
ar
X

iv
:g

r-
qc

/0
50

70
40

v2
  1

5 
Ju

l 2
00

5

On the puzzle of Bremsstrahlung as described by coaccelerated observers
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Abstract

We consider anew some puzzling aspects of the equivalence of the quantum field theoretical description of
Bremsstrahlung from the inertial and accelerated observer’s perspectives. More concretely, we focus on the
seemingly paradoxical situation that arises when noting that the radiating source is in thermal equilibrium
with the thermal state of the quantum field in the wedge in which it is located, and thus its presence does
not change there the state of the field, while it clearly does not affect the state of the field on the opposite
wedge. How then is the state of the quantum field on the future wedge changed, as it must in order to
account for the changed energy momentum tensor there? This and related issues are carefully discussed.
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I. INTRODUCTION

The topic of radiation by uniformly accelerated charges has often been the source of much
puzzlement and confusion, particularly when considered in the light of the equivalence principle.
Much of the confusion has been removed by the realization that for observers coaccelerating with
the charge there are regions of spacetime that are inaccessible. In effect, in the classical context, it
has been shown that for an electromagnetic charge in uniform acceleration, the classical radiation
field, as described by accelerating observers, is zero at every point in the region that is accessible
to them (known as the Rindler wedge, R, see Fig. I) [1]. This would then remove any apparent
contradiction between the EP and the known Bremsstrahlung. For both the inertial and accelerated
observers there is radiation but, for the accelerated ones, such radiation lies beyond the regime
where the static description is valid.

In the quantum version of this situation the question is posed in terms of emission of pho-
tons rather than the evaluation of radiation fields. In fact, it was shown that the standard
Bremsstrahlung when viewed from the point of view of the accelerated observers –a point of view
called Rindler quantization– acquires a very particular interpretation. Actually, as will be ex-
plained in more detail below, the coincidence for the prediction of photon emission rates between
the inertial and accelerated descriptions makes fundamental use of the Unruh effect [2], which
states that from an accelerated frame comoving with the charge, the standard Minkowskian vac-
uum state corresponds to a thermal state. Moreover, it is well known that for a detector uniformly
accelerating in the inertial vacuum the process for which the detector absorbs a particle from the
bath (a Rindler particle) as seen by a comoving (accelerating) observer is equivalent to the emission
from the detector of a Minkowski particle as seen by an inertial observer [3]. Then from the point
of view of an inertial observer the accelerating charge emits particles while, from an accelerated
viewpoint, the charge –which is static– will emit and absorb Rindler particles to and from the
bath.

The restriction of this effect to wedge R has been analyzed in Ref. [4], where it is shown that the
emission rate of photons with fixed transverse momentum in the inertial frame coincides with the
combined rate of emission and absorption of zero-energy Rindler photons with the same transverse
momentum in the accelerated frame. Thus, this result gives a clear notion of the the physical
equivalence between inertial and accelerated descriptions of Bremsstrahlung. However, and as is
often the case in this field, the answer to one question brings in further puzzlement, and the need
to answer a further one.

The calculation mentioned above, makes fundamental use of the so called zero energy Rindler
modes. The reason is that for accelerated observers the charge is static and thus it can only couple
to modes of zero frequency with respect to Rindler time. In fact, due to the expression of the form
0 ×∞ that appears in calculations involving zero energy particles in the analysis of Ref. [4], it is
required the introduction, for the purpose of regularization, of a small frequency of oscillation θ
for the source, which allows one to work with finite energy modes and which at the end is taken to
0. In that work the authors considered also the question of whether or not an accelerated observer
sees any difference in the thermal bath due to the emission and absorption of Rindler photons.
They note that in the limit of zero energy the transition rate from an n-photon state to an (n+1)-
photon state and the rate of the inverse process became equal, thus the accelerated charge leaves
the thermal bath undisrupted. From this one can conclude that the source is in thermal equilibrium
with the quantum field. Then, from the point of view of an accelerated observer, in R, there will
be no difference between the initial state of the field (the initial thermal state) and the state
generated by the interaction with the accelerating charge (note the analogy with the description
of the situation in the classical context that we explained above). Similarly, the state of the field
in the second Rindler wedge will remain the initial thermal state, as that region could not possibly
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be, in anyway, influenced by what is going on in a causally disconnected region of spacetime. We
could think that this conflicts with the fact that EPR influences are allowed but this is misleading:
when talking about the state in the L Rindler wedge we mean the corresponding density matrix
and this could not change due to actions taken on the right wedge for otherwise there would be
operators pertaining to the left wedge whose expectation values could be used to determine what
has occured in the right Rindler wedge. Nevertheless, it is clear that in wedge F (see Fig. I)
there would be a detectable change in the state of the field and, in particular, the expectation of
the energy momentum tensor in this region should be different from what it would have been if
there was no interaction with the charge. In effect, this change could be computed in an inertial
quantization of the field and would correspond to the final state containing the Minkowski photons
emitted by the the accelerated charge. On the other hand, the quantum description of the state of
the field as seen by the accelerated observer is given by the Unruh quantization scheme [2, 5]. In
this description, the restriction to the L and R wedges of both, the Minkowski vacuum state and
the state resulting from the interaction with the charge is, in both cases, a thermal bath, and thus
it seems neither could contain the information regarding what has changed in F . The issue is then
whether this situation can be analyzed in the language appropriate to accelerated observers and
how would, in that case, the information about the changed situation in F be codified?

The fact that Unruh modes can be expressed by superpositions of specific modes that extend
distributionally to the whole spacetime (known as boost modes, see Refs. [6, 7]), opens the door to
analysis of issues related to physical questions outside the double wedge, and in particular in wedge
F , carried out in the language appropriate for accelerated observers. In this work, we embark on
such analysis for the case of a scalar field and an accelerated scalar source, and analyze from the
new perspective the change in the expectation value of the energy-momentum tensor operator when
evaluated at points in wedge F .

States in the Unruh quantization can be seen as states of a composite system where each of
the components is the quantum field restricted to either wedges L or R. Then, having the density
matrix ρ̂ for a state, one can describe the physics, for example, in wedge L (R) by tracing out
in ρ̂ the right (left) degrees of freedom. From this procedure we obtain a density matrix ρ̂L (ρ̂R)
describing a state in wedge L (R). It is well known that when a field observable Â is localized in
either L or R, then the expectation value of Â is determined completely by ρ̂L or ρ̂R respectively.
On the other hand, when Â is localized out of the double wedge, it is clear that its expectation
value would not, in general, be determined solely by information encoded in ρ̂L or ρ̂R.

There should exist some object containing this extra information carried by the state which
controls how do left and right parts combine which is the extra element necessary for describing
completely the state in all of Minkowski spacetime. We identify this object as the entanglement
matrix. In the case of interest we were concerned about the expectation value of the energy
momentum tensor in the future wedge and it seemed natural to expect its change to be encoded
in the change of the entanglement matrix. This was our initial assumption, and the work intended
to see how exactly is such information encoded in this case. As we will see this expectation was
mistaken and the answer in our case lies, surprisingly, in ρ̂R. Precisely how does this matrix codifies
this information will be elucidated through the rest of the manuscript.

Regarding the foundational basis of this work we must point out that the issue of extending the
Unruh quantization outside the double wedge is somewhat subtle. What is very well established in
the literature is the restriction of global states to the double wedge –for example, the restriction of
states to the wedge R is interpreted as the state seen by accelerated observers which have available
only the wedge R– but, as far as we know, the extension of a state in the Unruh quantization to the
whole MS does not seem to be, at this time, fully investigated. One important point concerning this
question is that Unruh modes are highly singular at the asymptotes which are taken to coincide
with the horizon of the particular construction. Thus, the initial data from which one builds up
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the (one particle) Hilbert space in the Unruh quantization has restrictions at these asymptotes
which can influence the solutions of the field equation in wedges F and P (this possibility has been
pointed out in Ref. [7], [6]). As we explained above, in this paper we extend the usage of the Unruh
description of the field to address questions related to the physics in the wedge F . We do this in
the way that we consider is the most natural and we find results that are physically consistent and
which coincide with what one would obtain working in the standard Minkowski quantization of the
field as we show explicitly in Appendix C.

The paper is organized as follows. In Sec. II we review the main ideas of the Unruh quantization
and specify our notation. In Sec. III we explain our strategy for analyzing the encoding of the
information in the final state of the field. We propose a particular decomposition of the density
operator of the state and use it to write an expression for the change in the expectation value of
T̂µν . Nevertheless, the particular form of the source representing an accelerating particle is needed
in order to obtain an explicit expression for the final state and its density operator. In Sec. IV we
work out these ideas introducing a scalar accelerating pointlike source with a particular regulator
and build up the S-matrix operator. In Sect. V we make the final calculations in order to obtain
the change in 〈T̂µν〉 and we evaluate it in wedges R and F . From these results one can see how
the information of the physical change in F is encoded. In Sec. VI we analyze the case of two
different sources accelerating in wedges L and R in order to get more insight of the behaviour
of the density operator of the respective final state. Finally, we end with some discussions and
the interpretation of the results in Sec. VII. In order to carry out these steps it is important to
have explicit expressions of the spacetime behaviour of the Unruh modes, which we present in
Appendix A. The calculations leading to our final results are, though straightforward, very long,
in Appendix B we give an explicit derivation of the main formula in this work. In Appendix C we
make the same calculations as in Sec. V for the change in wedge F but using, instead, the standard
plane wave representation of the field and show that both results coincide.

To eliminate unnecessary notation we shall work in two dimensional Minkowski space, this will
allow us to be clearer without losing physical insight. As a matter of fact, working with a scalar
field in 2D with m 6= 0 is operationally equivalent to work with the same field in 4D and fixed
traverse momentum k2

⊥ = k2
x + k2

y, with the identification m2 → k2
⊥ +m2. In all this work we shall

work in units in which c = ~ = 1 and signature −+.

