation. From the positivity of the
ADM mass it follows the non-negativity of the Bartnik massMB(D). In fact,
MB(D) = 0 characterises D as locally flat. From the definition (64) it also
follows the monotonicity ofMB(D), i.e. if D1 ⊂ D2 thenMB(D1) ≤MB(D2).
Bartnik mass tends to the ADM mass, as domains D tend to Euclidean slices
(the proof makes use of the Hawking energy introduced above). Another
interesting feature, consequence of the proof of the Riemannian Penrose con-
jecture [47], is that Bartnik mass reduces to the standard form E(S) in Eq.
(51) for round spheres. However, the explicit calculation of the Bartnik mass
is problematic. An approach to its practical computability is provided by
Bartnik’s conjecture stating that the infimum in (64) is actually a minimum
realised by an element in P(D) characterised by its stationarity outside D.
Further developments of these ideas have been proposed by Bray (cf. [51]).

4.2 Some remarks on quasi-local angular momentum

Spinorial techniques provide a natural setting for the discussion of angular
momentum. This does not only apply to angular momentum, since spino-
rial and also twistor techniques define a framework where further quasi-local
mass notions can be introduced (e.g. Penrose mass), and known results can
be reformulated in particularly powerful formulations (e.g. the discussion of
positive mass theorems using the Nester-Witten form). However, in this ar-
ticle we will not discuss these approaches and we refer the reader to the
relevant sections in Ref. [1]. We will focus on certain aspects of quasi-local
expressions for angular momentum of Komar-like type. As it was shown in
section 2.2, choosing a two-sphere S in a 3-slice adapted to the axial symme-
try φµ, a 1-form Lµ can be found such that the Komar angular momentum
is expressed as

J(φµ) =
1

8π

∮

S

Lνφ
ν√q d2x . (66)

In particular, in the Komar expression (18) we have Lµ = qµ
νKνρs

ρ, whereas
in the spatial infinity expression (45) this is modified by a term proportional
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to the trace K of the extrinsic curvature. The same applies for an angu-
lar momentum defined from the Brown-York charge (53) when plugging the
expression for jµ in (54) into (55), where φµ does not need to be a sym-
metry. The normal fundamental 1-forms Ωµ on S (cf. section 1.3) provide
another avenue to Lµ. In this section we assume the form (66) for the an-
gular momentum and comment on some approaches to the determination of
the (quasi-symmetry) axial vector φµ.

Divergence-free and quasi-Killing axial vectors

No ambiguity for φµ is present when an axial symmetry exists on S: φµ is
taken as the corresponding Killing vector. In the absence of such a symmetry,
we must address two issues. First, expression (66) depends on the space-like
3-slice in which S is embedded. This follows from the modification of the 1-
form Lµ by a total differential under a boost transformation: Lµ → Lµ+

2Dµf

(cf. boost/normalization transformation of Ω
(ℓ)
µ in section 1.3). Angular mo-

mentum can be associated with S, independently of any hypersurface Σ,
by demanding the axial vector to be divergence-free: 2Dµφ

µ = 0. Then, the
boost-induced modification vanishes under integration. Second, the physical
meaning of J(φµ) is unclear if references to a symmetry notion are completely
dropped. In this sense, different approaches exist aiming at defining appropri-
ate quasi-Killing notions. We simply mention here some recent works along
these lines. In the context of isolated horizons (see next subsection) a pre-
scription for the determination of a quasi-Killing axial vector on black hole
horizons has been proposed in [52], though the divergence-free character is
not guaranteed. Ref. [53] presents an approach for finding an approximate
Killing vector by means of a minimization variational prescription that re-
spects the divergence-free character of φµ. In the context of dynamical or
trapping horizons [54, 55, 56], a unique divergence-free vector φµ can be cho-
sen such that it is preserved by the unique slicing of the (space-like) horizon
worldtube by marginally outer trapped surfaces [57]. Also in the context of
dynamical horizons, a proposal for φµ has been made in [58] relying on a con-
formal decomposition of the metric qµν on S. See Ref. [59] for a discussion
of the divergence-free character of vector fields associated with quasi-local
observables on S.

Equation (66) only provides the expression for the component of the an-
gular momentum vector that is associated with the vector φµ. If we are inter-
ested in determining the total angular momentum vector, a sensible prescrip-
tion for the other two components is needed. This is an important practical
issue in numerical simulations (see e.g. [60]).

