
ar
X

iv
:0

80
4.

43
48

v1
  [

gr
-q

c]
  2

8 
A

pr
 2

00
8

Cascade Birth of Universes in Multidimensional Spaces

S. G. Rubin
Moscow Engineering Physics Institute, Kashirskoe sh. 31,

Moscow, 115409 Russia *E-mail: sergeirubin@list.ru

The formation mechanism of universes with distinctly different properties is considered within the
framework of pure gravity in a space of D ¿ 4 dimensions. The emergence of the Planck scale and
its relationship to the inflaton mass are discussed.

I. INTRODUCTION

The dynamics of our Universe is well described by a modern theory containing 30-40 parameters. The number
of these parameters, whose values are determined experimentally, is too large for the theory to be considered final.
In addition, it is well known that the range of admissible parameters must be extremely narrow (fine tuning of
parameters) for the birth and existence of such complex structures as our Universe, which is difficult to explain.
Extensive literature is devoted to a discussion of this problem [1]. One way of solving the problem is based on the
assumption about the multiplicity of universes with different properties [2], [3], [4]. Rich possibilities for justifying
this assumption are contained in the idea of multidimensionality of our space itself. The number of extra dimensions
has long been a subject for debate. Thus, the Kaluza-Klein model originally contained one extra dimension. At
present, for example, infinite-dimensional spaces [5] and even variable-dimensional spaces [6] are being discussed. In
this paper, the concept of superspace is extended to a set of superspaces with different, unlimited from above numbers
of dimensions. Based on the introduced extended superspace, we suggest the formation mechanism of universes with
distinctly different properties and the emergence mechanism of the Planck scale. The probability of the quantum
transitions that produce lower-dimensional subspaces is discussed.

Let us define the superspace MD = (MD; gij) as a set of metrics gij in space MD to within diffeomorphisms. On
a space-like section Σ, let us introduce a metric hij (for details, see the book [7] and the review [8]) and define the
space of all Riemannian (D − 1) metrics:

Riem(Σ) = {hij(x) |x ∈ Σ}.
The amplitude of the transition from one arbitrarily chosen section Σin with the corresponding metric hin to another

section Σf with a metric hf is

Af,in = 〈hf ,Σf |hin,Σin〉 =

∫ hf

hin

Dg exp[iS(g)]. (1)

In what follows, we use the units ~ = c = 1. The topologies of the sections Σin and Σf can be different. We will
be concerned with the quantum transitions in which the topology of the hypersurface Σf is a direct product of the
subspaces, MD−1−d ⊗Md. The space Md is assumed to be compact. Below, we will explore the question of what
class of geometries on the hypersurface Σf can initiate classical dynamics.

The entire analysis is performed within the framework of nonlinear gravity in a space of D > 4 dimensions without
including any matter fields. We discuss the emergence of the Planck scale and its relationship to the inflaton mass.
The reduction in a lower-dimensional space is made in several steps to produce a cascade. Different cascades give rise
to four-dimensional spaces with different effective theories and different numbers of extra dimensions.

The parameters of the low-energy theory turn out to depend on the topology of the extra spaces and vary over
a wide range (see also [9, 10]), although the parameters of the original theory are fixed. This also applies to such
fundamental concepts as, for example, the Planck mass and the topology of the extra space. The absence of matter
fields postulated here from the outset is a fundamental point. It is suggested that the metric tensor components for
the extra (super)space at low energies will be interpreted as the matter fields in the spirit of theories like the

II. THE SIMULTANEOUS FORMATION OF SPACE-TIME AND PARAMETERS OF THE THEORY

Originally, the concept of superspace meant the set of various geometries [11]; subsequently, the set of all possible
topologies was included in it [7]. Let us take the next step and extend the superspace to include spaces of various
dimensionalities. To be more precise, let us define the extended superspace E as a direct product of superspaces M
of various dimensionalities:

E = M1⊗M2⊗M3⊗...⊗MD... (2)
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Here, Mn is a superspace of dimensionality n = 1, 2, , which is the set of all possible geometries (to within diffeomor-
phisms) and topologies.