II. UNRUH QUANTIZATION

All the comoving observers to a particle moving with uniform proper acceleration a = (aµa
µ)1/2

have world lines of the form

t = ζ sinh(aτ) z = ζ cosh(aτ) , (II.1)

where 0 < ζ < ∞ and τ is the proper time of the observer, −∞ < τ < ∞. Eq. (II.1) can be used
to give coordinates τ, ζ to wedge R, which is known as Rindler spacetime. In these coordinates,
the Minkowski metric becomes

ds2 = −ζ2dτ2 + dζ2. (II.2)

As can be seen from Eq.(II.2), wedge R is a static, globally hyperbolic spacetime so one can use
standard methods of frequency splitting [5, 8, 9] for quantizing the field in that region. As a first
step we shall construct directly the one particle Hilbert space for a Klein Gordon field with mass
m in wedge R, using as timelike Killing field τa; this is called the Fulling-Rindler quantization [10].
Consider the massive Klein Gordon (KG) field equation

(

� −m2
)

φ = 0 (II.3)

4



restricted to wedge R and take solutions which are positive frequency w.r.t. the Rindler time τ
(in this case (∂/∂τ)µ = bµ is the time translation generator, cf. Eq. (A.1)) and which vanish
asymptotically. These are superpositions of the following set of modes

ψω(ξ) =

√
sinhπω

π
e−iωτKiω(mζ), ω > 0, (II.4)

where ξ = (τ, ζ), and Kiω(x) is the modified Bessel function of the third kind or Macdonald
function. The normalization factor is chosen such that these modes are δ normalized w.r.t. the KG
product:

〈ψω|ψω′〉KG =
i

2

∫

ΣR

(

ψ∗
ω∇µψω′ − ψω′∇µψ

∗
ω

)

dΣµ = δ(ω − ω′) (II.5)

where ΣR is a Cauchy surface for Rindler spacetime. Functions Kiω(mζ) have an essential singu-
larity (it oscillates “infinitely”) in the limit ζ → 0 [11], so the ψω(ξ) are not defined at the horizon
(τ → ±∞ and ζ → 0) when ω 6= 0. Modes given by Eq. (II.4), called Fulling modes, and their
conjugates ψ∗

ω(ξ) form a complete set of the space of solutions to Eq.(II.3) in Rindler spacetime.
One constructs the one particle Hilbert space HR for a quantization of the KG field in R by Cauchy
completing the space spanned by the ψω(ξ) (positive frequencies) in the inner product given by
Eq. (II.5) (a rigorous construction of this space is given in [12]). The space of states of the field for
this quantization is the Fock space of HR, F (HR). The field operator in this quantization takes
the form

φ̂R(ξ) =

∫ ∞

0

(

ψω(ξ)r̂ω + ψ∗
ω(ξ)r̂†ω

)

dω, (II.6)

Σ R

t

z

F

RL

ζ

τ

t+z=0

t−z=0

ζ

ζ

P

τ

τ

=  −

=

8
8

=  0

=  0 =  const.

B

= ζ 0

Figure 1: The geometry of Rindler space.
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where the creation and annihilation operators, r̂†ω and r̂ω, satisfy canonical commutation relations.
Repeating the Fulling-Rindler quantization procedure in wedge L with the L-time translation
generator given by −bµ (see Eq. (A.1)) and defining the KG product on a Cauchy surface ΣL of
L, one obtains the one particle Hilbert space for the KG field in L, HL, and a left field operator
analogous to Eq. (II.6).

Wedges L and R, are causally disconnected and thus neither F (HL) nor F (HR) can be used
to represent the field algebra in Minkowski spacetime, as the Fock space of the standard plane
wave quantization does. However, one can consider a second quantum field construction in all of
Minkowski spacetime with one particle Hilbert space given by

HU = HL ⊕ HR, (II.7)

and the space of states given by [5]

F (HU ) = F (HR) ⊗ F (HL) . (II.8)

The quantum field construction defined by Eq. (II.7) is called Unruh quantization. The field
operator in this quantum construction takes the form

φ̂(x) = φ̂L(x) ⊗ 1̂R + 1̂L ⊗ φ̂R(x). (II.9)

Whenever there is no confussion, we denote by φ̂L(x) the operator φ̂L(x) ⊗ 1̂R and the analogous
for φ̂R. Clearly, these operators commute,

[

φ̂L(x), φ̂R(x′)
]

= 0, (II.10)

reflecting the fact that the regions L and R are causally disconnected.
Constructed in this way, it may seem that in the Unruh quantization the field operator is made

up of modes which have support only in the double wedge L ∪ R and thus that cannot describe
the physics outside this region. Nevertheless, recall that the one particle Hilbert spaces HL and
HR are made up of positive frequency modes which have initial data on either ΣL or ΣR. These
two latter Cauchy surfaces can be seen as the restriction of some Minkowski spacetime Cauchy
surface Σ to L or R respectively, then the initial data of modes in the left or right quantizations
of the field define unique solutions of the KG equation in all of Minkowski spacetime. In fact, as
we explain in the next subsection and in Appendix A, there exist superpositions of plane waves,
called Unruh modes, which coincide with Fulling modes when restricted to either wedge L or R
and that are zero when restricted to the opposite wedge [6]. The elements of HU describe modes
of the field defined distributionally in the whole of Minkowski spacetime. See the last paragraph
of the next subsection for further discussion.

A. Boost modes and Unruh modes

The original quantization approach used by Unruh [2] does not give explicitly the functional
form of Unruh modes since he works only with their restrictions to the horizons. However, for the
purposes of this work we do need the functional form in all of MS of these set of modes, which are
linear combinations of boost modes. We will introduce both sets of modes in this section following
Ref. [6].

Consider the space of global classical solutions to Eq. (II.3). One can look for solutions in
this space which have positive frequency w.r.t. the boost parameter τ in wedges L and R. This
class of solutions, Minkowski Bessel Modes were originally presented and studied by Gerlach [13].
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Narozhny et.al. [6] and Fulling and Unruh [7] call them boost modes (BM), name that we also
prefer. Take an (unnormalized) plane wave solution to Eq. (II.3) of the form

P±
p (x) = (2π)−1/2 e∓i(ωpt−pz), (II.11)

where x = (t, z), ωp =
√

p2 +m2 > 0 and the upper (lower) sign corresponds to positive (negative)
frequency w.r.t. inertial time. Changing the variable p to the rapidity θ:

m sinh(θ) = p, m cosh(θ) = ωp, −∞ < θ <∞, (II.12)

then one can define boost modes as the following superposition of plane waves [6]

B±
ω (x) =

1

21/2
√

2π

∫ ∞

−∞

P±
θ (x)e−iωθ dθ

=
1

23/2π

∫ ∞

−∞

e∓im(t cosh θ−z sinh θ)e−iωθ dθ,

(II.13)

where −∞ < ω <∞.
Note that in general, Eq. (II.13) cannot be interpreted as the definition of a function. In

particular, it is divergent at the origin, (t = 0, z = 0) and thus, cannot stand as a global solution
to the KG equation if it is considered as a function. However, one can avoid these problems
if one considers these quantities as distributions, thus requiring the smearing with suitable test
functions. Therefore, we will consider this set of modes, as well as Unruh modes (cf. Eqs. (II.18)),
as distributions when constructing the quantum field. Note that this is a consistent procedure
as the field φ̂(x) has, by itself, a distributional character. For the purposes of this work, we will
consider only test functions of compact support in M .

Formally, boost modes are orthogonal in the KG inner product (Eq. (II.5) over ΣM ),

〈

B±
ω |B±

µ

〉

KG
= ±δ(ω − µ), (II.14)

and they are eigenfunctions of the boost operator [13] (inside the four wedges of MS),

BB±
ω = −iωB±

ω where B = t
∂

∂z
+ z

∂

∂t
=

∂

∂τ
, (II.15)

and thus, the modes B±
ω are positive (negative) frequency KG solutions w.r.t. the boost parameter

τ in wedges L and R whenever ω > 0 (ω < 0). Note that in dividing the modes into positive
and negative frequency modes one is dropping out the ω = 0 mode which could, in principle, be a
source of trouble [6].

From now on we will only use boost modes which are positive frequency w.r.t. inertial time t,
B+

ω , and will drop the superscript: Bω ≡ B+
ω . One can use this set of modes as a basis of the

positive inertial frequency solution space of eq. (II.3). Actually, one can give a quantization of the
KG field unitary equivalent to the standard positive frequency plane waves one [6]:

φ̂(x) =

∫ ∞

−∞

dω
(

Bω(x)b̂ω +B∗
ω(x)b̂†ω

)

, (II.16)

where [b̂ω, b̂
†
ω′ ] = δ(ω−ω′). Because the transformation is unitary these quantum field descriptions

share the same vacuum

b̂ω |0M 〉 = âp |0M 〉 = 0. (II.17)
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Unruh’s idea [2] for giving a field quantization associated to accelerated observers consists in
constructing a set of modes Rω and Lω from combinations of boost modes and their conjugates
such that they are positive frequency w.r.t. the boost parameter (accelerated time) in wedges R
and L respectively and zero on the opposite wedge. These modes are defined by

Rω(x) =
1

√

2 sinh(πω)

[

eπω/2Bω(x) − e−πω/2B∗
−ω(x)

]

, (II.18a)

Lω(x) =
1

√

2 sinh(πω)

[

eπω/2B−ω(x) − e−πω/2B∗
ω(x)

]

, (II.18b)

where ω > 0. Note that, since they are defined in terms of boost modes, these definitions are
global. These equations can be inverted:

Bω(x) =
1

√

2 sinh(πω)

[

eπω/2Rω(x) + e−πω/2L∗
ω(x)

]

, (II.19a)

B−ω(x) =
1

√

2 sinh(πω)

[

eπω/2Lω(x) + e−πω/2R∗
ω(x)

]

. (II.19b)

It can be seen that, when restricted to R, Unruh modes Rω coincide with Fulling modes,
Eq. (II.4), and the analogous situation for Lω in L [13] (see Appendix A) and, therefore, initial
data of Unruh modes coincides with that of Fulling modes. It is known that solutions of the field
equation can be represented by their initial data [8] and thus Cauchy completing the space spanned
by the Lω and Rω modes one would obtain, respectively, HR and HL.

The field operator in the Unruh quantization takes the form of Eq. (II.9) with φ̂L(x), φ̂R(x)
expressed in terms of Unruh modes:

φ̂(x) = φ̂L(x) + φ̂R(x) =

∫ ∞

0
dω

(

Rω(x)1̂L ⊗ r̂ω + Lω(x)l̂ω ⊗ 1̂R + H.C.
)

, (II.20)

where r̂ω and l̂ω are annihilation operators in F (HR) and F (HL) respectively.
We note that recently there has been some controversy about the Unruh quantization. Narozhny

et.al. [6] claim that the Unruh quantization is not a valid quantization scheme for all of MS (as
the boost modes quantization is, see Eq. (II.16)). To support this they argue, in particular, that
the expansion of φ̂ in Unruh modes, Eq. (II.20), does not exhaust all the degrees of freedom of the
quantum field in Minkowski space. This is so, they say, because when “evaluating at the origin”,
boost modes have a singularity when ω = 0. The authors of Ref. [6] logic is that, consequently,
in the transition from Eq. (II.16) to Eq. (II.20) —using Eqs. (II.19)— one should take the Cauchy
principal value of the integral at the origin, which excludes the ω = 0 mode. They assert that
without this mode, the remaining set of boost modes loses the property of being complete and
then lacks the possibility of spanning every (one particle) state of the field. (Ref. [6], p. 025004-12)
On the other hand, Fulling and Unruh [7] have argued against this claim. They state that since
the mode expansion is an integral (Lebesgue measure) and thus one mode is of zero measure, the
omission of the ω = 0 mode is quite harmless in the mode expansion of the field and the Unruh
quantization is valid for expressing the restrictions to L ∪ R of global MS states. In this work
we adhere to the position of Fulling and Unruh for the following reasons. As we have said above,
boost modes should be considered as distributions and thus, evaluating them at one single point
has no meaning. Moreover, we recall that the field itself evaluated at one point has no meaning
either, the quantum field is a distributional object and only its convolution with a test function is
defined.

