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General relativity predicts the existence of closed time-like curves, along which a material object
could travel back in time and interact with its past self. The natural question is whether this
possibility leads to inconsistencies: Could the object interact in such a way to prevent its own
time travel? If this is the case, self-consistency should forbid certain initial conditions from ever
happening, a possibility at odds with the local nature of dynamical laws. Here we consider the most
general deterministic dynamics connecting classical degrees of freedom defined on a set of bounded
space-time regions, requiring that it is compatible with arbitrary operations performed in the local
regions. We find that any such dynamics can be realised through reversible interactions. We further
find that consistency with local operations is compatible with non-trivial time travel: Three parties
can interact in such a way to be all both in the future and in the past of each other, while being free
to perform arbitrary local operations. We briefly discuss the quantum extension of the formalism.

INTRODUCTION

One of the most baffling aspects of general relativity
is that certain solutions to the Einstein equations con-
tain closed time-like curves (CTCs) [1-7], where an event
can be both in its own future and past. Although it is
not known whether CTCs are actually possible in our
universe Em}, their mere logical possibility poses the
challenge to understand what type of dynamics could be
expected in their presence.

The first systematic studies of the subject concentrated
on space-time geometries where CTCs only appear in the
future of some space-like surface lﬂ@] (Fig. Ma). Tt
is then meaningful to set initial conditions in the pre-
CTCs era and look for corresponding solutions to the
equations of motion. A prime case study is that of a
billiard ball thrown in the direction of a wormhole. The
trajectory is such that, if undisturbed, the ball will come
out the second mouth of the wormhole in the past and
kick its younger self off course, so it cannot reach the
wormhole and kick itself. Classical physics is clearly at
variance with such ‘inconsistent’ dynamics, so it seems
that certain initial conditions are simply impossible.

The surprising result is that, in fact, self-consistent
solutions exist for all cases studied. The ball does not
enter the wormhole undisturbed: It is kicked softly, it
comes out the wormhole at a slightly different angle than
expected and gives its younger self just the right soft
kick. Even including friction, exploding bombs, and the
like, solutions for any considered initial condition were
found [17, [18].

The existence of consistent solutions for every initial
condition can be seen as a ‘no new physics’ principle M]
After all, what would be the local mechanism preventing
an experimenter from launching a billiard ball at any

Figure 1. Wormhole space-time with closed time-like curves
(CTCs) |8,9]. (a) Events with equal proper times along the
world lines of the two mouths of the wormhole are identified.
Accelerating the right mouth produces time dilation, result-
ing in CTCs in the future of the surface S. An experimenter
acting in the past of S should be able to prepare arbitrary ini-
tial states on a space-like surface P. (b) An experimenter in a
localised region £, which does not contain but is traversed by
CTCs, should be able to perform arbitrary local operations.

desired angle? It is then natural to require such a condi-
tion to be extended to experimenters acting in the region
where CTCs are already present (Fig. [[D). Although in
such a region there are no sufficiently regular space-like
surfaces to set ‘global’ initial conditions, it should still be
possible for an experimenter to perform arbitrary actions
in a sufficiently localised region, as long as the region it-
self does not contain CTCs.

Here we pose the general question of whether CTCs
can be compatible with local operations in arbitrary
space-time regions. Rather than considering a specific
type of system (billiard balls, fields, etc.), we develop a
general framework to study the most general type of clas-
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Figure 2. (a) A deterministic local operation fr maps the
classical input state ir from the past boundary to the classical
output state or at the future boundary of a local region R.
(b) An ’output only’ region (source). (c) An ’input only’
region (sink).

sical, deterministic dynamics possible in the presence of
CTCs. We provide an example of reversible deterministic
dynamics where agents in three local regions can perform
arbitrary operations, send information to each other—so
they are effectively both in the future and in the past of
one another—and no contradiction ever arises.

The formalism developed here is a deterministic ver-
sion of the formalism of ‘classical correlations without
causal order’ [@], which in turn is the classical limit of
the quantum ‘process matrix’ formalism [20] (see also

Refs. [21-31]).

