
ON THE EMERGENCE OF THE STRUCTURE OF PHYSICS
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Abstract. We consider Hilbert’s problem of the axioms of Physics at a qual-

itative or conceptual level. This issue is more pressing than ever as we seek to
understand how both GR and quantum theory could emerge from some deeper

theory of quantum gravity, and in this regard I have previously proposed a

‘principle of self-duality’ or ‘quantum Born reciprocity’ as a key structure.
Here I outline recent work around the idea of quantum spacetime as moti-

vated by this non-standard philosophy, including a new toy model of gravity
on a spacetime consisting of four points forming a square.

1. Introduction

To think about the axioms of physics we will start with a non-standard philosophy of
‘relative realism’ whereby reality is more like pure mathematics, created by decisions
to work within certain axioms or assumptions [17, 22, 24]. To the extent that we
are not conscious of this, to that extent we experience the reality created by those
axioms. To the extent that we are aware, we transcend that level of ‘reality’ but
the fact that those axioms were possible and all the substructure they contain is
an element of a larger reality in which that was just one path we could have taken.
This makes reality relative to your point of view which is not necessarily a bad
thing given the Copenhagen interpretation of quantum mechanics.

In this point of view, Physical Reality as we know it should be characterised or in
some sense created by the decision to adopt certain axioms or assumptions. The
difference with most mathematical subjects is that we don’t apriori know what the
axioms are but are working backwards to find them. My thesis in [17, 22, 24] was
that if we eventually succeed we will in fact uncover a characterisation of what it
is to be a physicist. And knowing this, one can anticipate that one of the central
axioms of Physics should be rooted in the scientific method, which I see as a dual
relationship between theory and experiment.

This in turn can be expressed mathematically as duality between an abstract struc-
ture and its realisation or representation, a theme that runs throughout mathemat-
ics as shown in Figure 1 taken from [17, 19]. The arrows here are meant to be
inclusion functors between categories of structures, loosely interpreted. The famil-
iar case here is that of an Abelian group G. Its set of representations itself forms

a group Ĝ and G ⊆ ˆ̂
G says that from mathematical point of view one is free to

2000 Mathematics Subject Classification. Primary 81R50, 58B32, 83C57.
Key words and phrases. Quantum gravity, quantum spacetime, duality, Born reciprocity, non-

commutative geometry, discrete gravity.
Based on my talk at the Conference on Hilbert’s 6th Problem, Leicester, May 2016.

1

ar
X

iv
:1

71
1.

00
55

6v
1 

 [
m

at
h-

ph
] 

 1
 N

ov
 2

01
7



2 S. MAJID

Figure 1. An axiom of Physics is the search for a self-dual struc-
ture in a self-dual category.

reverse which is the abstract structure and which is its representation. For example
in Physics, G could be position space Rn then Ĝ in a suitable setting would be
momentum space Rn, a self-dual example in the self-dual category. The principle
of representation-theoretic self duality[17] or ‘generalised Mach principle’ is the idea
that Physics should admit a reversal of which parts are structure and which parts
are representation, for example which is position and which is momentum. This
need not result in the same theory but merely a dual theory. The strong version is
that the dual theory should have the same form but possibly with different values of
parameters. From this point of view, Boolean algebra with its de Morgan duality is
arguably the ‘birth’ of physics[19], while the next self-dual category beyond Abelian
groups is Hopf algebras or ‘quantum groups’. Thus I argued in my 1988 PhD the-
sis that constructing noncommutative noncocommutative Hopf algebras could be
seen as a toy model of constructing elements of quantum gravity, and used this to
obtain one of the two main classes of such true quantum groups, the bicrossproduct
ones. This was around the same time as V.G. Drinfeld introduced the other (and
more famous) class of q-deformed quantum groups coming from quantum integrable
systems. I will say more about bicrossproducts shortly.

Quantum groups here are a big enough category to include nonAbelian groups and
their Fourier duality. If G is a compact Lie group, say, its function algebra C(G)
and its group convolution algebra C∗(G) can be completed to mutually dual Kac
or Hopf-von Neumann algebras. At the algebraic level we have coordinate algebras
C[G] and enveloping algebras U(g) as essentially dual. Traditionally one has to do
non-Abelian Fourier transform categorically but in the language of Hopf algebras

it becomes quantum Fourier transform, for example C[G] → U(g) (indicating a
suitable completion that includes exponentials). Here U(g) is regarded as a ‘co-
ordinate algebra’ of a noncommutative space. We will come to the physics of this
shortly but for the moment we continue along the self-dual axis in Figure 1. Here
in the search for the ‘next’ self-dual category, I found in 1990 the following duality
construction (C → V)○ = C○ → V for functors between monoidal categories[18, 19].
Here a monoidal category C means there is a ⊗ product which is associative up
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Figure 2. Representation of a monoidal category underlying
Drinfeld-Majid centre construction.

