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Time-dependent spherically-symmetric

5-D vacuum solutions.

Sergey S. Kokarev∗and Vladimir G. Krechet

Regional Scientific Educational Center ”Logos”

Abstract

Vacuum 5-D Einstein equations with spherical symmetry and t-dependence
are considered. For the case of separating variables several classes of ex-
act solutions are obtained. Effective matter, induced by geometrical scalar
field ϕ =

√

−G55 is analyzed.

1 Introduction

Introducing of extradimension into GR theory endows solutions to multidimen-
sional Einstein equations qualitatively new properties in comparison with their
4-D analogous. So, for example, in 4-D GR the following result is well known
(Birkhoff theorem): under definite conditions Shwarzschild solution is unique
spherically-symmetric solution of vacuum 4-D Einstein equation [1]. Conse-
quence of this theorem is absence of spherically-symmetric nonstationary vac-
uum solutions.

In 5-D GR probably alleviate variant of Birkhoff theorem take place (see also
[2]): static spherically-symmetric solution to 5-D vacuum Einstein equation is
unique (Kramer’s solution), but there is variety of nonstationary spherically-
symmetric vacuum solutions.

The aim of present paper is obtaining and analysis of such time-dependent
Kaluza-Klein solitons (the term of Wesson [3, 4]), for cases of separating vari-
ables. This problem have been stated in [4], and have been solved for time-part
equations.

First half of present article gives mathematical part of our investigation: it
contains basic equations and it’s solutions (if they have been found) and sec-
ond half devoted to physical analysis: what effective matter obtained solutions
induce?[5, 9]

∗e-mail: logos-center@mail.ru
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2 Exact solutions of vacuum 5-D Einstein equa-

tions

The starting metric without loss of generality can be written in the following
form:

ds2 = eν(r,t)dt2 − eλ(r,t)dr2 − eµ(r,t)dΩ2 − e2φ(r,t)(dx5)2 (1)

Nonzero Cristoffel’s symbols are:

Γ0
00 =

ν̇

2
; Γ1

11 =
λ′

2
;

Γ0
11 =

λ̇

2
eλ−ν ; Γ0

22 =
µ̇

2
eµ−ν ;

Γ0
33 =

µ̇

2
eµ−ν sin2 θ; Γ1

00 =
ν′

2
eν−λ;

Γ1
22 = −1

2
µ′eµ−λ; Γ1

33 = −1

2
µ′eµ−λ sin2 θ;

Γ2
33 = − sin θ cos θ; Γ0

01 =
ν′

2
;

Γ1
10 =

λ̇

2
; Γ2

20 =
µ̇

2
;

Γ2
21 =

µ′

2
; Γ3

30 =
µ̇

2
;

Γ3
31 =

µ′

2
; Γ3

32 = cot θ;

Γ0
55 = φ̇e2φ−ν ; Γ1

55 = −φ′e2φ−λ;

Γ5
50 = φ̇; Γ5

51 = φ′

5-D Einstein equations RAB = 0 for the metric (1) have the following kind:

R00 =
eν−λ

2
(ν′′ +

ν′2

2
− ν′λ′

2
+ ν′µ′ + φ′ν′) (2)

−µ̈− φ̈− λ̈

2
+

ν̇

2
(
λ̇

2
+ µ̇ + φ̇)− λ̇2

4
− µ̇2

2
− φ̇2 = 0;

R11 =
eλ−ν

2
(λ̈ +

λ̇2

2
− λ̇ν̇

2
+ λ̇µ̇ + φ̇λ̇)− µ′′ − φ′′ (3)

−ν′′

2
+

λ′

2
(
ν′

2
+ µ′ + φ′)− ν′2

4
− µ′2

2
− φ′2 = 0;
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R22 =
eµ−ν

2
(µ̈+µ̇2− µ̇ν̇

2
+

µ̇λ̇

2
+φ̇µ̇)− eµ−λ

2
(µ′′+µ′2−µ′λ′

2
+

µ′ν′

2
+µ′φ′)+1 = 0;

(4)

R33 = R22 sin2 θ; (5)

R55 = e2φ−ν(φ̈+ φ̇2− ν̇φ̇

2
+

λ̇φ̇

2
+ φ̇µ̇)−e2φ−λ(φ′′+φ′2− λ′φ′

2
+

ν′φ′

2
+µ′φ′) = 0;

(6)

R01 = −µ̇′ − φ̇′ +
ν′

2
(µ̇ + φ̇) +

λ̇

2
(µ′ + φ′)− µ′µ̇

2
− φ′φ̇ = 0. (7)

Case of separating variables, which is within of our interest, is characterized
by the special kind of metric functions:

ν(r, t) = ν1(t) + ν2(r); λ(r, t) = λ1(t) + λ2(r);

