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Hamiltonian formulation of General Relativity

50 years after the Dirac celebrated paper:

do unsolved problems still exist?
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Abstract

About 50 years ago, in 1958, Dirac published his formulation of generalized Hamiltonian
dynamics for gravitation. Several years later Arnowitt, Deser and Misner (ADM) pro-
posed their description of the dynamics of General Relativity which became a basis of
the Wheeler - DeWitt Quantum Geometrodynamics. There exist also other works where
the Hamiltonian formulation of gravitational theory was discussed. In spite of decades
passed from the famous papers by Dirac and ADM, there are unsolved problems. Namely,
are the Dirac and ADM formulations equivalent to each other? Are these formulations
equivalent to the original (Lagrangian) Einstein theory? Is the group of transformation
in phase space the same as the group of gauge transformation of the Einstein theory?
What are rules according to which a generator of transformations in phase space should
be constructed? Let us mention also another approach based on extended phase space
where gauge degrees of freedom are treated on the equal ground with physical degrees of
freedom. Our purpose is to review the above questions and to demonstrate advantages of
the extended phase space approach by the example of a simple model with finite number
degrees of freedom.

1. Introduction

In 2008 fifty years passed after the publication of the Dirac famous paper, devoted to Hamilto-

nian form of the theory of gravitation [1]. Dirac was not tired of repeating that ”any dynamical

theory must first be put in the Hamiltonian form before one can quantize it”. However, when

constructing the Hamiltonian, Dirac made an additional assumption that g0i = 0 which no-

ticeably simplified his calculations but also led him to the conclusion that ”this simplification

can be achieved only at the expense of abandoning four-dimensional symmetry”. It may have

become a reason why the formulation by Dirac was not so recognized as the one by Arnowitt,
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Deser and Misner (ADM) where the parametrization of gravitational variables through lapse

and shift functions was introduced [2]. It is needless to recall that the ADM formulation with

its clear geometrical interpretation became a basis of the Wheeler - DeWitt Quantum Ge-

ometrodynamics which serves as a theoretical foundation for many works exploring the Early

Universe.

Meanwhile, in 2008 the paper by Kiriushcheva and Kuzmin appeared [3], where the au-

thors claim that the formulation by Dirac and that by ADM are not equivalent since these

two formulations are related by a non-canonical transformation of phase space variables from

the 4-metrics gµν to the lapse and shift functions N , Ni and the 3-metrics γij . The authors

demonstrate by direct calculations that the Dirac assumption g0i = 0 does not affect the form of

the total Hamiltonian and thus is not necessary at all for constructing the Hamiltonian formu-

lation. If so, we face the question what formalism should be chosen. Keeping in mind that the

Dirac formulation deals with original gravitational variables, it seems to be more preferable.

The second argument in favor of it is that it seems to be possible to construct a generator

of transformations in phase space which gives correct diffeomorphism transformations for the

4-metrics gµν , while a well-known shortcoming of the ADM formulation is that the derivation

of correct transformations for the lapse and shift functions (corresponding to diffeomorphism

transformations of the metrics) is rather problematic.

Therefore, the authors of the paper [3] have raised a serious problem: Should we abandon

the ADM formulation because the new ADM variables are not related with the old ones by a

canonical transformation? Should we also abandon any other parametrizations if they do not

satisfy this criterion? Let us mention that from the very beginning the complexity of General

Relativity inspired the search for suitable parametrizations to solve various problems. There

are other examples of constructing Hamiltonian dynamics of General Relativity, for instance,

the formulation by Faddeev in his work devoted to gravitational energy [4]. He made use of

the following variables

hµν =
√−ggµν ; λ0 =

1

h00
+ 1; λi =

h0i

h00
; qij = h0ih0j − h00hij . (1.1)

As far as I know, the canonicity of transformations to new variables was not proved in the

most of cases. Then, should we consider the ADM formulation as a model named, say, ”ADM

gravity”, without any reference to Einstein General Relativity, as Kiriushcheva and Kuzmin

suggest? They declared that in their analysis they follow to what Lagrange called ”regular rules

of procedure”. We shall start our consideration from the question, what rules of procedures

one ought to take into account when constructing a Hamiltonian formulation of gravitational

theory.
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2. “The rules of procedure”: generalized Hamiltonian dynamics

Firstly, let us turn to generalized Hamiltonian dynamics of a theory with constraints. It is based

upon several rules postulated by Dirac that can be verified only by results of their applications

to real physical fields. The postulates, which are of interest for us, are the following:

1. The Hamiltonian of the theory should be constructed according to the rule

H = paq̇
a − L + λaϕ

a, (2.1)

where pa, qa are pairs of variables called canonical in the sense that all the velocities q̇a can

be expressed through conjugate momenta; ϕa is the set of constraints and λa are Lagrange

multipliers. In the case of gravitational theory the Hamiltonian is

HG = pij ġij − L. (2.2)

There are modifications of this rule, some authors include into the form paq̇
a also non-canonical

variables in the above sense, i.e. those for which it would be impossible to express the velocities

in terms of the momenta. Then we have the total Hamiltonian which for gravity takes the form

HT = p00ġ00 + p0iġ0i + HG. (2.3)

Since p00 = 0 are primary constraints, the two Hamiltonians coincide on the constraints surface,

and the difference between them seems not to be of importance. However, as we shall see, the

difference becomes essential when constructing a generator of gauge transformations. Let us

note that Dirac in his work [1] obtained the canonical Hamiltonian (2.2) while Kiriushcheva

and Kuzmin [3] considered the total Hamiltonian (2.3). In any case, making use of the total

Hamiltonian implies a mixed formalism in which the Hamiltonian is written in terms of canon-

ical coordinates and momenta but as well of velocities that cannot be expressed through the

momenta.

2. The constraints or their linear combinations play the role of generators of gauge trans-

formations [5]. Dirac considered the theory of electromagnetic field as a typical example of a

field theory with constraints. Indeed, in this theory the secondary constraint produces correct

transformations of spatial components of vector potential of electromagnetic field Ai. However,

even in this simple case the constraints do not generate the transformation of the zero com-

ponent of vector potential A0. The same situation we face in gravitational theory: while the

transformations of the 3-metrics can be generated by the secondary (momentum) constraints,

the transformation for g0µ cannot be obtained in this way. To avoid this difficulty, some other

algorithms were suggested [6, 7] which were thoroughly discussed in [3].
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The methods [6, 7] give the correct transformations for the original gravitational variables

gµν , used by Dirac, and do not lead to the correct transformations for the ADM variables. As

has been already mentioned, it can be considered as an additional argument why one should

abandon the ADM dynamics. However, would not it better to think, what are the reasons that

prevent us from obtaining correct transformations in the ADM case? In Section 3 we shall see

that the rules of constructing the generator are rather artificial and hardly can be recognized

as fundamental “rules of procedure” in the sense of Lagrange. We do not even have a strong

criterion what exact form a Hamiltonian must take for a constrained theory. It returns us to the

questions: Are the Dirac and ADM formulations really non-equivalent to each other? What are

rules according to which a generator of transformations in phase space should be constructed?

Is there an alternative to the both approaches? In Section 4 I shall touch the extended phase

space approach that may present such an alternative, and I shall try to answer these questions

in Conclusion.

3. “The rules of procedure”: the generator of gauge

transformations

In [6] the generator of gauge transformations is sought in the form

G =
∑

n

θ(n)
µ Gµ

n, (3.1)

where Gµ
n are first class constraints, θ(n)

µ are the nth order time derivatives of the gauge param-

eters θµ. In other words, from the very beginning it is taken into account that variations of

canonical variables may depend on time derivatives of θµ. In the theory of gravity the variations

of gµν involve first order derivatives of gauge parameters, thus the generator is

G = θµG
µ
0 + θ̇µG

µ
1 . (3.2)

Gµ
n satisfy the following conditions that were derived from the requirement of invariance of

motion equations under transformations in phase space:

G
µ
1 are primary constraints; (3.3)

G
µ
0 + {Gµ

1 , H} are primary constraints; (3.4)

{Gµ
0 , H} are primary constraints. (3.5)

In [3] the generator (3.2) was calculated for the full gravitational theory. Paying tribute to

the authors of the paper [3] for their huge work of making cumbersome calculations, I shall
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demonstrate, nevertheless, that basic rules can be understood taking a simple model as an

example. Consider an isotropic cosmological model with the Lagrangian

L = −1

2

aȧ2

N
+

1

2
Na. (3.6)

This model is traditionally described in the ADM variables (N is the lapse function, a is the

scale factor). For our purpose, it is more convenient to go to a new variable µ = N2 which

corresponds to g00. So the Lagrangian is

L = −1

2

aȧ2

√
µ

+
1

2

√
µa. (3.7)

The canonical Hamiltonian corresponding to (2.2) reads

HG = −1

2

√
µ

a
p2 − 1

2

√
µa (3.8)

and the total Hamiltonian (see (2.3)) is

HT = πµ̇ − 1

2

√
µ

a
p2 − 1

2

√
µa (3.9)

(p is the momentum conjugate to the scale factor, π is the momentum conjugate to the gauge

variable µ). π = 0 is the only primary constraint of the model, so that

G1 = π. (3.10)

The secondary constraint is

π̇ = {π, HT} = −∂HT

∂µ
=

1

4

1

a
√

µ
p2 +

1

4

a√
µ

= T. (3.11)

The canonical Hamiltonian (3.8) appears to be proportional to the secondary constraint T ,

HG = −2µT .