to an associator cocycle and V another one, for example Vector Spaces, in which
we construct our representations. The objects of C0 are pairs (V,λV ) where V
is an object of V and λV ∈ Nat(V ⊗ F,F ⊗ V ) is a natural transformation such
that the diagram in Figure 2 commutes. Here λV is a collection of morphisms
(λV )X ∶ V ⊗ F (X) → F (X) ⊗ V for all X ∈ C which are functorial in the sense
of compatible with any morphisms X → Y in C and the condition in the figure
says that it ‘represents’ the tensor product of C as composition in V. Note that
the monoidal functor F comes equipped with an associated natural isomorphism f
in the sense of functorial isomorphisms fX,Y ∶ F (X) ⊗ F (Y ) → F (X ⊗ Y ) for all
objects X,Y in C, which we use. One has C ⊆ C00 and the construction generalises
both group and Hopf algebra duality. The tensor product of two ‘representations’
is just

(λV ⊗W )X = ((λV )X ⊗ id)(id⊗ (λW )X)
where we move W past F (X) then V past F (X). By a theorem of Mac Lane for
monoidal categories, we suppress the associator between tensor products as these
can be inserted afterwards.

Example 1. If G is a finite group and C the category of G-graded vector spaces, we
can tensor product such spaces by the product of gradings in the group, obtaining
a monoidal category. We take F the functor that forgets the grading, then C0 has
objects vector spaces V equipped with natural isomorphisms (λV )X ∶ V ⊗ F (X) →
F (X) ⊗ V sending (λV )X(v ⊗ xg) = xg ⊗ v◁g for some right action of G on V .
One can check that this meets the requirements above. Thus, C○ is essentially the
category of representations of G.

This connects our monoidal duality to non-Abelian group duality. The latter also
includes Hopf algebra duality when appropriately formulated. A genuinely new
example of considerable interest these days in topological quantum field theory is
the following.

Example 2. (Drinfeld-Majid centre.) A special case of the above construction
is when V = C and F = id. This case was found independently by Drinfeld but the
definitions and proofs are identical to our C0 construction just leaving out the symbol
F . In this case there is a tautological braiding if we assume the λ are isomorphisms.

Note that Drinfeld came across the preprint of [18] in the library at Harvard and
wrote to me that he was aware of but had not published this special case and that
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it was braided. Hence it is not the case that C0 was a generalisation of Drinfeld’s
work, we simply came to essentially the same construction for different reasons. My
reason was the principle of representation-theoretic self-duality while Drinfeld’s was
I believe to generalise his famous double construction for quantum groups in [9].
Some of my own follow-up work was [19].

How is this dualism reflected in Physics? One setting already alluded to and which
we have called quantum Born reciprocity (QBR), is Fourier duality between position
and momentum space and its generalisations. In the Abelian group case this is just
wave particle duality, but it also works in the nonAbelian case. If the universe is
spatially S3 = SU2 (and it might be) then spatial momentum is the representations
of this. These form a category but one can also see Fourier transform at the Hopf
algebra level from C[SU2] to (a completion of) U(su2) where the latter is regarded
as a quantum momentum space [pi, pj] = ıh̵

lc
εijkpk. Here lc is the cosmological

curvature scale and pi are left-invariant vector fields. Dually, if the momentum
space of some system were to be the nonAbelian group SU2 then the Fourier dual
would be the quantum spacetime with relations [xi, xj] = ıλP εijkxk where λP is a
length scale and the U(su2) generators are now regarded as position coordinates.
This as we will see shortly is thought to be the case in some models of 3D quantum
gravity.

In my PhD thesis[15, 16] I took this point of view and the above self-duality principle
as a motivation to look for self-dual type Hopf algebras, and constructed these in
the ‘bicrossproduct’ form C[M]▸◁U(g) with dual U(m)▷◂C[G] associated to any
local factorisation of a Lie group X = G &M . These were originally thought of
these as quantum phase space but since 1994 in [26] I have also thought of them
as quantum Poincaré groups acting on U(m) and U(g) respectively as auxiliary
quantum spacetimes. In fact there are different covariant systems with equivalent
data related by semidualisation[15, 16] (where one Hopf algebra is systematically
replaced by its dual),

C[M]▸◁U(g), U(m)⇔ U(x), C[M]; U(m)▷◂C[G], U(g)⇔ U(x), C[G]

where x is the Lie algebra of X and in each pair we give the (possibly quantum)
symmetry group and the (possibly quantum) spacetime algebra on which it acts.
The relevant factorisation for 3D quantum gravity is SL(2,C) = SU2 &H3 where
H3 = R2⋊R is the group of upper-triangular matrices in the Iwasawa decomposition.
Focusing on the first two pairs, we have the top line of Figure 3 where on the top
left U(h3) is the quantum spacetime

(1) [xi, t] = ıλPxi

for i = 1,2 which is the 3D version of the Majid-Ruegg quantum spacetime [26]. In
its Poincaré quantum group the momentum is commutative because its ‘enveloping
algebra’ is the commutative Hopf algebra C[H3] but curved as H3 is non-Abelian.
The semidual of this on the top right is a classical model of a particle on H3

as curved positions space with its classical U(so1,3) = U(su2) & U(h3) symmetry
containing U(h3) as the translational momentum. So the roles of position and
momentum are swapped between the two models – an example of QBR. It is also
striking that the model on the right is classical (a particle on a curved space H3)
while the other model is quantum, so QBR interchanges classical and quantum.
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Figure 3. Quantum Born reciprocity expressed as semidualisa-
tion in 3D quantum gravity and its limits.

