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Epistemic models of nature prove to be prob-
lematic in many relativistic settings as well as in
settings in which measurement procedures are
ill-defined. By contrast, in ontological models of
nature, measurement results are independent of
the procedure used to obtain them. If we assume
that all measurement results can be expressed
in terms of pointer readings, then any useful
ontology would need to unambiguously specify
the positions of things. Proposals for such on-
tologies have included the lattice fermion num-
ber density as proposed by Bell, and a relational
specification of position as proposed by Smolin.
In this article we first show that Bell’s choice of
ontology is unsuitable due to the ambiguity of
particle number as a result of the Unruh effect,
and due to the fact that lattice fermions suffer
from the problem of fermion doubling. We then
show that Smolin’s alternative does not unam-
biguously specify position. This motivates us to
develop an alternative set of ontologies based on
the Wheeler-DeWitt equation that does not suf-
fer from these problems and we provide a set of
constraints for the geometry, matter field, and
action for such a model to be deterministic.

1 Background
Quantum mechanics is ostensibly a theory about the
results of measurements that are performed ‘on’ sys-
tems (objects). This act of measurement appears to
presuppose that something or someone (subject) must
be doing the measuring. That is, quantum mechan-
ics inherently includes epistemic elements. But, as Bell
pointed out, precisely where or when to draw a distinc-
tion between subject and object is not manifest in the
theory itself rendering the theory’s epistemic elements
ambiguous [3]. Bell suggests that good physical theories
should be able to say something concrete about reality
itself rather than about measurement procedures. This
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is particularly true in situations in which the very con-
cept of measurement can be ill-defined. Thus epistemic
models of nature can be problematic in some situations.

By contrast, in ontological models of nature, mea-
surement results are independent of the procedure used
to obtain them. Bell refers to these concrete, objec-
tive elements of reality as ‘beables’ in contrast to the
more ambiguous term ‘observables’ since they are inde-
pendent of observation [4, 5]. Bell’s aim was to unam-
biguously represent the ‘positions of things’ which he
takes as referring to the positions of instrument point-
ers and argues that any ontology must adequately be
distillable to these positions [5]. In other words, Bell
assumes that the positions of instrument pointers have
a direct, one-to-one correspondence with some element
of physical reality. If an instrument pointer that mea-
sures some physical quantity A gives a value of exactly
a then the value a is an objective fact about the sys-
tem under consideration. Thus knowledge of the exact
position of an instrument pointer gives objectively true
information about the universe. So, for example, if the
instrument pointer corresponds to a voltage or current
reading, the assumption is that this tells us something
objectively true about an electric field. In order to ad-
equately capture this, Bell proposes the lattice fermion
number density as a viable beable for position. As we
show in Section 2, however, this choice suffers from two
problems. First, the Unruh effect renders any particle
density ambiguous. In addition, lattice fermions suffer
from the problem of fermion doubling. Smolin recently
proposed an alternative ontology for position that is
expressly non-local (though more abstract). Smolin’s
model, like Bell’s, maintains the usual quantum dynam-
ics, but, as we show in Section 3, it does not unambigu-
ously specify position.

We thus propose an alternative theory of global be-
ables in Section 4 that is based on solutions to the
Wheeler-DeWitt equation. We begin by first review-
ing the Wheeler-DeWitt formalism before describing
our model. We then develop a set of constraints for
the geometry, matter field, and action that would need
to be satisfied in order for the model to be considered
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Figure 1: Beables associated with the bounded region of space-
time Q are determined by those associated with any temporal
cross-section (i.e. spacelike slice) X of region R that fully
encloses the past light-cone of Q.

fully deterministic. Throughout this article, we take the
word ‘beable’ to be synonymous with the word ‘ontol-
ogy.’