4.3 A study case: quasi-local mass of black hole isolated horizons

The need of introducing some additional structure has been discussed above
in different settings (e.g. symmetries for Komar quantities and asymptotic
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flatness for ADM and Bondi masses). We illustrate now this issue in a quasi-
local context related to equilibrium black hole horizons.

A brief review of isolated horizons

The isolated horizon framework introduced by Ashtekar and collaborators
[56] provides a quasi-local setting for characterising black hole horizons in
quasi-equilibrium inside an otherwise dynamical spacetime. It presents a hi-
erarchical structure with different quasi-equilibrium levels. The minimal no-
tion of quasi-equilibrium is provided by the so-called non-expanding horizons
(NEH). Given a Lorentzian manifold, a NEH is a hypersurface H such that:

i) H is a null hypersurface of topology S2 × R that is sliced by marginally
(outer) trapped surfaces, i.e. the expansion of the null congruence associ-

ated with the null generator ℓµ vanishes on H: θ(ℓ) = qµνΘ
(ℓ)
µν = 0.

ii) Einstein equation is satisfied on H.
iii) The vector −T µ

νℓ
ν is future directed.

The geometry of a NEH is characterised by the pair (qµν , ∇̂µ), where qµν is

the induced null metric on H and ∇̂µ is the unique connection (not a Levi-

Civita one) induced from the ambient spacetime connection. ∇̂µ characterises
the extrinsic geometry of the NEH. A certain combination of components in
∇̂µ can be put together to define an intrinsic object on H, namely the 1-form
ωµ characterised by

∇̂µℓ
ν = ωµℓ

ν . (67)

Defining a surface gravity as κ(ℓ) := ℓµωµ, the acceleration expression for

ℓµ is given by: ∇̂ℓℓ
µ = κ(ℓ)ℓ

µ. On the other hand, the projection of ωµ

on S recovers the fundamental normal 1-form: Ω
(ℓ)
µ = qµ

ρωρ. The quasi-
equilibrium hierarchy is introduced by demanding the invariance of the null
hypersurface geometry under the ℓµ (evolution) flow in a progressive manner:

1. A NEH is characterised by the time-invariance of the intrinsic geometry
qµν : LH

ℓ qµν = 0.
2. A weakly isolated horizon (WIH) is a NEH, together with an equiva-

lence class of null normals [ℓµ], for which the 1-form ωµ is time-invariant:
LH
ℓ ωµ = 0. This is equivalent to the (time and angular) constancy of the

surface gravity: ∇̂µκ(ℓ) = 0.
3. An isolated horizon (IH) is a WIH on which the whole extrinsic geometry

is time-invariant: [LH
ℓ , ∇̂µ] = 0.

The NEH and IH quasi-equilibrium levels represent genuine restrictions on
the geometry of H as a hypersurface in the ambient spacetime. On the con-
trary, a WIH structure can always be implemented on a NEH by an appro-
priate choice of the null normal ℓµ normalization. In this sense, a WIH does
not represent a higher level of quasi-equilibrium than a NEH. However, from
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the point of view of the Hamiltonian analysis of spacetimes with a black
hole in quasi-equilibrium as an inner boundary, the WIH notion proves to
be crucial for the correct definition of the phase space symplectic structure
and, more concretely, for the sound formulation of the quasi-local mass and
angular momentum of the horizon.

An overview of the Hamiltonian analysis of isolated horizons

Conserved quantities under horizon symmetries

As in the presentation of ADM quantities in section 3.3, mass and angular
momentum of isolated horizons are introduced as conserved quantities under
appropriate symmetries (see [61, 62] and the outline in Appendix C of [63] for
further details on the following discussion). One starts from a symmetry of the
horizon structure in the Lorentzian spacetime manifold and then constructs
an associated canonical transformation in the phase or solution space of the
system. The conserved quantity under this canonical transformation provides
the relevant physical quantity. In view of the variational problem (see below),
a WIH is the relevant horizon structure to be considered in this context. A
vector field Wµ preserves the WIH structure (Wµ is a WIH-symmetry) if

LH
W ℓµ = const · ℓµ , LH

W qµν = 0 , LH
Wωµ = 0 . (68)

WIH-symmetries are of the form Wµ = cW ℓµ+ bWS
µ, where cW and bW are

constants on H and Sµ is a Killing vector of any spatial section S of H.