In fact this picture q-deforms [27] as we show on the bottom line of Figure 3,
where the model on the bottom right is thought to encode quantum gravity with
cosmological constant via an expression of the form q = e−λP /lc . Its QBR-dual
model on the bottom left when q ≠ 1 is at some algebraic level isomorphic to
two copies of Cq[H3] = Uq(su2)cop acting on Uq(h3) = Cq[SU2]op up to some
technicalities, i.e. a classical but q-deformed particle on a 3-sphere, and this is
related by a categorical equivalence (a Drinfeld twist) to the model on the right.
In other words, 3D quantum gravity with cosmological constant is in some sense
self-dual under QBR. Finally, we can take q → 1 in different ways and the first
one, on the outer right, is λP → 0 (so a classical but curved model). Alternatively
we can send lc → ∞ and this is the model in the centre of the figure encoding
3D quantum gravity without cosmological constant (to see this one should write
Uq(so1,3) = Uq(su2) &Uq(h3) = Uq(su2) &Cq[SU2]op up to some technicalities and
then take the limit). The diagonal twist equivalence between this conventional
version of 3D quantum gravity with U(su2) quantum spacetime and the one we
began with (on top left) was recently shown by P. Osei and the author[25]. More
details of the point of view for 3D quantum gravity are in [27].

If we leave the self-dual axis then the dual structure is not of the same type but is
still a structure. If we take a more categorical view of group duals then the dual of
a compact Lie group comes down to quantisation (for example of coadjoint orbits)
or geometrically to diagonalising the natural Laplacian or wave operator. Compact
Lie groups are the simplest examples of Riemannian manifolds and we can similarly
think of that the ‘dual’ of the latter coming down to quantum mechanics or wave
operators. Recall that quantum mechanics in nice cases can be seen as the non-

relativistic limit of the Klein-Gordon spacetime Laplacian for fields where e−ımc
2t/h̵

is factored out. In fact a Riemannian or pseudo-Riemannian manifold cannot be
totally reconstructed from the Laplacian alone but if we use the Dirac operator
the one has Connes’ reconstruction of a spin manifold from an abstractly defined
‘spectral triple’ in the commutative case[8]. Either way, if one extends these ideas
from classical to quantum field theory then logically an element of this should be
that it corresponds to quantum Riemannian geometry, where spacetime coordinates
become noncommutative. This should then be taking us towards the self-dual axis
as shown Figure 1. Interestingly, [6] have now constructed quantum field theories on
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curved spacetimes as a functor from the monoidal category of globally hyperbolic
spacetimes to noncommutative C∗-algebras with tensor product, which is some
kind of arrow from QFT to monoidal functors in Figure 1. Such functors are not
self-dual under ( )○ but then this is not yet quantum gravity. At any rate, one
could speculate in this context that Einstein’s equation might eventually emerge
as the classical limit of a self-duality condition as it equates the Einstein tensor
from the geometry side to the expectation value of the stress energy tensor from
the quantum field theory side, probably requiring both to be generalised so as to be
in a self-dual setting. I do not know the final framework for this but the monoidal
category dual may be a step in the right direction.

In summary, we were led on philosophical grounds to the view that spacetime should
be both curved and ‘quantum’ in the sense of a noncommutative coordinate algebra,
as a consequence of a deep self-duality principle for quantum gravity[17, 22, 24].
We call this aspect the quantum spacetime hypothesis. It’s a prediction which, if
confirmed, would be on a par with the discovery of gravity and indeed dual to it.
What it could entail mathematically is our next topic.

2. Axioms of quantum Riemannian geometry

I will recap a constructive approach to this from my own work in the last decade
(much of it with Edwin Beggs) rather than the better-known ‘Dirac operator’ ap-
proach of Connes expressed in the axioms of a spectral triples. The two approaches
have recently begun to come together with our programme of geometric realisation
of Connes’ spectral triples[4].

In fact all main approaches have in common (in our case as starting point) the
notion of differential forms (Ω,d) over a possibly noncommutative algebra A as a
differential graded algebra. This means

Ω = ⊕nΩn, d ∶ Ωn → Ωn+1, d2 = 0

where Ω0 = A and d obeys a graded-Leibniz rule with respect to the graded product
∧. We assume that Ω is generated by A,Ω1 in which case one may focus on (Ω1,d)
first and construct higher differential forms as a quotient of the tensor algebra of
this over A. Here

d ∶ A→ Ω1, d(ab) = (da)b + a(db), (adb)c = a((db)c)
where Ω1 has an associative multiplication from the left and the right by A (one
says that Ω1 is an A-bimodule) and d is a derivation.

