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Abstract

We give a pedagogical introduction into an old, but unfortunately not very well-known for-

mulation of GR in terms of self-dual two-forms due to Plebanski. Our presentation is rather ex-

plicit in that we show how the familiar textbook solutions: Schwarzschild, Volkoff-Oppenheimer,

as well as those describing the Newtonian limit, graviton and homogeneous isotropic Universe

can be obtained within this formalism. Our description shows how Plebanski formulation gives

quite an economical alternative to the usual metric and frame-based schemes for deriving Ein-

stein equations.

1kirill.krasnov@nottingham.ac.uk

http://arXiv.org/abs/0904.0423v1


1 Plebanski formulation of general relativity

The aim of this short paper is to give a description of Plebanski formulation [1] of general

relativity (GR) in a version that we found most suited for practical computations. Our pre-

sentation is very explicit, in that the standard textbook solutions of GR are obtained. As we

shall see, given an antsatz for the metric, Plebanski formulation produces Einstein equations

even more quickly than the already efficient tetrad method. In our opinion, the efficiency and

beauty of this formulation may warrant its inclusion in general relativity textbooks.

Our convention for the signature is (−,+,+,+). We start with a description of the Plebanski

version of Einstein equations in the usual tensor notations.

1.1 Einstein condition and the Hodge operator

Given a spacetime metric gµν the condition that this metric is Einstein reads: Rµν ∼ gµν ,

where Rµν := R ρ
µ νρ is the Ricci tensor, and the fact that the proportionality coefficient in this

condition must be a constant is implied by the (differential) Bianchi identity ∇µGµν = 0, where

∇µ is the metric-compatible derivative operator and Gµν = Rµν − (1/2)gµνR is the Einstein

tensor. As usual, the quantity R is the Ricci scalar R := Rµ
µ, and all indices are raised and

lowered with the metric. The Plebanski formulation of GR is based on the following simple

and well-known reformulation of the Einstein condition in terms of the Hodge operator. Thus,

let us introduce the operation of Hodge dual that acts on bivectors (anti-symmetric rank two

tensors) Aµν :

Aµν → ∗Aµν =
1

2
ǫ ρσ
µν Aρσ, (1)

where the quantity ǫµνρσ is the volume 4-form for the metric gµν . The following elementary

properties of the Hodge operator are easily verified: its square is minus one and it is invariant

under conformal transformations of the metric g → Ω2g.

Given the Riemann curvature tensor Rµνρσ one can apply the Hodge operator to either the

first or the second pair of indices:

∗Rµνρσ :=
1

2
ǫ µ′ν′

µν Rµ′ν′ρσ, R∗

µνρσ :=
1

2
Rµνρ′σ′ǫ

ρ′σ′

ρσ. (2)

It is a straightforward computation to check that the Einstein condition (together with the first

Bianchi identity Rµ[νρσ] = 0) is equivalent to the condition that the left and right Hodge duals

of the Riemann tensor coincide:

Rµν ∼ gµν ⇐⇒ ∗Rµνρσ = R∗

µνρσ. (3)
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Indeed, since (∗)2 = −1 the last condition is equivalent to Rµνρσ = −∗R∗

µνρσ. Contracting a

pair of indices on the left-hand-side to produce the Ricci curvature, and expanding the product

of two epsilons on the right-hand-side in terms of products of the metric tensor, one finds that

this condition gives Rµν = (1/4)gµνR, which is the Einstein condition.

To arrive to Plebanski formulation we need a slight additional reformulation of the condition

(3). Thus, let us use the Hodge operator (1) to introduce projectors on the spaces of the so-

called self- and anti-self-dual bivectors. These are bivectors that remain essentially unchanged

under the Hodge duality:

∗Aµν = iAµν ⇐⇒ (self − dual), ∗Aµν = −iAµν ⇐⇒ (anti − self − dual). (4)

The corresponding projectors are:

P± ρσ
µν =

1

2

(

I ρσ
µν +

1

2i
ǫ ρσ
µν

)

, (5)

where we have introduced the identity operator in the space of bivectors:

I ρσ
µν := δ[ρ

µ δ
σ]
ν =

1

2

(

δρµδ
σ
ν − δσµδ

ρ
ν

)

. (6)