The condition (3.4) becomes

G0 + {π, HT} = απ; (3.12)

G0 = −T + απ, (3.13)

α is a coefficient that can be found from the requirement (3.5):

{G0, HT} = βπ; (3.14)

{G0, HT} = −{T, HT} + α {π, HT} =

= −{T, πµ̇ − 2µT} + αT = −{T, π} µ̇ + αT =
1

2µ
µ̇T + αT ; (3.15)
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β = 0; α = − 1

2µ
µ̇; (3.16)

G0 = − 1

2µ
µ̇π − T. (3.17)

The full generator G (3.2) can be written as

G =

(

− 1

2µ
µ̇π − T

)

θ + πθ̇. (3.18)

The transformation of the variable µ is

δµ = {µ, G} = − 1

2µ
µ̇θ + θ̇. (3.19)

The same expression (up to the multiplier being equal to 2) can be obtained from general

transformations of the metric tensor,

δgµν = θλ∂λgµν + gµλ∂νθ
λ + gνλ∂µθ

λ; (3.20)

δg00 = ġ00θ
0 + 2g00θ̇

0, (3.21)

if one keeps in mind that g00 = µ and in the above formulas θ = θ0 = g00θ
0.

It is not difficult to see why the method does not work for the Lagrangian (3.6). Indeed, in

the last case the total Hamiltonian is

HT = πṄ − 1

2

N

a
p2 − 1

2
N a (3.22)

Again, π is the momentum conjugate to the gauge variable N , and π = 0 is the only primary

constraint. Now the secondary constraint does not depend on N :

π̇ = {π, HT} = −∂HT

∂N
=

1

2a
p2 +

1

2
a = T, (3.23)

therefore, the Poisson bracket {T, π} in (3.15) is equal to zero, and one would obtain an

incorrect expression for the generator,

G = −Tθ + πθ̇, (3.24)

which cannot produce the correct variation of N ,

δN = −Ṅθ − Nθ̇, (3.25)

Obviously, the algebra of constraints is not invariant under the choice of parametrization. One

can come to the same conclusion by applying the other approach [7, 3] of constructing the

generator. It is suggested in this approach that the generator ought to be of the form

G = ηµπ
µ + θµT µ, (3.26)
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ηµ and θµ are the two sets of parameters that correspond to primary πµ and secondary T µ

constraints. The relations between ηµ and θµ are derived from the requirement of commutativity

of variation and differentiation with respect to time of generalized coordinates. These relations

can be obtained from Hamiltonian equations of motion and rely upon the algebra of constraints.

Thus, it is not surprised at all, that this approach leads to the same results as the method [6].

One can say that the difference in the algebra of constraints is a consequence of the fact that

the two parametrizations used above are not related by a canonical transformation. However,

such a transformation has to involve gauge variables like µ, N , which in the original Dirac

approach play the role of Lagrangian multipliers at constraints and are not included into the

set of canonical variables. To treat these variables on the equal basis with the others, one

should extend the phase space.

We would also like to emphasize that the correct expression (3.18) is a consequence of mak-

ing use of the total Hamiltonian (2.3) instead of the canonical one (2.2). As one can see from

(3.15), when applying the canonical Hamiltonian one would obtain the incorrect expression

(3.24). However, the total Hamiltonian (2.3) has been already defined in extended phase space.

Therefore, the derivation of the correct generator requires abandoning the original rules pre-

scribed by Dirac and replacing them by a new procedure presented in [6]. Nevertheless, this new

procedure gives right results for a certain parametrization of gravitational variables only.