The next ingredient is a left connection,

∇ ∶ Ω1 → Ω1 ⊗A Ω1, ∇(aω) = da⊗ ω + a∇ω
which is a bimodule connection[10, 29] if there also exists a bimodule map σ such
that

σ ∶ Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1, ∇(ωa) = (∇ω)a + σ(ω ⊗ da).
The map σ if it exists is unique, so this is not additional data but a property that
some left connections have. In the classical case where A = C∞(M), if X is a vector
field then a connection ∇ defines a covariant derivative ∇X ∶ Ω1 → Ω1 by evaluating
X against the left output of ∇ (this also works with care in the quantum case).
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However, we consider all such covariant derivatives together by leaving ∇ as a 1-
form valued operator on 1-forms. The curvature and torsion of a left connection,
see for example [20], are

R∇ = (d⊗ id − id ∧∇)∇ ∶ Ω1 → Ω2 ⊗A Ω1, T∇ = ∧∇ − d ∶ Ω1 → Ω2.

Incidentally, all the same ideas except for the torsion hold for any vector bundle,
which we axiomatize via its space of sections E as a left module over A, and
∇E ∶ E → Ω1 ⊗A E. In the bimodule case, if E,F are bimodules and ∇E ,∇F are
bimodule connections then the tensor product E ⊗A F has a bimodule connection

∇E⊗F (e⊗ f) = ∇Ee⊗ f + (σE ⊗ id)(e⊗∇F f)
and a certain σE⊗F . This makes the collection of such pairs (E,∇E) into a monoidal
category with morphisms usually taken as bimodule maps that intertwine the con-
nections. There is a forgetful functor from this to the category of bimodules over
A, so this is an example of monoidal functor (in the sense of Figure 1) associated
to any manifold and to any algebra more generally.

Next we consider a Riemannian metric g = g1 ⊗A g2 ∈ Ω1 ⊗A Ω1 (sum of such
terms understood). We want to this to non-degenerate in the sense of a bimodule
map ( , ) ∶ Ω1 ⊗A Ω1 that is inverse, (ω, g1)g2 = ω = g1(g2, ω) for all ω ∈ Ω1.
In this case (ω, ag1)g2 = (ωa, g1)g2 = ωa = (ω, g1)g2a tells us that [a, g] = 0 for
all a, i.e. g has to be central[3]. So even though we are doing noncommutative
geometry and do not assume that 1-forms commute with functions, we will need
the metric to be central. This is a significant constraint on quantum spacetime in
the noncommutative case which is invisible classically. We also usually want the
metric to be quantum symmetric in the sense ∧(g) = 0.

Finally, we want ∇ to be metric compatible. There is a weak notion that makes
sense for any left connection, namely it is ‘weak quantum Levi-Civita’ if it is torsion
free and

coT∇ = (d⊗ id − id ∧∇)g ∈ Ω2 ⊗A Ω1

vanishes. This cotorsion tensor was introduced in [20] and classically says that
∇µgνρ − ∇νgµρ = 0. In the case of a bimodule connection we can do better and
we say this is quantum Levi-Civita (QLC) if it is torsion free and ∇g = 0 where ∇
extends to Ω1 ⊗A Ω1 by the tensor product formula.

Usually one wants A to be a ∗-algebra and for this to extended as a graded-
involution to Ω commuting with d, and for g† = g, ∇ ○ ∗ = σ ○ † ○ ∇ where
(ω⊗A η)† = η∗ ⊗A ω∗. These reality conditions in a self-adjoint basis (if one exists)
would ensure that the metric and connection coefficients are real at least in the
classical limit. This completes our lighting review.

By now there are many specific quantum Riemannian geometries constructed, for
example on the quantum sphere Cq[S2], see [21], on the quantum spacetime (1), see
[3], on the functions on the permutation group C(S3), and on its dual CS3, see [28],
each with natural differential structure, quantum metric and QLC’s or weak QLCs
according to the model. The Ricci tensor is only partially understood because to
follow the usual trace contraction one would need a lifting map i ∶ Ω2 → Ω1 ⊗A Ω1,
which is additional data. The Dirac operator is also only partially understood
needing both a ‘spinor’ bundle with connection compatible with ∇ and a ‘Clifford
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action’. At least for Cq[S2] one can come close to the axioms of a Connes spectral
triple at least at an algebraic level before any functional analysis completions[4].

3. Poisson-Riemannian geometry

Our motivation has been that quantum geometry deforms classical geometry by or-
der λP corrections, as a measure of some quantum gravity effects. The semiclassical
theory of which the above is a quantisation was recently worked out by Beggs and
the author in [5]. This theory is to aspects of quantum gravity as classical mechan-
ics is to quantum mechanics, except the deformation parameter is not h̵, so a kind
of ‘classical quantum gravity’. One could imagine other applications, including to
quantum mechanics if the phase space also has a natural Riemannian structure, so
we will just call the parameter λ (and take conventions where it is imaginary).