It is then easy to show that the condition (3) can be rewritten using the above projectors

as follows:

(Ricci) ∼ (metric) ⇐⇒ P−RP+ = 0, (7)

where the anti-self-dual projector is applied on the left and the self-dual projector is applied

on the right. Another convenient way to state this is to say that the Einstein condition is

equivalent to the statement that the self-dual part of the Riemann curvature with respect to

the second pair of indices is self-dual with respect to the first pair as well. In the mathematics

literature this is known as the Atiyah-Hitchin-Singer theorem [2]. A proof of equivalence of (7)

to (3) is an elementary exercise using the definition of the projector operators. We can now

use the observation (7) as the basis of a new formulation of general relativity.

1.2 Plebanski formulation: pure gravity

Let us present Plebanski formulation as a concrete recipe for obtaining Einstein equations

starting from a metric. We will then explain why this recipe is equivalent to (7).

The first step of this formulation is to find a tetrad for the spacetime metric. Thus, one

represents the metric as: ds2 = θI ⊗ θJηIJ , where θI , I = 0, 1, 2, 3 are the tetrad one-forms

and ηIJ is the Minkowski metric. The next step is to construct two-forms θI ∧ θJ and then
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take their self-dual parts with respect to the indices IJ . More concretely, one introduces an

arbitrary time plus space split of the internal indices I = (0, i), i = 1, 2, 3, and considers the

following triple of two-forms:

Σi := iθ0 ∧ θi − 1

2
ǫijkθj ∧ θk. (8)

As is not hard to check, the two-forms Σi satisfy:

i

2
Σi ∧ Σj = δij

√−g d4x, Σi ∧ Σ̄j = 0, (9)

where the anti-self-dual forms Σ̄i are given by:

Σ̄i := iθ0 ∧ θi + 1

2
ǫijkθj ∧ θk. (10)

After the two-forms Σi are written down, the next step is to find a connection Ai that is

“compatible” with the triple Σi, i.e. the connection that satisfies:

dΣi + ǫijkAj ∧ Σk = 0. (11)

This is an algebraic equation for the components of the connection Ai that has a unique solution.

It is not hard to write down an explicit expression for Ai in terms of the derivatives dΣi, but in

practice it is easier to solve the equation (11) for each problem at hand by expanding it in the

coordinate three-forms. We shall denote the Σ-compatible connection by AΣ. It is not hard to

verify that AΣ is just the self-dual part of the tetrad-compatible dθI + ωIJ ∧ θJ = 0 connection

ωIJ , i.e., Ai = iω0i− (1/2)ǫijkωjk. This fact will be important below for our explanation of the

Plebanski method from the point of view of (7), but it is not essential if one just want to follow

the method.

The final step is to compute the curvature

F i = dAi +
1

2
ǫijkAj ∧Ak (12)

of the connection AΣ. Curvature is a two-form, and can be split in the basis of self-dual Σi and

anti-self-dual Σ̄i two-forms. Thus, one can always write:

F i(AΣ) = F ijΣj + F̄ ijΣ̄j . (13)

The matrices F ij , F̄ ij are the main quantities of interest for the Einstein equations can be

written quite easily as the following ten conditions:

Tr(F ) = −Λ, F̄ ij = 0, (14)

where Λ is the cosmological constant. As a bonus of this method, one not only obtains Ein-

stein equations, but also automatically gets an expression for the part of the curvature not

3



constrained by Einstein equations - the Weyl curvature. Thus, the self-dual part Ψij of the

Weyl curvature tensor is given by the tracefree part of the matrix F ij: Ψij = (F ij)tf .

The described method of obtaining Einstein equations is quite efficient for practical com-

putations. The steps one has to take to arrive at (14) are similar to the steps one makes in

the tetrad formulation. The advantage of working with two-forms Σi instead of tetrads θI is

that one has half equations to deal with at intermediate steps, at the expense of all quantities

becoming complex. We shall see the power of this method below when we use it to obtain the

standard solutions of GR.