THE MODEL

The core assumption of our model is that any classi-
cal operation that is possible in an ordinary space-time
should also be possible in the presence of CTCs, as long
as the operation takes place in a localised region of space-
time that does not contain CTCs. We thus consider N
space-time regions (henceforth local regions) which, in-
dividually, cannot be distinguished from regions in or-
dinary, causal space-time. To simplify the analysis, we
restrict to local regions that have only space-like bound-
aries, which we decompose into a past boundary and a
future boundary. We assume that, for each local region,
any time-like curvd] that enters through the past (future)
boundary exits through the future (past) boundary, and
that the region contains no CTCs. We impose no restric-
tion on the space-time in which the regions are embedded,
except that it is a four-dimensional Lorentzian manifold
fixed independently of any dynamical degree of freedom
of interest. In fact, the formalism is largely independent
on any detail of the geometry, which possibly would im-
pose further constraints in a fully developed theory.

As we are interested in classical systems, we can as-
sign a classical state spaces Zr (input) and Op (out-
put) respectively to the past and future boundaries of
a local region R. States will be denoted as ip € Ig,

1 More rigorously, any reference to time-like curves should be re-
placed with causal curves, defined as either time-like or null. We
keep the reference to time-like curves in accordance to the use in
literature and to simplify the presentation.

or € Ogr. A deterministic local operation in the local re-
gion is described by a function fr from input to output
space (Fig. 2a). We denote by Dr := {fr:Zr — Ogr}
the set of all possible operations in region R. We
drop the index to refer to collections of objects for
all regions, as in i = {i1,...,in}, T = Iy X -+ X Ly,
D =D x---x Dy, etcld Local operations are not re-
quired to be reversible, i.e., the local functions fr need
not be invertible. This corresponds to the assumption
that the local experimenters and devices have the ability
to erase information by accessing some reservoir, not in-
cluded in the description of the physical degrees of free-
dom of interest. Furthermore, input and output state
spaces need not be isomorphic, as degrees of freedom may
be added or removed during the operation. We will also
consider the special case in which either input or output
state space is the empty set. An ‘output only’ region—
called a source—can be identified with a space-like region
on which an agent (acting somewhere in its past) can pre-
pare an arbitrary state (Fig. Rhl), while an ‘input only’
region—called a sink—can be identified with a space-like
region where an agent (somewhere in its future) can only
observe the state (Fig. 2d). Ordinary dynamics is con-
cerned with the evolution from a source (state prepara-
tion on a space-like surface) to a sink (state observation
on a space-like surface).

We want to define a generalised type of dynamics for
an arbitrary number of regions—in which arbitrary clas-
sical operations can be performed—possibly embedded
in a space-time with CTCs. The basic requirement of
such a model is that it must be able to predict the state
observed on the past boundary of each region, which in
general can depend on all local operations. (In a CTC-
free space-time, the input state on a space-like region
would only depend on operations in its past light-cone).
For a deterministic model, such a dependence is encoded
in a function w = {wy,...,wny} : D — 7 that determines
the state on the past boundary of each region as a func-
tion of all local operations. The function w represents
all the background information necessary to make pre-
dictions: the space-time geometry, the type of degrees of
freedom involved and the dynamical equations governing
them, possible additional boundary conditions, etc.

The only condition we are going to impose on w is a
weak form of locality. Locality implies that the observed
input states should not depend on the details of the local
operations but only on the output states on the future
boundaries of each region. Formally, this means that
there must exist a function w : O — Z such that the
following consistency condition holds:

w(f)=w(f(w(f) VfeD. (1)

2 Note that D is not the set of all functions Z — @, but rather of
those of the form f(i) = {f1(41),..., fn(in)}



We call w a process when condition () holds, and w a
process function.

By writing w(f) = i, we see that condition () implies
the following condition for w:

VfeD,3ieT suchthat wo f(i)=1. (2)

In other words, if w is a process function, then w o f has
a fixed point for every local operation f.