µ(r, t) = µ1(t) + µ2(r); φ(r, t) = φ1(t) + φ2(r),

In this case system (2)–(7) takes the following form:

eλ1−ν1(µ̈1 +
λ̈1

2
− ν̇1

2

(

λ̇1

2
+ µ̇1 + φ̇1

)

+
λ̇2

1

4
+

µ̇2
1

2
+ φ̈1 + φ̇2

1) = α; (8)

eν2−λ2

2
(ν′′

2 +
ν′2
2

2
− ν′

2λ
′
2

2
+ ν′

2µ
′
2 + ν′

2φ
′
2) = α; (9)

eλ1−ν1

2
(λ̈1 +

λ̇2
1

2
− λ̇1ν̇1

2
+ λ̇1µ̇1 + λ̇1φ̇1) = β; (10)

eν2−λ2(µ′′
2 +

µ′2
2

2
+

ν′′
2

2
+

ν′2
2

4
− λ′

2

2
(
ν′
2

2
+ µ′

2 + φ′
2) + φ′′

2 + φ′2
2 ) = β; (11)

eλ1−ν1

2
(µ̈1 + µ̇2

1−
µ̇1ν̇1

2
+

µ̇1λ̇1

2
+ µ̇1φ̇1)−

eν2−λ2

2
(µ′′

2 +µ′2
2 −

µ′
2λ

′
2

2
+

µ′
2ν

′
2

2
+µ′

2φ
′
2)

(12)
+eν2−µ2+λ1−µ1 = 0;

eλ1−ν1(φ̈1 + φ̇2
1 −

ν̇1φ̇1

2
+

λ̇1φ̇1

2
+ µ̇1φ̇1) = γ; (13)

eν2−λ2(φ′′
2 + φ′2

2 −
λ′

2φ
′
2

2
+

ν′
2φ

′
2

2
+ µ′

2φ
′
2) = γ; (14)
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ν′
2

2
(µ̇1 + φ̇1) +

λ̇1

2
(µ′

2 + φ′
2)−

µ′
2µ̇1

2
− φ′

2φ̇1 = 0. (15)

Taking derivative of eq. (12) with respect to r and then with respect to t
we get:

ν2 = µ2 + const or λ1 = µ1 + const. (16)

Let us at first consider the case, when both conditions (16) are satisfied
simultaneously. Base system of equation (9)—(15) in this case takes the form:

eν2−λ2

2
(ν′′

2 +
3

2
ν′2
2 −

ν′
2λ

′
2

2
+ ν′

2φ
′
2) = α;

eλ1−ν1(
3

2
λ̈1 +

3

4
λ̇2

1 −
ν̇1

2
(
3

2
λ̇1 + φ̇1) + φ̈1 + φ̇2

1) = α;

eλ1−ν1

2
(λ̈1 +

3

2
λ̇2

1 −
λ̇1ν̇1

2
+ λ̇1φ̇1) = β;

eν2−λ2(
3

2
ν′′
2 +

3

4
ν′2
2 −

λ′
2

2
(
3

2
ν′
2 + φ′

2) + φ′′
2 + φ′2

2 ) = β;

eλ1−ν1

2
(λ̈1+

3

2
λ̇2

1−
λ̇1ν̇1

2
+λ̇1φ̇1)−

eν2−λ2

2
(ν′′

2 +
3

2
ν′2
2 −

ν′
2λ

′
2

2
+ν′

2φ
′
2)+AB = 0;−→

β − α + AB = 0;

eλ1−ν1(φ̈1 + φ̇2
1 −

ν̇1φ̇1

2
+

3

2
λ̇1φ̇1) = γ;

eν2−λ2(φ′′
2 + φ′2

2 −
λ′

2φ
′
2

2
+

3

2
ν′
2φ

′
2) = γ;

ν′
2

2
(φ̇1 + λ̇1) + φ′

2(
λ̇1

2
− φ̇1) = 0;

Here have been introduced following designations:

µ1 = λ1 + µ1 (µ1 = const); µ2 = ν2 + µ2 (µ2 = const);

e−µ
1 = A; e−µ

2 = B.

We shall not consider process of solution this system in details, because of
its simplicity. All solutions are exhausted by the following ones:

general 1-parametric solution (A-solution)

ds2 = r2dt2 − u2

3
t2dr2 − u2

3

r2t2

(3− u2)
dΩ2 ± r2(1+u)t

2(3+u)
u (dx5)2, (17)

and particular solutions under u→ 0:

ds2 = r2dt2 − dr2 − 1

3
r2dΩ2 ± r2 sinh2

√
3t(dx5)2, (18)
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and under u→∞:

ds2 = dt2 − t2dr2 +
1

3
t2dΩ2 ± t2 sinh2

√
3r(dx5)2. (19)

Values of parameter u = ±
√

3 — singular, under which there is no physical
solutions. We note here, that solutions (18) (19) can be obtained from each
other by interchanging r ←→ t and by inversing of signature of 4-D part of
interval. This is general property for considered symmetry: if we take some
solutions of the system (2)–(7) and make in it formal redesignations r ←→
t; ν −→ λ + iπ; λ −→ ν + iπ; µ −→ µ + iπ; then in result we obtain
new solutions of the original system. This fact is a sequence of the symmetry of
coordinates r and t in starting metric (2)–(7) and in starting system of equations.