4. Extended phase space

The idea of extended phase space appeared in the works by Batalin, Fradkin and Vilkovisky

(BFV) where their approach to path integral quantization of gauge theories was proposed [8, 9,

10]. The Hamiltonian form of the BFV effective action contains the part paq̇
a, that comprises all

pair of conjugate variables including gauge ones, the Dirac canonical Hamiltonian with linear

combinations of constrains, as well as gauge-fixing and ghost parts. The transformations of

phase variables are generated by the BRST charge which is constructed as a series in powers

of Grassmannian variables with coefficients given by generalized structure functions:

Ω = cαU (0)
α + cβcγU

(1)α
γβ ρ̄α + . . . (4.1)

The structure functions of zero order are the full set of primary and secondary constraints, the

structure functions of high orders are determined by the algebra of constraints. For the model

with the Lagrangian (3.6) the algebra of constraints is obviously Abelian, and the consequent

application of the BFV approach would lead us to the same incorrect expression (3.24).

For the full gravitational theory the structure functions of the first order are not equal to

zero [11], so that the BRST generator involves a term with three ghost fields. This generator
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also cannot produce correct transformations for all gravitational variables as one can check

considering the model with the Lagrangian (3.7). In this case the only non-zero structure

function of the first order is

{π, T} =
1

2µ
T = C2

12T ; U
(1)2
12 = −1

2
C2

12 = − 1

4µ
. (4.2)

The BFV approach aimed to reproduce the Dirac procedure of quantization of theories

with constraints at path integral level, and it indeed leads to equivalent results for Yang - Mills

theories and some simple models. However, it meets certain difficulties for the full gravitational

theory or arbitrary parametrization of gravitational variables. This makes us search for another

way of constructing Hamiltonian dynamics in extended phase space.

Such a way has been proposed in our papers [12, 13]. A serious shortcoming of the total

Hamiltonian (2.3) is that it contains generalized velocities apart from coordinates and momenta.

To compensate them, one can introduce the missing velocities into the Lagrangian by means

of gauge conditions in differential form. For the model (3.6) we have

N = f(a) ⇒ Ṅ =
df

da
ȧ. (4.3)

To give a full consideration, one should also include the ghost sector into the model,

L(ghost) = ˙̄θNθ̇ + ˙̄θ

(

Ṅ − df

da
ȧ

)

θ, (4.4)

so that

L = −1

2

aȧ2

N
+

1

2
Na + λ

(

Ṅ − df

da
ȧ

)

+ ˙̄θ

(

Ṅ − df

da
ȧ

)

θ + ˙̄θNθ̇ =

= −1

2

aȧ2

N
+

1

2
Na + π

(

Ṅ − df

da
ȧ

)

+ ˙̄θNθ̇. (4.5)

The conjugate momenta are:

π = λ + ˙̄θθ; p = −aȧ

N
− π

df

da
; P̄ = N ˙̄θ; P = Nθ̇. (4.6)

Let us now go to a new variable

N = v
(

Ñ , a
)

. (4.7)

At the same time, the rest variables are unchanged:

a = ã; θ = θ̃; θ̄ = ˜̄θ. (4.8)
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It is the analog of the transformation from the original gravitational variables gµν to the ADM

variables. Indeed, in the both cases only gauge variables are transformed while the rest variables

remain unchanged. It was shown in [3] that such a transformation is not canonical. The reason

is that the momenta conjugate to physical variables also remain unchanged. The situation in

extended phase space is different. After the change (4.7) the Lagrangian is written as

L = −1

2

aȧ2

v
(

Ñ, a
) +

1

2
v
(

Ñ, a
)

a + π

(

∂v

∂Ñ

˙̃
N +

∂v

∂a
ȧ − df

da
ȧ

)

+ v
(

Ñ, a
)

˙̄θθ̇. (4.9)

The new momenta are:

π̃ = π
∂v

∂Ñ
; (4.10)

p̃ = − aȧ

v
(

Ñ, a
) + π

∂v

∂a
− π

df

da
= p + π

∂v

∂a
; (4.11)

˜̄P = v
(

Ñ, a
)

˙̄θ = P̄ ; (4.12)

P̃ = v
(

Ñ , a
)

θ̇ = P. (4.13)

It is easy to demonstrate that the transformations (4.7), (4.8), (4.10) – (4.13) are canonical

in extended phase space. The generating function will depend on new coordinates and old

momenta [14],

Φ
(

Ñ , ã, ˜̄θ, θ̃, π, p, P̄, P
)

= −π v
(

Ñ, ã
)

− p ã − P̄ θ̃ − ˜̄θP. (4.14)

Then the relations

N = −∂Φ

∂π
; a = −∂Φ

∂p
; π̃ = − ∂Φ

∂Ñ
; p̃ = −∂Φ

∂ã
; (4.15)

θ = −∂Φ

∂P̄
; θ̄ = −∂Φ

∂P ; P̃ = −∂Φ

∂˜̄θ
; ˜̄P = −∂Φ

∂θ̃
(4.16)

give exactly the transformation (4.7), (4.8), (4.10) – (4.13). On the other hand, one can check

that Poisson brackets among all phase variables maintain their canonical form.

