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1 Preface

This work constitutes the free textbook project I initiated towards the end of Summer 2015,
while preparing for the Fall 2015 Analytical Methods in Physics course I taught to upper level
(mostly 2nd and 3rd year) undergraduates here at the University of Minnesota Duluth. During
Fall 2017, I taught the graduate-level Differential Geometry and Physics in Curved Spacetimes
here at National Central University, Taiwan; this has allowed me to further expand the text.

I assumed that the reader has taken the first three semesters of calculus, i.e., up to multi-
variable calculus, as well as a first course in Linear Algebra and ordinary differential equations.
(These are typical prerequisites for the Physics major within the US college curriculum.) My
primary goal was to impart a good working knowledge of the mathematical tools that underlie
fundamental physics – quantum mechanics and electromagnetism, in particular. This meant that
Linear Algebra in its abstract formulation had to take a central role in these notes.1 To this end,
I first reviewed complex numbers and matrix algebra. The middle chapters cover calculus beyond
the first three semesters: complex analysis and special/approximation/asymptotic methods. The
latter, I feel, is not taught widely enough in the undergraduate setting. The final chapter is meant
to give a solid introduction to the topic of linear partial differential equations (PDEs), which
is crucial to the study of electromagnetism, linearized gravitation and quantum mechanics/field
theory. But before tackling PDEs, I feel that having a good grounding in the basic elements of
differential geometry not only helps streamlines one’s fluency in multi-variable calculus; it also
provides a stepping stone to the discussion of curved spacetime wave equations.

Some of the other distinctive features of this free textbook project are as follows.
Index notation and Einstein summation convention is widely used throughout the physics

literature, so I have not shied away from introducing it early on, starting in §(3) on matrix
algebra. In a similar spirit, I have phrased the abstract formulation of Linear Algebra in §(4)
entirely in terms of P.A.M. Dirac’s bra-ket notation. When discussing inner products, I do make
a brief comparison of Dirac’s notation against the one commonly found in math textbooks.

I made no pretense at making the material mathematically rigorous, but I strived to make
the flow coherent, so that the reader comes away with a firm conceptual grasp of the overall
structure of each major topic. For instance, while the full fledged study of continuous (as opposed
to discrete) vector spaces can take up a whole math class of its own, I feel the physicist should
be exposed to it right after learning the discrete case. For, the basics are not only accessible, the
Fourier transform is in fact a physically important application of the continuous space spanned by
the position eigenkets {|~x〉}. One key difference between Hermitian operators in discrete versus
continuous vector spaces is the need to impose appropriate boundary conditions in the latter;
this is highlighted in the Linear Algebra chapter as a prelude to the PDE chapter §(9), where
the Laplacian and its spectrum plays a significant role. Additionally, while the Linear Algebra
chapter was heavily inspired by the first chapter of Sakurai’s Modern Quantum Mechanics, I
have taken effort to emphasize that quantum mechanics is merely a very important application
of the framework; for e.g., even the famous commutation relation [X i, Pj ] = iδij is not necessarily
a quantum mechanical statement. This emphasis is based on the belief that the power of a given

1That the textbook originally assigned for this course relegated the axioms of Linear Algebra towards the
very end of the discussion was one major reason why I decided to write these notes. This same book also cost
nearly two hundred (US) dollars – a fine example of exorbitant textbook prices these days – so I am glad I saved
my students quite a bit of their educational expenses that semester.
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mathematical tool is very much tied to its versatility – this issue arises again in the JWKB
discussion within §(6), where I highlight it is not merely some “semi-classical” limit of quantum
mechanical problems, but really a general technique for solving differential equations.

Much of §(5) is a standard introduction to calculus on the complex plane and the theory
of complex analytic functions. However, the Fourier transform application section gave me
the chance to introduce the concept of the Green’s function; specifically, that of the ordinary
differential equation describing the damped harmonic oscillator. This (retarded) Green’s function
can be computed via the theory of residues – and through its key role in the initial value
formulation of the ODE solution, allows the two linearly independent solutions to the associated
homogeneous equation to be obtained for any value of the damping parameter.

Differential geometry may appear to be an advanced topic to many, but it really is not.
From a practical standpoint, it cannot be overemphasized that most vector calculus operations
can be readily carried out and the curved space(time) Laplacian/wave operator computed once
the relevant metric is specified explicitly. I wrote much of §(7) in this “practical physicist”
spirit. Although it deals primarily with curved spaces, teaching Physics in Curved Spacetimes
during Fall 2017 at National Central University, Taiwan, gave me the opportunity to add its
curved spacetime sequel, §(8), where I elaborated upon geometric concepts – the emergence of
the Riemann tensor from parallel transporting a vector around an infinitesimal parallelogram,
for instance – deliberately glossed over in §(7). It is my hope that §(7) and §(8) can be used to
build the differential geometric tools one could then employ to understand General Relativity,
Einstein’s field equations for gravitation.

In §(9) on PDEs, I begin with the Poisson equation in curved space, followed by the enu-
meration of the eigensystem of the Laplacian in different flat spaces. By imposing Dirichlet or
periodic boundary conditions for the most part, I view the development there as the culmination
of the Linear Algebra of continuous spaces. The spectrum of the Laplacian also finds important
applications in the solution of the heat and wave equations. I have deliberately discussed the
heat instead of the Schrödinger equation because the two are similar enough, I hope when the
reader learns about the latter in her/his quantum mechanics course, it will only serve to en-
rich her/his understanding when she/he compares it with the discourse here. Finally, the wave
equation in Minkowski spacetime – the basis of electromagnetism and linearized gravitation – is
discussed from both the position/real and Fourier/reciprocal space perspectives. The retarded
Green’s function plays a central role here, and I spend significant effort exploring different means
of computing it. The tail effect is also highlighted there: classical waves associated with massless
particles transmit physical information within the null cone in (1 + 1)D and all odd dimensions.
Wave solutions are examined from different perspectives: in real/position space; in frequency
space; in the non-relativistic/static limits; and with the multipole-expansion employed to extract
leading order features. The final section contains a brief introduction to the variational principle
for the classical field theories of the Poisson and wave equations.

Finally, I have interspersed problems throughout each chapter because this is how I personally
like to engage with new material – read and “doodle” along the way, to make sure I am properly
following the details. My hope is that these notes are concise but accessible enough that anyone
can work through both the main text as well as the problems along the way; and discover they
have indeed acquired a new set of mathematical tools to tackle physical problems.