Quantum fluctuations generate various geometries in each of the superspaces (spacetime foam) [7, 11]. The prob-
ability of the quantum birth of ”long-lived” 3-geometries and the conditions under which this occurs are discussed
below in Section 4. In this section, we consider the corollaries of the hypothesis about the existence of an extended
superspace.

Let us choose a spaceMD of some dimensionalityD. Its topological structure can change under the effect of quantum
fluctuations [7, 12]. In particular, topologies are possible that admit of space foliations by space-like surfaces Σ, as
implied in Eq. (1) for the transition amplitude. In what follows, we consider spaces that admit of a partition in the
form

MD = R ⊗M
(space)
D−1 , (3)

where R represents the time-like direction.
Let us concretize the topology and metric on the space-like section Σf of amplitude (1) by subjecting them to the

following conditions:
i) the topology of the section Σf has the form of a direct product,

Σf = M
(space)
D−1 = MD1

⊗Md1
, (4)

where D1 and d1 are the dimensionalities of the corresponding subspaces (in what follows, the compact subspace is
denoted by Md, n = 1, 2, );

(ii) the condition for the curvatures of the subspaces D1 and d1 is satisfied:

RD1
(gab) << Rd1

(γij), (5)

(iii) in the set of subspaces Md1
, we will choose the maximum symmetric spaces with a constant curvature Rd1

,
which is related to the curvature parameter k in the standard way:

Rd1
(γij) = kd1(d1 − 1). (6)

Otherwise, the topology and geometry of the subspace MD are arbitrary.
Let us choose the dynamical variables and the Lagrangian. We will write the metric of the space MD as [13]

ds2 = GABdX
AdXB = gac(x)dx

adxc − b2(x)γij(y)dy
idyj

= dt2 − hαβdx
αdxβ − b2(x)γij(y)dy

idyj . (7)

Here, gac is the metric of the subspace R ⊗MD1
with signature (+ − − − ...−), b(x) is the radius of curvature of

the compact subspace Md1
, and γij(y) is its positively defined metric. For a given foliation of the space by space-like

surfaces, we can always choose the normal Gaussian coordinates, which is used in the last equality in (7).
The Einstein-Hilbert action for a gravitational field, linear in curvature R, completely describes the physical phe-

nomena at low energies where gravity is important. However, it is clear that quantum effects inevitably lead to
nonlinear corrections in the expression for the action [14]. In this case, the action ought to contain terms with higher
derivatives in the form of polynomials of various degrees in Ricci scalar and other invariants. Thus, whatever the
gravitational action we take as the basis, after applying the quantum corrections, it takes the form

S =

∫

dNx
(

R+ ε1R
2 + ε2R

3 + ε3R
4 + ...+ α1RABR

AB + ....
)

with a set of unknown coefficients dependent on the topology of the space [15, 16, 17]. However, the problem is not that
acute, since the nonlinear (in Ricci scalar) theories can be reduced to the linear theory by a conformal transformation
[18]. Moreover, in our papers [19], we suggest a more general method for reducing arbitrary Lagrangians to the
standard Einstein-Hilbert form in the low-energy limit. In this case, the problem of stabilizing the sizes of the extra
dimensions [13] turns out to be quite solvable.

Thus, using theories with higher derivatives is inevitable when the quantum effects are taken into account. At low
energies, such theories can provide the same predictions as general relativity, while having richer possibilities. For
simplicity, we will restrict ourselves to an action quadratic in Ricci scalar:

SD =
1

2

∫

dDX
√
−G

[

RD(GAB) + CRD(GAB)2 − 2Λ
]

+

∫

∂MD

KdD−1Σ (8)
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The contribution from the boundary ∂MD is a term introduced by Hawking and Gibbons (K is the spur of the second
fundamental form of the boundary [20]). In the subsequent analysis, the parameters C and Λ are supposed to be fixed
and the entire variety of low-energy theories generated by action (8) arises owing to the various ways of reduction to
lower-dimensional spaces.

Since the reasoning is given within the framework of a purely geometric approach, the scale in theory (8) is initially
not fixed, while the parameters C and Λ are dimensionless. In the next section, we discuss the emergence of the
Planck scale at low energies.