For the case µ1 = λ1 + µ1; e−µ
1 = A = const system (2)–(7) take the

following form:

eν2−λ2

2
(ν′′

2 +
ν′2
2

2
− ν′

2λ
′
2

2
+ ν′

2µ
′
2 + ν′

2φ
′
2) = α;

eλ1−ν1(
3

2
λ̈1 −

ν̇1

2
(
3

2
λ̇1 + φ̇1) +

3

4
λ̇2

1 + φ̈1 + φ̇2
1) = α;

eλ1−ν1

2
(λ̈1 +

3

2
λ̇2

1 −
λ̇1ν̇1

2
+ λ̇1φ̇1) = β;

eν2−λ2(µ′′
2 +

µ′2

2
+

ν′′
2

2
+

ν′2
2

4
− λ′

2

2
(
ν′
2

2
+ µ′

2 + φ′
2) + φ′′

2 + φ′2
2 ) = β;

β − eν2−λ2

2
(µ′′

2 + µ′2
2 −

µ′
2λ

′
2

2
+

µ′
2ν

′
2

2
+ µ′

2φ
′
2) + Aeν2−µ2 = 0;

eλ1−ν1(φ̈1 + φ̇2
1 −

ν̇1φ̇1

2
+

3

2
λ̇1φ1) = γ;

eν2−λ2(φ′′
2 + φ′2

2 −
λ′

2φ
′
2

2
+

ν′
2φ

′
2

2
+ µ′

2φ
′
2) = γ;

ν′
2

2
(λ̇1 + φ̇1) + φ′

2(
λ̇1

2
− φ̇1) = 0. (20)

Let us consider following particular cases corresponding to different ways of
disolving of eq. (20) separately.

1)λ̇1 = φ̇1 = 0. This variant corresponds to well known and above mentioned
Kramer’s solution [11]:

ds2 = RA−Bdt2 −R−A−Bdr2 − r2R1−A−BdΩ2 −R2B(dx5)2, (21)

where R = 1− r̃g/r, A, B, r̃g — constant of integration, and A2 + 3B2 = 1.
2)ν′

2 = 0; φ′
2 = 0. This case corresponds to 5-D vacuum solutions of cos-

mological type, that have been considered in [12, 8, 7, 9, 10, 13] There are a
following four solutions:
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— two solutions with a flat space section

ds2 = dt2 − t(dr2 + r2dΩ2)− 1

t
(dx5)2; (22)

ds2 = dt2 − dr2 − r2dΩ2 − t2(dx5)2. (23)

— solution with 3-D section of constant positive curvature

ds2 = dt2 − (b2t2 + a)(dr2 +
1

b2
sinh2(br)dΩ2)± t2

b2t2 + a
(dx5)2; (24)

where a and b are an arbitrary constant of integration;
— solution with 3-D section of a constant negative curvature, which can be

obtained from proceeding by formal redefenition b→ ib

ds2 = dt2 − (a− b2t2)(dr2 +
1

b2
sin2(br)dΩ2)± t2

a− b2t2
(dx5)2; (25)

3)φ′
2 = −ν′

2/2, φ̇1 = −λ̇/4. Solution has the following kind

ds2 = (r2+
a

r
+1)dt2−4t2dr2−4t2(r2+

a

r
+1)r2dΩ2− 1

t(r2 +
a

r
+ 1)

(dx5)2, (26)

where a — constant of integration.
4)ν′

2 = 0, φ̇1 = λ̇1/2. Solution can be put to the form:

ds2 = dt2 − t2dr2

r2 + A/r + 1
− t2r2dΩ2 + t2(r2 + A/r + 1)(dx5)2, (27)

where A — arbitrary constant of integration.
5)λ̇1 = −φ̇1, φ′

2 = 0. It have been founded one particular solution, which
is in turn particular case of the general A-solution with u = −1. As for the
general case it will be partially analyzed in Appendix.

6)φ̇1 = 0, φ′
2 = −ν′

2. Solution can be put to the form:

ds2 =
1

r2
dt2 − 12p2t2

r4(C1r2
√

3 + C2r−2
√

3 − 2
√

p2 + C1C2)2
dr2 − (28)

p2t2

r2
√

p2 + C1C2(C1r2
√

3 + C2r−2
√

3 − 2
√

p2 + C1C2)
dΩ2 − r4(dx5)2,

where p, C1, C2 — arbitrary constants of integration.
7)λ̇1 = 0, φ′

2 = ν′
2/2. Particular solution can be put to the form:

ds2 = rdt2 − 1

r4

1

(C1r
√

3/2 + C2r−
√

3/2)4
+ (29)

dΩ2

3C1C2r2(C1r
√

3/2 + C2r−
√

3/2)2
− t2r(dx5)2,

6



where C1, C2 — constants of integration. General case is considering in Ap-
pendix.