In their reply, Fulling and Unruh forcefully argue that the Unruh quantization scheme is valid
on the double wedge L ∪ R but, however, they indicated that they are not fully confident on the
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possibility of extending an Unruh state to all of MS ([7] p.048701-2). Let’s be more precise on
this issue. The initial data for the Unruh quantization consists of smooth functions of compact
support on both Cauchy surfaces ΣR and ΣL. For definiteness, take ΣR = {(0, z)|z > 0} and
ΣL = {(0, z)|z < 0}. For these Cauchy surfaces, functions of compact support would be zero at
the origin (0, 0). Nevertheless, a full MS quantization should consider the set of all C∞

0 initial data
over the Cauchy surface

ΣM = ΣL ∪ ΣR ∪ {0}, (II.21)

which includes, of course, functions which are not zero at the origin. In this respect, Fulling and
Unruh [7] note that “The treatment of initial data at the origin is mathematically subtle, and data
at that point may influence the solution of the field equation in regions F and P”. This issue is
quite relevant for our work. Although we are not giving any formal proof of the fact that the Unruh
quantization can be extended to all of MS, we show that at least for the particular case we study,
the Unruh quantization provides the same physical results as the standard flat space quantization.
This we take as an indication that both quantum descriptions are generally equivalent.

B. Minkowski vacuum, general states and L-R correlations

To find a basis of F (HU ), Eq. (II.8), we need a basis for F (HR) and F (HL). For F (HR)
we choose an orthonormal basis whose elements are R-states |J〉R which have a definite number
of Rindler particles nJ . Let Jωm be the number of particles in this state whose frequencies are
centered in the particular mode ωm, m = 0, 1, . . . . Then, the state |J〉R is defined by the set

J =
{

Jω0
, Jω1

, . . . , Jωm , . . .
}

,

∞
∑

m=0

Jωm = nJ , (II.22)

Note that only a finite number of the Jωm are 6= 0. State |J〉R can be build up from the Rindler
vacuum in the following manner

|J〉R = |Jω0
Jω1

· · ·〉R = NJ (r̂†ω0
)Jω0 · · · (r̂†ωm

)Jωm · · · |0〉R, (II.23)

where NJ is a normalization factor such that 〈J |J〉 = 1, and r̂†ωm creates a Rindler particle with
frequency centered at ωm. State |J〉R has Rindler energy

E(J) =

∞
∑

m=0

ωmJωm . (II.24)

This is the state’s energy associated with the boost Killing field. Given two different elements |J〉R,
|K〉R of this basis we have that

R〈J |K〉R = δ(J,K) ≡ δJω0
,Kω0

· · · δJωm ,Kωm
· · · , (II.25)

where δJωm ,Kωm
are Kronecker deltas. One can obtain a basis of F (HL) in an analogous way. The

set of all |J〉L ⊗ |K〉R where J and K are of the form of Eq. (II.22) is a basis of F (HU ). Any
state |g〉 ∈ F (HU ) can be casted in terms of this basis, and it is defined by a particular function
G(J,K):

|g〉 =
∑

J,K

G(J,K) |J〉L |K〉R. (II.26)
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Here, the sums run over the space of all possible particle distributions J and K, that is, they are
of the form

∑

J

=
∞
∏

m=0

∞
∑

Kωm=0

. (II.27)

Entangled states in the Unruh quantization (those which cannot be expressed in the form |g1〉L ⊗
|g2〉R) have non trivial correlations between left and right states. The inertial Minkowski vacuum,
|0M 〉, is an entangled state in the Unruh quantization:

|0M 〉 =
∑

K

e−πE(K) |K〉L |K〉R =
∑

J,K

e−πE(K)δ(J,K) |J〉L |K〉R. (II.28)

Given that |0M 〉 is an entangled state, when restricted to the R wedge, it fails to be a pure state [14]
and its description is in terms of a density matrix. The norm of the Minkowski vacuum is now
given by

〈0M |0M 〉 =

∞
∏

m=0

1

1 − e−2πωm
. (II.29)

The fact that this well behaved state in the plane wave quantization has an infinite norm in the
Unruh quantization is a consequence of the non unitarily equivalence between these quantizations.
Recall that different, even not unitarily equivalent, representations of the field algebra are “phys-
ically equivalent” in the sense of Fell’s theorem (see Ref. [5]) and thus one expects to obtain the
same physical information from the computation of expectation values in either the inertial or
the Unruh scheme, provided that the Unruh quantization is a faithful representation of the field
algebra1. We can say that our results point in this direction since, as we shall see in Sec. V and
Appendix C, we obtain, in both quantization schemes, the same physical result.

III. POSING THE PROBLEM: THE MATRIX OF ENTANGLEMENT

In this work we shall be concerned with the difference between the initial vacuum state and
the final state which results from the initial state and the interaction of the classical scalar source
in uniform acceleration. At the same time we are interested with the restriction of these sates to
the different regions and thus we shall employ the language of density matrices as indicated by the
posing of the questions raised in the introduction.

The trajectory of this source is a branch of an hyperbola lying in one Rindler wedge of spacetime
which we choose it to be R. The final state of such interaction can be obtained perturbatively by
the application of the respective S-matrix operator to the inertial vacuum state (this operator will
be constructed in detail in Sect. IV):

|f〉 = Ŝ |0M 〉 . (III.1)

Recall from Sec. II that the Lω modes of the field are zero when evaluated in wedge R and thus
the scalar source can only excite R modes of the field. Then, for this case the Ŝ operator takes the
form

Ŝ = 1̂L ⊗ ŜR. (III.2)

1 We thank Hanno Sahlmann for pointing this out.

10



On the other hand, expressed in the Unruh quantization scheme, state |f〉 takes the form

|f〉 =
∑

J,K

F (J,K) |J〉L |K〉R. (III.3)

All the information of the state |f〉 is encoded in the function F (J,K), and hence one should be
able to read from the change in this function, ∆F = F (J,K)−Fvac(J,K), the change in the energy
momentum tensor due to the effects of the source. In particular, this change should, at the same
time, codify the fact that no change is produced inside the wedge R and that a dramatic change
occurs in wedge F . Nevertheless, this information is more clearly encoded in the change in the
density matrix of the state, ∆ρ̂ = ρ̂f − ρ̂vac since it can be splitted directly into left, right and
entangled contributions as we will explain in the following. This is a second reason for using the
language of density matrices.

We already know that, when considered as a state of the composite system FL ⊗ FR, the
inertial vacuum state is an entangled state (see [14] for an intuitive explantion of this), and thus
one expects that also state |f〉 will be entangled. In this sense, since both states are pure, their
density operators cannot be written in the form [15]

ρ̂ ′ = ρ̂′L ⊗ ρ̂′R, (III.4)

where ρ̂′L and ρ̂′R represent the respective partial density matrices defined by

ρ̂L,R ≡ TrL,R ρ̂. (III.5)

Nevertheless, one can introduce a traceless operator ρ̂e which encodes all the information of the
entanglement of the state. We propose that the density operators for these states can be written
as

ρ̂ = ρ̂L ⊗ ρ̂R + ρ̂e. (III.6)

In the Unruh quantization, the ρ̂e operator, which we will call the matrix of entanglement, encodes
the information of the correlation between left and right components of the state. When computing
expectations of operators localized in either wedges L or R the matrix of entanglement plays no
role, in fact, it can be shown that for any operator of the form ÂL ⊗ 1̂R and a state described by
Eq. (III.6) one has that

Tr(ÂL ⊗ 1̂R ρ̂) = Tr(ÂL ρ̂
L), (III.7)

and thus Tr(ÂL ⊗ 1̂R ρ̂
e) = 0 (and the analogous if the operator has the form 1̂L ⊗ ÂR). The

information encoded in ρ̂e can only be retrieved when computing expectations of operators with
L and R components and thus, for the case of observables (made up of field operators) this infor-
mation is only present when one evaluates the expectation values in wedge F . For example, in the
computations of [4] the information encoded in ρ̂e does not enter in the results, which in principle
are incompatible with the change in 〈T̂µν〉 in wedge F . It is therefore that we expected that the
information about this change would be encoded in ρ̂e.

We can write the inertial vacuum |0M 〉 in the fashion of Eq. (III.6):

ρ̂vac = ρ̂L
vac ⊗ ρ̂R

vac + ρ̂e
vac . (III.8)

From Eq. (II.28) it follows that

ρ̂vac = |0M 〉 〈0M | = Z
∑

JK

EJEK |K〉L |K〉R L〈J |R〈J | , (III.9)
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where we have defined

EJ ≡ e−πE(J) (III.10)

(see Eq. (II.24)), and we have introduced the normalization factor Z defined by

Z−1 ≡
∑

J

E2
J (III.11)

in order to have Tr(ρ̂vac) = 1. Taking the partial R and L traces in Eq. (III.9) we obtain respectively

ρ̂L
vac = Z

∑

J

E2
J |J〉LL〈J | , ρ̂R

vac = Z
∑

J

E2
J |J〉RR〈J | . (III.12)

Using Eqs. (III.12) and (III.9) we can write

ρ̂e
vac = ρ̂vac − ρ̂L

vac ⊗ ρ̂R
vac

= Z
∑

J,K

EJEK

(

|J〉L |J〉RL〈K|R〈K| − ZEJEK |J〉L |K〉RL〈J |R〈K|
)

. (III.13)

For the density matrix for state |f〉 we have

ρ̂f = ρ̂L
f ⊗ ρ̂R

f + ρ̂e
f . (III.14)

Now we turn back to our own specific case and concentrate particularly in the change in the density
matrices induced by the interaction of the field with the source. Exploiting the fact that for the
accelerated source the Ŝ matrix is an R operator one finds directly from Eq. (III.1) and Eq. (III.2)
that

ρ̂f = ρ̂L
vac ⊗ ŜR ρ̂

R
vac Ŝ

†
R + Ŝ ρ̂e

vac Ŝ
†. (III.15)

From this last equation we can identify

ρ̂L
f = ρ̂L

vac ρ̂R
f = ŜR ρ̂

R
vac Ŝ

†
R (III.16)

and

ρ̂e
f = Ŝ ρ̂e

vac Ŝ
†. (III.17)

We want now to express the change in the state of the field induced by the interaction in terms of
the change of the density matrix. Note that when restricted to L this change is δρ̂L

f = ρ̂L
f −ρ̂L

vac = 0.