As it turns out, condition (2) is necessary and suffi-
cient, that is, a function w satisfying ([@2)) uniquely defines
a process. This is because of the uniqueness of the fixed
points:

Theorem 1 (Unique fixed points). Given a function
w : O = T that satisfies condition @), the fized point
of w o f is unique for every set of local operations

f=A{fi,....In} €D.

We prove this theorem in the appendix. As opposed
to the analogous fixed-point theorem proved within the
probabilistic version of the formalism @], our proof also
holds for continuous and not only discrete variables.

Because of Theorem [ every function w : O — 7
that satisfies condition (2] defines a unique function
w: D — I, with w(f) equal to the unique fixed point
of wo f. It is furthermore easy to see that condition (2))
implies the consistency condition (Il). Therefore, we can
identify a process with its process function w. The in-
terpretation is that dynamics in the presence of CTCs
is described by a function that maps the states on the
future boundaries of all regions to states on the past
boundaries of each region. Condition (2) imposes that
such a dynamics is compatible with arbitrary operations
in each region; Theorem [ further guarantees that speci-
fying the operations performed in each region is sufficient
to predict a unique state on each of the past boundaries.

REVERSIBILITY

Reversible dynamics is associated with invertible func-
tions, such that the role of ‘preparation’ and ‘measure-
ment’ can be swapped. Not all process functions are
invertible; for example, the process function for a single
‘sink’ region (with trivial output) reduces to the spec-
ification of a state on that region and it is clearly not
invertible. However, such a process function can be ex-
tended to a reversible one by introducing a ‘source’ region
(with trivial input), in the past of the sink, so that the
state on the sink can now be calculated as a function of
the state prepared by the source, and this function can
be invertible.

We can see that every process function can be extended
to an invertible one (Fig.[]), as expressed by the following
theorem, proved in the appendix.
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Figure 3. Reversible extension of a process function via the
introduction of a source ® and a sink ®.

Theorem 2 (Reversibility). For every function
w : O — T that satisfies condition [2l), there exists an in-
vertible function w' : O x Og — I x Ig, where Og is the
output space of a region with trivial input (the ‘source’)
and Lg is the input space of a region with trivial output
(the ‘sink’ ), such that w' satisfies condition ([2) and there
ezists og € Og such that w' (0,06g) = {w(o),gg(0)} for
some invertible function gg .

This theorem shows that all process functions can be
interpreted in terms of reversible dynamics: The source
describes a space-like region ‘in the past’ of all other local
regions, while the sink is a space-like region ‘in the future’
of all regions. The process determines the state of the
sink as well as the states on the past boundaries of all
local regions as a function of the states of the outputs
of all regions and of the source. Because it is reversible,
the process can be read in the opposite direction: Given
the states on the sink and on the past boundaries of all
local regions, it allows calculating the state on all future
local boundaries, as well as the state of the source. The
time-reversed process is then compatible with arbitrary
reversed local operations that map local outputs to local
inputs. In Ref. [lﬁ]7 it is further proven that the presence
of a source and a sink is necessary in order to define a
reversible process.

CHARACTERIZATION OF PROCESS
FUNCTIONS

Simple examples of process functions are causally or-
dered omnes, namely those compatible with CTC-free
dynamics. For example, for laboratories R,S,T,...
a process function w = {wg,ws,wr,...} compatible
with the causal order R < S < T < is given
by wgr(or,0s) =ir (constant), ws(or,o0s) = ws(or),
wr(or,0s,0r) = ws(or,0s), etc. It is easy to see that



condition (2] is satisfied in such cases, i.e., a fixed point
exists for every choice of local operations (it is given by
ir = iR, is = ws o fr(ir), and so on). The question we
are concerned with is whether more general processes are
possible, once CTCs are allowed. To answer this ques-
tion, we will first give a complete characterisation of all
process functions for up to three regions. The detailed
proofs can be found in the appendix.