An explanation of this method from first principles, i.e. from equation (7) is as follows. As

we have already said, the Σ-compatible connection Ai turns out to be just the self-dual part

of the tetrad-compatible spin connection ωIJ . This means that the curvature F i(AΣ) is just

the self-dual part of the curvature tensor RIJ(ω). Now the second equation in (14) just says

that the curvature F i(AΣ) is self-dual as a two-form. However, because of the noted relation

between F i and RIJ this is equivalent to the condition that the self-dual part of RIJ is self-dual

as a two-form, which is just the condition (7). The first equation in (14) can be shown to be a

consequence of the Bianchi identity DAF
i = 0, analogous to how the proportionality coefficient

in the Einstein condition Rµν ∼ gµν is shown to be a constant related to the cosmological

constant. For more discussion on abstract aspects of Plebanski formulation of GR the reader

may consult [3].

1.3 Coupling to matter

In the previous subsection we have described the vacuum theory. We now need to extend it to

the case when a non-zero right-hand-side of vacuum equations is present.

The coupling to matter is described in Plebanski formulation in complete analogy to the

usual metric-based scheme. The main step is to split the stress-energy tensor of matter Tµν
into its trace T = T µµ and the tracefree T̃µν = Tµν − (1/4)gµνT parts, and then form out of the

tracefree part a 3 × 3 (complex) matrix

T ij = T̃ ρµΣi
νρΣ̄

j µν , (15)

where, as before Σi, Σ̄i are the self- and anti-self-dual forms (8) and (10). The non-vacuum

Einstein equations (14) then take the following simple form:

Tr(F ) = −Λ − 2πGT, F̄ ij = −2πGT ij . (16)

For the ideal fluid, which is what matters for most practical applications, we have Tµν =

(ρ+ P )uµuν + Pgµν, where ρ, P are the energy and pressure densities correspondingly, and uµ
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is the 4-velocity vector. The trace of the stress-energy tensor is given by T = (3P − ρ), the

tracefree part T̃µν = (ρ+ P )(uµuν + (1/4)gµν) and so we get:

T ij = (ρ+ P )

(

δij

1 − |u|2 − 2iǫijk
uk

√

1 − |u|2

)

, (17)

where uk is just the spatial component of the normalized uµu
µ = −1 velocity 4-vector:

uµ =
1

√

1 − |u|2
((dt)µ + ui(dxi)µ). (18)

In these two formulas |u|2 = uiui, with, as usual, a sum over the repeated index i implied.

Other types of matter can be described similarly.

We are now ready to study some simple solutions of GR using the formulation described.

We start with the graviton solution of the linearized theory. We shall set the cosmological

constant Λ to zero from now on.

2 Graviton solution

The graviton is a solution of linearized around Minkowski spacetime vacuum field equations.

The background two-forms are given by:

Σi
0 = idt ∧ dxi − 1

2
ǫijkdxj ∧ dxk. (19)

In Plebanski formulation the graviton is described as a perturbation:

Σi = Σi
0 + δΣi. (20)

The perturbation two-forms δΣi can then be decomposed into the background two-forms:

δΣi = bijΣj
0 + b̄ijΣ̄j

0. (21)

In terms of the matrices bij , b̄ij the reality conditions (9) become

bij = bδij + ωij, b̄ij = (b̄ij)∗, (22)

where b is a real scalar and ωij is an arbitrary (complex) anti-symmetric matrix. The second

equation implies that the matrix of quantities b̄ij is real.

The representation (21) of a general perturbation immediately provides a convenient clas-

sification of perturbations. Indeed, the matrix b̄ij can be split into its symmetric traceless,

anti-symmetric, and the trace parts, while the matrix ωij is already anti-symmetric. Then the
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transverse part of an symmetric tracefree matrix describes a tensor mode, while the transverse

part of an anti-symmetric matrix describes a vector one. For example, perturbations of the

tensor type that correspond to the gravitons are given by:

δtensΣ
i = hijΣ̄j , (23)

where hij is a symmetric, traceless, transverse hij,i = 0 three by three matrix.

Perturbations of the scalar and vector types can also be considered but the modes they

describe are non-propagating. Further, some of these modes are gauge. For example, the

modes described by ωij part of the perturbation are just the gauge modes corresponding to

availability of (complexified) SO(3) transformations in this framework. Other modes are gauge

for the infinitesimal diffeomorphisms, which in this framework are described by:

δξΣ
i = LξΣi = dιξΣ

i, (24)

where Lξ is the Lie derivative along an infinitesimal vector field ξ and ιξ is the operation of

the interior product a vector field with a form. It is quite easy to compute (24) and see which

modes can be set to zero by the diffeomorphisms. One finds that, for example, the gauge-fixed

perturbation of the scalar type is described by:

δscalΣ
i = φΣi + ψΣ̄i, (25)

where φ, ψ are related to the usual Newtonian potentials Φ,Ψ in an elementary way. We shall

further consider scalar perturbations below when we study the Newtonian limit.