Variational problem for spacetimes containing WIHs

In order to set up the Hamiltonian treatment, we need first to define a well-
posed variational problem. Here we are interested in the variational problem
for asymptotically flat spacetimes containing a WIH. We will furthermore
demand this WIH to contain an axial Killing vector φµ. The variational
problem is then set in the region contained between two asymptotically Eu-
clidean slices Σ− and Σ+, spatial infinity i

0 and the part of H between an
initial horizon slice S− = H∩Σ− and a final one S+ = H∩Σ+. The action,
as in Eq. (21), can be written [61, 62] as the sum of a bulk and a bound-
ary term at spatial infinity, and the variation of the dynamical fields is set
to vanish on the slices Σ− and Σ+. No boundary term associated with the
inner boundary H is introduced. The variational problem is well-posed, in
particular the Einstein equation is recovered, as long as the condition

∫

H

δω ∧ 2ǫ = 0 , (69)

holds, where ωµ has been introduced in (67) and 2ǫµν is the volume 2-form on
sections S of H. The crucial ingredient in the well-posedness of the problem
is precisely the WIH structure. This is the additional structure needed in
order to guarantee the vanishing of (69), so that the variational problem is
correctly posed and quasi-local quantities can be defined.
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Phase space, canonical transformations and physical quantities

The phase space is defined by the couple (Γ,J) where Γ is an infinite-
dimensional manifold where each point represents a solution to the Einstein
equation containing a WIH, and J is a symplectic form (a closed 2-form) on
Γ in terms of which the Poisson bracket is defined. In particular, a vector
field X on Γ generates a canonical transformation if it leaves the symplectic
form invariant: LΓ

XJ = 0. Using the closedness of J this is equivalent to the
exactness of the 1-form iXJ , i.e. to the (local) existence of a function HX

such that iXJ = δHX (where δ denotes the differential in Γ ). In particular,
the quantity HX defined on the phase space is preserved along the flow of X .
In this context, first, the symplectic form can be obtained from the action by
using the conserved symplectic current method [64] and, second, a vector field
XW on Γ can be constructed from a WIH-symmetry Wµ on H (cf. [61, 62]
for details). For the correct definition of a physical parameter associated with
a given WIH-symmetry Wµ, we must assess if the corresponding XW pre-
serves the canonical form, i.e. if iXW

J is locally exact. If this is the case, the
conserved quantity is simply read from the associated explicit expression of
the Hamiltonian HXW

. When this scheme is applied to the axial symmetry
φµ on H, the correspondingXφ turns out to be automatically an infinitesimal
canonical transformation and the conserved quantity has the form

JH := Xφ =
1

8π

∮

St

ωµφ
µ√q d2x =

1

8π

∮

St

Ω(ℓ)
µ φµ

√
q d2x , (70)

where St is any spatial section ofH. This prescription for JH exactly coincides
with the Komar expression (18). The mass discussion is more subtle. In this
case the WIH-symmetry tµ associated with time evolution is chosen as an
appropriate linear combination of the null normal ℓµ and the axial vector φµ.
It is then found

iXt
J = δEADM −

(κ(t)

8π
δAH +Ω(t) δJH

)

, (71)

where κ(t) and Ω(t) are functions on Γ and AH and JH correspond, respec-
tively, to the area of any section of H and to the horizon angular momentum
in (70). The right-hand-side expression is (locally) exact if functions κ(t) and

Ω(t) depend only on AH and JH, and satisfy:
∂κ(t)

∂JH
= 8π

∂Ω(t)

∂AH
. A function Et

H

only depending on AH and JH then exists, such that we can write

δEt
H =

κ(t)(AH, JH)

8π
δAH +Ω(t)(AH, JH) δJH . (72)

To finally determine the quasi-local massMH, the functional form ofEt
H(AH, JH)

is normalized to the one in the stationary Kerr family in Γ . Note that this is
only justified once Et

H has been shown to depend only on AH and JH, a non-
trivial result. In sum, for isolated horizons MH(AH, JH) := MKerr(AH, JH),
given by the Christodoulou mass expression [65].
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Remark 8 (Quasi-local first law of black hole dynamics). Expression (72) ex-
tends the first law of black hole dynamics (see section 5.2) from the stationary
setting to dynamical spacetimes where only the black hole horizon is in equi-
librium.

5 Global and quasi-local quantities in black hole physics

As an application, we briefly comment on some relevant issues concerning
mass and angular momentum in the particular case of black hole spacetimes.