8)α = 0, β = 0. Solution has the following kind

ds2 = r4dt2 − St

r4(C1r
√

3 + C2r−
√

3)4
dr2 (30)

+
St

12C1C2r2(C1r
√

3 + C2r−
√

3)2
− 1

r2t
(dx5)2,

where C1, C2 — constant of integration.
9)The most general case, to which all above derived solutions are reduced:

φ̇1 = (1 + σ)/(2σ − 1)λ̇; φ′
2 = 4σν′

2 It will be considered in Appendix.
There is the following correspondence with results of Wesson, Liu and Ponce

de Leon in [4]:
A-solution (17) belongs to their class D with b = const;
A-solution with u = 0 (18) belongs to class A with b = const;
A-solution with u → ∞ has been not considered by authors, because of the
wrong signature of this solution;
cosmological solutions (22)-(25) is related to class B with a = 1;
case (3) is related to class D under l = −1/2;
case (4) is related to class C and is its general representator;
cases (5) and (6) is related to class D under l = −2, 0 correspondingly;
case (7) is related to class A with λ = 0. Note, that authors have shown, that
in this case nonstationarity can be excluded by coordinate transformations ;
case (8) corresponds to class B under k = 0;
case (9) is related to the most general case D.

3 Simulated matter: 5-dimensional approach

Now we formulate some general ideas, which can be called 5-dimensional ap-
proach to the problem of geometrization of classical matter.

It is well known that any 5-D vacuum solution after some mathematical ma-
nipulations (1+4-splitting procedure) can be interpreted as a solution of nonva-
cuum 4-D Einstein equations with an effective matter of a definite kind [8, 6]. If
5-D metric is independent on fifth coordinate and has no nonzero components
G5µ then vacuum 5-D equations:

5RAB −
1

2
GAB

5R = 0, (31)

where A, B = 0, 1, 2, 3, 5, in 4-dimensional representation take the following
form1[9]:

4Rµν −
1

2
gµν

4R = (1 + 2n)φ;µ;ν − (2n2 + 2n− 1)φ,µφ,ν (32)

1In [6] another 4-D equations in covariant form have been obtained. This difference is due
to different methods of 4+1 splitting of starting 5-D equations
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−gµν((1 + 2n)∇2φ + (n2 + n + 1)(∇φ)2);

n∇2φ + n2(∇φ)2 − 1/64R = 0, (33)

where φ = ln(
√
−G55). Here parameter n is originated from conformal transfor-

mation of starting 4-D metric g̃µν = Gµν − G5µG5ν/G55, having the following
form:

g̃µν = e2φngµν ,

where gµν — observable metric. Tensor

T (sf)
µν = (1 + 2n)φ;µ;ν − (2n2 + 2n− 1)φ,µφ,ν + 3n(n + 1)gµν(∇φ)2

where dalambertian is excluded with the help of equation (33), is the energy-
momentum tensor of an effective matter induced by the scalar field φ. Type
of this matter is, in general, arbitrary. In present article, we assume, that in-
duced matter is anisotropic incoherent perfect fluid with the some state equation.
Consider separately all consequences of such hypothesis.

4 Algebraic type

Lets analyze algebraic type of symmetric second range tensor T
(sf)
µν . From the

problem of eigen values and eigen vectors:

T (sf)µ
ν rν = λrµ

roots of characteristic equation

|T (sf) µ
ν − λδµ

ν | = 0

can be determined. Its type determines algebraic type of tensor T
(sf)
µν . The first

consequences of our hypothesis is that algebraic type of T
(sf)
µν must be the same

as the anisotropic perfect fluid one. Following by Segre notations [1], type of
this tensor can be denoted as the [1, 1, 1, 1], meaning that this tensor has, in
general, four different eigen direction with different eigen values. If normalized

eigen vectors are chosen as basis, then T
(sf)
µν of such general type can be put to

the form:

T (sf)
µν = ǫ0λ0r

0
µr0

ν + ǫ1λ1r
1
µr1

ν + ǫ2λ2r
2
µr2

ν + ǫ3λ3r
3
µr3

ν ,

where λi, ~r
i — different eigen values and eigen vectors, ǫi = ±1 if corresponding

eigen vector timelike or spacelike. Identification this tensor with physical energy-
momentum tensor of anisotropic perfect fluid gives new restrictions on λi and
~ri. Naimly: one of the eigen vector, suppose ~r0, must be timelike, anothers —
spacelike. Then λ0 is identified with energy density ε : λ0 = ε, and λi are
identified with anisotropic pressure: λi = −pi Energy dominancy conditions
gives supplement relations: λ0 > 0, |λi| < λ0

8



Degeneration (coinsiding) of eigen values leads to increasing of isotropy of

T
(sf)
µν . If for example, λi = λ for i = 1, 2, 3 (algebraic type [1, (1, 1, 1)]) then

tensor T
(sf)
µν will correspond to common isotropic energy-momentum tensor of

GR. In section 6 we shall be faced with tensor of type [1, 1, (1, 1)] which is closely
connected with the symmetry of space-time.

