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Multidimensional world, in�ation and modern aelerationK.A. BronnikovCenter for Gravitation and Fundamental Metrology, VNIIMS, 46 Ozyornaya St.,Mosow 119361, Russia; Institute of Gravitation and Cosmology,PFUR, 6 Miklukho-Maklaya St., Mosow 117198, RussiaS.G. RubinNational Researh Nulear University �MEPhI�, 31 Kashirskoe Sh., Mosow 115409, RussiaI.V. SvadkovskyNational Researh Nulear University �MEPhI�, 31 Kashirskoe Sh., Mosow 115409, RussiaStarting from pure multidimensional gravity with urvature-nonlinear terms but no matter �eldsin the initial ation, we obtain a osmologial model with two e�etive salar �elds related to thesize of two extra fator spaes. The model inludes both an early in�ationary stage and that ofmodern aelerated expansion and satis�es the observational data. There are no small parameters;the e�etive in�aton mass depends on the initial onditions whih explain its small value as omparedto the Plank mass. At the modern stage, the size of extra dimensions slowly inreases, thereforethis model predits drasti hanges in the physial laws of our Universe in the remote future.PACS numbers: 04.50.+h; 98.80.-k; 98.80.CqI. INTRODUCTIONThe existene of an early in�ationary stage has beomea onventional feature in modern desriptions of theUniverse due to great suess of in�ationary senariosin explaining the observational data (see, e.g., [1, 2℄for reent reviews). A great number of in�ationarysenarios have been suggested by now, and this numberis still rapidly growing. It is really di�ult to singleout a senario that has been indeed realized by Nature.Another problem is related to the origin of the salar�eld (or �elds), the so-alled in�aton(s), whih are almostinevitable ingredients of suh senarios.On the other hand, the most important set of problemsin modern osmology are related to the observedaelerated expansion of the Universe. Its most popularexplanation, �tting all observational onstraints, is theso-alled ΛCDMmodel, invoking a osmologial onstant
Λ as a material soure that auses the aeleratedexpansion via the Einstein equations [3℄. However, thehardest problem of this model is the extremely smallobserved value of Λ (usually asribed to the physialvauum density) as ompared to the Plank density, thenatural vauum energy density of quantum �elds: theorresponding ratio is about 10−123 .Of greatest interest are senarios that try to jointlydesribe the entire history of our Universe or at least suhits important stages as the early in�ation and the modernaeleration. A promising approah on this trend is touse modi�ed theories of gravity, e.g., multidimensionalones. In our view, urvature-nonlinear multidimensionalgravity is a good andidate.It has been reently argued [4�7℄ that multidimensionalgravity with urvature-nonlinear terms in the ation anbe a soure of a great diversity of e�etive theories

able to address a number of important problems ofmodern astrophysis and osmology using a minimal setof postulates. Among suh problems one an mention theessene of dark energy, early formation of supermassiveblak holes (whih is a neessary stage in somesenarios of osmi struture formation), and su�ientpartile prodution at the end of in�ation. In thisapproah, it is supposed that essentially di�erent lassialuniverses emerge from spae-time foam due to quantum�utuations, so that partiular values of the total spae-time dimension D > 4 and the topologial propertiesof spae-time may vary from one spae-time region toanother. Di�erent e�etive theories an take plae evenwith �xed parameters of the original Lagrangian. It anbe shown that this approah, without need for �elds otherthan gravity, is able to produe suh di�erent struturesas in�ationary (or simply aelerating) universes, braneworlds [6℄, blak holes et. The role of salar �elds isplayed by the metri omponents of extra dimensions.In the present paper, we show how pure nonlinearmultidimensional gravity, without invoking any materialsoure, makes it possible to desribe, in a single senario,an in�ationary stage of the early Universe and a lateaelerating stage with a su�iently small e�etiveosmologial onstant. The model obtained agrees withthe observational data.Let us mention some other approahes to obtainingsuh joint senarios. Ref. [8℄ shows how to ahievethis goal in some models of nonloally modi�ed gravitytheories in four dimensions; in these models, the darkenergy e�et is aused by a omposite graviton degree offreedom. In [9℄, the same goal is ahieved using a Yang-Mills ondensate as a matter soure. Ref. [10℄ onsidersa relationship between hybrid in�ation and dark energy;see there also numerous referenes on the subjet.The paper is organized as follows. In Se. II, we