As was shown in [19, 21], theory (8) allows a compact stable space of extra dimensions with a nonzero vacuum
energy density to be obtained. The observed low vacuum energy requires a very fine tuning of the parameter C and Λ.
Below, we suggest a mechanism that allows the parameters of the effective theory to be naturally varied over a wide
range. In this case, the parameters are unique in each universe produced by a quantum fluctuation. This means that
there exists a fraction of the universes with the required parameters and, hence, vacuum energy. Thus, the smallness
of the dark energy density in our Universe means that the fraction of the universes similar to ours is small.

Let us return to the parameter variation mechanism. Owing to the special form of the chosen metric (7) (see [13]),
the following relations hold:

√
−G = bd1

√−g√γ, (9)

RD(GAB) = RD1
(gac) + b−2Rd1

(γij) +Kb, (10)

Kb ≡ −2d1b
−1gac∇a∇cb− d1(d1 − 1)b−2gac(∇ab)(∇cb). (11)

The covariant derivative ∇ acts in the space MD1
. The volume Vd1

of the extra space Md1
depends on its topology,

since it is expressed in terms of the intrinsic metric:

Vd1
=

∫

dd1y
√
γ. (12)

For convenience, let us introduce a scalar field

φ(x) = b(x)−2Rd1
(γij), (13)

in terms of which the action takes the form

SD =
Vd1

2

∫

dD1x
√−g

(

Rd1

φ(x)

)d1/2

· (14)

{RD1
(gab) + 2Cφ(x)RD1

(gab) + CRD1
(gab)

2 − 2Λ + φ(x) + Cφ(x)2 +

2CKb [RD1
(gab) + φ(x)] +Kb + CK2

b }.

Since the field φ is uniquely related to the radius of curvature b(x) of the compact space Md1
, the existence of

stationary solutions φ(x) = φm minimizing the action would mean the stability of the sizes of this space.
In the Jordan frame, according to (14), we have

SD =
1

2

∫

dD1x
√−g{f(φ)RD1

(gab) + CJ (φ)RD1
(gab)

2 − 2UJ(φ) +KJ(φ)], (15)

f(φ) = Vd1
φ(x)−d1/2 [1 + 2Cφ(x)] (16)

UJ(φ) = Vd1
φ(x)−d1/2

[

Λ − 1

2

(

φ(x) + Cφ(x)2
)

]

(17)

CJ(φ) = Vd1
φ(x)−d1/2C (18)

KJ(φ) = Vd1
φ(x)−d1/2

[

Kb + 2CKb(RD1
+ φ(x)) + CK2

b

]

(19)

Vd1
= Vd1

R
d1/2
d1

(20)

Note the explicit dependence of the parameters of the derived effective theory on the topology of the extra space. The
mass mφ of a quantum of the scalar field φ(x) is proportional to the second derivative of the potential at its minimum
(in the Einstein frame) and can vary over a wide range. Note that the mass defined in this way is a dimensionless
quantity. The following three situations are of greatest interest.

(1) There is no minimum of the potential, implying that the size of the extra space is nonstationary.
(2) A minimum of the potential exists and the condition

m2
φ ≤ RD1

(gab), (21)
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under which the scalar field evolves together with the metric of the main subspace MD1
, is satisfied. It is this situation

that is realized in inflationary models and that is discussed in the next section.
(3) A minimum of the potential exists and the condition

m2
φ ≫ RD1

(gab). (22)

is satisfied. In this case, the scalar field φ(x) rapidly relaxes to the potential minimum,

φ(x) = φm = Const, (23)

and does not change with time during low-energy processes. The third case is the most natural, since the relaxation
time is proportional to the scale of the extra space Md1

, which is small compared to the scale of the space MD1
. Let

us discuss this situation in more detail.
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Table 1.
Dependence of the parameters CD1

and ΛD1
on the geometry of the extra space (factor Vd1

). The fixed parameters
are: D = D1 + d1 = 11, D1 = 4,Λ = −0.6, C = −1.9.