5.1 Penrose inequality: a claim for an improved mass positivity
result for black holes

In the context of the established gravitational collapse picture, Penrose [16]
proposed an inequality providing an upper bound for the area of the spatial
sections of black hole event horizons in terms of the square of the ADM mass.
This conjecture followed from a heuristic chain of arguments including rigor-
ous results (singularity and black hole uniqueness theorems), together with
conjectures such as weak cosmic censorship and the stationarity of the final
state of the evolution of a black hole spacetime. A local-in-time version of the
Penrose inequality can be formulated in terms of data on a Euclidean slice.
In this version Penrose conjecture states that, given an asymptotically Eu-
clidean slice Σ containing a black hole under the dominant energy condition,
the following inequality should be satisfied

Amin ≤ 16πM2
ADM , (73)

where Amin is the minimal area enclosing the apparent horizon. In addition,
equality is only attained by a slice of Schwarzschild spacetime. Though this
was originally proposed in an attempt to construct counter-examples to the
weak cosmic censorship conjecture, growing evidence has accumulated sup-
porting its generic validity. Beyond spherical symmetry [66], a formal proof
only exists in the Riemannian case, Kµν = 0, where the original derivation
[47] (see also [67]) makes use of some of the quasi-local expressions presented
in section 4 (cf. discussion about Geroch and Hawking energies, that coincide
in this time-symmetric case Kµν = 0). The intrinsic geometric relevance of
the Penrose inequality is reflected in its alternative name as the isoperimetric
inequality for black holes [68].

Penrose inequality can also be seen as strengthening the positive ADM
mass theorem in section 3.3, for the case of black hole spacetimes: the ADM
mass is not only positive but must be larger than a certain positive-definite
quantity. Though it is tempting to identify this positive quantity with some
quasi-local mass associated with the black hole, e.g. with its irreducible mass
A =: 16πM2

irr related to the Hawking mass (60), a caveat follows from the
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fact that the relevant minimal surface of area Amin does not necessarily co-
incide with the apparent horizon, as examples in [69] show. In any case, this
geometric inequality represents a bridge between global and quasi-local prop-
erties in black hole spacetimes and has become one of the current geometric
and physical/conceptual main challenges in General Relativity.

5.2 Black hole (thermo-)dynamics

A set of four laws was established in [70] for stationary black holes. These
black hole laws are analogous in form to the standard thermodynamical laws.
Though this analogy is compelling, the fundamental nature of such relation
was only acknowledged under the light of Hawking’s discovery [71] of the
(semiclassical) thermal emission of particles from the event horizon (Hawking
radiation). Given a stationary black hole spacetime with stationary Killing
vector tµ, black hole rigidity theorems [72] imply the existence of a second
Killing vector kµ that coincides with the null generators ℓµ on the horizon.
We can write kµ = tµ +ΩHφ

µ, where φµ is an axial Killing vector and ΩH is
a constant referred to as the angular velocity of the horizon (see also [4]). We
can write kν∇νk

µ = κkµ on the horizon, which defines the surface gravity
function κ. The zeroth law of black hole mechanics then states the constancy
of the surface gravity on the event horizon. The second law, namely Hawking’s
area theorem [73, 74], guarantees that the area of the event horizon never
decreases, whereas the third law states that the surface gravity κ cannot be
reduced to zero in a finite (advanced) time (see [75] for a precise statement).
In the present context, we are particularly interested in the first law, since
it relates the variations of some of the quasi-local and global quantities we
have introduced in the text, in the particular black hole context. First law
provides an expression for the change of the total massM of the black hole (a
well-defined notion since we deal with asymptotically flat spacetimes) under
a small stationary and axisymmetric change in the solution space