http://arxiv.org/abs/0912.4862v1


2desribe the general formalism. Se. III shows how toobtain a suessful in�ationary senario in a Kaluza-Klein type model with a single extra fator spae. Se.IV is devoted to obtaining models with two extra fatorspaes able to unify in�ation and modern aeleration.Se. V is a onlusion.II. D -DIMENSIONAL GRAVITYWe will brie�y desribe a method of onsidering a widelasses of Lagrangians in multidimensional gravity in aKaluza-Klein type approah, following [4, 5℄. Considerthe ation1
S =

1

2
mD−2

D

∫ √
Dg dDx

[
F (R) + c1RABRAB + c2K

](1)in D -dimensional spae-time M with the struture M =
M0 ×M1 × . . .×Mn, where dim Mi = di and m

D
is the

D -dimensional Plank mass (not neessarily oinidingwith the onventional Plank mass m4 ), and the metri
ds2

D = gab(x)dxadxb +
n∑

i=1

e2βi(x)g(i), (2)where (x) means the dependene on the �rst d0oordinates xa ; gab = gab(x) is the metri in M0 ,
g(i) are x-independent di -dimensional metris of thefator spaes Mi , i = 1, n . In (1), F (R) is an arbitraryfuntion of the salar urvature R of M ; c1 and c2 areonstants; RAB and K = RABCDRABCD are the Riitensor and the Kretshmann salar of M , respetively;apital Latin indies over all D oordinates, small Latinones (a, b, . . .) the oordinates of M0 , and ai, bi, . . . theoordinates of Mi . Let us note that terms proportionalto R2 and other powers of R , RABRAB and theKretshmann salar K = RABCDRABCD and other high-order urvature terms appear due to quantum orretionsin quantum �eld theory in urved spae-times [11, 12℄.The D -dimensional Riemann tensor has the nonzeroomponents

Rab
cd = R

ab
cd,

Raai

bbi
= δai

bi
Ba

b (i), Ba
b (i) := e−βi∇b( eβiβ,a

i ),

Raibi

cidi
= e−2βiR

aibi

cidi
+ δaibi

cidi
βi,aβ,a

i ,

Raibkcidk = δai

ci
δbk

dk
βi,µβ,µ

k , i 6= k. (3)Here the bar marks quantities obtained from the fatorspae metris gab and g(i) taken separately, β,a ≡ ∂aβ ,1 Our onventions are: the metri signature (+ − − . . .) ; theurvature tensor Rσ
µρν = ∂νΓσ

µρ
− . . . , Rµν = Rσ

µσν , so thatthe Rii salar R > 0 for de Sitter spae-time and the matter-dominated osmologial epoh; the system of units c = ~ = 1 .

δab
cd ≡ δa

c δb
d − δa

dδb
c and similarly for other kinds ofindies.The nonzero omponents of the Rii tensor and thesalar urvature are

Rb
a = R

b

a +
∑

i
di Bb

a(i),

Rbi

ai
= e−2βiR

bi

ai
+ δbi

ai
[�βi + βi,aσ,a],

R = R[g] +
∑

i
e−2βRi + 2 �σ

+ (∂σ)2 +
∑

i
di(∂βi)

2, (4)where σ :=
∑

i diβi ; (∂σ)2 ≡ σ,aσ,a and similarly forother funtions; � = gab∇a∇b is the d0 -dimensionald'Alembert operator; R[g] and Ri are the Rii salarsorresponding to gab and g(i) , respetively. Here andheneforth ∑
i means ∑n

i=1 .Slow-hange approximation. Redution to lowerdimensionsLet us suppose that all quantities are slowly varying,i.e., onsider eah derivative ∂a (inluding those in thede�nition of R) as an expression ontaining a smallparameter ε , and neglet all quantities of orders higherthan O(ε2) . Then we have the following deompositions:
R = φ + R[g] + f1,

f1 := 2 �σ + (∂σ)2 +
∑

i
di(∂βi)

2;

F (R) = F (φ) + F ′(φ)(R[g] + f1) + O(ε4);