One glaring omission is the subject of Group Theory. It can easily take up a whole course
of its own, but I have tried to sprinkle problems and a discussion or two throughout these notes
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that allude to it. By making this material available online, I view it as an ongoing project:
I plan to update and add new material whenever time permits, so Group Theory, as well as
illustrations/figures accompanying the main text, may show up at some point down the road.
The most updated version can be found at the following URL:

http://www.stargazing.net/yizen/AnalyticalMethods_YZChu.pdf

I would very much welcome suggestions, questions, comments, error reports, etc.; please feel free
to contact me at yizen [dot] chu @ gmail [dot] com.

– Yi-Zen Chu
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2 Complex Numbers and Functions

2The motivational introduction to complex numbers, in particular the number i,3 is the solution
to the equation

i2 = −1. (2.0.1)

That is, “what’s the square root of −1?” For us, we will simply take eq. (2.0.1) as the defining
equation for the algebra obeyed by i. A general complex number z can then be expressed as

z = x+ iy (2.0.2)

where x and y are real numbers. The x is called the real part (≡ Re(z)) and y the imaginary
part of z (≡ Im(z)).

Geometrically speaking z is a vector (x, y) on the 2-dimensional plane spanned by the
real axis (the x part of z) and the imaginary axis (the iy part of z). Moreover, you may recall
from (perhaps) multi-variable calculus, that if r is the distance between the origin and the point
(x, y) and φ is the angle between the vector joining (0, 0) to (x, y) and the positive horizontal
axis – then

(x, y) = (r cosφ, r sinφ). (2.0.3)

Therefore a complex number must be expressible as

z = x+ iy = r(cosφ+ i sinφ). (2.0.4)

This actually takes a compact form using the exponential:

z = x+ iy = r(cosφ+ i sin φ) = reiφ, r ≥ 0, 0 ≤ φ < 2π. (2.0.5)

Some words on notation. The distance r between (0, 0) and (x, y) in the complex number context
is written as an absolute value, i.e.,

|z| = |x+ iy| = r =
√
x2 + y2, (2.0.6)

where the final equality follows from Pythagoras’ Theorem. The angle φ is denoted as

arg(z) = arg(reiφ) = φ. (2.0.7)

The symbol C is often used to represent the 2D space of complex numbers.

z = |z|eiarg(z) ∈ C. (2.0.8)

Problem 2.1. Euler’s formula. Assuming exp z can be defined through its Taylor series
for any complex z, prove by Taylor expansion and eq. (2.0.1) that

eiφ = cos(φ) + i sin(φ), φ ∈ R. (2.0.9)

2Some of the material in this section is based on James Nearing’s Mathematical Tools for Physics.
3Engineers use j.
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Arithmetic Addition and subtraction of complex numbers take place component-by-
component, just like adding/subtracting 2D real vectors; for example, if

z1 = x1 + iy1 and z2 = x2 + iy2, (2.0.10)

then

z1 ± z2 = (x1 ± x2) + i(y1 ± y2). (2.0.11)

Multiplication is more easily done in polar coordinates: if z1 = r1e
iφ1 and z2 = r2e

iφ2 , their
product amounts to adding their phases and multiplying their radii, namely

z1z2 = r1r2e
i(φ1+φ2). (2.0.12)

To summarize:

Complex numbers {z = x+iy = reiφ|x, y ∈ R; r ≥ 0, φ ∈ R} are 2D real vectors as
far as addition/subtraction goes – Cartesian coordinates are useful here (cf. (2.0.11)).
It is their multiplication that the additional ingredient/algebra i2 ≡ −1 comes into
play. In particular, using polar coordinates to multiply two complex numbers (cf.
(2.0.12)) allows us to see the result is a combination of a re-scaling of their radii plus
a rotation.

Problem 2.2. If z = x+ iy what is z2 in terms of x and y?

Problem 2.3. Explain why multiplying a complex number z = x + iy by i amounts to
rotating the vector (x, y) on the complex plane counter-clockwise by π/2. Hint: first write i in
polar coordinates.

Problem 2.4. Describe the points on the complex z-plane satisfying |z − z0| < R, where
z0 is some fixed complex number and R > 0 is a real number.

Problem 2.5. Use the polar form of the complex number to proof that multiplication of
complex numbers is associative, i.e., z1z2z3 = z1(z2z3) = (z1z2)z3.

Complex conjugation Taking the complex conjugate of z = x+ iy means we flip the sign
of its imaginary part, i.e.,

z∗ = x− iy; (2.0.13)

it is also denoted as z̄. In polar coordinates, if z = reiφ = r(cosφ + i sinφ) then z∗ = re−iφ

because

e−iφ = cos(−φ) + i sin(−φ) = cosφ− i sinφ. (2.0.14)

The sin φ→ − sin φ is what brings us from x+ iy to x− iy. Now

z∗z = zz∗ = (x+ iy)(x− iy) = x2 + y2 = |z|2. (2.0.15)

When we take the ratio of complex numbers, it is possible to ensure that the imaginary number
i appears only in the numerator, by multiplying the numerator and denominator by the complex
conjugate of the denominator. For x, y, a and b all real,

x+ iy

a+ ib
=

(a− ib)(x+ iy)

a2 + b2
=

(ax+ by) + i(ay − bx)

a2 + b2
. (2.0.16)
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Problem 2.6. Is (z1z2)
∗ = z∗1z

∗
2 , i.e., is the complex conjugate of the product of 2 complex

numbers equal to the product of their complex conjugates? What about (z1/z2)
∗ = z∗1/z

∗
2? Is

|z1z2| = |z1||z2|? What about |z1/z2| = |z1|/|z2|? Also show that arg(z1 · z2) = arg(z1) + arg(z2).
Strictly speaking, arg(z) is well defined only up to an additive multiple of 2π. Can you explain
why? Hint: polar coordinates are very useful in this problem.

Problem 2.7. Show that z is real if and only if z = z∗. Show that z is purely imaginary
if and only if z = −z∗. Show that z + z∗ = 2Re(z) and z − z∗ = 2iIm(z). Hint: use Cartesian
coordinates.

Problem 2.8. Prove that the roots of a polynomial with real coefficients

PN(z) ≡ c0 + c1z + c2z
2 + · · ·+ cNz

N , {ci ∈ R}, (2.0.17)

come in complex conjugate pairs; i.e., if z is a root then so is z∗.

Trigonometric, hyperbolic and exponential functions Complex numbers allow us to
connect trigonometric, hyperbolic and exponential (exp) functions. Start from

e±iφ = cosφ± i sinφ. (2.0.18)

These two equations can be added and subtracted to yield

cos(z) =
eiz + e−iz

2
, sin(z) =

eiz − e−iz

2i
, tan(z) =

sin(z)

cos(z)
. (2.0.19)

We have made the replacement φ → z. This change is cosmetic if 0 ≤ z < 2π, but we can in
fact now use eq. (2.0.19) to define the trigonometric functions in terms of the exp function for
any complex z.