2 Local beables
Local beables are specifically those beables that are con-
fined to some specific bounded region of spacetime [4, 6].
Specifically such beables must be associated with some
bounded set Q = {x, t} of spacetime coordinates where
Q is the subset of some metric space (M, g) where g
is a metric on M . Specifically beables defined for Q
are assumed to be determined by those corresponding
to any temporal cross section (i.e. spacelike slice) X
of the spacetime region R that fully encloses the past
light-cone of Q where X is a subset of R corresponding
to all possible values of x associated with the value tX .
This is shown for a single spatial dimension, x, in Fig. 1.
Bell refers to this condition as ‘local determinism’ and
it serves as the foundation for his development of a local
causal theory [4].

2.1 Lattice fermion number
Fields, of course, are not strictly local since they exist
in a region of spacetime rather than at a single event.
In other words, the spacetime region defined by Q for a
field consists of a range of spacetime coordinate values,
∆x and ∆t as depicted in Fig. 1. Unambiguously deter-
mining the position of something (e.g. a pointer) how-
ever, requires specifying its exact coordinates. Bell’s
solution was to consider fields in terms of a lattice par-
ticle density. That is, the continuum is replaced by a

dense lattice of particles. Since ordinary matter is com-
posed of fermions and their locations are crucial for de-
termining various macroscopic properties including the
positions of instrument pointers, Bell specifically be-
gins with the lattice fermion number density [5]. While
he does acknowledge that this is not the only possible
choice, he does not elaborate on any of the other possi-
bilities.

For simplicity, we begin by replacing the three-space
continuum with a dense lattice (which, in essence, quan-
tizes space a priori) while time remains continuous.
The lattice points are given by l = 1, 2, . . . , L where L
is assumed to be very large. The lattice point fermion
number operators can be defined as

F̂ (l) ≡ ψ̂†(l)ψ̂(l) (1)

where we are assuming a summation over Dirac indices
and all Dirac fields. Strictly speaking, this is a number
density and thus measures the number of fermions at a
given lattice point [8]. The corresponding eigenvalues
are integers

F (l) = 1, 2, . . . , 4N (2)
where N is the number of Dirac fields. That is, F (l)
labels a particular configuration of the Dirac fields at
a given lattice point l. For example, for a single Dirac
field, N = 1 and thus F (l) = 1, 2, 3, 4 corresponding to
the four possible solutions to the Dirac equation. The
fermion number operator for the entire lattice is simply
the sum of the lattice point operators,

F̂ =
∑
l

F̂ (l). (3)

The fermion number configuration of the world, i.e.
precisely how the fermions in the universe are arranged
at any given instant of time t, is a list of such integers
(one for each lattice point),

n(t) = [F (1), F (2), . . . , F (L)]t (4)

where the subscript t labels the set for a given time t.
This is the lattice fermion number configuration and it
serves as the local beable for a theory since it is as-
sociated with definite positions in space i.e. a definite
configuration of all fermions in the universe at a time
t [5]. To this Bell also adds the state vector |t〉 as a non-
local beable. The complete specification of the universe
at a time t is then given by the set T = {n(t), |t〉} where,
in accordance with the theory of local beables, n(t) is
associated with some bounded set of spacetime coordi-
nates Q. Since the configuration n(t) is exact, there
is no spread in the spacetime coordinates of any given
fermion at time t, i.e. the position of each fermion is
assumed to be known exactly. Thus Q is local in its
elements, i.e. each element is perfectly localized.
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2.2 The Unruh effect
In order to construct a fermion number operator we
first briefly review the algebra of fermionic operators
on an antisymmetric Fock space [13, 15]. We define
the fermion creation and annihilation operators by the
following relations,

f̂†k |1〉 = 0, f̂†k |0〉 = |1〉 , (5)
f̂k |1〉 = |0〉 , f̂k |0〉 = 0, (6)

where we note that (5) follows from the fact that
fermionic Fock states can contain a maximum of a sin-
gle particle. In other words, the only two possible Fock
states for fermions are |0〉 and |1〉. Unlike the bosonic
operators, the fermionic operator algebra is defined by
the anti -commutators due to the antisymmetry of the
space, i.e.