RABRAB =
∑

i

1

di
φ2

i

+ 2
∑

i
diφi[� βi + (∂βi, ∂σ)] + O(ε4);

K = 2
∑

i

φ2
i

di(di−1)
+ 4

∑
i
diφi(∂βi)

2 + O(ε4),(5)where
φi := Kim

2
D(di − 1) e−2βi , φ :=

∑
i
diφi. (6)The symbol (∂α, ∂β) means gabα,aβ,b , and F ′(φ) =

dF/dφ .As a result, negleting o(ε2) and integrating out all
Mi , we obtain the following purely gravitational ationredued to d0 dimensions:

S =
1

2
V md

D

∫ √
g0 dd0x

{
eσF ′(φ)R0

+ KJ − 2VJ (φi)
}

+ V
∫ √

g0 dd0x eσ,

KJ = F ′(φ) eσf1 + 2 eσ
∑

i
diφi[c1 � βi

+ c1(∂βi, ∂σ) + 2c2(∂βi)
2],



3
− 2VJ(φi) = eσ

[
F (φ) +

∑
i
diφ

2
i

(
c1 +

2c2

di − 1

)]
, (7)where d = d0 − 2 , g0 = | det(gµν)| and V is a produt ofvolumes of n ompat di -dimensional spaes Mi of uniturvature. The expression (7) is typial of a (multi)salar-tensor theory (STT) of gravity in a Jordan frame.Subtrating a full divergene, we get rid of seond-order derivatives in (7), and the resulting kineti termtakes the form

KJ = F ′ eσ

[
−(∂σ)2 +

∑
i
di(∂βi)

2

]

− 2F ′′ eσ(∂φ, ∂σ) + 4 eσ(c1 + c2)
∑

i
diφi(∂βi)

2, (8)where F ′′ = d2F/dφ2 .Transition to the Einstein frameFor further analysis, it is helpful to pass on to theEinstein frame using the onformal mapping
gµν 7→ g̃µν = |f(φi)|2/(d0−2)gµν ,

f(φi) = eσF ′(φ). (9)The expression with the salar urvature in (7)transforms as follows:
√

g0 eσR0 =
√

g0fR0

= (sign f)
√

g̃

[
R̃ +

d0−1

d0−2

(∂̃f)2

f2

]
+ div, (10)where the tilde marks quantities obtained from or with

g̃µν and div denotes a full divergene whih does notontribute to the �eld equations. The ation (7) aquiresthe form
S =

1

2
V md

D

∫ √
g̃ dd0x

{
[sign F ′(φ)]

[
R̃ + KE

]

− 2VE(φi)
} (11)with the kineti and potential terms

KE =
1

d

(
∂σ +

F ′′

F ′
∂φ

)2

+

(
F ′′

F ′

)2

(∂φ)2

+
∑

i
di

[
1 +

4

F ′
(c1+c2)φi

]
(∂βi)

2,(12)
−2VE(φi) = e−2σ/d|F ′|−d0/d

[
F (φ)

+
∑

i
diφ

2
i

(
c1 +

2c2

di − 1

)]
, (13)where the tildes are omitted though the metri g̃µν isused, and d := d0 − 2 ; the indies are raised and lowered

with g̃µν . The original quantities βi and σ are nowexpressed in terms of n �elds φi whose number oinideswith the number of extra fator spaes.In what follows, we onsider the most relevant ase
d0 = 4 and aordingly d = d0 − 2 = 2 .A further interpretation of the results dependson whih onformal frame is regarded physial(observational) [13, 14℄, and this in turn depends onthe manner in whih fermions appear in the (so farunknown) underlying uni�ation theory involving allinterations. We will restrit ourselves to the simplestassumption, that the Einstein frame is simultaneouslythe observational frame. It means, in partiular, thatthe e�etive Newtonian gravitational onstant G isa true onstant in the ourse of the osmologialevolution. Moreover, we will assume for simpliity thatthe D -dimensional Plank mass m