For a single local region, a process function has to be
a constant: w(o) = i Yo. Thus, an observer acting in
a localised region cannot send information back to her-
self; her observations are fully compatible with her region
being embedded in a CTC-free space-time. A direct con-
sequence is that, for an arbitrary number of regions, the
input of each region R cannot depend on that region’s
output:

wr(0) = wr(o\gr),

where o\ is the set of outputs of all regions except R.
Bipartite process functions are characterized by the fol-
lowing conditions:

(i) wr(or,0s) = wr(os),
(ii) ws(or,0s) = ws(or),
(iii) at least one of wg(og) or wg(or) is constant.

In other words, deterministic process functions can only
allow one-way signaling. Again, two observers in distinct
localised regions would not be able to verify the presence
of CTCs outside their regions. (Remarkably, this is not
true for the quantum version of the framework [@])

Consider now three regions R, S, T. For simplicity, we
denote input and output variablesasa € A, b€ B,ceC
and x € X, y € ), z € Z, respectively. A process func-
tion has then three component functions: a = wg(y, 2),
b =ws(x,2), c = wr(x,y) (where we used the fact that
the input of each region cannot depend on its own out-
put, as seen above). We give a simple characterization of
process functions as functions where the output variable
of one region ‘switches’ the direction of causal influence
between the two other parties.

Theorem 3 (Tripartite process function). Three func-
tions wr : YXZ -+ A, wg : XxZ — B, wr: Xx)Y —C
define a process function if and only if:

1. for every z € Z, w® := {wg(-,2),ws(-,2)} is a
bipartite process function;

2. for every x € X, w* = {wg(z,-),wr(zr,)} is a
bipartite process function;

3. fOT every y € y; wY = {wR(ya')awT('ay)} s a
bipartite process function.

Recall that a bipartite process function is at most one-
way signaling. The properties [ Bl Bl above can thus be
interpreted as a one-way conditional-signaling condition
for w, in the sense that, for every fixed value for the
outcome of one of the regions, only one-way signaling is
possible between the other two. Theorem [Blshows that w
is a tripartite process function if and only if it satisfies
one-way conditional signaling. It is an open question
whether a similar condition characterises arbitrary mul-
tipartite process functions.

EXAMPLES

Given the above characterisation, it is simple to find
process functions that cannot arise in ordinary, causal
space time. Here we present an example, based on a
similar process for ‘bits,” first found by Aratijo and Feix
and published in Ref. IE] Consider a tripartite scenario
as above, where x,y, z,a,b,c € R. We define w: R3 —
R? as

(x,y,2) — (a,b,¢c), with (3)
a=0(-y)o(z),
b=0(-2)0(z),
c=0(-2)0(y),

where ©(t) = 1 for ¢t > 0, ©(t) = 0 for ¢ < 0. In this
process, the sign of the output of each region determines
the direction of signaling between the other two. For
example, for y < 0 we have a = ©(z) (T can signal to R)
but ¢ = 0 (R cannot signal to T), while for y > 0 the
opposite direction of signaling holds (and similarly for
the other pairs of regions).

By Theorem[2] we can extend w to a reversible process
function w’. To this end, we introduce source and sink
spaces, both isomorphic to R3, with variables eg, e1, €2
and sg, s1, S2, respectively. The extended process func-
tion w’ : R® — RS is given by

(x,y, 2z, €0, €1,€2) — (a,b, ¢, sg, $1,82), with
a=0(-y)0(z) + o,
b=0(—2)0(z)+ e,
c= 6(7$)®(y) +e2,

So =X,
S1=Y,
So = Z.

Given the process defined by the function above, three
observers in regions R,S,T receive each a system from
the respective past boundary and can perform arbitrary
deterministic operations on it, sending the result out the
respective future boundary. The outgoing systems then
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Figure 4. The output of three local regions fall into a CTC
where they undergo a joint interaction with the state prepared
by the source. The CTC outputs the input states to the three
local regions and the sink.

\5/

enter the CTC region and undergo some reversible trans-
formation, interacting with each other and with the out-
put of the source ®, eventually determining the state
in the past of each region and of the sink © (Fig. [).
Crucially, the input state of each region depends non-
trivially on the output state of the other two, thus each
observer can communicate to every other. Thus, we have
a situation where three observers can experimentally ver-
ify to be each both in the past and in the future of each
other, they can perform arbitrary local operations, and
no contradiction ever emerges.