The first layer of this is of course the Poisson structure, a tenet of mathematical
physics since the early days of quantum mechanics being to ‘quantise’ functions
C∞(M) on a manifold to a noncommutative algebra A. We suppose that

a ● b = ab +O(λ)
where we denote the C∞(M) product by juxtaposition and the A product by ●.
We assume all expressions can be expanded in λ and equated order by order. In
this case

a ● b − b ● a = λ{a, b} +O(λ2)
defines a map { , } and the assumption of an associative algebra quickly leads to the
necessary feature that this is a Lie bracket (i.e. antisymmetric and satisfies the Ja-
cobi identity, making C∞(M) into a Lie algebra) and â ∶= {a,} is a (‘Hamiltonian’)
vector field associated to a function a. It is known that every such Poisson bracket
can be quantised to an associative algebra at least at some formal level[14]. The
second layer is to find a differential structure Ω1 deforming the classical Ω1(M).
One can similarly analyse the data for this by defining a map ∇ by

a ● (db) − (db) ● a = λ∇âdb +O(λ2).
The assumption of a left action and the Leibniz rule for d, requires at order λ that

(2) ∇â(bdc) = {a, b}dc + b∇âdc, d{a, b} = ∇âdb −∇b̂da
(these follow easily from [a, b●dc] = [a, b]●dc+b●[a,dc] and d[a, b] = [da, b]+[a,db]).
The first condition of (2) says that ∇ is a covariant derivative along Hamiltonian
vector fields â and the second is an additional ‘Poisson-compatibility’. The first part
of (2) applies similarly for any bundle and can be formulated as ∇ a contravariant or
Lie-Rinehart connection[13], while the second part was observed in [12, 2]. Finally,
the associativity of left and right actions on a bimodule gives

R∇(â, b̂) ∶= ∇â∇b̂ −∇b̂∇â −∇{̂a,b} = 0

(this follows from the Jacobi identity [a, [db, c]] + [db, [c, a]] + [c, [a,db]] = 0). So a
zero curvature Poisson-compatible partially-defined connection is what we strictly
need.

In [5] we make two convenient variations. First of all we are not going to require zero
curvature because the effect of curvature is visible only at order λ2, so we do not
really need this in the order λ theory. If there is curvature then it will not be possible
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to have an associative differential calculus of classical dimension on A but this is
actually a situation that one frequently encounters in noncommutative geometry.
We can either absorb this in a higher dimensional associative differential structure or
we can live with nonassociative differentials at order λ2. Strictly speaking, the same
applies to the Poisson bracket obeying the Jacobi identity not being strictly needed
at order λ2 in which case we would have A itself being non-associative. Secondly, for
simplicity, we are going to make the assumption that ∇â is indeed the restriction
of an actual connection ∇. This will allow us to speak more freely of geometric
concepts such as the contorsion tensor. In fact this assumption is not critical; if the
Poisson tensor in these coordinates is ωµν then we are in most formulae making use
only of the combination ∇µ ∶= ωµν∇µ rather than the full covariant derivatives ∇µ
themselves. It means that our data has redundant ‘auxiliary modes’ that do not
affect the quantum differential structure at order λ, a situation not unfamiliar from
other situations such as gauge theory. There is also the matter of extending from
Ω1 to forms of all degree but this turns out[5] to impose no further conditions.

The third layer is the construction of a quantum metric and the natural data for this
will be a classical metric g on M . As one might guess the metric compatibility of ∇
is just that ∇g = 0. To avoid confusion we will write ∇̂ for the classical Levi-Civita
connection of g and we let S be the contorsion tensor of ∇ whereby ∇̂ = ∇+S. It is
well-known in general relativity that a metric compatible connection is determined
by its torsion tensor T or equivalently a cotorsion tensor S antisymmetric in its
outer indices when all indices are lowered. Hence under our simplifying assumption
the data for ∇ can be thought of as T or S. In this case Poisson compatibility of
∇ can be written as[5],

(3) ∇̂γωαβ + Sαδγωδβ + Sβδγωαδ = 0.

The fourth layer is more specialised as it is specifically the quantisation data for
a bimodule quantum Levi-Civita connection (one could be happy with something
weaker) and comes down to the identity

(4) ∇̂ρRµν + SβανHα
βρµ − SβαµHα

βρν = 0

where the curvature R of ∇ combines with the contorsion to define

(5) Hα
βµν = gβγωγρ (∇ρSαµν +Rανµρ) , Rµν =

1

2
(Hα

αµν −Hα
ανµ) .

The latter is called the generalised Ricci 2-form associated to our classical data. In
summary, the field equations of Poisson-Riemannian geometry come down to[5]:

(0) A metric gµν and an antisymmetric bivector ωµν typically obeying the
Poisson bracket Jacobi identity;

(1) A metric compatible connection ∇ at least along Hamiltonian vector fields;
(2) Poisson-compatibility of ∇ given in the fully defined case by (3);
(3) The optional quantum Levi-Civita condition (4).

These equations can be quite restrictive, particularly if one also wants to preserve
a symmetry.