D
is equal to the 4-dimensional Plank mass m4 = 1/
√

G and, in whatfollows, we will put G = 1 , and numerial values ofdimensionful parameters are thus expressed in Plankunits.III. A SINGLE EXTRA FACTOR SPACE ANDINFLATIONNow, our program is as follows:1. Choose the parameters of the original ation (1) toobtain a behavior of the potential (13) providingprimordial in�ation.2. Additionally vary the parameters to satisfy thein�ationary onditions onforming to observations.3. Try to desribe the modern aeleration stage,providing the ratio of the e�etive osmologialonstant to the Plank density Λeff/m4
4 of the order

10−123 .We begin with the ase of one fator spae. ThenEqs. (12) and (13) simplify to give
S =

V [d]

2

∫
d4x

√
g̃ (signF ′)L,

L = R̃4 + K
(1)
E (φ)(∂φ)2 − 2V

(1)
E (φ), (14)

K
(1)
E (φ) =

1

4φ2

[
6φ2

(
F ′′

F ′

)2

− 2d1φ
F ′′

F ′

+
1

2
d1(d1 + 2)

]
+

c1 + c2

F ′φ
, (15)

V
(1)
E (φ) = − signF ′

2F ′2

[ |φ|
d1(d1−1)

]d1/2[
F (φ) + cV

φ2

d1

]
,

cV := c1 +
2c2

d1 − 1
. (16)Here we take

F = F (φ) = φ + cφ2 − 2Λ, c, Λ = const, (17)



4and, in aord with the de�nition (6), φ = d1φ1 .In (14)�(16) we have atually hanged the sign of theLagrangian in ase F ′ < 0 ; to preserve the attrativenature of gravity for ordinary matter, the matterLagrangian density should appear with an unusual signfrom the beginning. As a result, the sign of the wholeation of gravity and matter will be unusual, withoutany e�et on the equations of motion; one an show thatquantum transitions are then una�eted as well, see adisussion in [4℄.The presene of the parameters c1 and c2 addsfreedom in hoosing the shape of the potential. Thekineti term also has a omplex form whih ansigni�antly a�et the �eld dynamis. An analysis ofkineti terms like (15) of variable sign an lead topossibilities of interest, and we hope to return to thispoint in our future work.Let us employ the fat that haoti in�ation with aquadrati potential and the in�aton mass mϕ ≈ 10−6m4well onforms to the observational data. Therefore ourtask is simpli�ed and redued to �nding suh parameters
c, c1 and c2 that the potential (16) near its minimumis approximated by a quadrati funtion with the abovein�aton mass. It turns out to be possible with thefollowing parameter values:

d1 = 4; c = 2.5 · 104; c1 + c2 = 0.6;

ctot :=
c1

d1
+

2c2

d1(d1 − 1)
= −0.62; Λ = 0.2. (18)With these parameter values, all basi requirementsto in�ation are satis�ed. Thus, the duration of thein�ationary period exeeds 60 e-folds, the temperature�utuations are ∼ 6·10−5 , and the spetral index is ns =

0.943 , within observational bounds, ns = 0.958 ± 0.016[15℄. Thus a single fator spae is su�ient for obtaininga fairly good in�ationary senario.Sine the onstant c has atually the dimension oflength squared, it is √
c ∼ 100 that should be omparedwith the Plank length. So this model does not ontainunnaturally large or small parameters.A serious shortoming of this model is that it is unableto solve the problem of modern aeleration, inludingsmallness of dark energy density. Indeed, it is easy toprove that slight variations of the parameters c , c1 and

c2 ould give rise to an arbitrarily small potential valueat the minimum. However, though the values of theseparameters are quite moderate, they should be extremely��ne-tuned� to �t the modern value of vauum energydensity. An attempt to solve this problem in a slightlymore omplex model is undertaken in the next setion.

IV. TWO FACTOR SPACES: INFLATION ANDMODERN ACCELERATIONIn�ationAdditional opportunities emerge if the extra spae is aprodut of two fator spaes, Md1
× Md2

of dimensions
d1 and d2 . For further analysis, let us make the situationmore spei� by putting K1 = K2 , d1 = d2 and hoosingthe funtion

F (R) = R2. (19)(Note that one of the oe�ients in the initial Lagrangianan be hosen at will, e.g., equal to unity, withouta�eting the �eld equations; it simply spei�es the salefor other oe�ients.)Fig. 1 presents the potential of the e�etive salar �eldsfor this model with the following hoie of the parametervalues:
d1 = d2 = 5, cV = −10.001, c1 + c2 = 1.25 · 103.(20)All further numerial estimates will be obtained withthese values. As follows from the above-said, at lowenergies (as ompared to the Plank sale m