It is well known that, while introducing a gauge condition breaks down local gauge invari-

ance, there remains global BRST invariance. And it is remarkable that the existing of BRST

invariance enables us to construct the generator of transformations in extended phase space

(BRST charge) making use of the first Noether theorem. As a consequence of a global sym-

metry, there exists a conserved quantity which can be obtained from equations of motion. For

Lagrangians without derivatives of high orders, the BRST generator is

Ω =
∫

d3x
∂L

∂qa
δqa =

∫

d3x paδq
a, (4.17)
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where pa are generalized momenta and δqa are variations of generalized coordinates under which

the action remains unchanged. Obviously, the BRST charge generates correct transformations

if the theory is not degenerate, i.e. derivatives of the Lagrangian with respect to velocities are

not zero:

δqa = {qa, Ω} =
δΩ

δpa

. (4.18)

The extension of phase space removes degeneracy of the theory. Another necessary condition of

consistency of this approach is a complete equivalence between the Lagrangian formulation and

the Hamiltonian dynamics in extended phase space that allows one to write down the BRST

charge in terms of coordinates and momenta. This equivalence is ensured by construction of

the Hamiltonian dynamics itself and was demonstrated in our works [12, 13].

For the model considered in the present paper the Hamiltonian in extended phase space for

our model looks like

H̃ = −1

2

v
(

Ñ, a
)

a















p̃2 + 2p̃π̃
1
∂v

∂Ñ

df

da
+ π̃2 1

(

∂v

∂Ñ

)2

(

df

da

)2

−

− 2p̃π̃
1
∂v

∂Ñ

∂v

∂a
− 2π̃2 1

(

∂v

∂Ñ

)2

∂v

∂a

df

da
+ π̃2 1

(

∂v

∂Ñ

)2

(

∂v

∂a

)2















(4.19)

and the BRST generator is

Ω = −H̃θ − 1
∂v

∂Ñ

π̃P. (4.20)

One can check that Ω (4.20) generates the correct transformations for any gauge variable

Ñ given by the relation (4.7),

δÑ =
{

Ñ , Ω
}

= −∂H̃

∂π̃
θ − 1

∂v

∂Ñ

P = − ˙̃
Nθ − 1

∂v

∂Ñ

v
(

Ñ , a
)

θ̇. (4.21)

(It is taken into account that the gauge condition is included into the set of Hamiltonian

equations in extended phase space, ˙̃
N =

∂H̃

∂π̃
.) In particular, for the original variable N one

gets the correct transformation (3.25).
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5. Conclusions

From the viewpoint of the Lagrangian formalism, the original parametrization of gravitational

variables and the ADM parametrization are completely equivalent. Nothing in the Lagrangian

formalism prevents from making use of various parametrizations. Therefore, non-equivalence

of any two Hamiltonian formulations of the theory witnesses some problem in the construction

of Hamiltonian formalism. In our extended phase space approach we do not need to abandon

generally accepted rules of constructing a Hamiltonian form of the theory or invent some new

rules. Indeed, in our approach

• the Hamiltonian is built up according to the usual rule H = paq̇
a − L;

• the Hamiltonian equations in extended phase space are completely equivalent to the

Lagrangian equations;

• due to global BRST invariance it appears to be possible to construct the BRST charge

in conformity with the first Noether theorem which produces correct transformations for

all phase variables.

The only additional assumption we have made is introducing into the Lagrangian missing

velocities by means of the differential form of gauge conditions.

Of course, until now our results have been demonstrated for simple models and it would be

important to reproduce them for the full gravitational theory. However, the results are rather

indicative, so I cannot see any reason to abandon the ADM parametrization or other possible

parametrizations. If one used the formalism of extended phase space, the formulation in the

ADM variables is expected to be equivalent to the Hamiltonian formulation in terms of metric

tensor and conjugate momenta, as well as to the original Einstein General Relativity. In this

case the group of transformation in phase space includes the group of gauge transformation of

the Einstein theory, and we have an explicit prescription how to build up the generator of these

transformations. The proposed formulation in extended phase space reveals new prospects to

quantization of gravity, as was reported at previous PIRT meetings.
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