The changes δρ̂R
f = ρ̂R

f − ρ̂R
vac and δρ̂e

f = ρ̂e
f − ρ̂e

vac deserve special attention since they depend on

the operator Ŝ, note that they are traceless.
The total change in the density matrix can be written as

δρ̂ = ρ̂L
vac ⊗ δρ̂R

f + δρ̂L
f ⊗ ρ̂R

vac + δρ̂L
f ⊗ δρ̂R

f + δρ̂e

= ρ̂L
vac ⊗ δρ̂R

f + δρ̂e,
(III.18)

where δρ̂e ≡ ρ̂e
f − ρ̂e

vac and we have used δρ̂L
f = 0. Eq. (III.18) thus reflects in a clear language what

we know about the change in the quantum field. As we mentioned in Sect. I, there is theoretical
evidence that when one restricts state |f〉 to wedge R one would obtain the same thermal bath as
that of the inertial vacuum [4], that is, in this wedge there is no effective change in the state. A
priori one may think that this means that δρ̂R

f = 0. However, the state should have changed in
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order to account for the radiation emitted by the source, which should be measurable in F . Thus
one might conclude that all the information of the physical change in the state is encoded in the
change in the matrix of entanglement, δρ̂e, which can only be retrieved in wedge F . To be more
specific, consider an operator of the form Â = 1̂L ⊗ ÂR on FL ⊗ FR. From Eq. (III.18) one has
that the change in its expectation is given by

δTr(Âρ̂) ≡ Tr(Â ρ̂f ) − Tr(Â ρ̂vac) = Tr(ÂR δρ̂R
f ). (III.19)

Note that the operator ÂR can be localized anywhere in Minkowski spacetime as, for example, the
operator 1̂⊗ φ̂R(x), which is not identically zero outside wedge L. However, if the operator Â has
non trivial L and R components then the change is given by

δTr(Âρ̂) = Tr(Â ρ̂L
vac ⊗ δρ̂R

f ) + Tr(Â δρ̂e), (III.20)

that is, in this case the change in the expectation may come from both δρ̂R
f and δρ̂e contributions.

In order to understand the physical change in the state we shall evaluate the change in the
expectation of the energy-momentum tensor operator T̂µν . Recall that in Minkowski spacetime
〈T̂µν(x)〉 is defined in the point-splitting description as a coincidence limit [5]:

〈T̂µν(x)〉f = lim
x′→x

tµν ′F (x, x′), (III.21)

where

F (x, x′) = 〈f | φ̂(x)φ̂(x′) |f〉 − 〈0M | φ̂(x)φ̂(x′) |0M 〉 (III.22)

and tµν′ is the differential operator

tµν′ = ∇µ∇ν′ − 1
2gµν(∇σ∇σ′

+m2). (III.23)

Thus, all one needs to compute the expectation of T̂µν is the change in the two point function

〈φ̂(x)φ̂(x′)〉. We have from Eq. (II.20) that

φ̂(x)φ̂(x′) = φ̂L(x)φ̂L(x′) + φ̂L(x)φ̂R(x′) + φ̂R(x)φ̂L(x′) + φ̂R(x)φ̂R(x′). (III.24)

To simplify the notation, let us define

φ̂ ≡ φ̂(x), φ̂′ ≡ φ̂(x′). (III.25)

From Eq. (III.24) and Eq. (III.18) we have that the total change in the expectation of the two
point operator is

Tr(φ̂φ̂′δρ̂) = Tr(φ̂Lφ̂
′
L ρ̂

L
vac ⊗ δρ̂R) + Tr(φ̂Rφ̂

′
R ρ̂L

vac ⊗ δρ̂R) + Tr(φ̂Lφ̂
′
Rδρ̂

e) + Tr(φ̂Rφ̂
′
Lδρ̂

e)

= TrL(φ̂Lφ̂
′
Lρ̂

L
vac)TrR (δρ̂R) + TrR (φ̂Rφ̂

′
Rδρ̂

R) + Tr(φ̂Lφ̂
′
Rδρ̂

e) + Tr(φ̂Rφ̂
′
Lδρ̂

e).

(III.26)

To get Eq. (III.26) we have used that Tr(ÂL,R ρ̂e) = 0 (see Eq. (III.7)) and that

TrL(φ̂L ρ̂
L
vac) =

∑

J

E2
J L〈J | φ̂L |J〉L = 0, (III.27)

since states with different number of particles are orthogonal.
Eq. (III.26) is the farthest that we can get to reduce Tr(φ̂φ̂′δρ̂) using only the fact that we

are considering a source with support totally contained in R and the properties of the matrix of
entanglement. Note that the last two terms in the r.h.s. of Eq. (III.26) are zero when evaluating
both x, x′ ∈ L or R since in these wedges the modes Lω and Rω cannot be different from zero
simultaneously. To go further in our calculation we shall introduce the explicit form of the operator
Ŝ, which we do in the next section.
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IV. AN ACCELERATED SCALAR SOURCE AND ITS INTERACTION

We are going to use a scalar source j(x) to model a scalar particle with uniform acceleration.
Let this scalar current j(x) interact with the field with an interaction Hamiltonian density given
by

ĤI(x) =
√−g j(x)φ̂(x), (IV.1)

where g is the determinant of the metric. The final state |f〉 of the field after this interaction is
given by the application of the S-matrix to the inertial vaccuum state:

|f〉 = Ŝ |0M 〉 Ŝ = T̂ exp

[

−i
∫ Σout

Σin

ĤI(x) d
2x

]

, (IV.2)

where Σin, Σout are Cauchy hypersurfaces where the interaction begins and ends respectively, and
T̂ is the time order operator.

The interaction occurs inside wedge R and thus the in and out Cauchy hypersurfaces should
bound this region and, at the same time, in order to define states in the Unruh quantization scheme,
they have to be Cauchy hypersurfaces of the double wedge L ∪ R. We define Σin as the surface
constructed by the union of {t = 0, z ≤ 0} and a spatial surface inside wedge R which begins in
the bifurcation point of the horizons and deviates slightly from the ζ = 0, τ = −∞ horizon (see
Fig. I). Σout is defined analogously but its restriction to R is an spatial surface which deviates
slightly from the ζ = 0, τ = ∞ horizon. The initial vacuum state is defined over Σin and the
final state of the field |f〉 is defined over Σout. Therefore, although the interaction is present inside
wedge R, the state |f〉 is defined after the interaction and one can evaluate expectations in this
state of operators localized in wedges R and F .

Our calculation of |f〉 (and its density matrix) will be in terms of Rindler coordinates for which
T̂ orders up operators with respect to the time coordinate τ . Using Eq. (IV.1) one can put the
final state of the interaction in the form

|f〉 = T
(

1̂ − i

∫

d4x
√−g j(x)φ̂(x) − 1

2

∫ ∫

d4x d4x′
√−g

√

−g′j(x′)j(x′)φ̂(x)φ̂(x′)
)

|0M 〉 + Ô(q3),

(IV.3)
where the integrations are over the same region as in Eq. (IV.2). It is useful to define the (formal)
operator

φ̂I ≡
∫

d2x
√−g j(x)φ̂(x). (IV.4)

Note that φ̂I is of order q. We are going to apply the Wick theorem to the r.h.s. of Eq. (IV.3):

T
(

φ̂(x)φ̂(x′)
)

= N
(

φ̂(x)φ̂(x′)
)

+ 〈0|T
(

φ̂(x)φ̂(x′)
)

|0〉 , (IV.5)

where the normal ordering, N, and the vacuum, |0〉, are with respect to the quantization scheme
we are dealing with. Using Eq. (IV.5) we expand Eq. (IV.3) to get

|f〉 = Ŝ |0M 〉 = (1 − G ) |0M 〉 − iφ̂I |0M 〉 − 1

2
N(φ̂I φ̂I) |0M 〉 + O(q3), (IV.6)

where

G =
1

2

∫ ∞

−∞

d2x

∫ ∞

−∞

d2y j(x)j(y) 〈0M |T
(

φ̂(x)φ̂(y)
)

|0M 〉 (IV.7)
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is of second order in q.
A uniformly accelerating scalar particle follows a trajectory which in Rindler coordinates cor-

responds to the locus of ζ = ζ0. From the point of view of Rindler observers, this scalar source
corresponds to a static scalar current :

j′(x) = qδ(ζ − ζ0). (IV.8)

This source transforms as a scalar, using Eq. (II.1) it can be transformed to inertial coordinates

j′(x) = q
δ(z −

√
t2 + a−2)

a
√
t2 + a−2

, (IV.9)

where ζ0 = 1/a and a is the proper acceleration of the source. In order to avoid expressions of
the form 0×∞ one has to introduce some regularization factor to Eq. (IV.8). Inspired in Higuchi
et.al. [4], who regularize an electric charge and show the consistency of their regulator (we have
explained their results in Sec. I), we introduce an oscillating factor to Eq. (IV.8):

j(x) = q cos(θτ)δ(ζ − ζ0) (IV.10)

and at the end of our calculations we shall take the limit θ → 0. In fact, for slow oscillations
(θ ≪ a) the source is expected to interact with the field as if it were a constant charge q at each τ .

The current j(x) has support totally contained in R, and thus one can see from Eqs. (II.20)
and (IV.4) that only R-modes of the field will get excited by the accelerated source. The operator
φ̂I takes the form

φ̂I =

∫

R
d2x

√−g j(x)φ̂R(x) =

∫ ∞

0
dω

(

Υω r̂ω + Υ∗
ωr̂

†
ω

)

, (IV.11)

where

Υω ≡
∫

R
d2x

√−gj(x)Rω(x) = Ψθδ(ω − θ), Ψθ = q
√

sinh(πθ) ζ0Kiθ(mζ0). (IV.12)

To get Eq. (IV.12) we have used Eq. (A.11), ω > 0, and we have chosen to work with θ > 0 (note
that the regulator is an even function of θ). Note that Kiω(z) is real for real ω and z. Finally, Eq.
(IV.11) takes the form

φ̂I = q
√

sinh(πθ) ζ0Kiθ(mζ0)
[

r̂θ + r̂†θ
]

. (IV.13)

The role of the regulator we have chosen is to couple the source to an R mode of the field with
frequency θ instead of the mode with frequency zero which is somehow pathological.