D
) thismodel is equivalent to Einstein gravity with two salar�elds. In full similarity with Se. III, the onstants c1and c2 have atually the dimension of length squared,and their square roots are not unnaturally large or small.Note that, with the cV value hosen, a positivepotential V (hene a positive e�etive osmologialonstant) is obtained with K1 = 1 , i.e., spherial extrafator spaes. For other values of cV , e.g., cV > 0 wewould need hyperboli fator spaes.The in�ationary period is haraterized by movingdown one of the steep slopes of the valley. Thein�aton mass squared is proportional to the seond-orderderivative of the potential in the diretion perpendiularto the valley (its bottom is loated at φ1 = φ2 = φ0 ). Itis this diretion in whih the �eld moves during in�ationand osillates during reheating at the post-in�ationarystage. The spei� value of φ0 depends on the initialvalue of the in�aton �eld at whih the lassial universewas born.Fig. 2 shows the dependene of the e�etive in�atonmass on the parameter φ0 . In the framework of haotiin�ation, universes are reated with di�erent in�atonvalues under the horizon, leading to di�erent values of

φ0 and hene di�erent in�aton masses. This is how thismodel solves the problem of smallness of the in�atonmass in Plank units.Post-in�ationary partile prodution is a result ofosillations in the diretion aross the valley. Theonditions suitable for our Universe orrespond to thevalue φ0 ≃ 0.5 . It is just suh a value that, aordingto Fig. 2, the in�aton mass, related to the seond-orderderivative of the potential in the diretion aross thevalley, is ∼ 10−6 ∼ 1013 GeV, whih satisfatorily
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�èñ. 1: Potential of the e�etive salar �elds for the model(1), (19) with the parameter values given in (20).

�èñ. 2: Dependene of the e�etive in�aton mass (Plankunits) on the parameter φ0 .explains the observational data on the CMB temperature�utuations. Matter dominated stageThe in�ationary stage ends with rapid �eld osillationsaross the valley in Fig. 1, on whose bottom, by ourassumptions, φ1 = φ2 = φ/(2d1) . These osillationsare aompanied by e�etive partile prodution in fullagreement with the standard version of haoti in�ationwith a quadrati potential. In the model under disussion,the energy density of the produed partiles makes thematerial ontent of the Universe and a�ets not onlythe osmologial expansion rate but also the salar �elddynamis. The latter now orresponds to slow rollingdown along the bottom of the potential valley.We assume a spatially �at osmology in 4 dimensions,with the Einstein-frame metri ds̃2
4 = dt2 − a2(t)d~x2 .So, with the hoie (19), the ation (11) leads to the

Lagrangian
LE = R4 + K(φ)(dφ)2 − 2V (φ) (21)and

K(φ)(∂φ)2 = K0(∂φ)2/φ2 = 4K0(∂β)2,

2K0 = d2
1 − d1 + 3 + 4(c1 + c2), (22)

V (φ) = V0|φ|d1 = V1 e−2d1β ,

V1 = −K1

8

(
1 +

cV

2d1

)
, V0 = V1[2d1(d1−1)]−d1 ,(23)where K1 = signφ = signF ′(φ) and β(t) = β1(t) is,as before, the logarithm of the extra-dimension salefator (whih is in the present ase the same for all extradimensions), suh that dφ/φ = −2dβ , and cV has beende�ned in (16). One an also notie that a usual form ofthe Lagrangian with a salar �eld Φ and a potential VΦis obtained if we substitute

2
√

K0β =
√

8πGΦ, VE = 8πGVΦ.With (21), we an write two independent omponentsof the Einstein-salar equations for β(t) and a(t) asfollows:
3H2 = 2K0β̇