Example 3. (Quantizing the Schwarzschild black hole[5]) Solving the above equa-
tions for the Schwarzschild metric in polar coordinates t, r, θ, φ, and asking to pre-
serve rotational symmetry leads to a unique Poisson tensor ω and unique ∇ up to
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Figure 4. Metric coefficients a, b are interpreted as arrow lengths
in our formulation of discrete gravity on a square.

auxiliary modes. This has r, t,dr,dt central (unquantised) and for each r, t one has
a radius r ‘nonassociative fuzzy sphere’

[zi, zj] = λεijkzk, [zi,dzj] = λzjεimnzmdzn.

to order λ in coordinates where ∑i z2i = 1. Here ∇ on S2 is the Levi-Civita connec-
tion with constant curvature, hence Ω1 is not associative at order λ2.

This uniqueness result was extended to generic static spherically symmetric space-
times in [11].

4. Quantum gravity on a square graph

The mathematics of quantum Riemannian geometry is simply more general than
classical Riemannian geometry and includes discrete[23] as well as deformation
examples. What is significant in this section is that whatever we find emerges from
little else but the axioms applied to a square graph as ‘manifold’.

Let X be a discrete set and A = C(X) functions on it as our ‘spacetime alge-
bra’. It is an old result that its possible 1-forms and differential (Ω1,d) are in
1-1 correspondence with directed graphs with X as the set of vertices. Here
Ω1 has basis {ωx→y} over C labelled by the arrows of the graph and differential
df = ∑x→y(f(y) − f(x))ωx→y. In this context a quantum metric

g = ∑
x→y

gx→yωx→y ⊗ ωy→x ∈ Ω1 ⊗C(X) Ω1

requires weights gx→y ∈ R ∖ {0} for every edge and for every edge to be bi-directed
(so there is an arrow in both directions). Taking all weights to be 1 is the so-
called ‘Euclidean metric’ [23]. The calculus over C is compatible with complex

conjugation on functions f∗(x) = f(x) and ω∗x→y = −ωy→x. Finding a QLC for a

metric depends on how Ω2 is defined and one case where there is a canonical choice
of this is X a group and the graph a Cayley graph generated by right translation
by a set of generators. Previously a QLC was found for some specific groups and
the ‘Euclidean metric’ but here we give a first calculation for a reasonably general
class of metrics.
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We take X = Z2 × Z2 with its canonical 2D calculus given by a square graph with
vertices 00,01,10,11 in an abbreviated notation as shown in Figure 4. The graph
is regular and there are correspondingly two basic 1-forms

e1 = ω00→10 + ω01→11 + ω10→00 + ω11→01, e2 = ω00→01 + ω10→11 + ω01→00 + ω11→10

with relations and differential

eif = (Rif)ei, df = (∂1f)e1 + (∂2f)e2
where R1f shifts by 1 mod 2 (i.e. takes the other point) in the first coordinate,
similarly for R2, and ∂i = Ri − id. The exterior algebra is the usual Grassmann
algebra on the ei (they anticommute). The general form of a quantum metric and
its inverse are

g = ae1 ⊗ e1 + be2 ⊗ e2, (e1, e1) =
1

R1a
, (e2, e2) =

1

R2b
, (e1, e2) = (e2, e1) = 0

where the a, b are no-where vanishing functions. With the standard ∗ structure
e∗i = −ei, the metric obeys the reality property if a, b are real valued. In terms of
the graph their 8 values are equivalent to the values of g on the 8 arrows as shown
in Figure 4. It is natural here to focus on the symmetric case where the metric
weight assigned to an edge does not depend on the direction of the arrow. This
means ∂1a = ∂2b = 0 and we assume this now for simplicity. In this case we find
a 1-parameter family of torsion free metric compatible or ‘quantum Levi-Civita’
connections:

∇e1 = (1 +Q−1)e1 ⊗ e1 + (1 − α)(e1 ⊗ e2 + e2 ⊗ e1) −
b

a
(R2β − 1)e2 ⊗ e2.

∇e2 = −
a

b
(R1α − 1)e1 ⊗ e1 + (1 − β)(e1 ⊗ e2 + e2 ⊗ e1) + (1 −Q)e2 ⊗ e2.

σ(e1⊗e1) = −Q−1e1⊗e1+
b(R2β − 1)

a
e2⊗e2, σ(e2⊗e2) = Qe2⊗e2+

a(R1α − 1)
b

e1⊗e1

σ(e1 ⊗ e2) = αe2 ⊗ e1 + (α − 1)e1 ⊗ e2, σ(e2 ⊗ e1) = βe1 ⊗ e2 + (β − 1)e2 ⊗ e1
where Q,α,β are functions on the group defined as

Q = (q, q−1, q−1, q) = qχ, α = (a01
a00

,1,1,
a00
a01

), β = (1, b10
b00

,
b00
b10

,1)

when we list the values on the points in the same binary sequence as above. Here q
is a free parameter and χ(i, j) = (−1)i+j = (1,−1,−1,1) is a function on Z2 ×Z2. If
we write σ as a matrix σi1i2 j1j2 where the multi-indices are in order 11,12,21,22,
is

(6) σ =
⎛
⎜⎜⎜⎜
⎝

−Q−1 0 0 a(R1α−1)
b

0 α − 1 β 0
0 α β − 1 0

b(R2β−1)
a

0 0 Q

⎞
⎟⎟⎟⎟
⎠
.