Trigonometric identities can be readily obtained from their exponential definitions. For
example, the addition formulas would now begin from

ei(θ1+θ2) = eiθ1eiθ2. (2.0.20)

Applying Euler’s formula (eq. (2.0.9)) on both sides,

cos(θ1 + θ2) + i sin(θ1 + θ2) = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2) (2.0.21)

= (cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + sin θ2 cos θ1).

If we suppose θ1,2 are real angles, equating the real and imaginary parts of the left-hand-side
and the last line tell us

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2, (2.0.22)

sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ2 cos θ1. (2.0.23)

Problem 2.9. You are probably familiar with the hyperbolic functions, now defined as

cosh(z) =
ez + e−z

2
, sinh(z) =

ez − e−z

2
, tanh(z) =

sinh(z)

cosh(z)
, (2.0.24)

for any complex z. Show that

cosh(iz) = cos(z), sinh(iz) = i sin(z), cos(iz) = cosh(z), sin(iz) = i sinh(z). (2.0.25)
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Problem 2.10. Calculate, for real θ and positive integer N :

cos(θ) + cos(2θ) + cos(3θ) + · · ·+ cos(Nθ) =? (2.0.26)

sin(θ) + sin(2θ) + sin(3θ) + · · ·+ sin(Nθ) =? (2.0.27)

Hint: consider the geometric series eiθ + e2iθ + · · ·+ eNiθ.

Problem 2.11. Starting from (eiθ)n, for arbitrary integer n, re-write cos(nθ) and sin(nθ)
as a sum involving products/powers of sin θ and cos θ. Hint: if the arbitrary n case is confusing
at first, start with n = 1, 2, 3 first.

Roots of unity In polar coordinates, circling the origin n times bring us back to the
same point,

z = reiθ+i2πn, n = 0,±1,±2,±3, . . . . (2.0.28)

This observation is useful for the following problem: what is mth root of 1, when m is a positive
integer? Of course, 1 is an answer, but so are

11/m = ei2πn/m, n = 0, 1, . . . , m− 1. (2.0.29)

The terms repeat themselves for n ≥ m; the negative integers n do not give new solutions for m
integer. If we replace 1/m with a/b where a and b are integers that do not share any common
factors, then

1a/b = ei2πn(a/b) for n = 0, 1, . . . , b− 1, (2.0.30)

since when n = b we will get back 1. If we replaced (a/b) with say 1/π,

11/π = ei2πn/π = ei2n, (2.0.31)

then there will be infinite number of solutions, because 1/π cannot be expressed as a ratio of
integers – there is no way to get 2n = 2πn′, for n′ integer.

In general, when you are finding the mth root of a complex number z, you are actually
solving for w in the polynomial equation wm = z. The fundamental theorem of algebra tells us,
if m is a positive integer, you are guaranteed m solutions – although not all of them may be
distinct.

Square root of −1 What is
√
−1? Since −1 = ei(π+2πn) for any integer n,

(ei(π+2πn))1/2 = eiπ/2+iπn = ±i. n = 0, 1. (2.0.32)

Problem 2.12. Find all the solutions to
√
1− i.

Logarithm and powers As we have just seen, whenever we take the root of some
complex number z, we really have a multi-valued function. The inverse of the exponential is
another such function. For w = x+ iy, where x and y are real, we may consider

ew = exei(y+2πn), n = 0,±1,±2,±3, . . . . (2.0.33)
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We define ln to be such that

ln ew = x+ i(y + 2πn). (2.0.34)

Another way of saying this is, for a general complex z,

ln(z) = ln |z|+ i(arg(z) + 2πn). (2.0.35)

One way to make sense of how to raise a complex number z = reiθ to the power of another
complex number w = x+ iy, namely zw, is through the ln:

zw = ew ln z = e(x+iy)(ln(r)+i(θ+2πn)) = ex ln r−y(θ+2πn)ei(y ln(r)+x(θ+2πn)). (2.0.36)

This is, of course, a multi-valued function. We will have more to say about such multi-valued
functions when discussing their calculus in §(5).

Problem 2.13. Find the inverse hyperbolic functions of eq. (2.0.24) in terms of ln. Does
sin(z) = 0, cos(z) = 0 and tan(z) = 0 have any complex solutions? Hint: for the first question,
write ez = w and e−z = 1/w. Then solve for w. A similar strategy may be employed for the
second question.

Problem 2.14. Let ~ξ and ~ξ′ be vectors in a 2D Euclidean space, i.e., you may assume their
Cartesian components are

~ξ = (x, y) = r(cosφ, sinφ), ~ξ′ = (x′, y′) = r′(cosφ′, sinφ′). (2.0.37)

Use complex numbers, and assume that the following complex Taylor expansion of ln holds

ln(1− z) = −
∞∑

ℓ=1

zℓ

ℓ
, |z| < 1, (2.0.38)

to show that

ln |~ξ − ~ξ′| = ln r> −
∞∑

ℓ=1

1

ℓ

(
r<
r>

)ℓ

cos
(
ℓ(φ− φ′)

)
, (2.0.39)

where r> is the larger and r< is the smaller of the (r, r′), and |~ξ− ~ξ′| is the distance between the

vectors ~ξ and ~ξ′ – not the absolute value of some complex number. Here, ln |~ξ−~ξ′| is proportional
to the electric or gravitational potential generated by a point charge/mass in 2-dimensional flat
space. Hint: first let z = reiφ and z′ = r′eiφ

′
; then consider ln(z − z′) – how do you extract

ln |~ξ − ~ξ′| from it?
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3 Matrix Algebra: A Review

4In this section I will review some basic properties of matrices and matrix algebra, oftentimes
using index notation. We will assume all matrices have complex entries unless otherwise stated.
This is intended to be warmup to the next section, where I will treat Linear Algebra from a
more abstract point of view.

3.1 Basics, Matrix Operations, and Special types of matrices

Index notation, Einstein summation, Basic Matrix Operations Consider two ma-
trices M and N . The ij component – the ith row and jth column of M and that of N can be
written as

M i
j and N i

j . (3.1.1)

As an example, if M is a 2× 2 matrix, we have

M =

[
M1

1 M1
2

M2
1 M2

2

]
. (3.1.2)

I prefer to write one index up and one down, because as we shall see in the abstract formulation
of linear algebra below, the row and column indices may transform differently. However, it is
common to see the notation Mij and M

ij , etc., too.
A vector v can be written as

vi = (v1, v2, . . . , vD−1, vD). (3.1.3)

Here, v5 does not mean the fifth power of some quantity v, but rather the 5th component of the
vector v.