2 + V1 e−2d1β + 8πρm (24)
2K0

[
β̈ + 3Hβ̇

]
= d1V1 e−2d1β , (25)where H = ȧ/a is the Hubble parameter.Let us begin with onsidering the matter dominatedstage, whih is the longest. The subsequent dark energy(DE) dominated stage will be disussed in the nextsubsetion. The following simplifying assumptions willbe used: (i) we neglet the pressure of matter, treatingit as dust from the very beginning (t = t1 ) thusignoring a radiation-dominated stage; (ii) we neglet apossible diret interation between matter and the salar�eld; (iii) we neglet the salar �eld ontribution tothe dynamis of a(t) at the matter dominated stage

t1 < t < t2 ≃ 1010 years and, vie versa, we negletthe ontribution of matter at the DE dominated stage
t > t2 .So, negleting the ontribution of β in (24), we obtainfor times t1 < t < t2 , as in the usual Big Bang senario,

H = 2/(3t) at t1 < t < t2. (26)To solve Eq. (25) numerially, we take the following initialdata orresponding to the end of the post-in�ationaryepoh:
φ1(t1) = φ2(t1) =

φ(t1)

2d1
= 0.05;

dφ

dt
(t1) = 0

⇒ eβ(t1) = 4
√

5, β̇(t1) = 0. (27)



6The initial time t1 is hosen to be t1 = 9 · 109 forde�niteness.Numerial solution of Eq. (25) then gives the followingvalue of β at t = t2 :
eβ(t2) = 5.48255 · 1011 ≃ 5.5 · 1011

⇒ φ(t2) ≃ 1.3 · 10−22. (28)This value of β will be used in analyzing its dynamis atthe modern stage for whih the equations simplify andan be solved analytially.Modern stageThe modern epoh t > t2 is DE dominated. In thepresent approah, DE is represented by the salar �eld φ(or equivalently β or b = eβ ) with the potential (23), andthe Universe dynamis is desribed by Eqs. (24), (25). In(24) we now neglet the matter ontribution.It is hard to solve this set of equations exatly.However, as the φ �eld dereases (whih orrespondsto a growing size of the extra dimensions) along with adereasing value of the potential (related to the e�etiveosmologial onstant), at some stage it beomes possibleto treat this proess as seondary slow rolling, for whihthe �eld dynamis is su�iently simple and may bedesribed analytially. Indeed, let us suppose
|β̈| ≪ 3(ȧ/a)β̇, K0β̇

2 ≪ 3(ȧ/a)2 (29)and drop the orresponding terms in Eqs. (24) and (25).Then we an express ȧ/a from (24) and insert it to (25),getting
d1β̇ ed1β = B0 :=

d2
1

√
V1

2
√

3K0

, (30)whene we �nd the evolution law for the extra-dimensionsale fator
eβ =

[
B0(t − t∗)

]1/d1

, (31)where t∗ is an integration onstant (t∗ = t2 −
B−1

0 [b(t2)]
d1 ). Substituting this result to (24), we �ndthe evolution law for a(t) :

a(t) = a∗(t − t∗)
p, p := 2K0/d2

1, (32)where a∗ is an integration onstant.With the parameters (20), some relevant onstants are
V1 = 1.25 · 10−4, 2K0 = 5023,

p =
5023

25
≈ 201, B0 ≈ 3.2 · 10−5. (33)Eq. (31) with the initial value (28) gives the present sizeof the extra dimensions, at t = t0 = 13.7 · 109 yr:

b(t0) = 5.48259 · 1011 ≃ 5.5 · 1011 ≈ 9 · 10−22 cm, (34)

well within the observational limits. From (32) we �ndthe Hubble onstant H0 = ȧ(t0)/a(t0) and the Hubbletime tH = 1/H0 :
H0 ≈ 1.25 · 10−61 , tH ≈ 8 · 1060 ≈ 13.8 · 109 yr,(35)in agreement with observations. The potential energydensity V , oiniding with the DE density,

V (φ(t0)) ≃ 5.1 · 10−123 , (36)also well agrees with observations.One an notie that in our model with d1 = 5 thefuntion (31) grows extremely slowly. The present valuein (34) di�ers from that in (28) only in the �fth deimaldigit, so that the hange is atually indistinguishable.The same is true for the DE density whih thus behaveslike a osmologial onstant. The expansion law (32) withthe exponent p = 201 is really almost exponential, i.e., deSitter, and the DE equation-of-state fator w = pDE/ρDEis very lose to minus unity. Indeed, in the DE epoh,
a(t) ∼ t2/(3+3w) , hene