Vd1
103 102 10 1 10−1 10−2 10−3

CD1
∼ 0 ∼ 0 ∼ 0 −4 · 10−13 −4 · 10−6 −40 −4 · 108

ΛD1
−2 · 10−6 −2 · 10−5 −2 · 10−4 −2 · 10−3 −0.016 −0.16 −1.6

Table 2.
Dependence of the parameters CD1

and ΛD1
on the dimensionality of the subspaces MD1

and Md1
. The last row

gives the radius of curvature bm for the extra space Md1
. The fixed parameters are: D = D1 +d1 = 40,Vd1

= 100,Λ =
−0.6, C = −1.9.

D1 4 10 20 30 38

CD1
∼ 0 ∼ 0 ∼ 0 ∼ 0 −3.5 · 10−13

ΛD1
−8.7 · 10−10 −8.4 · 10−4 −0.025 −0.122 −0.343

bm 50.2 44.5 39.2 32.8 13.0

Assuming condition (23) to be satisfied, let us perform a conformal transformation of the form (see, e.g., [32])

gab = |f(φm)|−
2

D1−2 g̃ab, (24)

RD1
= |f(φm)|

2

D1−2 R̃D1
,

√−g = |f(φm)|−
D1

D1−2

√

−g̃,

Being applied to Eq. (15), it brings us back to the initial form of the action (in Eqs. 25, the tildes were omitted for
short)

SD1
=

1

2

∫

dD1x
√−g{RD1

(gab) + CD1
RD1

(gab)
2 − 2ΛD1

], (25)

CD1
= |f |

4−D1

D1−2 CJ(φm) = sign(f)Vd1
|f(φm)|

4−D1

D1−2 φ−d1/2
m C,

ΛD1
= |f |

−D1

D1−2 UJ(φ) = sign(f)Vd1
|f(φm)|

−D1

D1−2 φ−d1/2
m

[

Λ − 1

2

(

φm + Cφ2
m

)

]

.

Recall that we consider the case where condition (23) is satisfied, i.e., where the field φ is already at its minimum,
φ = φm and the kinetic terms were neglected.

Action (25) coincides in form with the initial one (8), but now in the subspace MD1
and with the renormalized

parameters CD1
and ΛD1

dependent on the volume Vd1
and curvature Rd1

of the extra space Md1
. Tables 1 and 2

present the results of our numerical calculations. However, it is first necessary to note the following. The standard
assumption that Vd ∼ Ld (where L is the linear size of the space) is valid for ”simple” spaces with a positive curvature
(like d-dimensional spheres). For compact hyperbolic spaces, the situation is more interesting. The relationship
between volume and linear size is defined by the asymptotic relation [35]

Vd1
≃ exp [(d1 − 1)L/bm] , L≫ bm (26)

where bm is the radius of curvature of the compact space corresponding to the value of the field φ at which the
potential is at its minimum. Obviously, at a sufficiently large dimensionality of the extra space d1, its volume can be
large, while the linear size of the space can be small. Thus, we can vary the parameter Vd1

, along with the parameters
CD1

and ΛD1
, over a wide range without coming into conflict with the experimental constraints on the size of the

extra space. As an illustration, Tables 1 and 2 present the dependencies of the new parameters CD1
and ΛD1

on the
topology of the compact extra space Md1

.
Thus, a theory similar to the original one that is valid in the space MD, but with different parameters holds for

the subspace MD1
. An important thing is that although the original parameters C and Λ are fixed, the effective

secondary parameters Ceff = CD1
and Λeff = ΛD1

of the reduced theory vary over a wide range. The specific values
of the effective parameters depend on the random geometry and topology of the subspaces Md1

,MD1
, produced by

quantum fluctuations. The number of various topologies for a space of given dimensionality is at least countable.
Consequently, the original theory with arbitrary, but fixed parameters (in our case, C = −1.9,Λ = 0.6) generates a
countable set of reduced theories in lower-dimensional spaces MD1

that differ by the parameters. The interval of Ceff

and Λeff can be further extended if the next reduction of the subspace MD1
to an even smaller subspace MD2

∈MD1

is taken into account. This is done in the next section
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III. CASCADE REDUCTION

As was shown in the previous section, the reduction of the original theory to a lower-dimensional space generates
a wide spectrum of secondary theories that differ by the parameters CD1

and ΛD1
, which depend on the topology of

the space produced by quantum fluctuations. The subspace MD1
on which the effective theory (25) is constructed, is

also the subject to quantum fluctuations, which also lead to its partitions of the form