The matrix multiplication M ·N can be written as

(M ·N)ij =
D∑

k=1

M i
kN

k
j ≡M i

kN
k
j. (3.1.4)

In words: the ij component of the product MN , for a fixed i and fixed j, means we are taking
the ith row of M and “dotting” it into the jth column of N . In the second equality we have
employed Einstein’s summation convention, which we will continue to do so in these notes:
repeated indices are summed over their relevant range – in this case, k ∈ {1, 2, . . . , D}. For
example, if

M =

[
a b
c d

]
, N =

[
1 2
3 4

]
, (3.1.5)

then

M ·N =

[
a + 3b 2a+ 4b
c+ 3d 2c+ 4d

]
. (3.1.6)

4Much of the material here in this section were based on Chapter 1 of Cahill’s Physical Mathematics.
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Note: M i
kN

k
j works for multiplication of non-square matrices M and N too, as long as the

number of columns ofM is equal to the number of rows of N , so that the sum involving k makes
sense.

Addition of M and N ; and multiplication of M by a complex number λ goes respectively as

(M +N)ij =M i
j +N i

j (3.1.7)

and

(λM)ij = λM i
j. (3.1.8)

Associativity The associativity of matrix multiplication means (AB)C = A(BC) = ABC.
This can be seen using index notation

Ai
kB

k
lC

l
j = (AB)ilC

l
j = Ai

k(BC)
k
j = (ABC)ij. (3.1.9)

Tr Tr(A) ≡ Ai
i denotes the trace of a square matrix A. The index notation makes it clear

the trace of AB is that of BA because

Tr [A · B] = Al
kB

k
l = Bk

lA
l
k = Tr [B · A] . (3.1.10)

This immediately implies the Tr is cyclic, in the sense that

Tr [X1 ·X2 · · ·XN ] = Tr [XN ·X1 ·X2 · · ·XN−1] = Tr [X2 ·X3 · · ·XN ·X1] . (3.1.11)

Problem 3.1. Prove the linearity of the Tr, namely for D × D matrices X and Y and
complex number λ,

Tr [X + Y ] = Tr [X ] + Tr [Y ] , Tr [λX ] = λTr [X ] . (3.1.12)

Comment on whether it makes sense to define Tr(A) ≡ Ai
i, if A is not a square matrix.

Identity and the Kronecker delta The D ×D identity matrix I has 1 on each and
every component on its diagonal and 0 everywhere else. This is also the Kronecker delta.

Iij = δij = 1, i = j

= 0, i 6= j (3.1.13)

The Kronecker delta is also the flat Euclidean metric in D spatial dimensions; in that context
we would write it with both lower indices δij and its inverse is δij .

The Kronecker delta is also useful for representing diagonalmatrices. These are matrices that
have non-zero entries strictly on their diagonal, where row equals to column number. For example
Ai

j = aiδ
i
j = ajδ

i
j is the diagonal matrix with a1, a2, . . . , aD filling its diagonal components, from

the upper left to the lower right. Diagonal matrices are also often denoted, for instance, as

A = diag[a1, . . . , aD]. (3.1.14)

Suppose we multiply AB, where B is also diagonal (Bi
j = biδ

i
j = bjδ

i
j),

(AB)ij =
∑

l

aiδ
i
lbjδ

l
j . (3.1.15)
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If i 6= j there will be no l that is simultaneously equal to i and j; therefore either one or both
the Kronecker deltas are zero and the entire sum is zero. If i = j then when (and only when)
l = i = j, the Kronecker deltas are both one, and

(AB)ij = aibj . (3.1.16)

This means we have shown, using index notation, that the product of diagonal matrices yields
another diagonal matrix.

(AB)ij = aibjδ
i
j (No sum over i, j). (3.1.17)

Transpose The transpose T of any matrix A is

(AT )ij = Aj
i. (3.1.18)

In words: the i row of AT is the ith column of A; the jth column of AT is the jth row of A. If
A is a (square) D ×D matrix, you reflect it along the diagonal to obtain AT .

Problem 3.2. Show using index notation that (A · B)T = BTAT .

Adjoint The adjoint † of any matrix is given by

(A†)ij = (Aj
i)
∗ = (A∗)ji. (3.1.19)

In other words, A† = (AT )∗; to get A†, you start with A, take its transpose, then take its complex
conjugate. An example is,

A =

[
1 + i eiθ

x+ iy
√
10

]
, 0 ≤ θ < 2π, x, y ∈ R (3.1.20)

AT =

[
1 + i x+ iy

eiθ
√
10

]
, A† =

[
1− i x− iy

e−iθ
√
10

]
. (3.1.21)

Orthogonal, Unitary, Symmetric, and Hermitian A D ×D matrix A is

1. Orthogonal if ATA = AAT = I. The set of real orthogonal matrices implement rotations
in a D-dimensional real (vector) space.

2. Unitary if A†A = AA† = I. Thus, a real unitary matrix is orthogonal. Moreover, unitary
matrices, like their real orthogonal counterparts, implement “rotations” in aD dimensional
complex (vector) space.

3. Symmetric if AT = A; anti-symmetric if AT = −A.

4. Hermitian if A† = A; anti-hermitian if A† = −A.
Problem 3.3. Explain why, if A is an orthogonal matrix, it obeys the equation

Ai
kA

j
lδij = δkl. (3.1.22)

Now explain why, if A is a unitary matrix, it obeys the equation

(Ai
k)

∗Aj
lδij = δkl. (3.1.23)
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Problem 3.4. Prove that (AB)T = BTAT and (AB)† = B†A†. This means if A and B are
orthogonal, then AB is orthogonal; and if A and B are unitary AB is unitary. Can you explain
why?

Simple examples of a unitary, symmetric and Hermitian matrix are, respectively (from left to
right):

[
eiθ 0
0 eiδ

]
,

[
eiθ X
X eiδ

]
,

[ √
109 1− i

1 + i θδ

]
, θ, δ ∈ R. (3.1.24)

3.2 Determinants, Linear (In)dependence, Inverses and Eigensys-

tems

Levi-Civita symbol and the Determinant We will now define the determinant of a
D ×D matrix A through the Levi-Civita symbol ǫi1i2...iD−1iD :

detA ≡ ǫi1i2...iD−1iDA
i1
1A

i2
2 . . . A

iD−1

D−1A
iD

D. (3.2.1)

Every index on the Levi-Civita runs from 1 through D. This definition is equivalent to the usual
co-factor expansion definition. The D-dimensional Levi-Civita symbol is defined through the
following properties.