QUANTUM CLOSED TIME-LIKE CURVES

The above framework of classical, reversible dynamics
can be extended to quantum systems. It is then interest-
ing to compare the resulting model with existing quan-
tum models for CTCs. We briefly present here the main
results, and refer to Ref. [@] for a detailed analysis.

A classical system can be ‘quantised’ by associating
to each state a distinct orthogonal state in a Hilbert
space, with quantum superpositions represented by linear
combinations. Thus, in the quantum version of the for-
malism, the boundary of each region is associated with
a Hilbert space. A classical, reversible process defines
a permutation of basis elements and can be extended
by linearity to the entire Hilbert space, defining a uni-
tary map from the future to the past boundaries. It
is not a priori guaranteed that such a unitary defines
a valid quantum process: Observers in the local regions
should now be able to perform arbitrary quantum oper-
ations. The resulting constraints on quantum processes
can be conveniently formalised using the process matriz
formalism of Ref. @] Using the characterisation of tri-

5

partite quantum processes of Ref. [@], it is proven in
Ref. lﬁ] that the quantisation of a finite-dimensional ver-
sion of Eq. (B) indeed defines a walid unitary quantum
process.

The two most studied models of quantum sys-
tems in the presence of CTCs are the so-called post-
selected CTC model (P-CTC) [34-39] and the Deutsch
model (D-CTC) [40-l44]. Both models assume that CTCs
are only present in a limited portion of space-time. At
some time before the CTCs, a chronology-respecting
(CR) system is prepared. Then, the CR system inter-
acts with a chronology-violating (CV) one, which travels
along a CTC. The models prescribe how to calculate the
state of the CR system obtained after interaction with
the CV one. Within such frameworks, we can model the
multi-region scenarios considered here by introducing a
CR and a CV systems per region, and interpreting the
interaction between each pair as our local operation in
the corresponding local region. The CV systems then in-
teract according to the unitary process and are later sent
back in time, with the backward evolution described ac-
cording to the specific model. We can then compare the
evolution of the CV system predicted by each model.

As it turns out, the P-CTC model gives the same pre-
dictions as ours for any valid unitary process. The crucial
difference is that the P-CTC model allows the CV sys-
tem to evolve according to arbitrary unitaries, generically
resulting in a non-linear evolution for the CR system
and in a restriction on the local operations that can be
performed. By contrast, our model imposes additional
constraints, which effectively enforce the CR system to
evolve linearly. The D-CTC model, on the other hand,
allows arbitrary operations to be performed locally. How-
ever, it predicts non-linear evolution of the CR system,
even when the CV system evolves according to a process
subject to the constraints introduced here HE]

CONCLUSIONS

We developed a framework for deterministic dynamics
in the presence of CTCs. The framework extends the or-
dinary concept of time evolution—where a future state
is calculated as a function of a past one—to the more
general scenario of a number of space-time region, where
the state on the past of each region is calculated as a
function of the state in the future of all region. Insisting
that arbitrary operations must be possible in each region
imposes strong constraints on the allowed dynamics. Our
main result is that it is possible to have reversible dynam-
ics, compatible with arbitrary local operations, where the
state observed in each region depends non-trivially on the
states prepared in all other regions. Because such a func-
tional relation is reversible, it is always possible to model
it using some physical system subject to local dynami-
cal laws, e.g., in terms of a system of bouncing billiard



balls [46].

It is worth noting that, in general, there might be mul-
tiple ways to implement a reversible function in terms of
physical interactions. This agrees with the classic CTC
results E, , ]: The specification of boundary condi-
tions in the local regions does not fix uniquely the dynam-
ics in the exterior region. However, our model guarantees
that, whenever an observation is made, a unique state is
observed.