V. THE CHANGE OF 〈T̂µν〉 AT WEDGES L AND R

Now we are in a position to compute explicitly δρ̂R and δρ̂e in order to evaluate Eq. (III.26).
We will work out this calculation perturbatively up to second order in q, which turns to be the
first relevant contribution. From Eq. (IV.6) we have

Ŝ = (1 − G ) − iφ̂I +
1

2
N(φ̂I φ̂I) +O(q3), (V.1)

and from this equation we can write the density matrix for the final state as

ρ̂f = ρ̂
(0)
f + ρ̂

(1)
f + ρ̂

(2)
f +O(q3), (V.2)
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where ρ̂
(0)
f corresponds to the (second order) renormalized inertial vacuum density matrix given by

ρ̂
(0)
f = Q ρ̂vac Q ≡ (1 − 2Re(G )). (V.3)

We shall compute the change in the density matrix with respect to the renormalized vacuum density
operator:

δρ̂ren = ρ̂f − ρ̂
(0)
f . (V.4)

Tracing out the left degrees of freedom in Eq. (V.2) we have

ρ̂R
f = ρ̂

R (0)
f + ρ̂

R (1)
f + ρ̂

R (2)
f +O(q3), (V.5)

where

ρ̂
R (1)
f = −i[φ̂I , ρ̂

R
vac], (V.6)

ρ̂
R (2)
f =

1

2

(

ρ̂R
vacN(φ̂I φ̂I)

† + 2φ̂I ρ̂
R
vacφ̂I +N(φ̂I φ̂I)ρ̂

R
vac

)

. (V.7)

Note that ρ̂
R (1)
f is traceless. For the entanglement matrix we have

δρ̂e = ρ̂
e (1)
f + ρ̂

e (2)
f +O(q3), (V.8)

where ρ̂
e (1)
f and ρ̂

e (2)
f are defined as Eqs. (V.6) and (V.7) changing R→ e.

The first order contribution to Eq. (III.26) is

Tr(φ̂φ̂′δρ̂(1)) = TrL(φ̂Lφ̂
′
Lρ̂

L
vac)Tr(ρ̂

R (1)
f ) + Tr(φ̂Rφ̂

′
Rρ̂

R (1)
f ) + Tr((φ̂Lφ̂

′
R + φ̂′Lφ̂R)ρ̂

e (1)
f ). (V.9)

The first term in the r.h.s. of Eq. (V.9) is zero since ρ̂
R (1)
f is traceless. From the expression for

ρ̂
R (1)
f , Eq. (V.6), it can be proved that

Tr(φ̂Rφ̂
′
Rρ̂

(1)
f ) = Tr(φ̂Lφ̂

′
Rρ̂

(1)
f ) = Tr(φ̂Rφ̂

′
Lρ̂

(1)
f ) = 0. (V.10)

This can be understood heuristically from the fact that these traces represent a sum of brackets in
the Minkowski vacuum of three field operators, which are necessarily null. From Eq. (V.10) and
the definition of ρ̂e

f we have

Tr(φ̂Lφ̂
′
Rρ̂

e (1)
f ) = Tr(φ̂Lφ̂

′
Rρ̂

(1)
f ) − Tr(φ̂Lφ̂

′
Rρ̂

L
vac ⊗ ρ̂

R (1)
f )

= Tr(φ̂Lφ̂
′
Rρ̂

(1)
f )

= 0.

(V.11)

To get the second equality in Eq. (V.11) we have used Eq. (III.27) to conclude that

Tr(φ̂Lφ̂
′
R ρ̂L

vac ⊗ ρ̂
R (1)
f ) = TrL (φ̂Lρ̂

L
vac)TrR (φ̂′Rρ̂

R (1)
f ) = 0 . (V.12)

Note that this last equation is valid for any order. We have then proved that Tr(φ̂φ̂′δρ̂(1)) = 0.
Now we turn to the second order contribution,

Tr(φ̂φ̂′δρ̂(2)) = TrL(φ̂Lφ̂
′
Lρ̂

L
vac)Tr(ρ̂

R (2)
f ) + Tr(φ̂Rφ̂

′
Rρ̂

R (2)
f ) + Tr((φ̂Lφ̂

′
R + φ̂′Lφ̂R)ρ̂

e (2)
f ) . (V.13)

16



For the mixed LR terms, we have that, similarly to Eq. (V.11)

Tr(φ̂Lφ̂
′
R ρ̂

e (2)
f ) = Tr(φ̂Lφ̂

′
R ρ̂

(2)
f ) − Tr(φ̂Lφ̂

′
R ρ̂L

vac ⊗ ρ̂
R (2)
f )

= Tr(φ̂Lφ̂
′
R ρ̂

(2)
f ) .

(V.14)

Using Eq. (V.7) it can be proven directly that (see Appendix B)

Tr(φ̂Lφ̂
′
Rρ̂

e (2)
f ) = ZΨ2

θTr(φ̂Lφ̂
′
Rρ̂vac), (V.15)

Tr(φ̂Rφ̂
′
Lρ̂

e (2)
f ) = ZΨ2

θTr(φ̂Rφ̂
′
Lρ̂vac) . (V.16)

Also from Eq. (V.7) (see its basis expansion in Eq. (B.10)) we have that Tr(ρ̂
R (2)
f ) = Ψ2

θ and thus

TrL(φ̂Lφ̂
′
Lρ̂

L
vac)Tr(ρ̂

R (2)
f ) = ZΨ2

θTrL(φ̂Lφ̂
′
Lρ̂

L
vac) . (V.17)

These terms, since are proportional to the corresponding LR and LL parts of the two point function
in the vacuum, are going to be absorbed in the renormalization of the final result. We have then
obtained the, in principle, unexpected result that at least for the change in the expectation of the
T̂µν operator there is no contribution from the change in the entanglement matrix, although as one
can see from Eq. (III.17) there is actually a change in this operator. All the information of this
change comes from the change in the R density matrix of the state, δρ̂R

f . As shown explicitly in
Appendix B we have that

Tr(φ̂Rφ̂
′
Rρ̂

R(2)
f ) = 4Ψ2

θ Im[Rθ(x)] Im[Rθ(x
′)] + ZΨ2

θTr
(

ρ̂R
vacφ̂R(x)φ̂R(x′)

)

. (V.18)

Finally, adding up Eqs. (V.15)-(V.18) we have that the change in the two point function between
the inertial vacuum and the state generated by the interaction of the scalar source is

Tr(φ̂(x)φ̂(x′)δρ̂ren) = 4Ψ2
θ Im[Rθ(x)] Im[Rθ(x

′)] +
ZΨ2

θ

Q
Tr

(

φ̂(x)φ̂(x′)ρ̂
(0)
f

)

+O(q3), (V.19)

which is valid for all x, x′ ∈ M and we have used Eq. (V.3) to express ρ̂vac in terms of the

renormalized vacuum density operator ρ̂
(0)
f . However, as we have said, we still have to renormalize

this change in the expectation value. We define the renormalized field operator as

φ̂ren(x) ≡
(

1 − Ψ2
θ

Q

)1/2

φ̂(x), (V.20)

and thus the renormalized change in the expectation of the two point function is

Cθ(x, x
′) ≡ Tr(φ̂ren(x)φ̂ren(x′)δρ̂ren) = 4Ψ2

θ Im[Rθ(x)] Im[Rθ(x
′)] +O(q3) . (V.21)

The second order term in this change reads

C
(2)
θ (x, x′) = 4Ψ2

θ Im[Rθ(x)] Im[Rθ(x
′)] . (V.22)

We have arrived to a regular expression for the change in the expectation value of the two point
function and thus now we can reconsider the source as static by taking out the regulator taking
the limit θ → 0. In the following we are going to evaluate explicitly Eq. (V.22) in wedges R and F .
First, note that form Eq. (IV.12) and the fact that Bessel functions Kiθ(mζ0) are regular whenever
ζ0 6= 0 we have that

lim
θ→0

Ψθ = 0 . (V.23)
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Note that Ψ2
θ is an overall factor in C

(2)
θ (x, x′). When computing the expectation of φ̂(x)φ̂(x′) the

correct procedure is to take the limit θ → 0 at the end of the calculation since the field operators
couple to the frequency θ of particles in |f〉 which are emitted and absorbed by the source.

First we will work the case when x, x′ ∈ R, for we can express these points in terms of Rindler
coordinates: x = (τ, ζ), x′ = (τ ′, ζ ′). Unruh modes Rω, when restricted to wedge R take the form
of Eq. (II.4) (see also Eq. (A.11) in the Appendix). Using the fact that functions Kiω(z) are real
whenever ω is real and z > 0, we have that

Im
(

Rθ(x)
)

= −
√

sinh(πθ)

π
sin(θτ)Kiθ(mζ) x ∈ R . (V.24)

And thus, from Eqs. (V.22) and (IV.12)

C
(2)
θ (x, x′) =

1

π2
q2 sinh2(πθ)ζ2

0K
2
iθ(mζ0) sin(θτ) sin(θτ ′)Kiθ(mζ)Kiθ(mζ

′) x, x′ ∈ R . (V.25)

Recall that R is an open set bounded by the horizons and thus ζ, ζ ′ 6= 0, so the Bessel functions
Kiθ(mζ), Kiθ(mζ

′) are regular. Then we have that the second order change in the two point
function between the inertial vacuum and state |f〉 in wedge R is

lim
θ→0

C
(2)
θ (x, x′) = 0 x, x′ ∈ R . (V.26)

This resut, is consistent with the fact that, as pointed out in Ref. [4] the source is in thermal
equilibrium with the field inside wedge R. Any observer inside this wedge will not be able to notice
any change in the expected value of T̂µν due to the presence of the accelerating source. Note that
the specific form of the two point operator has played a crucial role to get to Eq. (V.22).

Now we proceed to evaluate Eq. (V.22) in wedge F . Recall that in F , τ is a spatial coordinate
and ζ is timelike (cf. Eq. (A.2b)). Form Eq. (A.12) we have that the mode Rθ(x) restricted to F
takes the form

Rθ(x) = − i

23/2

e−iθτ

√

2 sinh(πθ)

[

eθπH
(2)
iθ (mζ) + e−θπH

(1)
iθ (mζ)

]

x ∈ F, (V.27)

where coordinates (τ, ζ) are defined in Eq. (A.2b) and H
(1),(2)
iθ are the first and second Hankel

functions. Using the definitions of H
(1),(2)
iθ in terms of Bessel functions, Eqs. (A.19) and (A.20), it

follows immediately that

Im
(

Rθ(x)
)

= − 1

4
√

sinh(πθ)

(

e−iθτJ−iθ(mζ) + eiθτJiθ(mζ)
)

x ∈ F . (V.28)

Now using Eqs.(IV.12) and (V.28) we have that

lim
θ→0

C
(2)
θ (x, x′) = q2ζ2

0K
2
0 (mζ0)J0(mζ)J0(mζ

′) for all x, x′ ∈ F . (V.29)

Compare with Eq. (V.26). This expression is the (non zero) change in the two point function in
wedge F due to the interaction. It contains the information of the field radiated away from the
source into F . It should be noted that Eq. (V.29) is not valid at the horizons. In Appendix C we
make the computation, in an inertial frame, of the same change in the expectation of the two point
function, Tr(φ̂(x)φ̂(x′)δρ̂), for x, x′ ∈ F and obtain exactly Eq. (V.29). Therefore, at least for the
particular case we are dealing with, both quantum descriptions produce the same physical results.
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VI. AN EXAMPLE OF LEFT-RIGHT INTERFERENCE: TWO SOURCES WITH OPPO-

SITE ACCELERATION

As we have seen in the last section, the matrix of entanglement plays no significant role in
the change in the expectation of T̂µν for the interaction of an accelerated source with the inertial
vacuum. However, the presence of another (accelerating) source lying in L may affect the entan-
glement of the final state and thus ρ̂e may play a part in the change of the expectation of T̂µν . In
this section we work out these calculations.