If T
(sf)
µν has the one nonzero off-diagonal component T01 and 4-D metric is

diagonal then the characteristic equation has the following form:

(λ2 − (T 0
0 + T 1

1 )λ + (T 0
0 T 1

1 − T 1
0 T 0

1 ))(T 2
2 − λ)(T 3

3 − λ) = 0,

roots of which are

λ0,1 =
1

2
(T 0

0 + T 1
1 ±

√

(T 0
0 − T 1

1 )2 + 4T 0
1 T 1

0 ); λ2 = T 2
2 ; λ3 = T 3

3 . (34)

Correspondence of roots λ0, λ1 to energy density and pressure can be stated
from investigations of type of their eigen vectors: timelike vector is related to

energy density, spacelike — to pressure. For T
(sf)
µν of chosen special kind it is

necessary to investigate sign of expression:

1 +
g11

g00

(T 1
1 − T 0

0 ±
√

(T 1
1 − T 0

0 )2 + 4T 0
1 T 1

0

(T 0
1 )2

Eigen vector will be timelike, when this expression positive, and spacelike when
it is negative.

5 State equation

After determination of algebraic type, then, if it is suitable, we should deter-
mine what is the type of obtained perfect fluid or, in other words, what is the

connection between obtained ǫ and p. If tensor T
(sf)
µν anisotropic, we shall use

the averaged characteristic p = (p1 + p2 + p3)/3. Suppose we have two known
functions ǫ and p as a function of coordinates. Parameter

k =
p

ε

in some particular cases can be constant and then will determine common lin-
ear type of state equation p = kε. But in general case k will be function
of coordinates and we get ”variable state equation”. Let us interpret it by
the following way. Assume that perfect fluid with given ε and p is the mix-
ture of two noninteracting comoving fluids with linear constant state equation:
p1 = k1ε1, p2 = k2ε2, where k1, k2 are constants. Then their effective energy
density will be ε = ε1 + ε2 and effective pressure — p = p1 + p2. Their effective
state equation then will be determined by the variable parameter k:

k =
p

ε
=

p1 + p2

ε1 + ε2
=

k1ε1 + k2ε2

ε1 + ε2
=

k1 + k2n21

1 + n21
. (35)

9



Here n21 = ε2/ε1 is relative mass concentration of second fluid to first. From
expression (35) one can get n21 as function of k:

n21 =
k1 − k

k − k2
.

So, k(xµ) can determine relative distribution of the two coherent components
and its dynamics in the space-time. Below we shall suppose k1 = 0, k2 = 1/3.
By the same way one can consider n noninteracting coherent components, but in
this case energy densities of n−2 components are arbitrary, and k will determine
relative concentration of the remaining two components.

6 Analysis of obtained solution

In this section we apply above discussed ideas to obtained vacuum solutions.
Energy-momentum tensor components have been calculated with the help of
special program in REDUCE.

1)Kramer’s metric has been analyzed in details in [3, 5] under n = 0. Since
this solution is static then energy-momentum tensor is diagonal. Its components
under arbitrary n have the following form:

T 0
0 = ǫ = −

Br2
g

2
(A(2n + 1) + B(2n2 + 2n− 1))

RA−2+B(2n+1)

r4
;

T 1
1 = −p1 = −

Br2
g

2
(A(2n + 1) + 3B(2n2 + 2n + 1) + 2(2n + 1)(1− 2r/rg))

RA−2+B(2n+1)

r4
;

T 2
2 = T 3

3 = −
Br2

g

2
(A(2n + 1)−B(2n2 + 2n− 1) + (2n + 1)(1− 2r/rg))

RA−2+B(2n+1)

r4
;

In all cases T
(sf)
µν is anisotropic of type [1, 1, (1, 1)]. Note that particular case

n = −1/2 corresponds to k1 = 1, k2 = k3 = −1. It is interesting fact, that
effective state equation, connecting averaged pressure and energy density, is
linear with the coefficient

k =
A(2n + 1)−B(10n2 + 10n + 1)

3(A(2n + 1) + B(2n2 + 2n− 1)
.

Case n = 0 (and also n = −1) corresponds to well known result — trace of

T
(sf)
µν is zero [5].

2)Vacuum solutions of cosmological type owing to homogeneity of 3-D space
section give isotropic matter tensor. Its components for metric (22) are:

T 0
0 = ε =

3(n + 1)2

4tn+2
;

T 1
1 = T 2

2 = T 3
3 = −p =

n2 − 1

4tn+2
.