MD1
= MD2

⊗Md2
. (27)

The succeeding steps form a cascade:

MD1
→MD2

⊗Md2
; MD2

→MD3
⊗Md3

→ ...→M3 ⊗Mdfinal
. (28)

In this case, the parameters of the Lagrangian at the intermediate steps depend on the preceding steps of the cascade.
Since the number of topologies at each step is at least countable, chain (28) rapidly branches out to ultimately produce
an infinite set of effective theories that differ by the parameters. There is an infinite number of ways of descending
from the initial space MD to the final one. The cascades of interest to us end with the formation of four-dimensional
spaces R ⊗M3 and compact extra spaces with a certain number of dimensions equal to dfinal. Clearly, only a small
fraction of the universes formed in this way are similar to our Universe.

Let us discuss the appearance of the Planck scale in this approach. Since so far we have dealt with purely geometric
properties of spaces, introducing any scale seemed artificial. At the final step of cascade (28), our four-dimensional
space emerges, while the metric tensor components for the extra space Mdfinal

are perceived by future observers as
scalar and vector fields. Consequently, in contrast to the previous consideration, the kinetic terms KJ in action (15)
cannot be neglected. Using the low-energy limit (5), we will neglect the highest powers of the scalar curvature R4

and retain only the first terms in the expansion in powers of the derivatives KJ = K(ϕ)∂µϕ∂ϕ
µ + ... Clearly, in this

case, the most general form of the action within the framework of the Einstein frame is (see, e.g., [22])

S ≃ Vd1

2

∫

d4x
√−g[R4 +K(ϕ)(∂ϕ)2 − 2V (ϕ)], (29)

Here the volume of the extra space Vd1
enters this expression explicitly. The form of the functions K(ϕ) and V (ϕ)

depends on the topology and geometry of the extra space [19]. However, we will continue our analysis in general form.
The oscillations of the field ϕ about its equilibrium position ϕ = ϕm are perceived by an observer as scalar field

quanta. Near the potential minimum, minV (ϕ) = V (ϕm) = Vm, action (29) is

S ≃ Vd1

2

∫

d4x
[

R4 −K(ϕm)(∂ϕ)2 − 2V (ϕm) − V ′′(ϕm) (ϕ− ϕm)
2
]

The mass mϕ of the scalar field quantum responsible for the inflation period (inflaton) is measured by an observer
in dimensional units. At the same time, it is directly related to the form of the effective potential in the Einstein
frame and for the standard form of the kinetic term. If the kinetic term K(φ) > 0 near the minimum of the potential
V (φ), then a change of variables of the form

xphys = x ·
√

V ′′(ϕm)

mϕ

√

K(ϕm)
; ϕphys = (ϕ− ϕm) ·mϕ

√

Vd1

K(ϕm)
√

V ′′(ϕm)
(30)

leads to a theory with the standard kinetic term:

S =
1

2

∫

d4xphys

[

Vd1
m2

ϕ

K(ϕm)

V ′′(ϕm)
· R4 − (∂ϕphys)

2 −m2
ϕϕ

2
phys − 2Λ

]

(31)

Λ ≡ V (ϕm)Vd1
m4

ϕ

K2(ϕm)

V ′′(ϕm)2
. (32)

If we denote

M2
pl = Vd1

m2
ϕ

K(ϕm)

V ′′(ϕm)
, (33)

then we will obtain the standard form of the action for a scalar field χ in dimensional units:

S =

∫

d4x
√−g

[

M2
pl

2
R4 +

1

2
(∂χ)2 − U(χ)

]

, (34)

U(χ) =
1

2
m2

ϕχ
2 + Λ.
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In this case, the observed Planck mass is related to the parameters of the theory via Eq. (33).
Thus, three scales appear simultaneously at the final step of the cascade: the radius of curvature of the extra space

bm, the Planck mass Mpl (see 33)), and the vacuum energy Λ (see (32)), which depend on the mass of the scalar field
quantum mϕ. As we see, the Planck mass in the suggested approach is not a fundamental constant and depends on
the final configuration of the cascade.