What we have coming out of the axioms is a field of such ‘generalised braiding’
matrices because the entries here are functions on the group. The eigenvalues are
−1, αβ,−Q−1,Q as functions on the group. Notice that these ‘generalised braidings’
have a broadly 8-vertex form normally associated with quantum integrable sys-
tems but here arising out of nothing but the requirements of quantum Riemannian
geometry applied to a square graph.
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The Laplacian for the above QLC’s are computed as

∆f = ( , )∇(∂ifei) = −
2

a
∂1f −

2

b
∂2f + ∂if( , )∇ei = (Q

−1 −R2β

a
)∂1f − (Q +R1α

b
)∂2f

using our formula for ∇, the connection property, and ∂2i = −2∂i. The curvatures
are given by

R∇e1 =(Q−1R1α −Qα + (1 − α)(R1β − 1) + R2a

a
(R2β − 1)(R2R1α − 1))Vol⊗ e1

+ (Q−1(1 − α) + α(R2α − 1) +Q−1R1b

a
(β−1 − 1)) + b

a
(R2β − 1)R2β)Vol⊗ e2

where Vol = e1 ∧ e2, and a similar formula for R∇e2 interchanging e1, e2; R1,R2;
α,β; a, b and Q,−Q−1 (so that Vol also changes sign). One can discern contributions
from q ≠ 1 and from a, b non-constant. The connection reality condition comes down
to

(7) ∣q∣ = 1

so that in particular the function Q −Q−1 is pointwise imaginary.

Next we find the Ricci tensor defined by a lifting map i, for which in our case there
is a canonical choice i(Vol) = 1

2
(e1 ⊗ e2 − e2 ⊗ e1). If we write R∇ei = ρijVol ⊗ ej

then

Ricci = (( , )⊗ id)(id⊗ i⊗ id)(id⊗R∇)(g) =
1

2
(−R2ρ21 −R2ρ22
R1ρ11 R1ρ12

)

as the matrix of coefficients on the left in our tensor product basis. Applying ( , )
again, we have scalar curvature

S = 1

2
(−R2ρ21

a
+ R1ρ12

b
)

which is invariant under the interchange above. For the simplest case where q ≠ 1
and a, b are constant, the QLCs and their curvature reduce to

∇e1 = (1 +Q−1)e1 ⊗ e1, ∇e2 = (1 −Q)e2 ⊗ e2
R∇e1 = −(Q −Q−1)Vol⊗ e1, R∇e2 = (Q −Q−1)Vol⊗ e2

as the intrinsic quantum Riemannian geometry of Z2 × Z2 with its rectangular
metric. This has

Ricci = Q −Q−1

2
(e1 ⊗ e2 + e2 ⊗ e1), S = 0

which we see is quantum symmetric but does not obey the same reality condition as
the metric if we impose (7) needed for the connection to obey its ‘reality’ condition.

The general Ricci curvature is more complicated but for q = 1, say, it has values

(8) Ricciq=1 =
1

2
(

1
b
(−∂2a

α
+ χ∂1b

β
) −∂1b

b
(α + 1

α
− χ − 2)

−∂2a
a

(β + 1
β
− χ − 2) 1

a
(−∂2a

α
+ χ∂1b

β
) )

for the matrix of coefficients. This is in general neither quantum symmetric nor
real in the sense of the metric. For the scaler curvature the general formula is

S = − 1

4ab
((3 + q + (1 − q)χ)∂2a

α
+ (1 − q−1 − (3 + q−1)χ)∂1b

β
) .
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Finally, it is not obvious what measure we should use to integrate either of these
but if we take measure µ = ∣ab∣ = ab (we assume for now the a, b are positive edge
lengths, i.e. the theory has Euclidean signature) and sum over Z2×Z2 then we have

(9) ∫ S = ∑
Z2×Z2

µS = (a00 − a01)2(
1

a00
+ 1

a01
) + (b00 − b10)2(

1

b00
+ 1

b10
).

independently of q. We consider this action as some kind of energy of the metric

configuration. If we took other measures such as µ = 1 or µ =
√

∣g∣ =
√

∣ab∣ then
we would not have invariance under q so the action would not depend only on the
metric but on the choice of ∇.

Next we Fourier transform on Z2 × Z2 to write our results in ‘momentum space’.
We have

1, φ(i, j) = (−1)i = (1,1,−1,−1), ψ(i, j) = (−1)j = (1,−1,1,−1), φψ = χ
∂1φ = −2φ, ∂2φ = 0, ∂1ψ = 0, ∂2ψ = −2ψ

as the plane waves and given the conditions we imposed on a, b, we can expand
these in terms of four real momentum space coefficients as

a = k0 + k1ψ, b = l0 + l1φ.
Then some computation gives the Scalar curvature for q = 1 as

S = 2

(k20 − k21)(l20 − l21)
((l0 − l1)(k1(k0 + k1) − l1(k0 − k1)), (k0 + k1)(l1(l0 + l1) − k1(l0 − l1)),

(k0 − k1)(k1(l0 + l1) − l1(l0 − l1)), (l0 + l1)(l1(k0 + k1) − k1(k0 − k1))).