10



State equation parameter is given by expression:

k = − n− 1

3(n + 1)
.

For the metric (23) components of effective matter tensor are:

T 0
0 = ε = 3n2t2n−2;

T 1
1 = T 2

2 = T 3
3 = −p = n(n + 2)t2n−2.

State equation parameter is:

k = −n + 2

3n
.

For open model (25):

T 0
0 = ε =

3t2n−2a(an2 − 2nb2t2 − b2t2)

(a + b2t2)n+2
;

T 1
1 = T 2

2 = T 3
3 = −p =

t2n−2a(an2 + 2an + 2nb2t2 + b2t2)

(a + b2t2)n+2
.

Coefficient k in this case will be variable:

k = −an(n + 2) + (2n + 1)t2b2

3(an2 − (2n + 1)t2b2)

Expression for relative concentration of dust and radiation is:

n21 =
2a(n + 1)n

an(n + 2) + (2n + 1)t2b2
.

Expressions for closed models can be obtained from opened ones by formal
replacing b→ ib.

3)Particular case of A-metric under u = 0 gives the following effective mat-
ter:

T 0
0 = M(9n2 coth2

√
3t− n2 + 2n + 2);

T 1
1 = M3n((n + 2) coth2

√
3t− n);

T 1
0 = −2

√
3Mn(n− 1)r coth

√
3t;

T 0
1 = 2

√
3Mn(n− 1)

coth
√

3t

r
;

T 2
2 = T 3

3 = M((3n2 + 6n) coth2
√

3t− n2 − 4n− 1),

where M = r2n−2 sinh2n
√

3t. In general case this tensor describes anisotropic
two-component perfect fluid, homogeneously evolved in space. Let us consider
the most interesting cases:

11



a) n = 0. It is easily to see, that tensor T
(sf)
µν become diagonal and ε =

2/r2, p1 = 0, p2 = p3 = 1/r2. Corresponding state equation parameters take
the following values: k1 = 0, k2 = k3 = 1/2. Average k = 1/3 and trace of Tµν

under n = 0 is zero. Trace is zero also under n = −1. Under n = 1 tensor of
effective matter is diagonal too,but relative concentration of dust and radiation
is in this case negative.

b) n = −1/2. For determination of ε p1 it is necessary to use formu-
lae (34) from sec.4 . Non complicate calculations give ε = p1 = p2 = p3 =
(3/4r3 sinh

√
3t)(3 coth2

√
3t− 1) — stiff matter.

4)A-metric gives the following expressions for effective matter:

T 0
0 = Mt00; T 0

1 = M
t01t

r
; T 1

0 = −3M
rt01
u2t

;

T 1
1 = −3M

t11
u2

; T 2
2 = T 3

3 = −M
3(3− u2)t22

u2
,

where

t00 =
6

u2
(−nu2 + 2nu(n− 1) + 4n2 + n + 1);

t01 =
2

u
(u2(n2 − n) + u(4n2 − 2n + 1) + 3(n2 − n));

t11 = 2(u2 (4n2 + n + 1)

3
+ 2n(n− 1)u− 3n);

t22 = t33 =
−2n2 − 2n + 1

3
;

M = r2n(1+u)−2t2n
(3+u)

u −2,

and gives in general linear anisotropic state equation. Under t01 = 0 tensor is
diagonalized. Zero t01 is obtained, when parameters u and n are connected by
relation:

u =
−4n2 + 2n− 1±

√
4n4 + 8n3 − 4n + 1

2n(n− 1)
.

For example, for n = 2, u = −1/2 we get k1 = −7/18, k2 = −11/36, k = −1.
Under n = −1/2±

√
3/2 k2 = k3 = 0, k1 6= 0. Trace is zero, when n = 0,−1.
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5)Metric (3) generate following effective matter:

T 0
0 = − rn−2

16tn+2Rn+2
(a2(n2 − 1)− 8ar3(2n2 + 3n + 1)− 12r4(n + 1)2

−8r6(n2 + 3n + 2));

T 1
0 =

rn−1

8tn+3Rn+1
(n2 + 3n + 2)(a− 2r3);

T 0
1 = − rn

2tn+1Rn+2
(a− 2r3)(n2 + 3n + 2);

T 1
1 = − rn−2

16tn+2Rn+2
(a2(3n2 − 2n− 1)− 4ar3(4n2 + 8n + 3)− 4ar(2n + 1)

−4r4(n2 − 1) + 8r6(n2 + 3n + 2));

T 2
2 = T 3

3 = − rn−2

16tn+2Rn+2
(a2(n2 − 1)− 4ar3(2n2 − 2n− 3)− 4r4(n2 − 2n− 2)

+4r6(1 + 2n)),

R = a + r3 + r. Under n = −1,−2 off-diagonal components are vanished.
Under n = −1 zero value of energy density is get. Under n = −2 expression:

8r6 + 16r4 + 20ar3 + 4ar + 8a2

8r6 + 20r4 + 28ar3 − 4ra− 7a2

in region of its positivity is the relative concentration of dust and radiation
6)Metric (4) gives:

T 0
0 = − t2n−2Rn−1n

4rn+3
(a2(n + 2)− 8ar3(1 + 2n)− 12nr4 + 8r6(1− n));

T 1
0 =

t2n−3Rn

rn+2
n(n− 1)(a− 2r3);

T 0
1 = − t2n−1Rn−1

rn+1
n(n− 1)(a− 2r3);

T 1
1 = − t2n−2Rn−1

4rn+3
(a2(3n2 + 8n + 4) + 4ar(1 + 2n) + 4ar3(1− 4n2)− 4r4n(n + 2)

+8n(n− 1)r6;

T 2
2 = T 3

3 = − t2n−2Rn−1

4rn+3
(a2(n2 − 2n− 2)− 2ar(1 + 2n)− 2ar3(4n2 + 10n + 1)

−4nr4(n + 2)),

where R = a + r3 + r. Under n = 0, 1 tensor is diagonal. Under n = 0 energy
density is vanished. Under n = 1 we have anisotropic fluid with k = −1.

7)Metric (6) gives:
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T 0
0 = −F 2r4n+2(2n2 + 2n− 1)

6p2t2
;

T 1
0 =

F 2r4n+3(2n + 1)

6p2t3
;

T 0
1 = −2r4n+1(2n + 1)

t
;

T 1
1 = −Fr4n+2((2n + 1)F ′r + 3F (2n2 + 2n + 1)

6p2t2
;

T 2
2 = T 3

3 =
Fr4n+2((1 + 2n)F ′r − 2F (2n2 + 2n− 1)

12p2t2
.

Here F = C1r
2
√

3 + C2r
−2

√
3 − 2

√

p2 + C1C2. Trace vanishes under n = 0, 1.
Under n = −1/2 tensor is diagonalized and in this case k1 = −1, k2 = k3 = 1.

8)Metric (7) gives:

T 0
0 = − t2n−2rn−1

4
(F 4r3t2(n2 + 4n + 1)− 12n2);

T 1
0 = −n(n− 1)t2n−1rn+3F 4;

T 0
1 = n(n− 1)t2n−1rn−2;

T 1
1 = − t2n−2rn−1

4
(4(2n + 1)F ′F 3r4t2

+3F 4r3t2(n + 1)2 − 4n(n + 2));

T 2
2 = T 3

3 =
t2n−2rn−1

4
(2(2n + 1)F ′F 3r4t2

−F 4r3t2(n2 − 2n− 2) + 4n(n + 2)),

where F = C1r
√

3/2 − C2r
−
√

3/2. Under n = 0, 1 nondiagonal components
vanish. Under n = 0 we have anisotropic fluid with k = 1/3. Under n = 1
relative concentration of dust and radiation is

n21 = −2
4− F 4

6− F 4

under condition of its positivity: 4 ≤ F 4 ≤ 6.
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9)Metric (8):

T 0
0 = − 1

4tn+2r2n+4
(4F 4r6t(n2 − 2n− 2)− 3(n + 1)2);

T 1
0 = − F 4

r2n−3tn+2
(n2 + 3n + 2);

T 0
1 =

n2 + 3n + 2

tn+1r2n+5
;

T 1
1 =

8(2n + 1)F ′F 3r7t− 12n2F 4r6t + n2 − 1

4tn+2r2n+4
;

T 2
2 = T 3

3 = − 1

4tn+2r2n+4
(4(2n + 1)F ′F 3r7t

+4F 4r6t(n2 + 4n + 1)− n2 + 1)

Here F = C1r
√

3 − C2r
−
√

3. Tensor diagonalized under n = −1,−2. Under
n = −1 we get anisotropic fluid with k = 1/3, under n = −2 expression

−4(F 4r6t− 1)

8F 4r6t− 3

describes relative concentration of dust and radiation under 1/4 ≤ F 4r6t ≤ 3/8.

7 Conclusion

So, the properties of effective matter can be investigated in principle for any
exact vacuum solution by the proposed way. The question about physical ap-
plication of obtained result remained opened. Probably, it could be applied to
some kinds of spherically-symmetric nonstationar configurations such as stars
or elliptic galaxies. To clear this questions further investigation of properties of
the obtained effective matter is necessary.

Note, that another approach to the problem of geometrization of matter —
”4-dimensional” — is possible [9].