{f̂j, f̂
†
k} = δjk,

{f̂j), f̂k} = {f̂†j , f̂
†
k} = 0. (7)

Multi-particle fermionic number states can then be con-
structed from the vacuum state as

|n0, n1, . . .〉 = (f†1 )n1(f†0 )n0 |0〉 . (8)

We therefore define the fermion number operator as

F̂ ≡
∫

d3kf̂†kf̂k (9)

which, in the lattice approximation, is equivalent to the
discrete fermion number operator of (3), i.e.

F̂ → F̂ (lattice approximation). (10)

For simplicity, let us consider only the lowest eigen-
mode in the Minkowski vacuum |0M〉. The expectation
value of the fermion number operator gives the number
of fermions that we would expect to see in the vacuum.
For the lowest eigenmode this is

〈0M| F̂ |0M〉 = 〈0M| f̂†0 f̂0 |0M〉 = 0 (11)

which follows from (6). In other words any inertial ob-
server in the Minkowski vacuum would not expect to
detect any fermions in the lowest eigenmode.

Now consider an accelerated observer in this same
Minkowski vacuum. We define coordinate transforma-
tions as

t = ±e
aξ

a
sinh(aτ)

x = ±e
aξ

a
cosh(aτ) (12)

where τ and ξ are the Rindler time and space respec-
tively and a is a parameter corresponding to the proper
acceleration of an arbitrarily chosen reference trajec-
tory. The signs require that we define two coordinate
patches that we will denote I (x > 0) and II (x < 0).
Within each coordinate patch we define creation and
annihilation operators such that, for example, in region
I we have f̂†k,I |0I〉 = |1I〉 and f̂k,I |0I〉 = 0 where |0I〉 is
the vacuum state in that region (patch). The restric-
tion of |0M〉 to region I, however, is equivalent to a ther-
mal state with temperature T = a/2π [10, 16, 27, 29].
Specifically, it can be shown that [9]

〈0M| F̂I |0M〉 = 〈0M| f̂†k,If̂k,I |0M〉

∝ 1
e2π|k|/a − 1

. (13)

This is known as the Unruh effect and it is clear that
a non-inertial observer will see fermions in the lowest
eigenmode when an inertial observer will not. This is
clearly problematic for any theory of beables that seeks
to unambiguously specify the position of something pre-
sumably composed of fermionic matter. On the other
hand, it has also recently been shown that massive Un-
ruh particles cannot be directly observed [18]. This
might suggest that the fermion lattice number could
at least approximate the position of objects composed
of fermionic matter to a high enough degree of precision
that it could serve as a beable for all practical purposes.
Unfortunately, the fermion lattice number also suffers
from the problem of fermion doubling.

2.3 Fermion doubling
As it turns out, näıvely assigning fermionic fields to
a lattice results in the appearance of spurious fermion
states. Specifically, the theory produces 2d fermions
for each original fermion where d is the number of dis-
cretized dimensions. This phenomenon is known as
fermion doubling [7, 22, 23]. To see this, consider the
continuous action of a free Dirac fermion of mass m in
d dimensions,

S =
∫
ddx ψ̄(γµ∂µ +m)ψ (14)

where γµ are the usual gamma matrices. We can dis-
cretize this action on a cubic lattice by replacing the
fermion field ψ(x) with a discretized version ψx where
x denotes the lattice site and the derivative is replaced
by a finite difference. The action becomes

S = ld
∑
x,µ

1
2l (ψ̄xγµψx+µ̂ − ¯ψx+ µ̂γµψx)

+ ld
∑
x

mψ̄xψx (15)
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where l is the lattice spacing and µ̂ is a vector of length
l in the µ direction. The inverse fermion propagator in
momentum space is then

S−1(p) = m+ i

l

∑
µ

γµ sin(pµ, l). (16)

Since the lattice spacing is finite the momenta pµ must
be inside the first Brillouin zone. This is usually taken
to be the interval [−π/l,+π/l]. No problem arises if
we näıvely take l → 0 in (16). However, if we expand
around a specific value for pµ where one or more of the
components is at the corners of the zone, i.e. at ±π/l,
then the continuum form appears again even though
the sign of the gamma matrix can change. In other
words, when one of the components of pµ is near ±π/l,
we recover (14). Since this can happen for any of the d
components, one ends up with 2d fermion fields [7]. This
clearly poses a problem for n(t) as a beable. One solu-
tion would be to abandon the requirement that beables
themselves be local which is something that Bell himself
considered even in concert with the lattice fermion num-
ber density (configuration) since he included the state
vector |t〉 as a non-local beable [5]. As he notes, in the-
ories in which spacetime is quantized or emergent, local
beables would be ill-defined since locality itself would
be an obscure concept [6].