Suppose that additionally to the scalar particle considered in the latter sections we have an
extra scalar particle in uniform acceleration in wedge L with scalar charge q̃. The perturbation of
the field due to this pair of particles is given by

j(x) =

{

jL(x) x ∈ L
jR(x) x ∈ R , (VI.1)

where

jL(x) = q̃ cos(θ̃ τL)δ(ζL − ζ̃0) jR(x) = q cos(θ τR)δ(ζR − ζ0) . (VI.2)

Rindler coordinates in wedge L, (τL, ζL) are given by Eq. (A.2a). To avoid confusion, all along
this section we will call Rindler coordinates in R: (τR, ζR) (originally we have used (τ, ζ)). Note
that in order to have independent sources we have introduced the cosine regulator with a different
parameter for the source in wedge L.

Using Eq. (IV.1) for j(x) given by Eq. (VI.1) we have that

Ŝ′ = T̂ exp
[

− i[(φ̂L
I ⊗ 1̂R) + (1̂L ⊗ φ̂R

I )]
]

= T̂ exp[−iφ̂L
I ] ⊗ exp[−iφ̂R

I ] ≡ ŜL ⊗ ŜR, (VI.3)

where

φ̂L
I = Ψθ̃

(

l̂θ̃ + l̂†
θ̃

)

, φ̂R
I = Ψθ

(

r̂θ + r̂†θ
)

, (VI.4)

and T̂ is the time order operator. In this case we have two different time parameters, τL and τR
and thus T̂ will time order L and R operators independently (recall that φ̂L and φ̂R commute).
The factor Ψθ is given by Eq. (IV.12) and Ψθ̃ is now

Ψθ̃ = q̃

√

sinh(πθ̃) ζ̃0Kiθ̃(mζ̃0) . (VI.5)

Let |g〉 be the final state of this interaction, analogously to Eq. (III.15) now we have that its
density matrix takes the form

ρ̂g = ρ̂L
g ⊗ ρ̂R

g + ρ̂e
g, (VI.6)

where

ρ̂L
g = ŜLρ̂

L
vacŜ

†
L, ρ̂R

g = ŜRρ̂
R
vacŜ

†
R, ρ̂e

g = Ŝ′ρ̂e
vacŜ

′† . (VI.7)

Then we have that the change in the density operators is given by

δρ̂g = ρ̂L
vac ⊗ δρ̂R

g + δρ̂L
g ⊗ ρ̂R

vac + δρ̂L
g ⊗ δρ̂R

g + δρ̂e
g, (VI.8)

where δρ̂g = ρ̂g − ρ̂vac and all other differences are defined analogously.
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Now we compute the change Tr(φ̂φ̂′δρ̂g), analogously to the case of the single accelerating
particle the first relevant term is of second order in q and q̃. Using Eq. (III.24) and Eq. (VI.8) It
can be seen that

Tr(φ̂φ̂′δρ̂(2)
g ) =TrL (φ̂Lφ̂

′
Lδρ̂

L (2)
g ) + TrR (φ̂Rφ̂

′
Rδρ̂

R (2)
g )

+ ZΨ2
θTrL (φ̂Lφ̂

′
Lρ̂

L
vac) + ZΨ2

θ̃
TrR (φ̂Rφ̂

′
Rρ̂

R
vac)

+ Tr
(

(φ̂Lφ̂
′
R + φ̂Rφ̂

′
L) δρ̂L (1)

g ⊗ δρ̂R (1)
g

)

+ Tr
(

(φ̂Lφ̂
′
R + φ̂Rφ̂

′
L)δρ̂e

g

)

.

(VI.9)

The first four terms in the r.h.s. of Eq. (VI.9) are analogous to Eq. (V.17) and and Eq. (V.18) for
the single source case. In effect, we have that

Tr(φ̂Rφ̂
′
Rδρ̂

R(2)
g ) = 4Ψ2

θ Im[Rθ(x)] Im[Rθ(x
′)] + ZΨ2

θTr
(

ρ̂R
vacφ̂R(x)φ̂R(x′)

)

, (VI.10)

Tr(φ̂Lφ̂
′
Lδρ̂

L(2)
g ) = 4Ψ2

θ̃
Im[Lθ̃(x)] Im[Lθ̃(x

′)] + ZΨ2
θ̃
Tr

(

ρ̂L
vacφ̂L(x)φ̂L(x′)

)

. (VI.11)

Similarly to Eq. (V.6), it can be seen that

δρ̂L (1)
g = −i(φ̂L

I ρ̂
L
vac − ρ̂L

vacφ̂
L
I ), (VI.12)

δρ̂R (1)
g = −i(φ̂R

I ρ̂
R
vac − ρ̂R

vacφ̂
R
I ), (VI.13)

and from these equations we have that

Tr
(

(φ̂Lφ̂
′
R + φ̂Rφ̂

′
L) δρ̂L (1)

g ⊗ δρ̂R (1)
g

)

= 4Ψθ̃Ψθ

(

Im(Lθ̃(x))Im(Rθ(x
′)) + Im(Rθ̃(x))Im(Lθ(x

′))
)

.
(VI.14)

On the other hand, it can be shown that the second order contribution from the matrix of entan-
glement is

Tr
(

(φ̂Lφ̂
′
R + φ̂Rφ̂

′
L)δρ̂e (2)

g

)

= Z
(

Ψ2
θ̃
+ Ψ2

θ

)

Tr
(

(φ̂Lφ̂
′
R + φ̂Rφ̂

′
L)ρ̂vac

)

, (VI.15)

which, as in the case of a single source, also corresponds to terms that will be absorbed in the
renormalization of the final change in the expectation value. Adding up all the contributions,
Eq. (VI.9) takes the form

Tr(φ̂φ̂′δρ̂(2)
g ) =4

[

Ψθ̃Im(Lθ̃(x)) + ΨθIm(Rθ(x))
][

Ψθ̃Im(Lθ̃(x
′)) + ΨθIm(Rθ(x

′))
]

+ Z
(

Ψ2
θ̃
+ Ψ2

θ

)

Tr
(

φ̂(x)φ̂(x′)ρ̂vac

)

.
(VI.16)

Thus, the renormalized change in the two point function reads, up to second order

Tr(φ̂renφ̂
′
renδρ̂g ren) = 4

[

Ψθ̃Im(Lθ̃(x))+ΨθIm(Rθ(x))
][

Ψθ̃Im(Lθ̃(x
′))+ΨθIm(Rθ(x

′))
]

+. . . (VI.17)

After taking the limits θ̃, θ → 0 and evaluating at x = (τF , ζF ) and x′ = (τ ′F , ζ
′
F ) we obtain

lim
θ̃,θ→0

Tr(φ̂ren(x)φ̂ren(x′)δρ̂g ren) =
(

q̃ζ̃0K0(mζ̃0) + qζ0K0(mζ0)
)2
J0(mζF )J0(mζ

′
F ) . (VI.18)

As expected, if we turn off the charge in wedge L (q̃ → 0) we recover our previos result, Eq. (V.29).
For the case of the two accelerating sources it turns out that also all the contribution to the change
in the expectation value of the two point function comes solely from the change in the partial
matrices, δρ̂L

g , δρ̂R
g . In particular, the interference term, Eq. (VI.14), is determined by the latter

pair of matrices, that is, for the case we have just analyzed all the information of the change in
the expectation of T̂µν is only encoded in δρ̂L

g , δρ̂R
g .
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VII. DISCUSSION

One of the main goals of our work was to reconcile the fact that the final state of the field
appears to remain an undisrupted thermal state in both the left and right Rindler wedges, with
the expected change induced by the source on field observables, such as the energy momentum, in
the future wedge. This issue is recasted in terms of the codification in the state of the field of the
pertinent information that exhibits the change in the expectation value of T̂µν .

At the beginning it was our belief that, since there is no change in the expectation of T̂µν

in wedge R (neither in L) the physical change in wedge F cannot be induced by the particular
behaviours of the state when restricted to either wedge. Hence, the information of this change
information should have been encoded in some part of the state which is not represented by any of
the restricted density operators ρ̂L

f and ρ̂R
f (or in their respective changes). It is in this sense is that

we proposed the decomposition of ρ̂f given by Eq. (III.6) with the particular introduction of the
matrix of entanglement ρ̂e. As we explained in Sec. III this operator plays no role when computing
expectations of observables localized in wedges L and R and thus was a good candidate to account
for the change of 〈T̂µν〉 in wedge F . Nevertheless, we computed this change perturbatively and
found that it has contributions only from the change in the density matrix describing the state
in the wedge R (see Eqs. (V.18) and (V.21)). That is, when evaluating 〈T̂µν〉 in either wedges R
and F , its change is determined solely by the characterization of the state in wedge R. This result
contrasts with our initial expectation that the information about the change of 〈T̂µν〉 would be
encoded in the change in the entanglement matrix, δρ̂e.

In order to obtain this result, we had to introduce by hand a particular regularizing function,
cos(θτ), into the current describing a uniformly accelerating scalar source with the prescription to
take the limit θ → 0 at the end of the calculation. As mentioned earlier, this regulator was inspired
by a similar computation done in [4]. Despite the seemingly artificial choice of this regulator, we
have shown that when making the regulator independent calculation of the change in the same
expectation 〈φ̂(x)φ̂(x′)〉, using a plane wave quantization scheme, one obtains the same results as in
the Unruh scheme with such regulator (see Appendix C). One can give an heuristic explanation to
the fact that this regulator is physically correct as follows. In principle, if one is precise, one would
like to describe the radiation due to a real physical particle, which should be described as a quantum
object itself. However, this description has a serious drawback regarding our wish to describe
the source as a uniformly accelerating particle: A quantum particle does not move in a definite
trajectory and thus assigning to it a particular acceleration is impossible. On the other hand, the
nature of the quantum field is distributional and therefore the correct quantum description of the
interacting source should be in terms of test functions of compact support (note that Eq. (IV.10)
lacks this property) and therefore, the source would correspond to an extended object. To such
object we can not naturally ascribe a uniform acceleration: if the object is to maintain “its shape”
along its trajectory then different parts should have different proper accelerations. However, we
know from [4] that a treatment using classical point-like sources (with definite proper acceleration)
together with a certain type of regulator produce physically correct results (in particular, results
that are fully consistent with the Equivalence Principle).