Having determined the form of the perturbation that we would like to study, it is elemen-

tary to obtain the linearized Einstein equations. Thus, the first step is to find the linearized

connection δAi such that: dδΣi + ǫijkδAj ∧ Σk = 0. This is a simple exercise in algebra with

the result being:

δAi =
(

−hik,l ǫjkl + i(hij)′
)

dxj . (26)

Here the prime denotes the time derivative. The corresponding linearized curvature is also easy

to compute. We decompose the answer into the self- and anti-self-dual background forms:

dδAi =
1

2
(hij)′′(Σj + Σ̄j) +

1

2
∆hij(Σj − Σ̄j) + i(hik,l )

′ǫjklΣj . (27)

Now setting to zero the anti-self-dual terms on the right hand-side gives the Einstein equations:

(hij)′′ − ∆hij = �hij = 0, (28)

whose solutions are plane waves – gravitons. As a bonus, we also get an expression for the

matrix of the components of the self-dual part of the Weyl curvature of the graviton:

Ψij =
1

2

(

(hij)′′ + ∆hij + 2i(hik,l )
′ǫjkl

)

, (29)

which, as is easy to check, is symmetric and traceless.
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3 Schwarzschild solution

In this case one is still interested in vacuum field equations. We start from the usual expression

for a spherically-symmetric metric:

ds2 = −f 2(r)dt2 + g2(r)dr2 + r2dΩ2, (30)

where dΩ2 is the usual metric on the unit sphere. A tetrad is given by:

et = f(r)dt, er = g(r)dr, eθ = rdθ, eφ = r sin(θ)dφ. (31)

A convenient set of self-dual combinations (8) is then:

Σ1 = iet ∧ er − eθ ∧ eφ, Σ2 = iet ∧ eθ − eφ ∧ er, Σ3 = iet ∧ eφ − er ∧ eθ. (32)

We now have to find the associated su(2) connection Ai. This involves some guesswork,

with the answer being:

A1 =
if ′

g
dt+ cos(θ)dφ, A2 = −sin(θ)dφ

g
, A3 =

dθ

g
, (33)

where, as usual, prime denotes the derivative with respect to the r coordinate. It is not hard

to verify that the above connection solves (11).

In practice finding the connection is the most time consuming task. After this is done, it

only remains to compute the curvature. This is a simple exercise in differentiation. One gets:

F 1 = dA1 + A2 ∧A3 = −
(

if ′

g

)′

dt ∧ dr −
(

1 − 1

g2

)

sin(θ)dθ ∧ dφ,

F 2 = dA2 + A3 ∧A1 = − g′

g2
sin(θ)dφ ∧ dr − if ′

g2
dt ∧ dθ, (34)

F 3 = dA3 + A1 ∧A2 = − g′

g2
dr ∧ dθ − if ′

g2
sin(θ)dt ∧ dφ.

In the final step of extracting Einstein equations one simply has to express the coordinate

two-forms appearing in (34) in terms of the self- and anti-self-dual forms Σ̄i = −(Σi)∗. Thus,

our final expression for the curvature components is:

F 1 = − 1

2fg

(

f ′

g

)′

(Σ̄1 + Σ1) − 1

2r2

(

1 − 1

g2

)

(Σ̄1 − Σ1),

F 2 = − 1

2g2r

(

g′

g
(Σ̄2 − Σ2) +

f ′

f
(Σ̄2 + Σ2)

)

, (35)

F 3 = − 1

2g2r

(

g′

g
(Σ̄3 − Σ3) +

f ′

f
(Σ̄3 + Σ3)

)

.
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After one has an expression for the curvature in terms of the basis two-forms Σi, Σ̄i one can

immediately read off Einstein equations. First, one should equate to zero all the anti-self-dual

components of the curvature. This immediately gives (from F 2, F 3):

f ′

f
+
g′

g
= 0, (36)

whose solution is the familiar f = 1/g. The equation coming from the anti-self-dual part of F 3

reads:

1

fg

(

f ′

g

)′

+
1

r2

(

1 − 1

g2

)

= 0. (37)

The other equation, namely the condition that the trace part of the self-dual part of the

curvature is zero reads, with (36), (37) taken into account, after some simple rewriting:
(

1

g2

)′

=
1

r

(

1 − 1

g2

)

, (38)

which immediately gives the famous:

1

g2
= 1 − r+

r
, (39)

which also solves (37), as is not hard to see. The sign of the integration constant here is chosen

so that the spacetime obtained is that of positive total gravitational mass. The integration

constant itself is chosen so that r = r+ is the place where g−2(r) vanishes.

We would like to emphasize how much more thought-economizing the above derivation was

as compared to the usual (e.g. tetrad-based) derivation given in all the textbooks. Even the

steps leading to the computation of the curvature involve just the half of operations needed

in the tetrad scheme (in the above spherically-symmetric case the economy is probably not

as good, as a large number of coefficients is anyway zero). However, what really is most

economical about Plebanski formulation is that one can immediately read off the equations

from the expression for the curvature, unlike in the usual tetrad-based scheme. Indeed, in

the tetrad scheme one first has to form the Ricci tensor, and only after that write Einstein

equations. In this last step one has to raise and lower indices, which introduces some tricky

minus signs, making it a non-trivial exercise to get the right final expressions. In the case of

Plebanski formulation this last step is absent altogether, the manipulations leading to Einstein

equations are as algorithmic as all the previous ones, making it much harder to make a mistake.

4 Volkoff-Oppenheimer solution

In this section we switch on the stress-energy of matter. We have computed the curvature

components in the previous section. The equations that one obtains from the anti-self-dual
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components of the curvature are:

1

2g2r

(

g′

g
+
f ′

f

)

= 2πG(ρ+ P ), (40)

1

2fg

(

f ′

g

)′

+
1

2r2

(

1 − 1

g2

)

= 2πG(ρ+ P ). (41)

The equation one obtains from the trace of the self-dual part is given by:

− 1

g2r

(

f ′

f
− g′

g

)

− 1

2fg

(

f ′

g

)′

+
1

2r2

(

1 − 1

g2

)

= 2πG(ρ− 3P ). (42)

Let us now take twice the equation (40) summed with (41), and subtract the result from the

equation (42). We get, after some simple rewriting:

1

r

(

1 − 1

g2

)′

+
1

r2

(

1 − 1

g2

)

= 8πGρ, (43)

which is the non-zero ρ generalization of the equation (38). It immediately gives:

g−2(r) = 1 − 2m

r
, m(r) =

∫ r

0

4πGρr2. (44)

The function f can then be found from e.g. equation (40). Substituting (44) we get:

f ′

f
=
m+ 4πGPr3

r(r − 2m)
, (45)

integrating which we get f . This ODE should be solved with the “boundary” condition f 2(R) =

1 − 2M/R, where M,R are the total mass and radius of the spherical object in question.

5 Newtonian limit

Let us now consider the case of small (static) perturbations around the Minkowski spacetime

background (19) described by two scalar potentials φ, ψ:

δBi = φΣi + ψΣ̄i. (46)

Here we assume the functions φ, ψ to be only those of the spatial coordinates (time inde-

pendent). It can be easily shown that all other scalar perturbations can be set to zero by a

diffeomorphism and an SO(3) rotation. It is easy to check that (46) corresponds to the following

perturbation of the metric:

ds2 = −(1 + 2Φ)dt2 + (1 − 2Ψ)
∑

i

dx2
i , (47)
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with

Φ =
φ+ 3ψ

2
, Ψ =

ψ − φ

2
. (48)

We now have to solve the linearized “compatibility” equation and obtain the linearized

connection. We can solve for the φ and ψ parts of the perturbation separately. We get:

Aiφ =
i

2
φ,idt−

1

2
ǫijkφ,kdx

j , Aiψ =
3i

2
ψ,idt+

1

2
ǫijkψ,kdx

j . (49)

The corresponding linearized curvatures are:

dAiφ = −1

4
∆φΣi +

1

4
(−2φ,ij + δij∆φ)Σ̄j , (50)

dAiψ = −1

4
(4ψ,ij − δij∆ψ)Σj − 1

4
(2ψ,ij + δij∆ψ)Σ̄j .