3 Non-local beables
Smolin’s recognition of the need for a theory of non-
local beables was motivated by three observations [25].
First he notes that if the metric of spacetime is a quan-
tum operator and thus subject to the usual quantum
fluctuations, then locality is merely a classical approx-
imation. Non-locality must arise from quantum fluc-
tuations of the metric and there are some arguments
that non-locality must be present in quantum gravity at
large scales [21]. Second, he notes that, if space itself is
not fundamental, i.e. is emergent—something most the-
ories of quantum gravity agree on—then locality must
also be emergent. As such, space and the quantum state
emerge simultaneously, each carrying some information
about the non-local ontology.

3.1 Theory of a-local beables
Smolin notes that the only meaningful beables are those
that describe relationships between elementary events
or particles which is reconcilable with the primacy of
pointer readings. So the hidden variables do not give
a detailed description of the inner workings of, say, an
electron, for example. Rather they describe the details
of the relations between electrons and each other or be-
tween electrons and other fundamental entities in the

universe that are ignored or not obvious when coarse-
graining is applied. Since these beables are more funda-
mental than space itself, Smolin prefers the term a-local
to non-local. This leads him to propose that the funda-
mental beables are relational and ‘a-local’ and that their
fundamental description must necessarily be in a phase
from which space (and quantum theory, for that matter)
has yet to emerge. In fact space and quantum theory
are assumed to emerge at the same time. Smolin argues
that the stochasticity of quantum theory arises from our
lacking control over beables that describe relationships
between a system and other, distant systems in the uni-
verse [25]. Smolin’s hypothesis has been expressed in a
detailed dynamical theory of relational hidden variables
in several different ways [1, 20, 25, 26]. Of interest to
us here is Smolin’s description elaborated in [24]. While
Smolin originally presented it as a specifically bosonic
model in [24], he expresses it in more general terms
in [25].

The beables of the theory are d, N ×N real symmet-
ric matrices Xj

ai with a = 1, . . . , d and i, j = 1, . . . , N .
The classical, local observables corresponding to such
things as pointer readings on measurement devices, are
taken to be the eigenvalues λai of these matrices. In di-
rect analogy to Bell’s use of the lattice fermion number,
these eigenvalues are taken as corresponding to the po-
sitions of N particles in d space. The dynamics of these
matrices is given by the action

S = µ

∫
dt Tr

[
Ẋ2
a − ω2 [Xa, Xb]

[
Xa, Xb

]]
. (17)

The matrices Xa are assumed to be dimensionless, ω
is a frequency, and µ has units of mass·length2. As
such the parameters of the theory define an energy, ε =
µω2. In this case, the N particles are free. But classical
interactions can be modeled by including a potential
V (λ) that is a function of the eigenvalues in the trace.

The theory is invariant under SO(N) transformations

Xa → UXaUT (18)

where U ∈ SO(N), and thus they constitute the gauge
transformations of the theory. As such the physical ob-
servables, corresponding to the λai , are invariant under
SO(N) transformations. The off-diagonal elements of
Xa are the non-local hidden variables of the system.
The model includes a translation symmetry that en-
sures that the center of mass momentum of the sys-
tem is conserved and defines the potential energy in a
manner such that it has its minima whenever the Xa

commute with one another in which case they can be si-
multaneously diagonalized. This is precisely what gives
the classical approximation and leads to the interpre-
tation of the eigenvalues as labeling the positions of N
identical particles in Rd.
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3.2 Noncommutativity

There is a problem with using Xa to define the beables
for the theory, however. The eigenvalues of the Xa cor-
respond to the positions of N objects in d space. So
each individual Xa can be thought of as a single con-
figuration of these particles in that space akin to Bell’s
lattice fermion number density (configuration). Smolin
notes that these eigenvalues are specifically the classical,
local observables [25] and should, thus, be distillable to
pointer readings.