With measure µ = ab as above, this gives

∫ S = 8( k0k
2
1

k20 − k21
+ l0l

2
1

l20 − l21
) .

To analyse this we define k = k1/k0 with ∣k∣ < 1 corresponding to a > 0 at all points
and similarly for l = l1/l0 and fix k0, l0 > 0 as the average values of a, b so that we
can focus on fluctuations about these as controlled by k, l. In this case the action
becomes

(10) ∫ S = 8( k0k
2

1 − k2 +
l0l

2

1 − l2 ) = 8k0(k2 + k4 + k6⋯) + 8l0(l2 + l4 + l6 +⋯).

This has a ‘bathtub’ shape with coupling constants k0, l0 and a minimum at k =
l = 0, which makes sense as a measure of the energy of the gravitational field. The
k, l are not momentum variables but the relative amplitude of the unique allowed
non-zero momentum in each direction.

In the Minkowski version, we require say a < 0, b > 0 everywhere. We suppose
k0 < 0, l0 > 0 as the average values and require ∣k1∣ < −k0, ∣l1∣ < l0 to maintain the

sign. We define k, l as before for the relative fluctuations and regard k̃0 = −k0, l0 as
coupling constants. Now µ = ∣ab∣ = −ab for our measure, giving

∫ S = 8( k̃0k
2

1 − k2 −
l0l

2

1 − l2 ) = 8k̃0(k2 + k4 + k6⋯) − 8l0(l2 + l4 + l6 +⋯).

In either case, if we ignore higher order terms then we have S quadratic in k, l as
for a massless free field in a universe with only one momentum in each direction.
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Figure 5. Nonzero eigenvalues of the Laplacian vs l at fixed k =
0.5, q = l0 = 1 and k0 = ±1 for the two signatures.

The higher terms correspond to quartic and higher derivatives in the action from
this point of view.

Finally, we can add matter using the Laplacian above. However, this Laplacian
does depend on q. For example, one can check in the momentum parametrizaton
that

∆k0,l0,q;k,l ∼ ∆l0,k0,−q;l,−k

in the sense of the same eigenvalues. In other words, the theory with a, b swapped
is the same but has the negated value of q. These eigenvalues are mostly real
when q is real, leading to q = ±1 as the natural choices. We plot the three non-
zero eigenvalues in Figure 5 for q = 1 and the two signatures, at a typical value
k = 0.5. The cross-section passes a narrow region in the k, l plane where two of the
eigenvalues become complex but otherwise they are positive. The remaining mainly
small eigenvalue is zero at l = 0 and q = 1 or k = 0 and q = −1 among possibly other
zeros.

In principle, one can proceed to consider ‘functional integrals’ over any of our
parametrizations of the metric field. Thus for gravity we can consider integrals of
the form

∫
1

−1 ∫
1

−1
dk dl eı ∫ S

(this converges when we use the ı in the action, otherwise we have to renormalise
due to divergence at the endpoints), and similar integrations against functions of
k, l to extract expectation values of operators. If we add matter to the action via
the Laplacian then we will have a q-dependence as discussed. We should also in
the full theory integrate over the k0, l0 rather than treating them as constants as
we have above.

5. Conclusions

Section 1 was philosophical in nature as a brief introduction to a principle of
‘representation-theoretic self-duality’ as an ‘axiom of physics’[17, 22, 24] that has
motivated many of my works. We saw how this at an abstract level was one route
to the discovery of the ‘centre’ of a monoidal category, while as ‘quantum Born
reciprocity’ it led to the discovery of an early class of quantum groups. We also
explained how the big picture leads one to the quantum spacetime hypothesis.



ON THE EMERGENCE OF THE STRUCTURE OF PHYSICS 15

Sections 2 and 3 was a brief outline of a formulation of such quantum spacetimes
with curvature, using a bimodule approach developed mostly with Edwin Beggs[2,
3, 5, 4]. Section 4 then proceeded with a new application to a discrete model,
namely quantum Riemannian geometry on a square. Unlike lattice approximations
used in physics, we do not consider the model as an approximation but rather as
an exact finite geometry[23]. We found a 1-parameter family of quantum Levi-
Civita connections for every bidirectional metric and an Einstein-Hilbert action as
a measure of the energy in the gravitational field and independent of the connection
parameter.

We also found that the ‘generalised braiding’ σ[10, 29] emerging in our case from
nothing other than the axioms of quantum Riemannian geometry applied to a
square graph has a strong resemblance to the 8-vertex solutions[1] of the Yang-
Baxter equations in the theory of quantum integrable systems. Our σ does not
obey the braid relations other than the trivial case (this is usually tied to flatness
of the connection[23]) but has a similar flavour.

Note that while I have focussed on my own path, reflected also in the bibliography,
there are by now many other works on quantum spacetime which I have not had
room to cover.
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