δM =
1

8π
κδA+ ΩHJH , (74)

where A is the area of a spatial section of the horizon, and JH is the Komar
angular momentum associated with the axial Killing φµ. Equation (74) re-
lates the variation of a global quantity M =MADM at spatial infinity on the
left-hand-side, to the variation of quantities locally defined at the horizon,
on the right-hand-side. In particular, we could express the variation of the
horizon area in terms of the variation of the irreducible local mass Mirr, as
δA = 32πMirrδMirr. Such a formulation actually plays a role in the criterion
for constructing sequences of binary black hole initial data corresponding to
quasi-circular adiabatic inspirals (cf. [26] and the first law of binary black
holes in [76]). Derivation of (74) involves the notions of ADM mass, as well
as the generalization to stationarity of the Smarr formula for Kerr mass [stat-
ing M = 2ΩHJH + κA/(4π)] by using the Komar mass expression. Result
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(72) in section 4.3 provides an extension of this law to black hole spacetimes
non-necessarily stationary, but containing an isolated horizon for which an
unambiguous notion of black hole mass can be introduced. Quasi-local at-
tempts to extend the first law to the fully dynamical case have been explored
in the dynamical and trapping horizon framework [54, 55, 56, 77]. However,
the lack of a general unambiguous notion of quasi-local mass prevents the
derivation of a result analogous to (74) or (72), i.e. the equality between
the variation of two independent well-defined quantities. In the quasi-local
dynamical context, an unambiguous law for the area evolution can be deter-
mined (see e.g. [78, 79] and references therein). The latter can then be used
to define a flux of energy through the horizon by comparison with (74).

5.3 Black hole extremality: a mass-angular momentum inequality

Subextremal Kerr black holes are characterised by presenting angular mo-
menta bounded by their total masses. Keeping axisymmetry, it has been
recently shown [80, 81, 82] (see also [83]) that the inequality

|JK| ≤M2
ADM , (75)

holds also for vacuum, maximal (K=0), axisymmetric Euclidean data. More-
over, equality only holds for slices of extremal Kerr. Inequality (75) provides
a non-trivial relation for black hole spacetimes between precisely the two
physical quantities we are focusing on in this review. It is natural to explore
if some analogous inequality holds when moving away from axisymmetry and
when considering only the local region around the black hole. Attempts have
been done in this sense, but they all must face the ambiguities resulting from
the absence of canonical expressions for quasi-local masses and angular mo-
menta. In order to illustrate the caveats to keep in mind when undertaking
this kind of discussion, one can consider the case in which Komar quantities
are used for constructing a truly quasi-local analogue of expression (75) for
axisymmetric stationary data: initial data have been constructed [84] where
the quotient |JK|/M2

K on the black hole horizon can become arbitrarily large.
Interestingly, these studies have led to the formulation [85] in axisymmetry of
the related conjecture 8π|JK| ≤ A, only involving intrinsic quantities on the
horizon. This inequality has been proved to hold in the stationary axisym-
metric case [86], as well as in a generalization including the electromagnetic
field and the associated electric charge on the horizon [87].

6 Conclusions

The problem of characterising the energy-momentum and angular momentum
associated with the gravitational field in General Relativity has been present
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since the birth of the theory and controversies have plagued its already long-
standing history. Understanding that no local density of energy-momentum
can be identified for the gravitational field has challenged the validity of
the mass and angular momentum cherished notions from non-gravitational
physics, when trying to perform a straightforward extension of these concepts
to the gravitational field in a general relativistic setting.

The study of specific problems suggests concrete and/or partial solutions.
In this spirit, at low velocities and weak self-gravities post-Newtonian ap-
proaches handle consistent notions of mass and angular momentum and the
same holds in perturbative approaches around exact solutions, for which
physical quantities can be identified unambiguously. In the same line, a
(quasi-local) notion of the energy carried by a gravitational wave can be
introduced as an average along the wavelength, proving to provide a use-
ful notion in practical applications. A particular setting of singular concep-
tual importance is that of isolated systems in General Relativity, specifically
through their characterisation as asymptotically flat spacetimes. The notions
of total ADM and Bondi-Sachs energy-momentum provide well-defined quan-
tities that, on the one hand, have clarified important conceptual issues such
as the capability of gravitational waves to actually carry energy away from
a system and, on the other hand, they also represent inestimable tools in
practical applications due to their intrinsic/geometric character. Positivity
theorems for the total mass represent without any doubt some of the most
important and profound results in General Relativity. The combination of the
success in isolated systems, together with the absence of a gravitational local
energy-momentum density, has led to the consideration that the whole effort
for the search of a local expression for the gravitational energy represents an
ill-posed or pseudo-problem (see e.g. [11]). But at the same time, and mo-
tivated by practical needs and/or fundamental physical reasons (cf. in this
sense [88] for a related discussion on quasi-local issues regarding observables
in Quantum Field Theory), important efforts have been devoted to the intro-
duction of quasi-local notions of gravitational energy-momentum associated
with extended but finite regions of the spacetime. In this respect, significant
insights into the structure of the gravitational field have been achieved, with
applications in diverse conceptual and practical contexts. But it must be ac-
knowledged, as it is referred in [1], that the status of the quasi-local mass
studies is in a kind of post-modern situation in which the devoted intensive
efforts have resulted in a plethora of proposals with no obvious definitive and
entirely satisfying candidate.