Let us now analyze the Plebanski equations (16) with zero pressure P = 0 and velocity

ui = 0. First, the anti-self-dual part on the right-hand-side is diagonal, which requires of the

off-diagonal components to vanish:

((φ+ ψ),ij)tf = 0, (51)

where tf denotes the trace-free part. This implies φ+ ψ = 0, or Ψ = Φ. Both of the diagonal

components then give the Laplace equation, which in terms of the potentials (48) takes the

familiar form:

∆Φ = 4πGρ. (52)

We also get for free an expression for the components of the Weyl tensor:

Ψij = Φ,ij − 1

3
δij∆Φ, (53)

which, we note, is real, as is typical of static backgrounds.

6 Homogeneous isotropic Universe

Using Plebanski formalism it is also quite easy to obtain the Friedman equations describing the

evolution of a homogeneous isotropic Universe. The corresponding metric is given by:

ds2 = a2(η)

(

−dη2 +
∑

i

(dxi)2

)

, (54)
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where η is the conformal time. The corresponding self- and anti-self-dual two-forms are given

by:

Σi = a2(idη ∧ dxi − 1

2
ǫijkdxj ∧ dxk), Σ̄i = a2(idη ∧ dxi + 1

2
ǫijkdxj ∧ dxk). (55)

The connection Ai compatible with the set of self-dual two-forms Σi, i.e. satisfying (11), is

given by:

Ai = iHdxi, (56)

where we have introduced:

H :=
a′

a
(57)

and the prime denotes the derivative with respect to the conformal time. The curvature F i =

dAi + (1/2)ǫijkAj ∧ Ak of the connection (56) is given by:

F i =
1

2a2
(H′ + H2)Σi +

1

2a2
(H′ −H2)Σ̄i. (58)

From (58), (16) we immediately get Einstein equations:

1

2a2
(H′ + H2) =

2πG

3
(ρ− 3P ),

1

2a2
(H′ −H2) = −2πG(ρ+ P ). (59)

These are more customarily known as their linear combinations:

H2 =
8πGa2ρ

3
, 2H′ + H2 = −8πGa2p. (60)

7 Discussion

We would like to conclude this short paper by emphasizing once more how computationally-

efficient the Plebanski formulation of general relativity is as compared to other standard text-

book methods such as that based on tetrads. For this reason its inclusion in GR textbooks

may be warranted, also in view of its conceptual simplicity and beauty.

What we have not discussed in this paper is if Plebanski formulation can be not just a tool

for obtaining Einstein equations but also for solving them. To this end we just note that the

Bianchi identity takes in this formulation a very simple form:

DAΨij ∧ Σj = 0, (61)

where Ψij is the matrix of self-dual components of the Weyl curvature tensor. In the case of

the Schwarzschild solution the matrix Ψij is diagonal Ψij = β(r)diag(2,−1,−1), where β(r)
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is a function of the radial coordinate. The Bianchi identity (61) then becomes a first order

differential equation for β, which immediately gives β ∼ 1/r3. One then finds that one of the

Einstein equations is an algebraic relation between g(r) and β(r), so the problem of solving the

system of Einstein equations reduces in this case to that of solving (61). This simple observation

is relevant in situations other than Schwarzschild, and in some cases serves as an efficient tool

for obtaining solutions.

Finally, let us note that the described here method is closely related to that of Newman-

Penrose [4], with the later being, loosely speaking, the two-component spinor version of the

Plebanski one. In addition to working with self-dual quantities, and expressing all quantities

in terms of spinors, the Newman-Penrose formalism introduces and works with a doubly-null

tetrad, which is quite powerful, but at the same time makes the Lorentz-covariance of the theory

not manifest. In contrast, Lorentz rotations of a tetrad in Plebanski formalism are described

very simply as (complexified) SO(3) rotations. It is also considerably more easy to work with

spacetime forms than with spinors. For these reasons Plebanski method may be an convenient

middle ground between the relatively cumbersome tetrad method and a very powerful, but

somewhat too relying on working in components Newman-Penrose formalism.
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