A Analysis of a special cases of Einstein equa-

tions

In Appendix we analyze those cases for which exact solutions have not been
founded in apparent kind. By using the special transformations of starting
equations it will be seen that in all considered cases system of equations can
be reduced to the Abel’s equation of a second kind [14]. This equation can
be integrated in a quadratures only in some particular cases. So we’ll reduce
problem to the purely mathematical investigation of equation of a special kind.
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Let us start from the case (4) in Sec.2. It characterized that λ̇1 = −φ̇1, φ′
2 =

0 System of r-equations (t-equations can be solved elementary) has the following
kind (index ”2” is omitted):











































ν′′ +
ν′2

2
− ν′λ′

2
+ ν′µ′ = 2αeλ−ν ;

µ′′ +
µ′2

2
+

ν′′

2
+

ν′2

4
− λ′

2

(

ν′

2
+ µ′

)

= 0;

µ′′ + µ′2 − µ′λ′

2
+

µ′ν′

2
= 2Aeλ−µ.

With choosing special coordinate system: µ = 2 ln r, and denoting ν′ = u the
two last equations can be transformed to the following form:

u′

2
+

u2

4
− λ′u

4
− λ′

r
= 0;

2

r2
− λ′

r
+

u

r
=

2Aeλ

r2
.

From this two equations it easily to get its following consequence:

λ′′r2 − 3λ′r − 6Aeλ + 2A2e2λ + 4 + 3Aλ′reλ = 0;

Introducing new variable x = ln r equation can be reduced to the form:

λxx − 4λx + 4− 6Aeλ + 2A2e2λ + 3Aλxeλ = 0;

Going again to the new variable z = λ and new function λ′ = p(z) last equation
can be reduced to the equation of Abel’s type:

p′p− p(4− 3Aez) + 4− 6Aez + 2A2e2z = 0,

where ” ’ ” denote derivative by z. Its the simplest particular solutions are:
1)p = 1− Aez — is the Shwarzschild solution;
2)p = 0 — is the particular case of A-solution.
General solution with t-dependence has the following form:

ds2 = eν2(r)dt2 − α

6
t2eλ2(r)dr2 − α

6
eµ2(r)t2dΩ2

− 1

t4
(dx5)2

For the case (7) (λ̇1 = 0, φ′
2 = ν′

2/2) we have the following r-system (index
”2” is omitted here):
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ν′′ + ν′2 − ν′λ′

2
+ ν′µ′ = 2αeλ−ν ;

µ′′ +
µ′2

2
− λ′

2
(µ′ + ν′) + ν′′ +

ν′2

2
= 0;

µ′′ + µ′2 − µ′λ′

2
+ µ′ν′ − 2Aeλ−µ = 0.

Similarly with the previous case suppose µ = 2 ln r, ν′ = u.Then two last
equations take the following form:

−λ′

2

(

2

r
+ u

)

+ u′ +
u2

2
= 0;

2

r2
− λ′

r
+

2u

r
− 2Aeλ

r2
= 0.

Expressing from the last equation u and its derivative, substituting it into the
first equation and making similar transformations and notations as in previous
case we get the following Abel’s type equation

p′p− 1

4
p2 − p(3− 2Aex) + 3− 4Aex + A2e2x = 0.

It has no the solution of the kind p = k+bex as in previous case. Solution p = 0
correspond to two considered solutions: first — solution of Kasner’s type (23),
second — particular solution of A-solution under u=0 (18). General solution
with the t-dependence has the following kind:

ds2 = eν2(r)dt2 − eλ2(r)dr2 − eµ2(r)dΩ2

−eν2(r)







sinh2√αt, α > 0;

sin2
√

|α|t, α < 0;
t2, α = 0







(dx5)2.

The most general case characterized by the following r-system:











































ν′′ + ν′2(σ +
1

2
)− ν′λ′

2
+ ν′µ′ = 2αeλ−ν ;

µ′′ +
µ′2

2
+ ν′′(

1

2
+ σ) + ν′2(

1

4
+ σ2)− λ′

2
(µ′ + ν′(

1

2
+ σ)) = βeλ−ν ;

β − eν−λ

2
(µ′′ + µ′2 − µ′λ′

2
+ µ′ν′(

1

2
+ σ)) + Aeν−µ = 0,
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and following conditions on a separating constant: (1+σ)/(2σ−1)β = σα. Lets
take coordinate system where ν = 2 ln r. Then first and second equations take
the following kinds:

4σ

r2
− λ′

r
+

2µ′

r
=

2αeλ

r2
;

µ′′ +
µ′2

2
+

1

r2
(4σ2 − 2σ)− λ′

2
(µ′ +

2

r
(
1

2
+ σ)) =

βeλ

r2
.

Expressing from the first equation µ′, inserting it into second and transform-
ing last by the similar manner as in previous cases we get the following equation
of Abel’s type:

p′p− p(2 + 2σ − αex)− p2

4
+ 12σ2

−(α(1 + 2σ) + β)ex +
α2

2
e2x = 0.

There is no solution of kind p = k+bex as in first considered here case. Particular
solution p = 0 is the considered solution (17). General form of solution with the
t-dependence is

ds2 = eν2(r)dt2 − t2eλ2(r)dr2 − t2eµ2(r)dΩ2 − t
4(1+σ)
2σ−1 e8σν2(r)(dx5)2.
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