But, as Bell clearly notes, observables that do not all
have simultaneous eigenvalues, i.e. that do not all com-
mute, cannot be promoted to the status of beables [5].
For example, in [5] he expressly rejects energy density
T00(x) as a choice of beable precisely for this reason.
As he notes, the lack of simultaneous eigenvalues for
all positions means we would need to devise some new
manner of specifying a joint probability distribution for
any pair of such observables. Thus if the eigenvalues of
the Xa correspond to observables, which they should if
their eigenvalues correspond to positions, then the Xa

must be operators, in which case there is a limit to the
precision by which we can simultaneously specify their
values, i.e. any pair of non-commuting Xa must satisfy
an indeterminacy relation and would not have simulta-
neous eigenvalues.

Recall that the purpose of a beable is to be able to
say what is rather than what is merely observed. The
idea is to be able to ‘uncover’ the hidden variables, ul-
timately allowing us to say something for certain about
the actual state of a system or of the universe as a whole
at a given time. But the potential presence of an in-
determinacy relation precludes us from doing this. In
effect, since the eigenvalues of Xa are associated with
such things as pointer positions, anytime a pair ofXa do
not commute, there must exist two such things (e.g. two
pointer positions) that cannot be simultaneously known
to perfect precision which violates the very essence of a
beable as set forth by Bell. Another solution is needed.

4 Theory of global beables

We now describe a theory of global beables based on so-
lutions to the Wheeler-DeWitt equation that does not
suffer from the same problems as the theories discussed
in the previous sections. We choose the word ‘global’
since possible solutions to the Wheeler-DeWitt equa-
tion include wave functions (or, more properly, func-
tionals) of the universe. We begin by briefly reviewing
the Wheeler-DeWitt formalism before introducing the
theory.

4.1 Wheeler-DeWitt formalism
If we take spacetime as being foliated into spacelike sub-
manifolds, we can decompose the metric tensor as

gµνdx
µdxν =

(
−α2 + βkβ

k
)
dt2

+ 2βkdxkdt+ γijdx
idxj (19)

where α is the lapse function 1, the βk are the shift
functions, and γij is the spatial three-metric. The usual
summation convention is assumed such that Greek in-
dices range from 0 → 3 while Latin indices range from

1 → 3. The lapse function is given as α =
(
−g00)−1/2

where the g00 is the usual four-dimensional value. The
shift functions are thus given as βk = g0i where, again,
these are elements of the usual four-dimensional met-
ric. The spatial three-metric is therefore γij = gij . In
the Hamiltonian formulation that follows, the spatial
three-metric serves as the set of generalized coordinates
to which we can associate conjugate momenta πij . We
define R = (3)R where (3)R is the three-dimensional
Ricci scalar. The Hamiltonian is then a constraint given
by

H = 1
2√γGijklπ

ijπkl −√γR = 0 (20)

where γ = det (γij) and Gijkl = (γikγjl+γilγjk−γijγkl)
is the Wheeler-DeWitt metric on superspace which is
the space of all three-geometries. We can quantize this
by employing the ADM formalism [2] which allows us
to turn the momenta and field variables into operators
such that the Hamiltonian operator becomes

Ĥ = 1
2√γ Ĝijklπ̂

ij π̂kl −√γR̂ (21)

where, in position space, the generalized coordinates
and their conjugate momenta are

γ̂ij(t, xk)→ γij(t, xk); and

π̂ij(t, xk)→ −i δ

δγij(t, xk) (22)

respectively. The Hamiltonian is not, however, applied
to the usual wave function. Instead it is applied to a
wave functional Ψ(γ) of field configurations defined on
the full metric, i.e. all of space-time. The Hamiltonian
constraint (20) necessarily implies, then, that