• It is completely antisymmetric in its indices. This means swapping any of the indices
ia ↔ ib (for a 6= b) will return

ǫi1i2...ia−1iaia+1...ib−1ibib+1...iD−1iD = −ǫi1i2...ia−1ibia+1...ib−1iaib+1...iD−1iD . (3.2.2)

• In matrix algebra and flat Euclidean space, ǫ123...D = ǫ123...D ≡ 1.5

These are sufficient to define every component of the Levi-Civita symbol. Because ǫ is fully anti-
symmetric, if any of its D indices are the same, say ia = ib, then the Levi-Civita symbol returns
zero. (Why?) Whenever i1 . . . iD are distinct indices, ǫi1i2...iD−1iD is really the sign of the per-
mutation (≡ (−)nunber of swaps of index pairs) that brings {1, 2, . . . , D− 1, D} to {i1, i2, . . . , iD−1, iD}.
Hence, ǫi1i2...iD−1iD is +1 when it takes zero/even number of swaps, and −1 when it takes odd.

For example, in the 2 dimensional case ǫ11 = ǫ22 = 0; whereas it takes one swap to go from
12 to 21. Therefore,

1 = ǫ12 = −ǫ21. (3.2.3)

In the 3 dimensional case,

1 = ǫ123 = −ǫ213 = −ǫ321 = −ǫ132 = ǫ231 = ǫ312. (3.2.4)

Properties of the determinant include

detAT = detA, det(A · B) = detA · detB, detA−1 =
1

detA
, (3.2.5)

5In Lorentzian flat spacetimes, the Levi-Civita tensor with upper indices will need to be carefully distinguished
from its counterpart with lower indices.
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for square matrices A and B. As a simple example, let us use eq. (3.2.1) to calculate the
determinant of

A =

[
a b
c d

]
. (3.2.6)

Remember the only non-zero components of ǫi1i2 are ǫ12 = 1 and ǫ21 = −1.

detA = ǫ12A
1
1A

2
2 + ǫ21A

2
1A

1
2 = A1

1A
2
2 − A2

1A
1
2

= ad− bc. (3.2.7)

Linear (in)dependence Given a set of D vectors {v1, . . . , vD}, we say one of them is
linearly dependent (say vi) if we can express it in as a sum of multiples of the rest of the vectors,

vi =
D−1∑

j 6=i

χjvj for some χj ∈ C. (3.2.8)

We say the D vectors are linearly independent if none of the vectors are linearly dependent on
the rest.

Det as test of linear independence If we view the columns or rows of a D × D matrix
A as vectors and if these D vectors are linearly dependent, then the determinant of A is zero.
This is because of the antisymmetric nature of the Levi-Civita symbol. Moreover, suppose
detA 6= 0. Cramer’s rule (cf. eq. (3.2.12) below) tells us the inverse A−1 exists. In fact, for
finite dimensional matrix A, its inverse A−1 is unique. That means the only solution to the
D-component row (or column) vector w, obeying w ·A = 0 (or, A · w = 0), is w = 0. And since
w · A (or A · w) describes the linear combination of the rows (or, columns) of A; this indicates
they must be linearly independent whenever detA 6= 0.

For a square matrix A, detA = 0 iff (≡ if and only if) its columns and rows
are linearly dependent. Equivalently, detA 6= 0 iff its columns and rows are linearly
independent.

Problem 3.5. If the columns of a square matrix A are linearly dependent, use eq. (3.2.1)
to prove that detA = 0. Hint: use the antisymmetric nature of the Levi-Civita symbol.

Problem 3.6. Show that, for a D ×D matrix A and some complex number λ,

det(λA) = λD detA. (3.2.9)

Hint: this follows almost directly from eq. (3.2.1).

Problem 3.7. Relation to cofactor expansion The co-factor expansion definition of the
determinant is

detA =
D∑

i=1

Ai
kC

i
k, (3.2.10)
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where k is an arbitrary integer from 1 through D. The C i
k is (−)i+k times the determinant of

the (D − 1) × (D − 1) matrix formed from removing the ith row and kth column of A. (This
definition sums over the row numbers; it is actually equally valid to define it as a sum over
column numbers.)

As a 3× 3 example, we have

det



a b c
d e f
g h l


 = b(−)1+2 det

[
d f
g l

]
+ e(−)2+2 det

[
a c
g l

]
+ h(−)3+2 det

[
a c
d f

]
.

(3.2.11)

Cramer’s rule Can you show the equivalence of equations (3.2.1) and (3.2.10)? Can you
also show that

δkl detA =
D∑

i=1

Ai
kC

i
l? (3.2.12)

That is, show that when k 6= l, the sum on the right hand side is zero. What does eq. (3.2.12)
tell us about (A−1)li?

Hint: start from the left-hand-side, namely

detA = ǫj1...jDA
j1
1 . . . A

jD
D (3.2.13)

= Ai
k

(
ǫj1...jk−1ijk+1...jDA

j1
1 . . . A

jk−1

k−1A
jk+1

k+1 . . . A
jD

D

)
,

where k is an arbitrary integer in the set {1, 2, 3, . . . , D − 1, D}. Examine the term in the
parenthesis. First shift the index i, which is located at the kth slot from the left, to the ith
slot. Then argue why the result is (−)i+k times the determinant of A with the ith row and kth
column removed.

Pauli Matrices The 2 × 2 identity together with the Pauli matrices are Hermitian
matrices.

σ0 ≡
[
1 0
0 1

]
, σ1 ≡

[
0 1
1 0

]
, σ2 ≡

[
0 −i
i 0

]
, σ3 ≡

[
1 0
0 −1

]
(3.2.14)

Problem 3.8. Let pµ ≡ (p0, p1, p2, p3) be a 4-component collection of complex numbers.
Verify the following determinant, relevant for the study of Lorentz symmetry in 4-dimensional
flat spacetime,

det pµσ
µ =

∑

0≤µ,ν≤3

ηµνpµpν ≡ p2, (3.2.15)

where pµσ
µ ≡

∑
0≤µ≤3 pµσ

µ and

ηµν ≡




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (3.2.16)
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(This is the metric in 4 dimensional flat “Minkowski” spacetime.) Verify, for i, j, k ∈ {1, 2, 3},

det σ0 = 1, det σi = −1, Tr
[
σ0
]
= 2, Tr

[
σi
]
= 0 (3.2.17)

σiσj = δijI+ i
∑

1≤k≤3

ǫijkσk, σ2σiσ2 = −(σi)∗. (3.2.18)

Also use the antisymmetric nature of the Levi-Civita symbol to aruge that

θiθjǫ
ijk = 0. (3.2.19)

Can you use these facts to calculate

U(~θ) ≡ exp

[
− i

2

3∑

j=1

θjσ
j

]
≡ e−(i/2)~θ·~σ? (3.2.20)

(Hint: Taylor expand expX =
∑∞

ℓ=0X
ℓ/ℓ!, followed by applying the first relation in eq. (3.2.18).)