The main message of our result is that CTCs are not
necessarily in conflict with local physics, nor with the
‘free will” associated to the possibility of performing arbi-
trary operations. Importantly, quantum mechanics plays
no particular role in the definition of the formalism, al-
though a natural quantum extension is possible.
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Properties of process functions

Here we derive a set of properties of process functions,
which will be needed in later proofs. We will use the term
process function to denote any function w that satisfies
condition (Z), namely that a fixed point of w o f exists
for each f € D. This condition is equivalent to the main-
text definition of process function, Eq. (IJ), thanks to
Theorem [1 proved in the next section.

Let us first fix some notation. As in the main text,
an object without index refers to a collection of ob-
jects: T = 17 X -+ X Ipn, etc. We will also use the
notation I\R = Il X . ..IR,1 X IR+1 X IN, i\R =
{i1,..-iR-1,1R+1,---,iN}, elc., to denote collections
with the component R removed. Appropriate reordering
will be understood when joining variables, for example in
expressions as i = ig Ui\g, f(i) = f(ir,i\r), and so on.

The first property we need is a necessary condition for
process functions:

Lemma 1. For a process function w, each component
wr : O — Ir must be constant over Or: wr(o) =
wr(o\r) for R=1,...,N.

Proof. For some set of local operations f =
{fr:Zr— OR}gzl and some fixed E\R, let us de-
fine hr : Ir — IR as hR(’iR) = WR © f (iR;g\R)- Let us
assume that hp is not a constant, namely there exist i}%,
i% such that al, = hr(ik) # hr(i%) = a%. We define
then the function gr : Zr — Zg as

gR(a}%) = ZQR’

gr(ir) =ix Vigr # ag.

It is then easy to see that hr o gr has no fixed point.
Indeed, hr o gr(ak) = hr(i%) = a% # ak, while for any
ir # ak, hrogr(ir) = hr(i}) = ak # ir. Thus, if wgof
is not a constant over Zg, then wr o (f o gr) has no fixed
point and wg is not a component of a process function.
As this must hold for every set of local operations f and
every %\ Rr, we conclude that each component wgr of a
process function must be a constant over Og. (I

Lemma [ immediately implies a characterisation of
single-region process functions:

Corollary 1. Given a function w: O — I, wo f admits
a fized point for every f : T — O if and only if w is a
constant.

Proof. As a consequence of Lemmalll every single-partite
process function must be a constant. On the other hand,
for a constant function w, i = w(o) is a fixed point of
w o f for every f, thus every constant w is a process
function. O

Intuitively, if we fix the operation performed in one
of the N-th regions, we should obtain a process for the

remaining N — 1 regions. This intuition will also play
an important role in the proofs below. The first step to
formalise such an intuition is the following definition:

Definition 1. Consider a function w: O — I, such
that, for each region R = 1,...,N, wr(0) = wr(o\r)-
For a given local operation fr:Zr — Opr, we define the
reduced function w/r : O\r — L\r on the remaining
regions by composing w with fr:

wif (o\r) == ws (o, fr (wr (0\r))) , S#R.  (4)
We will need the following fact:

Lemma 2. Ifi €T is a fized point of wo f, then i\g is
a fized point of wir o AR-

Proof. Since i is a fixed point of w o f, we have igp =
wr(f\r(i\r)). Then, for S # R, Eq. @) implies

ng o f\r (i\g) = ws (Ar(i\gr), fr(ir))
= wWg O f(’L) = Z.S-

We can now prove two crucial properties.

Lemma 3. Given a function w: O — I, such that, for
each region R=1,...,N, wr(0o) = wr(o\r), we have

(i) If w is a process function, then w'? is also a process
function for every region R and operation fg.

(i) If there exists a region R such that, for every local
operation fgr, wl? is a process function, then w is
also a process function.

Proof. Point (i) is a direct consequence of Lemma 2} For
every set of operations f\g, a fixed point of ng o f\ris
given by i\ g, where i is a fixed point of f = fr U f\g-
To prove (ii), we can set R = 1 without loss of gen-
erality. We then have to prove that, if w/t is a process
function for every fi, it follows that w is also a process
function, i.e., we have to find a fixed point of w o f for
arbitrary f. As the reduced function wf' is a process
function by assumption, there exists a fixed point i\; of
wlt o A1- Choosing i1 = w1y o fi; (i\l) as input state for
region 1, we see that the i :=i; Ui\, is a fixed point of
wo f. Indeed this is true, by definition of i1, for the com-
ponent wi. For S > 1, the definition of reduced function,

Eq. @), gives
wg o f (i) =ws (f1(i1), A1 (in1))
— wg} o f\l (i\l) = i\l )

where in the last equality we used the fact that 4\; is the
fixed point of wgl o fi1. O

Following the result of this lemma, we can call reduced
process function the reduced function of a process.