ĤΨ(γ) = 0 (23)

or, more familiarly

Ĥ(x) |ψ〉 = 0 (24)

1We use α for the lapse function and β for the shift functions
instead of the usual N in order to distinguish these from the N
labeling the matrices in Smolin’s theory.
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which is known as the Wheeler-DeWitt equation [11,
12]. Here Ĥ(x) is a Hamiltonian constraint, of which
there are technically an infinite number, and |ψ〉 is
referred to as the wave function of the universe even
though it is more properly a state vector. Since Ψ(γ)
is a functional of the field configurations defined on the
full metric, i.e. all of spacetime, the Hamiltonian no
longer determines time evolution and thus the usual
Schrödinger equation does not apply because all of space
and time are subsumed within the functional. Specif-
ically Ψ(γ) contains all of the information about the
matter and geometry content of the universe [17].

The Hamiltonian in the Wheeler-DeWitt equation,
unlike the case in typical quantum field theory or quan-
tum mechanics, is a first class constraint on physical
states which is a dynamical quantity in a constrained
Hamiltonian system whose Poisson bracket with all
other constraints must vanish on the constraint surface
in phase space [14]. For example, due to the invari-
ance of the wave functional under spatial diffeomor-
phism, the Wheeler-DeWitt equation is typically ac-
companied by a momentum constraint, P̂ (x) |ψ〉 = 0.
Thus, because the Hamiltonian is a first class constraint,
{P̂ (x), Ĥ(x)} = 0.

4.2 Global beables
We wish to construct a theory of global beables guided
by the Wheeler-DeWitt equation that does not suffer
the same fate as Bell’s and Smolin’s theories but that
still endeavors to make the concept ‘positions of things’
more precise. Since we technically have an infinite num-
ber of Hamiltonian constraints due to the infinite de-
grees of freedom of the phase space, we do not appear to
be much closer to a useful and unambiguous definition
of the ‘positions of things’ in real, physical space. But,
as it turns out, we can reduce the number of Hamilto-
nian constraints to just one by making a minisuperspace
approximation [12, 17, 28].

In any dynamical model, positions change over time.
But in the model we will consider here, time is simply a
manner by which we can order the spacelike submani-
folds. In other words, four-dimensional spacetime is fo-
liated into three-dimensional spacelike surfaces ordered
over the fourth dimension (time). For our model, we
assume that each spacelike surface is a specific closed
three-sphere on which the matter field is fixed. Tran-
sitions from one three-sphere to another take the place
of time evolution in this model. For example, suppose
that the total classical action for some particular metric
g coupled to a scalar field φ is S[g, φ]. The quantum-
mechanical amplitude for the occurrence of a particu-
lar spacetime and thus field history is exp(iS[g, φ]). In
analogy to the usual propagator 〈x′′, t′′|x′, t′〉 and re-

calling that the spatial three-metric is γij = gij , the
transition amplitude between any pair of three-spheres
is [17]

〈γ′′ij , φ′′|γ′ij , φ′〉 =
∫
δgδφ eiS[g,φ] (25)

where the integral is over all four-geometries and field
configurations that match the given values on the two
three-spheres. In Smolin’s model, evolution occurs ex-
plicitly according to the Schrödinger equation. But
in this model, there is no evolution, strictly speaking.
Rather (25) more correctly describes the amplitude for
a certain three-geometry and an associated field to be
fixed on any pair of three-spheres. The wave functionals
are then defined as

Ψ[γij , φ] =
∫
C

δgδφ eiS[g,φ] (26)

where the integral is over a class C of spacetimes with
a compact boundary on which γij is the induced metric
and φ is the field configuration on that boundary. One
can also show that because we expect in gravity to find
the field equations satisfied as identities, then∫

δgδφ Ĥ(x) eiS[g,φ] = 0 (27)

for any class of geometries summed over and for any in-
termediate three-sphere on which Ĥ(x) is evaluated. In
order to specify a particular state of the universe, the
details of the class C must be specified. Therefore, if
the universe is in a quantum state specified by a par-
ticular state vector and corresponding wave function,
then that wave function describes the correlations be-
tween observables to be expected in that state. As such,
like Hartle and Hawking, we restrict the geometrical
degrees of freedom to spatially homogenous, isotropic,
closed universes with S3 topology (i.e. closed three-
spheres) and the matter degrees of freedom to a single,
homogenous, conformally invariant scalar field with the
cosmological constant assumed to be positive. Our aim
is to consider what it means to specify the ‘positions of
things’ in such a model and we refer the reader to [17]
for the full mathematical formalism of the minisuper-
space model.