For now, assume {θi} can be complex; later on you’d need to specialize to {θi} being real. Show
that any 2 × 2 complex matrix A can be built from pµσ

µ by choosing the pµs appropriately.
Then compute (1/2)Tr [pµσ

µσν ], for ν = 0, 1, 2, 3, and comment on how the trace can be used,
given A, to solve for the pµ in the equation

pµσ
µ = A. (3.2.21)

Inverse The inverse of the D ×D matrix A is defined to be

A−1A = AA−1 = I. (3.2.22)

The inverse A−1 of a finite dimensional matrix A is unique; moreover, the left A−1A = I and
right inverses AA−1 = I are the same object. The inverse exists if and only if (≡ iff) detA 6= 0.

Problem 3.9. How does eq. (3.2.12) allow us to write down the inverse matrix (A−1)ik?

Problem 3.10. Why are the left and right inverses of (an invertible) matrix A the same?
Hint: Consider LA = I and AR = I; for the first, multiply R on both sides from the right.

Problem 3.11. Prove that (A−1)T = (AT )−1 and (A−1)† = (A†)−1.

Eigenvectors and Eigenvalues If A is a D × D matrix, v is its (D-component)
eigenvector with eigenvalue λ if it obeys

Ai
jv

j = λvi. (3.2.23)

This means

(Ai
j − λδij)v

j = 0 (3.2.24)
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has non-trivial solutions iff

PD(λ) ≡ det (A− λI) = 0. (3.2.25)

Equation (3.2.25) is known as the characteristic equation. For a D × D matrix, it gives us a
Dth degree polynomial PD(λ) for λ, whose roots are the eigenvalues of the matrix λ – the set
of all eigenvalues of a matrix is called its spectrum. For each solution for λ, we then proceed to
solve for the vi in eq. (3.2.24). That there is always at least one solution – there could be more
– for vi is because, since its determinant is zero, the columns of A − λI are necessarily linearly
dependent. As already discussed above, this amounts to the statement that there is some sum of
multiples of these columns (≡ “linear combination”) that yields zero – in fact, the components
of vi are precisely the coefficients in this sum. If {wi} are these columns of A− λI,

A− λI ≡ [w1w2 . . . wD] ⇒ (A− λI)v =
∑

j

wjv
j = 0. (3.2.26)

(Note that, if
∑

j wjv
j = 0 then

∑
j wj(Kv

j) = 0 too, for any complex number K; in other words,
eigenvectors are only defined up to an overall multiplicative constant.) Every D×D matrix has
D eigenvalues from solving the Dth order polynomial equation (3.2.25); from that, you can then
obtain D corresponding eigenvectors. Note, however, the eigenvalues can be repeated; when this
occurs, it is known as a degenerate spectrum. Moreover, not all the eigenvectors are guaranteed
to be linearly independent; i.e., some eigenvectors can turn out to be sums of multiples of other
eigenvectors.

The Cayley-Hamilton theorem states that the matrix A satisfies its own characteristic equa-
tion. In detail, if we express eq. (3.2.25) as

∑D
i=0 qiλ

i = 0 (for appropriate complex constants
{qi}), then replace λi → Ai (namely, the ith power of λ with the ith power of A), we would find

PD(A) = 0. (3.2.27)

Any D ×D matrix A admits a Schur decomposition. Specifically, there is some unitary matrix
U such that A can be brought to an upper triangular form, with its eigenvalues on the diagonal:

U †AU = diag(λ1, . . . , λD) +N, (3.2.28)

where N is strictly upper triangular, with N i
j = 0 for j ≤ i. The Schur decomposition can be

proved via mathematical induction on the size of the matrix.
A special case of the Schur decomposition occurs when all the off-diagonal elements are zero.

A D ×D matrix A can be diagonalized if there is some unitary matrix U such that

U †AU = diag(λ1, . . . , λD), (3.2.29)

where the {λi} are the eigenvalues of A. Each column of U is filled with a distinct unit length
eigenvector of A. (Unit length means v†v = (vi)∗vjδij = 1.) In index notation,

Ai
jU

j
k = λkU

i
k = U i

lδ
l
kλk, (No sum over k). (3.2.30)

In matrix notation,

AU = Udiag[λ1, λ2, . . . , λD−1, λD]. (3.2.31)
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Here, U j
k for fixed k, is the kth eigenvector, and λk is the corresponding eigenvalue. By multi-

plying both sides with U †, we have

U †AU = D, Dj
l ≡ λlδ

j
l (No sum over l). (3.2.32)

Some jargon: the null space of a matrix M is the space spanned by all vectors {vi} obeying
M · vi = 0. When we solve for the eigenvector of A by solving (A− λI) · v, we are really solving
for the null space of the matrix M ≡ A − λI, because for a fixed eigenvalue λ, there could be
more than one solution – that’s what we mean by degeneracy.

Real symmetric matrices can be always diagonalized via an orthogonal transformation. Com-
plex Hermitian matrices can always be diagonalized via a unitary one. These statements can
be proved readily using their Schur decomposition. For, let A be Hermitian and U be a unitary
matrix such that

UAU † = diag(λ1, . . . , λD) +N, (3.2.33)

where N is strictly upper triangular. Now, if A is Hermitian, so is UAU †, because (UAU †)† =
(U †)†A†U † = UAU †. Therefore,

(UAU †)† = UAU † ⇒ diag(λ∗1, . . . , λ
∗
D) +N † = diag(λ1, . . . , λD) +N. (3.2.34)

Because the transpose of a strictly upper triangular matrix returns a strictly lower triangular
matrix, we have a strictly lower triangular matrix N † plus a diagonal matrix (built out of the
complex conjugate of the eigenvalues of A) equal to a diagonal one (built out of the eigenvalues
of A) plus a strictly upper triangular N . That means N = 0 and λl = λ∗l . That is, any Hermitian
A is diagonalizable and all its eigenvalues are real.