Uniqueness of the fixed point

Here we prove Theorem [0l namely the following N-
dependent proposition.

P[N]: Let w : O — T be such that, for every collection
of functions f = {f1,...,fn}, fr : Zr — Og, there
exists at least one fixed point i € T, wo f(i) = i. Then,
the fized point is unique for each f.

We prove this by induction, namely we first prove P[1]
and then the implication P[N — 1] = P[N] for N > 1.

P[1] is a simple consequence of Corollary[lt wo f can
have a fixed point for every f only if w is constant, w(o) =
i for every o. Then, i is the unique fixed point of w o f
for every f.

For N > 1, let us assume P[N] is false and let
a={ay,...,an}, b={b1,...,bx} be two distinct fixed
points of wo f, where w is an N-partite process function.
Without loss of generality, we can assume that they dif-
fer in the first component, a; # b;. This means that the
reduced function w/~ o fin has two distinct fixed point,
a\n 7 b\n. But this is in contradiction with P[N — 1],
because, according to point (i) of Lemma [B w/¥ is an
N — 1-partite process function and thus has a single fixed
point for each f\ . This concludes the proof.

Reversibility

Here we prove that every process function can be ex-
tended to an invertible process function (Theorem [2]).

Proof. Given a process function w : O — Z over N local
regions, we add two extra regions, ® and (), a source
and a sink, respectively. We take the output space of
the source to be isomorphic with the entire input space
of the N regions, e € Og = I, while the input space of
the sink is isomorphic to the output space of the regions,
s €1g =2 0. Foreach R=1,...,N and each er € I,
we introduce a function TER : Ir — IR such that there
exists ér for which TER (ir) = igr and, for each ip € Zg,
Tg)(ipb) is invertible. We can take T} (ir) = ig +ep for
concreteness]. We then extend the process function w :
O — T to a function v’ = (wh,w?): O x Og — I x Lg,
defined as

wg(0,€) = THR owr(0) = wgr(o) + er
w%(0,€) = og.
The function w’ is invertible, with the inverse given by
ir = wr(S) — er, og = sg. To show that it is a process

function, we have to prove that its composition with ar-
bitrary local operations has a fixed point, condition (2]).

3 If |Zr| = cr < oo, we can use T;R = ip @ er, where @ is
addition modulo cg.

Note that this condition is equivalent to the existence of
output fixed points: f'ow’(0’) = 0, o' = (0,€). Since lo-
cal operations for ® are functions @ — Og, where &
is the empty set, they can be identified with a state
f(@) = e € Og, interpreted as ‘state preparation.” The
fixed-point condition for the source components is then
trivially satisfied by any e € Og. As the sink has no
output space, the fixed-point condition reduces to

or = fro TR owg(o),

which should be satisfied for every f € D and e € Og.
This is true because fr o TR" is a local operation and,
as w is a process function, a fixed point 0o € O exists for
every local operation. O

Characterizations

Here we prove the characterisations of process func-
tions for up to three local regions. The single-region
characterisation is given by Corollary[I} all and only con-
stants are single-region process functions.

Two regions

We relabel input and output of region R as
ir —>a €A, o = x € X, respectively, and inputs and
outputs of region S as ig — b € B, og — y € Y. For
a bipartite process function w = {wg,wg}, the single-
party characterisation implies that wg(z,y) = wgr(y),
wg(x,y) = wg(z). It is furthermore clear that, if at least
one of the two components of a function w = {wg,ws}
is a constant, then w is a process function. (Given
wr(y) = ag, the fixed point ¢ = {a, b} is given by a = a,
b=ws(fr(ao)).)