A moderate (intermediate) position that avoids radical skepticism against
the quasi-local approach would consist in assuming that mass and (in a more
restricted sense) angular momentum can be unambiguously defined only as
global quantities for isolated systems. But accepting, at the same time, that
quasi-local expressions provide meaningful and insightful quantities that are
inextricably subject to the need of making systematically explicit the specific
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setting in which they are defined (one can make the analogy with the notion
of effective mass in solid state physics, where different masses can be simulta-
neously employed for the same particle as long as their specific purposes are
clearly stated3). The moral of the whole discussion in this article is that the
formulation of meaningful global or quasi-local mass and angular momentum
notions in General Relativity always needs the introduction of some addi-
tional structure in the form of symmetries, quasi-symmetries or some other
background structure. This point must be explicitly kept in mind whenever
employing the so-defined physical quantities, specially when extrapolating or
performing compared analysis.
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H. Friedrich (eds.) The Einstein Equations and the Large Scale behavior of
Gravitational Fields, p. 39. Bikhäuser, Basel (2004)
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64. Crnković, C., Witten, E.: Covariant description of canonical formalism in ge-
ometrical thoeries. In: S. Hawking, W. Israel (eds.) Three Hundred Years of
Gravitation. Cambridge University Press, Cambridge (1987)

65. Christodoulou, D.: Reversible and irreversible transformations in black-
hole physics. Phys. Rev. Lett. 25(22), 1596–1597 (1970). DOI
10.1103/PhysRevLett.25.1596

66. Malec, E., O’Murchadha, N.: Trapped surfaces and the penrose inequality in
spherically symmetric geometries. Phys. Rev. D 49(12), 6931–6934 (1994).
DOI 10.1103/PhysRevD.49.6931

67. Bray, H.: Proof of the riemannian penrose conjecture using the positive mass
theorem. J. Diff. Geom. 59, 177 (2001)

68. Gibbons, G.: The isoperimetric and bogomolny inequalities for black holes.
In: T. Willmore, N. Hitchin (eds.) Global Riemannian Geometry, pp. 194–202.
Ellis Horwood; Halsted Press, Chichester, U.K.; New York, U.S.A. (1984)

69. Ben-Dov, I.: The penrose inequality and apparent horizons. Phys. Rev. D70,
124,031 (2004)

70. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole me-
chanics. Commun. Math. Phys. 31, 161 (1973)

71. Hawking, S.W.: Particle Creation by Black Holes. Commun. Math. Phys. 43,
199–220 (1975). DOI 10.1007/BF02345020

72. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cam-
bridge University Press (1973)

73. Hawking, S.W.: Gravitational radiation from colliding black holes. Phys. Rev.
Lett. 26(21), 1344–1346 (1971). DOI 10.1103/PhysRevLett.26.1344

74. Hawking, S.W.: Black holes in general relativity. Commun. Math. Phys. 25,
152–166 (1972)

75. Israel, W.: Third law of black-hole dynamics: A formulation and proof. Phys.
Rev. Lett. 57(4), 397–399 (1986). DOI 10.1103/PhysRevLett.57.397

76. Friedman, J.L., Uryu, K., Shibata, M.: Thermodynamics of binary black
holes and neutron stars. Phys. Rev. D65, 064,035 (2002). DOI
10.1103/PhysRevD.65.064035

77. Booth, I., Fairhurst, S.: The first law for slowly evolving horizons. Phys. Rev.
Lett. 92, 011,102 (2004)

78. Gourgoulhon, E., Jaramillo, J.L.: Area evolution, bulk viscosity and entropy
principles for dynamical horizons. Phys. Rev. D74, 087,502 (2006)

79. Booth, I., Fairhurst, S.: Isolated, slowly evolving, and dynamical trapping hori-
zons: geometry and mechanics from surface deformations. Phys. Rev. D75,
084,019 (2007)

80. Dain, S.: Angular-momentum-mass inequality for axisymmetric black holes.
Phys. Rev. Lett. 96, 101,101 (2006)
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