Unitary matrices can also always be diagonalized. In fact, all its eigenvalues {λi} lie on the
unit circle on the complex plane, i.e., |λi| = 1. Suppose now A is unitary and U is another
unitary matrix such that the Schur decomposition of A reads

UAU † =M, (3.2.35)

where M is an upper triangular matrix with the eigenvalues of A on its diagonal. Now, if A is
unitary, so is UAU †, because

(
UAU †

)†
(UAU †) = UA†U †UAU † = UA†AU † = UU † = I. (3.2.36)

That means

M †M = I ⇒ (M †M)kl = (M †)ksM
s
l =
∑

s

Ms
kM

s
l = δijM i

kM
j
l = δkl, (3.2.37)

where we have recalled eq. (3.1.23) in the last equality. If wi denotes the ith column of M , the
unitary nature of M implies all its columns are orthogonal to each other and each column has
length one. Since M is upper triangular, we see that the only non-zero component of the first
column is its first row, i.e., wi

1 = M i
1 = λ1δ

i
1. Unit length means w†

1w1 = 1 ⇒ |λ1|2 = 1. That
w1 is orthogonal to every other column wi>1 means the latter have their first rows equal to zero;
M1

1M
1
l = λ1M

1
l = 0 ⇒M1

l = 0 for l 6= 1 – remember M1
1 = λ1 itself cannot be zero because it
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lies on the unit circle on the complex plane. Now, since its first component is necessarily zero,
the only non-zero component of the second column is its second row, i.e., wi

2 =M i
2 = λ2δ

i
2. Unit

length again means |λ2|2 = 1. And, by demanding that w2 be orthogonal to every other column

means their second components are zero: M2
2M

2
l = λ2M

2
l = 0 ⇒ M2

l = 0 for l > 2 – where,

again,M2
2 = λ2 cannot be zero because it lies on the complex plane unit circle. By induction on

the column number, we see that the only non-zero component of the ith column is the ith row.
That is, any unitary A is diagonalizable and all its eigenvalues lie on the circle: |λ1≤i≤D| = 1.

Diagonalization example As an example, let’s diagonalize σ2 from eq. (8.1.26).

P2(λ) = det

[
−λ −i
i −λ

]
= λ2 − 1 = 0 (3.2.38)

(We can even check Caley-Hamilton here: P2(σ
2) = (σ2)2 − I = I− I = 0; see eq. (3.2.18).) The

solutions are λ = ±1 and
[
∓1 −i
i ∓1

] [
v1

v2

]
=

[
0
0

]
⇒ v1± = ∓iv2±. (3.2.39)

The subscripts on v refer to their eigenvalues, namely

σ2v± = ±v±. (3.2.40)

By choosing v2 = 1/
√
2, we can check (vi±)

∗vj±δij = 1 and therefore the normalized eigenvectors
are

v± =
1√
2

[
∓i
1

]
. (3.2.41)

Furthermore you can check directly that eq. (3.2.40) is satisfied. We therefore have

(
1√
2

[
i 1
−i 1

])

︸ ︷︷ ︸
≡U†

σ2

(
1√
2

[
−i i
1 1

])

︸ ︷︷ ︸
≡U

=

[
1 0
0 −1

]
. (3.2.42)

An example of a matrix that cannot be diagonalized is

A ≡
[
0 0
1 0

]
. (3.2.43)

The characteristic equation is λ2 = 0, so both eigenvalues are zero. Therefore A− λI = A, and
[
0 0
1 0

] [
v1

v2

]
=

[
0
0

]
⇒ v1 = 0, v2 arbitrary. (3.2.44)

There is a repeated eigenvalue of 0, but there is only one linearly independent eigenvector (0, 1).
It is not possible to build a unitary 2 × 2 matrix U whose columns are distinct unit length
eigenvectors of σ2.

Problem 3.12. Show how to go from eq. (3.2.30) to eq. (3.2.32) using index notation.
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Problem 3.13. Use the Schur decomposition to explain why, for any matrix A, Tr [A] is
equal to the sum of its eigenvalues and detA is equal to their product:

Tr [A] =
D∑

l=1

λl, detA =
D∏

l=1

λl. (3.2.45)

Hint: for detA, the key question is how to take the determinant of an upper triangular matrix.

Problem 3.14. For a strictly upper triangular matrix N , prove that N multiplied to itself
any number of times still returns a strictly upper triangular matrix. Can a strictly upper
triangular matrix be diagonalized? (Explain.)

Problem 3.15. Suppose A = UXU †, where U is a unitary matrix. If f(z) is a function of z
that can be Taylor expanded about some point z0, explain why f(A) = Uf(X)U †. Hint: Can you
explain why (UBU †)ℓ = UBℓU †, for B some arbitrary matrix, U unitary, and ℓ = 1, 2, 3, . . . ?

Problem 3.16. Can you provide a simple explanation to why the eigenvalues {λl} of a
unitary matrix are always of unit absolute magnitude; i.e. why are the |λl| = 1?

Problem 3.17. Simplified example of neutrino oscillations. We begin with the observation
that the solution to the first order equation

i∂tψ(t) = Eψ(t), (3.2.46)

for E some real constant, is

ψ(t) = e−iEtψ0. (3.2.47)

The ψ0 is some arbitrary (possibly complex) constant, corresponding to the initial condition
ψ(t = 0). Now solve the matrix differential equation

i∂tN(t) = HN(t), N(t) ≡
[
ν1(t)
ν2(t)

]
, (3.2.48)

with the initial condition – describing the production of ν1-type of neutrino, say –

[
ν1(t = 0)
ν2(t = 0)

]
=

[
1
0

]
, (3.2.49)

where the Hamiltonian H is

H ≡
[
p 0
0 p

]
+

1

4p
M, (3.2.50)

M ≡
[
m2

1 +m2
2 + (m2

1 −m2
2) cos(2θ) (m2

1 −m2
2) sin(2θ)

(m2
1 −m2

2) sin(2θ) m2
1 +m2

2 + (m2
2 −m2

1) cos(2θ)

]
. (3.2.51)
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The p is the magnitude of the momentum, m1,2 are masses, and θ is the “mixing angle”. Then
calculate

P1→1 ≡
∣∣∣∣N(t)†

[
1
0

]∣∣∣∣
2

and P1→2 ≡
∣∣∣∣N(t)†

[
0
1

]∣∣∣∣
2

. (3.2.52)

Express P1→1 and P1→2 in terms of ∆m2 ≡ m2
1 −m2

2. (In quantum mechanics, they respectively
correspond to the probability of observing the neutrinos ν1 and ν2 at time t > 0, given ν1 was
produced at t = 0.) Hint: Start by diagonalizing M = UTAU where

U ≡
[

cos θ sin θ
− sin θ cos θ

]
. (3.2.53)

The UN(t) is known as the “mass-eigenstate” basis. Can you comment on why? Note that, in
the highly relativistic limit, the energy E of a particle of mass m is

E =
√
p2 +m2 → p+

m2

2p
+O(1/p2). (3.2.54)

Note: In this problem, we have implicitly set ~ = c = 1, where ~ is the reduced Planck’s constant
and c is the speed of light in vacuum.

3.3 Special Topic 1: 2D real orthogonal matrices

In this subsection we will illustrate what a real orthogonal matrix is by studying the 2D case
in some detail. Let A be such a 2 × 2 real orthogonal matrix. We will begin by writing its
components as follows

A ≡
[
v1 v2

w1 w2

]
. (3.3.1)

(As we will see, it is useful to think of v1,2 and w1,2 as components of 2D vectors.) That A is
orthogonal means AAT = I.