The cosmological constant Λ ∝ V (ϕm) depends on the effective parameters. The latter can vary over a wide range,
as follows from the above discussion (see Tables 1 and 2). Hence, the cosmological constant in space M4 also varies
over a wide range, depending on the properties of cascade (28) that produced this space. Some of the cascades could
lead to spaces M4 with the observed value of the Λ term. The extreme smallness of the latter means that only a small
fraction of the cascades lead to the desired result. The parameters of the Universe are fine tuned when choosing the
proper cascade.

Let us calculate the ratio of the Planck mass to the inflaton mass

Mpl

mϕ
=

√

Vd1

K(ϕm)

V ′′(ϕm)
. (35)

Choosing the subspace M10 from set (2) and specifying the parameters C = −1.9 and Λ = −0.6 (see Tables 1 and 2),
we will obtain for the dimensionality d1 = 6 of the extra space

Mpl/mϕ ≃ 2 · 106

This numerical value agrees well with the value that is commonly used in inflationary models.

IV. THE PROBABILITY OF THE BIRTH OF UNIVERSES WITH COMPACT EXTRA DIMENSIONS

So far we have assumed that properties (3) - (6) are imposed on the structure of the space. In this section, we
discuss the possibility that such topologies appear as a result of quantum fluctuations. Many papers are devoted to
the quantum birth of the Universe. In our case, the situation is complicated by the fact that we consider nonlinear
gravity and, in addition, there are extra dimensions whose stability should be taken into account specially. The birth
of an n-dimensional space with extra dimensions within the framework of standard gravity was considered in [36, 37],
where the stability regions of a compact subspace were also studied. The possibility of inflation in the presence of
extra dimensions was explored in [21, 36]. Quadratic (in Ricci scalar) gravity was investigated in this aspect in [28].

The probabilities of the birth of the Universe calculated in different approaches differ radically from one another
[23]. This may be indicative of both the imperfection of modern theories and the complexity of the subject. The
ultimate goal of such calculations is to determine the probability of the appearance of a universe like ours. It would
be unreasonable to expect this probability to be high, given that the parameters of the Universe are fine tuned. In
this case, calculating the probability is of purely academic interest, because there are no causal relationships between
the universes. At present, to justify the promising study, it is probably necessary and sufficient to prove that the
fraction of the universes like ours is nonzero within the framework of a specific approach. In our case, this means that
the probability of each transition (28) in the cascade is non-zero.

Classical trajectories on which the action is stationary make a major contribution to the transition amplitude (1).
Their shape depends on the boundary conditions and, in particular, on the properties of the manifold Σf . In our case,
the metric on the hypersurface Σf is defined by conditions (4), (5), (6). Therefore, we will seek for classical trajectories
that are subject to the same conditions on any section Σ between the sections Σin and Σf . The initial hypersurface
Σin can either be absent altogether (the Hartle-Hawking approach) or have a ”zero geometry” (the interval between
any two points of this hypersurface is zero in Vilenkin’s approach). Below, we show that the transition probability
depends weakly on the properties of the hypersurface Σin in these cases. As an example, let us consider the formation
probability of the structure

Σf = M3 ⊗Mdfinal
, (36)

that emerges at the last step of the cascade. Classical trajectories make a major contribution to the transition ampli-
tude. The change of topology in the case of classical motion is unlikely. Therefore, classical trajectories consisting of
hypersurfaces that also satisfy condition (36) will be important for us. The topology of the D-dimensional Riemannian
space between the sections Σin and Σf is then

R ⊗M3 ⊗Mdfinal
. (37)
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As above (see (5)), the inequality R3 << Rdfinal
, which allows the results of the previous section to be used, is

assumed to be valid. Indeed, in the approximation used, action (8) transforms into a theory of form (29) and then
into the habitual Einstein-Hilbert action (34).

Action (34) has been repeatedly used to study the quantum birth of the Universe (see, e.g., [23, 24, 25, 26, 30, 31]).
However, in the papers devoted to the quantum birth of the Universe, the presence of a scalar field is usually postulated,
while in our approach, this field constitutes the metric tensor components for the extra space. Therefore, we can use
the results of numerous studies by briefly reproducing their main results. The quantum birth of the Universe is
generally studied within the framework of minisuperspace in which the interval is written as [23]

ds2 = σ2
[

N(t)2dt2 − a(t)2dΩ2
3

]

, (38)

σ2 =
1

12π2M2
Pl

.