2/(3 + 3w) = 201 ⇒ w ≈ −0.9967.Lastly, one an verify that this solution fairly wellsatis�es the slow-rolling onditions (29), whih hold aslong as p ≫ 1 . or, in terms of the input parameters ofthe theory, if c1 + c2 ≫ d2
1 .It is of interest that models of gravity (1) where F (R)ontains a linear term do not lead to similar attrativeresults in the present approah.V. CONCLUSIONIn the framework of pure urvature-nonlinear gravitywith extra dimensions, it has been possible to desribe(though in a rough approximation) the entire evolutionof the Universe beginning with an in�ationary stageand ending with the modern aelerated stage withsu�iently small dark energy density. In doing so, ithas been possible to avoid unnaturally small or largeparameter values in the initial Lagrangian. The smallvalues of the in�aton mass and espeially that of DEdensity agreeing with observations have been obtainedfrom a Lagrangian whose dimensionless parameters di�erfrom unity by no more than two orders of magnitude.Using a single extra fator spae, it appears possibleto explain the emergene of an in�aton, and hoosingproper values of the parameter, it is possible to ful�lall requirements appliable to in�ationary models andahieve an agreement with the observational data.However, to solve the problem of small DE density, itis neessary to invoke (at least) two extra fator spaes.The in�ationary stage with an appropriate in�atonmass is again well desribed. Indeed, �eld �utuationsreate universes with di�erent initial �eld values. thepotential in Fig. 1 (i.e., at �xed values of the initial



7Lagrangian parameters) has di�erent urvatures atdi�erent points of the valley, whih orrespond todi�erent in�aton masses. We live in a universe reatedby a suitable �eld �utuation whose evolution leads tothe observable in�aton mass.As to late-time evolution, it beomes possible to obtainin a natural way a small urrent value of the e�etivepotential whih plays the role of DE density (e�etiveosmologial onstant), Λeff ∼ 10−123 m4
4 ). The form ofour late-time solution shows that the size of the extradimensions is slowly growing in the modern epoh. Inthe remote future, this size, whih is so far invisiblefor modern instruments, is to grow to suh values thatwill lead to drasti hanges in the physial laws of ourUniverse. Let us stress, however, that suh a model is onlyone partiular opportunity ontained in our approah.There are other models where the extra dimensions arestable at late times [4℄ making the e�etive physialonstants also invariable.Our model with two fator spaes has the followingadvantages:(a) Its low-energy limit represents the Hilbert-Einsteination with appropriate auray.(b) It desribes in�ation with an in�aton mass agreeingwith observations;() The size of the extra dimensions b(t) never exeededthe experimental threshold ∼ 10−17 m (thoughshould exeed it in the remote future).(d) At the modern stage, the salar �eld density(atually, the potential V (φ) in proper units)desribes the modern DE density ∼ 10−123m4

4 ;(e) The DE equation-of-state parameter w satis�es theobservational onstraint w < −0.8 .

Sine we have been working in the Einstein onformalframe, the problem of varying physial onstants (aboveall, the e�etive Newtonian onstant of gravity Geff )did not emerge. One should note that even remainingin the Einstein frame, we ould assume m
D

6= m4 ,whih would a�et the estimated boundary betweenthe lassial and quantum worlds. In a more generalframework, interpreting another onformal frame asthe observational one (possibly but not neessarily theoriginal Jordan frame), we would obtain a dependeneof the onstant Geff (hene the urrent Plank mass
m4 = G

−1/2
eff ) on the size of extra dimensions, whihin general an be not only time-dependent but also varyfrom point to point in spae. In the osmologial ontext,models with variable Geff should not only satisfy theobservational bounds on the variation rate Ġeff/Geff(. 10−13 aording to the reent tightest onstraint [16℄)but also take into aount the e�et of G(t) on stellarevolution and proesses in the early Universe. (Therefore,models with self-stabilizing extra dimensions like thosedisussed in [4, 5℄ an be more attrative.) In still moregeneral models of this sort even the Plank onstant ~an be variable. A disussion of these problems is outof the sope of this paper and an be found, e.g., in[13, 14, 17�19℄.
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