It remains to prove that if w is a process function, then
at least one of the two components is constant.

Proof. The consistency condition (2]) says that, for every
local operation fr, fs, there exists a € A, b € B such
that

wr (fs(b) = a, ws (fr(a)) =b.

By plugging the second equation into the first we obtain
wro fsowgo frla) =a.

The single-party characterisation tells us that wgro fsowg

must be a constant, and this must be true for all fg. This

is only possible if one of the two functions, wgr, wg, is
constant. (|



Three regions

We prove here Theorem [3, which characterises tripar-
tite process functions as those with one-way conditional
signalling.

Proof. As in the main text, we consider three regions R,
S, T, with input states a € A, b € B, ¢ € C and output
states x € X', y € Y, z € Z. The function w* : X x )Y —
A x B, defined as w*(x,y) = {wr(y,2),ws(x,z)}, is
the reduced function obtained from w by fixing the local
operation of T' to be the constant function with output
z. If w is a process function, by point (i) of Lemma [3]
w? is a bipartite process function, and similarly for the
analogously defined w® and wY. This proves the ‘easy’
direction of the theorem.

We want to prove the converse: If w”, wY, and w?
are bipartite process functions for arbitrary z, ¥, z, then
w is also a process function. Note that we cannot ap-
ply point (i) of Lemma [3 directly, because that requires
knowing that the reduced function is a process function
for an arbitrary local operation, not just for the constant
operation.

By assumption, we know that w? is a bipartite process
function. This means that, for every given z, w® is one-
way signalling. In other words, at least one of the two
components, w = wg(-, z) or wi = wg(-, 2), must be a
constant. We denote Zr C Z the subset of outputs of
T for which w¥ is constant, and Zg C Z the subset for
which w% is constant. Because at least one of the two
components is constant, we have Z = Zr U Zg. (The
two subsets can have non-null intersection.) In a similar
way, we write X = Xs UAX7 and YV = YrU V7, where wg
is constant for x € Xg, and so on. Thus we have

wr(Yr, z) = Wr(Y, 2R) = a0
Vyr € YR,y € V,2r € ZRr,2 € Z;
ws(zs,2) = ws(z,z5) = by
Vg € Xg,x € X, 25 € Zg,2 € Z;
'UJT(.’L'T,:U) = ’LUT(.’L',yT) = Co
Ver € Xr,y € V,yr € Vr,x € X.
Now consider an arbitrary local operation fr : A — X.
We want to show that the reduced function w/%, defined

as in Eq. ({), is a bipartite process function. To this end,
we need to prove:

() wg(y,2) = wf (2),

(i) wi™(y,2) = wi(y)
(iii) At least one of the two components is constant.

Let us start with point (i).
ng(yaZS) = by, independently of y.

For zg € Zg, we have
Let us then

consider zp € Zgi. By definition, ng(y,zR) =

ws (frowgr(y,zr),zr). But wr(y,zr) = ag for zr €
Zp, thus ng(y,zR) = wg (fr(ao), zr), which is again
independent of y. By a similar argument, w%’* (y,2) is
independent of z.

We are thus left with proving point (iii). We shall
prove the equivalent implications

ng not constant = w%R constant,

wép‘ not constant = ng constant.

Say that wgp‘ is not constant. Then, there is a zp €
Zr such that wé’* (zr) # bo. As we have seen above,
for zp € Zg, wéR(zR) = wg (fr(ao), zr), so we need
frlap) ¢ Xs to have ng (zr) # bp. This means that
fr(ag) € Xr. But then, for ygr € Vg we have wéR (yr) =

wr (fr(ao),yr) = co, and also wéR(yT) = ¢qg for yr €
Yr. This means that w%’* is constant.

To recapitulate, we have proven that, if w”, wY, w
are bipartite process functions for arbitrary x € X, y €
Y, z € Z (as per hypothesis), then w/® is a bipartite
process function for an arbitrary operation fr. Point (i)
of Lemma [J finally implies that w is a process function,
concluding the proof. [l
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