The regulator used in [4] consisted in the introduction of an artificial oscillation with frequency
θ in the strength of the source, to identify therefore expressions of the form 0×∞ occurring in the
calculation and to proceed to carry all calculations to the end before taking the limit θ → 0. We
are thus assuming that the introduction of such regulator, along with the prescription to take the
limit θ → 0 at the end of the calculations reflects in an effective way the description of a quantum
source in uniform acceleration interacting with the field. (Nevertheless, the robustness of the result
would be ensured if one confirms that the same physical behaviour is to be obtained for a wider
class of regularizing functions.) It is however worthy to emphasize that in the inertial calculation
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of Appendix C there was no need to introduce such a regulator.
From these considerations it follows that our calculations make sense only if the limit θ → 0

is taken at the end of the computation of the expectation values. Actually, one may be tempted
to take this limit directly into the density matrix ρ̂f of the state. Ignoring for a moment details
regarding the precise notion of limit of an operator, one can see that due to the overall factor Ψθ,
which goes to zero as θ → 0, every single term in the expansion of ρ̂f is also zero except for those
terms proportional to ρ̂vac. Thus, one would conclude that there has been no change in the state
of the field in R due to the presence of the source. As this was the only potential contribution to
the change in the expectation of T̂µν , we would be led to the erroneous conclusion that there is no
change in this quantity.

From the calculations in Sect. V we concluded that the information of the change in 〈T̂µν〉 is
encoded in δρ̂R. We now want to consider how is it encoded. The answer to this question relies
on a subtle interplay of the field operator φ̂(x) and the density matrix in the present formalism.
Let us focus on the details of our specific calculation: The overall factor Ψ2

θ in the second order
contribution to ρ̂R

f comes from the fact that the source is located in wedge R. In this wedge Unruh

modes Rθ(x) → 0 as θ → 0 (whenever x is not at the horizon). When computing Tr(φ̂Rφ̂
′
Rρ̂

R (2)
f )

the field operators are sensitive to the frequency θ. In fact, they only excite modes with ω = θ as
could be expected on Rindler energy conservation grounds. The particular form of ρ̂R

f determines
the structure of the contribution given by Eq. (V.22) which in turn, due to the different behaviors
of the Unruh modes in wedges R and F , is zero in the former and not zero in the latter.

We interpret these results by saying that the “0” Rindler energy modes, which were of such
concern in regard to the definition of the theory (see discussion at the end of Sec. IIA), are in
effect, essential in order to obtain in the accelerated frame description identical results as in the
inertial one. Physically we could think that these modes are excited by the slightest quantum
fluctuations of a realistic quantum particle and that their excitation would be directly felt in the
future wedge. These results seem to be in accordance with the spirit of those obtained in [16]
where it is argued that the zero energy modes seemed to be undetectable (with an appropriate
definition of detectability) when confining the detection to the right wedge. Finally, it is our belief
that this work has helped in clarifying the questions raised at the beginning. Furthermore, there
is a technically analogous situation which indicates that a stationary particle just outside of the
horizon of a stationary black hole could be “emitting” towards its interior. This work shows a clear
path to studying the changes in the energy momentum tensor in that situation.
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Appendix A: UNRUH MODES AND REPRESENTATIONS OF BOOST MODES

One can generalize Rindler coordinates to all Rindler wedges assigning always the respective
coordinate τ to the parameter associated to the generator of boosts about the origin in the z
direction:

bµ = a

[

z

(

∂

∂t

)µ

+ t

(

∂

∂z

)µ]

. (A.1)
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In wedge L one should do an exception in order to to guarantee that the future direction coincides
with that of inertial time, in this case, τµ is −bµ. In wedges F and P the coordinate τ is spacelike.
We have [17]:

z = − ζ cosh(aτ) t = ζ sinh(aτ) (t, z) ∈ L, (A.2a)

z = ζ sinh(aτ) t = ζ cosh(aτ) (t, z) ∈ F, (A.2b)

z = − ζ sinh(aτ) t = −ζ cosh(aτ) (t, z) ∈ P , (A.2c)

where ζ > 0 in each region.
Boost modes, Eq. (II.13), should be thought of as distributions and thus one cannot evaluate

them in one particular point. However, what we can do is to apply this distributions to test
functions which have support defined on a certain open region. The integral which defines the
boost modes can be expressed in terms of the accelerated coordinates (τ, ζ) given by Eqs. (II.1)
and (A.2). As Unruh modes are defined by boost modes, from this operation we can express Unruh
modes in accelerated coordinates too.

For example, let f be a test function in M with supp(f) ⊂ R, the evaluation of Bω at function
f is given by

Bω[f ] =
1

23/2π

∫ ∞

−∞

dθ e−iωθ

∫

R
d2x eim (z sinh(θ)−t cosh(θ))f(t, z) . (A.3)

Since the space-time integration is in wedge R we can express the d2x integral in terms of Rindler
coordinates (c.f. Eq.(II.1)):

Bω[f ] =
1

23/2π

∫ ∞

−∞

dθ e−iωθ

∫

R
d2x eimζ sinh(θ−τ) f(τ, ζ) . (A.4)

Changing the integration order and using the following relation for the Bessel functions [18]

Kν(x) =
1

2
e

i
2
νπ

∫ ∞

−∞

dα eναe−ix sinh(α), (A.5)

it can be seen that

Bω[f ] =
1

π
√

2
e

ωπ
2

∫

R
d 2x e−iωτKiω(mζ)f(τ, ζ) . (A.6)

By analogous arguments it can be seen that in other wedges boost modes take the following form
[13] (coordinates in the following eqs. are respective to each wedge defined by Eqs. (II.1) and
(A.2)).

Bω|R(τ, ζ) =
1

π
√

2
e

ωπ
2 e−iωτKiω(mζ), (A.7)

Bω|L(τ, ζ) =
1

π
√

2
e

−ωπ
2 eiωτKiω(mζ), (A.8)

Bω|F (τ, ζ) = − i

23/2
e

ωπ
2 e−iωτH

(2)
iω (mζ), (A.9)

Bω|P (τ, ζ) =
i

23/2
e

−ωπ
2 e−iωτH

(1)
iω (mζ), (A.10)

where H
(1),(2)
ν are Hankel functions. Note that in wedge L, Bω(τ, ζ) has negative frequency w.r.t. τ

because we have chosen the time translation generator in L to be τµ = −bµ, where bµ is the boost
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generator. Using Eqs. (A.7-A.10) in Eqs. (II.18) one obtais directly the representations of Unruh
modes in each wedge. Modes Rω are given by:

Rω|R(τ, ζ) =
1

π

√
sinhπωe−iωτKiω(mζ), (A.11)

Rω|F (τ, ζ) = − i

23/2

e−iωτ

√

2 sinh(πω)

[

eωπH
(2)
iω (mζ) + e−ωπH

(1)
iω (mζ)

]

, (A.12)

Rω|L(τ, ζ) = 0, (A.13)

Rω|P (τ, ζ) =
i

23/2

e−iωτ

√
2 sinhπω

[

H
(1)
iω (mζ) +H

(2)
iω (mζ)

]

. (A.14)

And Lω modes are

Lω|R(τ, ζ) = 0, (A.15)

Lω|F (τ, ζ) = − i

23/2

eiωτ

√

2 sinh(πω)

[

eωπH
(2)
iω (mζ) + e−ωπH

(1)
iω (mζ)

]

, (A.16)

Lω|L(τ, ζ) =
1

π

√
sinhπωe−iωτKiω(mζ), (A.17)

Lω|P (τ, ζ) =
i

23/2

eiωτ

√
2 sinhπω

[

H
(1)
iω (mζ) +H

(2)
iω (mζ)

]

. (A.18)

Here we put some useful relations for the Hankel functions [18] from which one can simplify the
expressions for Unruh modes

H(1)
ν (z) =

1

i sin(νπ)

[

J−ν(z) − e−iνπJν(z)
]

, (A.19)

H(2)
ν (z) =

1

i sin(νπ)

[

eiνπJν(z) − J−ν(z)
]

. (A.20)

These latter equations are used to obtain Eq. (V.28).

Appendix B: SECOND ORDER CALCULATIONS

Along this work we do several second order calculations of expectation values of φ̂(x)φ̂(x′). In
this Appendix we want to put the details of the calculus of Tr

(

ρ̂R
f φ̂R(x)φ̂R(x′)

)

which leads to
Eq. (V.18); all the other calculi are analogous to this one.

The state |f〉 takes the form of Eq. (II.26) in the Unruh quantization, in effect, from Eq. (IV.6)
one can express |f〉 as (from now on we will omit the ⊗ in the Unruh states)

|f〉 =
∑

J,K

F (J,K) |J〉L |K〉R, F (J,K) = F0(J,K) + F1(J,K) + F2(J,K) + O(q3), (B.1)

where the first term is F0(J,K) = QFvac(J,K) (Q is defined above Eq. (IV.7)), and Fvac(J,K) is
the left-right superposition function defining the inertial vacuum state |0M 〉 (cf. Eq. (II.28)):

Fvac(J,K) = Z1/2e−πE(K)δ(J,K), (B.2)

where Z is the normalization factor defined in Eq. (III.11). In order to express the other terms in
Eq. (B.1), it is useful to define the normalization factor Nα

θ (K) by

Nα
θ (K) =

{ √
Kθ + 1 α = +√
Kθ α = − , (B.3)
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where Kθ is the particle component of state |K〉L,R in the mode with frequency centered on ω = θ.
Using Eq. (IV.13) in Eq. (IV.6) we find

F0(J,K) = QZ1/2e−πE(K)δ(J,K), (B.4)

F1(J,K) = −iZ1/2Ψθ e
−πE(J)

(

N+
θ (J)δ(K,J + 1θ) +N−

θ (J)δ(K,J − 1θ)
)

, (B.5)

F2(J,K) = −1

2
Z1/2Ψ2

θ e
−πE(J)

(

N−
θ (J)N−

θ (J − 1θ) δ(K,J − 2θ)

+2N−
θ (J)N+

θ (J − 1θ) δ(K,J) +N+
θ (J)N+

θ (J + 1θ) δ(K,J + 2θ)
)

. (B.6)

Eq. (B.4) is actually Eq. (II.28) with the extra Q factor; E(J) is defined by Eq. (II.24). The δ
functions are defined by Eq. (II.25). The J − 1θ which appears in the last term in the r.h.s. of
Eq. (B.5) corresponds to a normalized state |J − 1θ〉R defined by

r̂θ |J〉R = N−
θ (J) |J − 1θ〉R (B.7)

with particle content J − 1θ = {Jω0
, . . . , Jθ − 1, . . . }. The other terms are defined analogously.