(here, N(t) is the laps function and a(t) is the scale factor). The wave function ψ(a) satisfies the Wheeler DeWitt
equation

[

∂2

∂a2
−W (a)

]

ψ(a) = 0, (39)

where the potential

W (a) = a2(1 −H2a2), a > 0, H =

√

U(χ)

6πM2
Pl

.

The birth of the Universe is described by a tunnel transition with the forbidden region

0 < a < H−1. (40)

The wave function in this region is [23]

ψ(a) ≃ exp







H−1

∫

a

√

−2W (a′)da′






. (41)

The integral in this expression is ill-defined at the lower limit, where a → 0. The approximation R3 << Rdfinal

does not work in this region, since R3 = k/a2 → ∞ and no explicit expression is defined for the potential. The
same problem also takes place in other models for the quantum birth of the Universe [27]. Nevertheless, the integral
calculated in this way has a meaning in the limit

H << MPl, (42)

when the region a ∼ 0 is small compared to the entire domain of integration. Since our Universe was formed at
H ∼ 10−6MPl, inequality (42) holds even at the inflationary phase. The conclusion that the result depends weakly on
the behavior of the function near the singularity is also confirmed in the papers of other authors. Thus, for example,
an initial wave function of the form δ(a− ain) was suggested in [28], while the decay of a metastable vacuum from a
state with a fixed energy was studied in [30, 31]. In both cases, the initial conditions were shown to affect weakly the
transition probability. The quantum birth of universes in multidimensional gravity is discussed in detail in [29, 36].

In Vilenkin’s approach, the probability of the birth of the Universe is dP ∝ exp
[

+2
3U(χ)

]

, while the Hartle-Hawking

approximation yields dP ∝ exp
[

−2
3U(χ)

]

, Since the scalar field χ is uniquely related to the size of the extra space, the

probability of the birth of extra dimensions depends on their linear size. For all their differences, the main thing in
both approaches is that the event probability is nonzero and, hence, the fraction of the universes with given properties
produced by a cascade of reductions is nonzero.

V. DISCUSSION

There exist several problems the solution of each is a serious task.
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(1) The problems related to the extra dimensions - their number, compactification mechanism, and the possibility
of experimentally verifying their existence.

(2) The problem of the nonlinearity of the gravitational action that inevitably arises as a result of quantum effects.
(3) The problem related to the fact that a Universe with a complex structure is formed at certain numerical values of

the parameters of the theory. Generally speaking, the formulation of a future theory purporting to be the ”ultimate”
one should not contain any specific numerical values. Otherwise, an even more general theory explaining their origin
will be required.

In this paper, we showed the interrelation between these problems. It turns out that their joint consideration
facilitates rather than complicates the understand-ing of the ways of their solution. The cascade reduction process
(28) allows at least a countable set of universes with various properties to be obtained. A Universe that is described
by an effective low-energy theory with parameters whose values are determined by the specific cascade is formed at
the final step of the cascade. The parameters vary over a wide range, indicating that the problem of fine tuning can
be solved.

The idea of a cascade reduction developed here in the low-energy limit leads to the same results as the string
theory, within the framework of which the concept of a ”landscape” was introduced (see, e.g., [2], [4]). The landscape
is a complex form of a potential with many minima at which universes of various types exist. In contrast to the
(super)string theory, the cascade reduction mechanism is based only on the assumption of space multidimensionality
and action nonlinearity.

The Planck mass, the size of the extra dimensions, and the cosmological constant turn out to be dependent on
the specific cascade and the method of determining the particle masses by an observer. A necessary constituent of
the cascade reduction is the possibility of the quantum birth of universes with compact extra dimensions. Here, we
discussed the method of calculating the probability of this process within the framework of a gravitational action
with higher derivatives. Choosing the proper cascade that produced our Universe was not discussed here. Choosing
the initial Lagrangian also remains an outstanding problem. As an example, we considered the simplest nonlinear
(in curvature) Lagrangian. Using the approach suggested in [19], our consideration can be easily generalized to more
complex forms of the initial Lagrangian.
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