In order to specify the ‘positions of things’ we first
must specify both what we mean by ‘position’ and what
we mean by ‘thing.’ Since Bell’s aim in developing the
concept of beables was to account for positions of such
classical things as instrument pointers, we will assume
that Bell was referring to things that were constructed
of ordinary matter. As such, the ‘things’ in this model
are represented by the matter field φ. In Bell’s fermionic
model, the three-space continuum was replaced by a
dense but discrete lattice. As we saw, however, the
discreteness of the lattice gives rise to the problem of
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fermion doubling. In the minisuperspace model, how-
ever, we retain the three-space continuum and its form
is specified by the induced metric γij where the induced
metric takes the place of the discrete lattice. Thus,
specifying the ‘positions of things’ entails mapping the
matter field onto the metric which amounts to jointly
specifying a field configuration and a metric (i.e. a
three-sphere) via a state vector |γij , φ〉 or its associated
wave functional Ψ(γij , φ). Thus, if the beables must
specify the positions of things, then jointly specifying
the field configuration (‘things’) and the induced metric
on which the field is specified (‘positions’) accomplishes
this task. Therefore, the state vector |γij , φ〉 or its as-
sociated wave functional Ψ(γij , φ) are the beables of the
theory.

4.3 Deterministic constraints
For a fully deterministic model, one would expect that
the transition amplitude between any pair of three-
spheres would be either unity or zero—such a transition
is either allowed or it is not. This provides an added
constraint on (25),∫

δgδφ eiS[g,φ] ∈ {0, 1} for all |γij , φ〉 . (28)

It is worth noting, here, that we are assuming that the
Wheeler-DeWitt approach is fundamentally a path inte-
gral approach. The implications of such an assumption
are discussed in [19].

Recall that in the theory of local beables, beables
defined on some bounded set Q = {x, t} of spacetime
coordinates were determined by those corresponding to
any spacelike slice X of the spacetime region R that
fully encloses the past light-cone of Q (see Section 2
and Fig. 1). Bell referred to this condition as local de-
terminism. This suggests the determinism inherently
includes some idea of order in the sense that time is
a label of spacelike slices such that those slices must
occur in a given order for the theory to be considered
deterministic. For example, consider a set of beables
defined on some bounded set Q = {x, t} of spacetime
coordinates where the beables are assumed to be de-
termined by those corresponding to any temporal cross
section (i.e. spacelike slice) X of the spacetime region
R that fully encloses the past light-cone of Q where X
is a subset of R corresponding to all possible values of x
associated with the value tX . The beables defined on Q
are, of course, also assumed to be determined by those
corresponding to a different spacelike slice X ′ that is
also a subset of R as shown for a single spatial dimen-
sion, x, in Fig. 2. This follows from the fact that where
we drew X in the first place was simply restricted to
intersecting the past light-cone of Q. Exactly where it

t

x

Q

R

X

tX

tX′

X′

Figure 2: Beables associated with the bounded region of space-
time Q are determined by those associated with any temporal
cross-section (i.e. spacelike slice) X of region R that fully en-
closes the past light-cone of Q. Likewise, they are determined
with any spacelike slice X ′ that also fully encloses the past
light-cone of Q.

intersected the past light-cone of Q was not specified.
Thus the beables defined on Q are determined both by
those defined on X as well as those defined on X ′. But
notice that any beables defined on the spacelike slice X ′

are also determined by those associated with X since X
intersects the past light-cone of every point on X ′. In
other words, beables associated with X determine both
the beables associated with X ′ as well as those associ-
ated with Q. But the converse is not true, of course.
Thus determinism appears to require an ordering of the
spacelike slices. In fact the ordering of the set of all such
spacelike slices defines the past and future light-cones
of Q.