The density matrix of state |f〉 reads

ρ̂f = |f〉 〈f | =
∑

J,K,J ′,K ′

F (J,K)F (J ′,K ′)∗ |J〉L |K〉R L

〈

J ′
∣

∣

R

〈

K ′
∣

∣ . (B.8)

Let’s write it in the following manner

ρ̂f = ρ̂
(0)
f + ρ̂

(1)
f + ρ̂

(2)
f + O(q3) . (B.9)

Taking the trace over the left degrees of freedom to this expression we obtain that

ρ̂
R(2)
f = ZΨ2

θ

[

− 1

2
(e−2πθ − 1)2ρ̂a −

1

2
(e2πθ − 1)2ρ̂b + ρ̂c

]

, (B.10)

where

ρ̂a =
∑

K

e−2πE(K)
√

Kθ + 2
√

Kθ + 1 |K〉RR〈K + 2θ| , (B.11)

ρ̂b =
∑

K

e−2πE(K)
√

Kθ

√

Kθ − 1 |K〉RR〈K − 2θ| , (B.12)

ρ̂c =
∑

K

e−2πE(K)
(

−2Kθ + e2πθKθ + e−2πθ(Kθ + 1)
)

|K〉RR〈K| . (B.13)

Writing the field operator as

φ̂R(x) =
∑

α=+,−

∞
∑

m=0

Rα
ωm

(x)r̂α
ωm

(B.14)

where

R+
ωm

(x) = R∗
ωm

(x), R−
ωm

(x) = Rωm(x), r̂+ωm
= r̂†ωm

, r̂−ωm
= r̂ωm, (B.15)

we have

Tr
(

ρ̂aφ̂R(x)φ̂R(x′)
)

=
∑

K

∑

α,α′

∞
∑

m,n=0

e−2πE(K)
√

Kθ + 2
√

Kθ + 1Nα′

ωn
(K)Nα

ωm
(K + 1α′

ωn
)×

×Rα
ωm

(x)Rα′

ωn
(x′)R

〈

K + 2θ|K + 1α
ωm

+ 1α′

ωn

〉

R
, (B.16)
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where
∣

∣K + 1±ωm

〉

R ≡ |K ± 1ωm〉R. The expectation value appearing in the r.h.s. of Eq. (B.16) gives

R

〈

K + 2θ|K + 1α
ωm

+ 1α′

ωn

〉

R
= δα,+ δα′,+ δωm,θ δωn,θ . (B.17)

From this one can read that there is only a contribution to Eq. (B.16) when the operator
φ̂R(x)φ̂R(x′) creates two particles in the mode ω = θ in the state defined by ρ̂a. Using Eq. (B.17)
in Eq. (B.16) we have that

Tr
(

ρ̂aφ̂R(x)φ̂R(x′)
)

= R∗
θ(x)R

∗
θ(x

′)
∑

K

e−2πE(K)(Kθ + 2)(Kθ + 1) . (B.18)

To evaluate the sum in the r.h.s. of Eq. (B.18) note that from Eq. (II.27) we have that

∑

K

e−2πE(K)f(Kθ) =

∞
∑

Kθ=0

e−2πθKθf(Kθ) ×
∞
∏

m=0
ωm 6=θ

∞
∑

Kωm=0

e−2πωmKωm

= 〈0M |0M 〉 (1 − e−2πθ)

∞
∑

Kθ=0

e−2πθKθf(Kθ),

(B.19)

where f(Kθ) is any function of Kθ and 〈0M |0M 〉 is given by Eq. (II.29). For latter use it is
convenient to define

Gθ[f(Kθ)] ≡
∞
∑

Kθ=0

e−2πθKθf(Kθ) . (B.20)

Using Eq. (B.19) then Eq. (B.18) becomes

Tr
(

ρ̂aφ̂R(x)φ̂R(x′)
)

= 〈0M |0M 〉 2

(1 − e−2πθ)2
R∗

θ(x)R
∗
θ(x

′), (B.21)

where we have used that

Gθ[(Kθ + 2)(Kθ + 1)] =
2

(1 − e−2πθ)3
. (B.22)

Analogously we have

Tr
(

ρ̂bφ̂R(x)φ̂R(x′)
)

= 〈0M |0M 〉 2

(e2πθ − 1)2
Rθ(x)Rθ(x

′) . (B.23)

Before computing Tr
(

ρ̂cφ̂(x)φ̂(x′)
)

let’s define

Hωm [K](x, x′) ≡ KωmR
∗
ωm

(x)Rωm(x′) + (Kωm + 1)Rωm(x)R∗
ωm

(x′) . (B.24)

It can be verified that

Tr
(

ρ̂R
vacφ̂R(x)φ̂R(x′)

)

=
∑

K

e−2πE(K)
∞
∑

m=0

Hωm[K](x, x′) . (B.25)
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Now we compute

Tr
(

∑

K

e−2πE(K)
[

e2πθKθ + e−2πθ(Kθ + 1)
]

|K〉RR〈K| φ̂R(x)φ̂R(x′)
)

=

=
∑

K

e−2πE(K)
[

(

e2πθK2
θ + e−2πθKθ(Kθ + 1)

)

R∗
θ(x)Rθ(x

′)

+
(

e2πθKθ(Kθ + 1) + e−2πθ(Kθ + 1)2
)

Rθ(x)R
∗
θ(x

′)
]

+
∑

K

e−2πE(K)
(

e2πθKθ + e−2πθ(Kθ + 1)
)

∞
∑

m=0
ωm 6=θ

Hωm[K](x, x′) .

(B.26)

From the definition of Gθ[f(Kθ)], Eq. (B.20), it can be shown that

e2πθGθ[K
2
θ ] + e−2πθGθ[Kθ(Kθ + 1)] = Gθ[Kθ(2Kθ + 1)] +Gθ[1], (B.27)

e2πθGθ[Kθ(Kθ + 1)] + e−2πθGθ[(Kθ + 1)2] = Gθ[(2Kθ + 1)(Kθ + 1)] +Gθ[1], (B.28)

e2πθGθ[Kθ] + e−2πθGθ[(Kθ + 1)] = Gθ[(2Kθ + 1)] . (B.29)

Now we use Eq. (B.19) to simplify the r.h.s. of Eq. (B.26). From Eqs.(B.27)-(B.29) we have that

Tr
(

∑

K

e−2πE(K)
[

e2πθKθ + e−2πθ(Kθ + 1)
]

|K〉RR〈K| φ̂R(x)φ̂R(x′)
)

=

= 〈0M |0M 〉
(

R∗
θ(x)Rθ(x

′) +Rθ(x)R
∗
θ(x

′)
)

+
∑

K

e−2πE(K)
(

2Kθ + 1)
)

∞
∑

m=0

Hωm[K](x, x′) . (B.30)

Then, from Eq. (B.30) we have at once that (see Eq. (B.13))

Tr
(

ρ̂cφ̂R(x)φ̂R(x′)
)

= 〈0M |0M 〉
(

R∗
θ(x)Rθ(x

′) +Rθ(x)R
∗
θ(x

′)
)

+ Tr
(

ρ̂R
vacφ̂R(x)φ̂R(x′)

)

, (B.31)

where we have used Eq. (B.25). Finally, from Eqs. (B.21), (B.23), (B.31) and (B.10) we have

Tr
(

ρ̂
R(2)
f φ̂R(x)φ̂R(x′)

)

=Ψ2
θ

(

−Rθ(x)Rθ(x
′) −R∗

θ(x)R
∗
θ(x

′) +R∗
θ(x)Rθ(x

′) +Rθ(x)R
∗
θ(x

′)
)

+ ZΨ2
θTr

(

ρ̂R
vacφ̂R(x)φ̂R(x′)

)

.
(B.32)

and Eq. (V.18) follows directly.

Appendix C: INERTIAL CALCULATION

In this Appendix we want to show that one obtains exactly Eq. (V.29) when computing the
change in 〈φ̂(x)φ̂(x′)〉 in the inertial scheme. For this case we are going to use the scalar source
given by Eq. (IV.9) written in the form

j(x) = qζ0
δ(z −

√

t2 + ζ2
0 )

√

t2 + ζ2
0

, (C.1)

where ζ0 = 1/a and a is the acceleration of the source. Using the inertial field operator

φ̂(x) =

∫ ∞

−∞

dp
(

ψp(x)âp + ψ∗
p(x)â

†
p

)

, (C.2)
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where ψp(x) represents a plane wave with frequency ωp = +
√

p2 +m2,

ψp(x) =
1√

2π
√

2ωp

e−iωpt+ipz, (C.3)

in Eqs. (IV.1) and (IV.2), it can be seen that the second order renormalized change in 〈φ̂(x)φ̂(x′)〉
between states |f〉 and |0M 〉 is given by

C
(2)
in (x, x′) = 4Im[Q(x)]Im[Q(x′)], (C.4)

where

Q(x) =

∫

M
d2x′

∫ ∞

−∞

dp j(x)ψ∗
p(x′)ψp(x) . (C.5)

Recall that for the quantized scalar field we are considering the positive frequency function is given
by

i∆(+)(x, x′) ≡ 〈0M | φ̂(x)φ̂(x′) |0M 〉 =

∫ ∞

−∞

dpψ∗
p(x

′)ψp(x) (C.6)

and from [6] we have the following result

∆(+)(x, 0) =
1

4
×











H
(2)
0 (m

√
t2 − z2) t > |z|

2i
π K0(m

√
z2 − t2) |t| < |z|

−H(1)
0 (m

√
t2 − z2) t < − |z|

. (C.7)

From now on we shall suppose that x ∈ F . Using the fact that ∆(+)(x, x′) = ∆(+)(x − x′, 0) and
Eq. (C.7) it can be seen that

Im[Q(x)] =
qζ0
4

∫ t−

−∞

dt′
√

t′ 2 + ζ2
0

J0(m
√

−2σ(t′)), (C.8)

where

σ(t′) =
1

2

(

−(t− t′)2 +
(

z −
√

t′ 2 + ζ2
0

)2
)

(C.9)

and σ(t−) = 0. To get Eq. (C.8) we have used that H
(2)
ν (y) = Jν(y)−iYν(y) and the fact that J0(y),

Y0(y) are real for y ≥ 0. Making the changes of variables t′ = ζ0 sinh(τ/ζ0) and u =
√

−2σ(τ) we
obtain

Im[Q(x)] =
qζ0
2

∫ ∞

0

uJ0(mu)
√

4ζ2
0ζ

2 + (u2 + ζ2
0 − ζ2)2

du =
qζ0
2
K0(mζ0)J0(mζ), (C.10)

were we have used x = (t, z) and t = ζ cosh(τp/ζ0), z = ζ sinh(τp/ζ0) (see Eq. (A.2b)). The
derivation that leads to the second equality in Eq. (C.10) is analogous to that which leads to Eq.
§13.54(1) of [11]. Thus we have proved that

C
(2)
in (x, x′) = q2ζ2

0K0(mζ0)
2J0(mζ)J0(mζ

′), (C.11)

which coincides functionally with Eq. (V.29). In this computation one has to apply Wick theorem
with the notion of time and normal ordering associated to the inertial time parameter t. However,
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the effect of this choice of time does not show up in the physical change of the two point function
but only in renormalization terms. Note that, in contrast to the accelerated frame calculation, we
did not need to introduce any regulator into the current (neither any cutoff as in the inertial frame
calculation in [16]).
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