In a global theory of beables based on the Wheeler-
DeWitt model there is no ‘past’ light-cone, strictly
speaking, since time is treated as a fourth dimension
that we use to label and order the three-spheres. Each
three-sphere is technically a set of all spacetime coor-
dinates along with a metric. The metric defines the
relations between the spacetime coordinates, i.e. the
geometry, and thus differentiates one three-sphere from
another. In analogy to local determinism, we expect
that for a global theory of beables to be determinis-
tic, the set of all three-spheres must be ordered. (Recall
that locality has little meaning in this context since we
are talking about globally defined beables and so the
notion of determinism here is broader.) Thus, in gen-
eral we can say that the class of all theories for a given
Hamiltonian constraint Ĥ(x) whose specification of g,
φ, and S satisfy both (27), is deterministic if (28) holds
and its set of all three-spheres is ordered.
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5 Analysis

We have proposed a theory of global beables—
objectively known properties of the universe aimed at
making the concept ‘positions of things’ more precise—
that does not suffer from some of the problems inherent
in several other such theories. In addition, we have
proposed a set of deterministic constraints for such a
theory.

It is worth noting that it is not entirely clear whether
or not Smolin’s theory is deterministic. The elements
of Xa undergo Brownian motion as they oscillate in
the potential which means that the eigenvalues must
also undergo Brownian motion [25]. Strictly speaking,
Brownian motion is a stochastic process and is thus not
deterministic. However, in classical physics if one takes
into account all of the information of the environment
of some object undergoing Brownian motion then it is
considered deterministic since it ignores quantum ef-
fects. Smolin expressly uses the Brownian motion of the
elements of Xa as a method for introducing quantum
effects which might suggest his model is not determinis-
tic. However, he is also including hidden variables (the
off-diagonal elements of Xa) which are usually invoked
in order to restore determinism. By contrast, the the-
ory we have proposed avoids any ambiguity by giving
a clear set of constraints that must be satisfied in or-
der for the theory to be considered deterministic in a
manner analogous to Bell’s notion of local determinism.

It is also important to note that the beables of our
theory are entirely unambiguous about how to specify
the ‘positions of things’ in the sense Bell seems to have
intended. Indeed, the specification of a given state vec-
tor or wave functional in our theory is analogous to
a set T = {n(t), |t〉} consisting of the lattice fermion
number configuration at time t and an associated state
vector in Bell’s theory. The main difference is that we
have avoided the problems introduced by the Unruh ef-
fect and fermion doubling. While we no long have time
evolution, per sé, we note that the Wheeler-DeWitt for-
malism still allows for a certain sense of ‘dynamics’ in
that the usual propagator is replaced by an analogous
transition amplitude.

Of course, it may be the case that spacetime really
is quantizable and discrete in which case our theory
might not hold. In addition, it is not yet clear in this
model if quantum correlations can be preserved while
simultaneously satisfying the determinism constraints.
Likewise, the Hartle-Hawking minisuperspace model in-
cludes situations in which the universe can quantum me-
chanically tunnel between two states which also could
potentially be a problem for determinism since it would
seemingly render some three-spheres redundant. Thus
one avenue of future research would be to further exam-

ine the determinism constraints of our model to deter-
mine if they are compatible with quantum correlations
and tunneling. This, of course, assumes that there are
values for the metric, the matter field, and the action
that satisfy both (27) and (28) for a given Hamilto-
nian constraint. Certainly there is a trivial solution
that holds when the action and the Hamiltonian con-
straint are both zero, but this is not particularly infor-
mative. But, if one or more non-trivial solutions ex-
ist and additionally they preserve determinism in the
broadest sense, i.e. that the state of the universe at one
instant determines the state of the universe at the next,
then we may yet achieve Bell’s goal of an unambiguous
theory of beables that gives a precise accounting of the
‘positions of things.’
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