[
v1 v2

w1 w2

]
·
[
v1 w1

v2 w2

]
=

[
~v · ~v ~v · ~w
~w · ~v ~w · ~w

]
=

[
1 0
0 1

]
. (3.3.2)

This translates to: ~w2 ≡ ~w · ~w = 1, ~v2 ≡ ~v · ~v = 1 (length of both the 2D vectors are one);
and ~w · ~v = 0 (the two vectors are perpendicular). In 2D any vector can be expressed in polar
coordinates; for example, the Cartesian components of ~v are

vi = r(cosφ, sinφ), r ≥ 0, φ ∈ [0, 2π). (3.3.3)

But ~v2 = 1 means r = 1. Similarly,

wi = (cosφ′, sinφ′), φ′ ∈ [0, 2π). (3.3.4)

Because ~v and ~w are perpendicular,

~v · ~w = cosφ · cos φ′ + sinφ · sinφ′ = cos(φ− φ′) = 0. (3.3.5)

23



This means φ′ = φ± π/2. (Why?) Furthermore

wi = (cos(φ± π/2), sin(φ± π/2)) = (∓ sin(φ),± cos(φ)). (3.3.6)

What we have figured out is that, any real orthogonal matrix can be parametrized by an angle
0 ≤ φ < 2π; and for each φ there are two distinct solutions.

R1(φ) =

[
cosφ sin φ
− sinφ cosφ

]
, R2(φ) =

[
cosφ sin φ
sin φ − cosφ

]
. (3.3.7)

By a direct calculation you can check that R1(φ > 0) rotates an arbitrary 2D vector clockwise
by φ. Whereas, R2(φ > 0) rotates the vector, followed by flipping the sign of its y-component;
this is because

R2(φ) =

[
1 0
0 −1

]
· R1(φ). (3.3.8)

In other words, the R2(φ = 0) in eq. (3.3.7) corresponds to a “parity flip” where the vector is
reflected about the x-axis.

Problem 3.18. What about the matrix that reflects 2D vectors about the y-axis? What
value of θ in R2(θ) would it correspond to?

Find the determinants of R1(φ) and R2(φ). You should be able to use that to argue, there
is no θ0 such that R1(θ0) = R2(θ0). Also verify that

R1(φ)R1(φ
′) = R1(φ+ φ′). (3.3.9)

This makes geometric sense: rotating a vector clockwise by φ then by φ′ should be the same as
rotation by φ+φ′. Mathematically speaking, this composition law in eq. (3.3.9) tells us rotations
form the SO2 group. The set of D × D real orthogonal matrices obeying RTR = I, including
both rotations and reflections, forms the group OD. The group involving only rotations is known
as SOD; where the ‘S’ stands for “special” (≡ determinant equals one).

Problem 3.19. 2× 2 Unitary Matrices. Can you construct the most general 2× 2 unitary
matrix? First argue that the most general complex 2D vector ~v that satisfies ~v†~v = 1 is

vi = eiφ1(cos θ, eiφ2 sin θ), φ1,2, θ ∈ [0, 2π). (3.3.10)

Then consider ~v† ~w = 0, where

wi = eiφ
′
1(cos θ′, eiφ

′
2 sin θ′), φ′

1,2, θ
′ ∈ [0, 2π). (3.3.11)

You should arrive at

sin(θ) sin(θ′)ei(φ
′
2−φ2) + cos(θ) cos(θ′) = 0. (3.3.12)

By taking the real and imaginary parts of this equation, argue that

φ′
2 = φ2, θ = θ′ ± π

2
. (3.3.13)
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or

φ′
2 = φ2 + π, θ = −θ′ ± π

2
. (3.3.14)

From these, deduce that the most general 2 × 2 unitary matrix U can be built from the most
general real orthogonal one O(θ) via

U =

[
eiφ1 0
0 eiφ2

]
·O(θ) ·

[
1 0
0 eiφ3

]
. (3.3.15)

As a simple check: note that ~v†~v = ~w† ~w = 1 together with ~v† ~w = 0 provides 4 constraints
for 8 parameters – 4 complex entries of a 2 × 2 matrix – and therefore we should have 4 free
parameters left.

Bonus problem: By imposing detU = 1, can you connect eq. (3.3.15) to eq. (3.2.20)?
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4 Linear Algebra

4.1 Definition

Loosely speaking, the notion of a vector space – as the name suggests – amounts to abstracting
the algebraic properties – addition of vectors, multiplication of a vector by a number, etc. –
obeyed by the familiar D ∈ {1, 2, 3, . . .} dimensional Euclidean space RD. We will discuss the
linear algebra of vector spaces using Paul Dirac’s bra-ket notation. This will not only help you
understand the logical foundations of linear algebra and the matrix algebra you encountered
earlier, it will also prepare you for the study of quantum theory, which is built entirely on the
theory of both finite and infinite dimensional vector spaces.6

We will consider a vector space over complex numbers. A member of the vector space will
be denoted as |α〉; we will use the words “ket”, “vector” and “state” interchangeably in what
follows. We will allude to aspects of quantum theory, but point out everything we state here
holds in a more general context; i.e., quantum theory is not necessary but merely an application
– albeit a very important one for physics. For now α is just some arbitrary label, but later
on it will often correspond to the eigenvalue of some linear operator. We may also use α as
an enumeration label, where |α〉 is the αth element in the collection of vectors. In quantum
mechanics, a physical system is postulated to be completely described by some |α〉 in a vector
space, whose time evolution is governed by some Hamiltonian. (The latter is what Schrödinger’s
equation is about.)

Here is what defines a “vector space over complex numbers”:

1. Addition Any two vectors can be added to yield another vector

|α〉+ |β〉 = |γ〉 . (4.1.1)

Addition is commutative and associative:

|α〉+ |β〉 = |β〉+ |α〉 (4.1.2)

|α〉+ (|β〉+ |γ〉) = (|α〉+ |β〉) + |γ〉 . (4.1.3)

2. Additive identity (zero vector) and existence of inverse There is a zero vector
|zero〉 – which can be gotten by multiplying any vector by 0, i.e.,

0 |α〉 = |zero〉 (4.1.4)

– that acts as an additive identity.7 Namely, adding |zero〉 to any vector returns the vector
itself:

|zero〉+ |β〉 = |β〉 . (4.1.5)

For any vector |α〉 there exists an additive inverse; if + is the usual addition, then the
inverse of |α〉 is just (−1) |α〉.

|α〉+ (− |α〉) = |zero〉 . (4.1.6)
6The material in this section of our notes was drawn heavily from the contents and problems provided in

Chapter 1 of Sakurai’s Modern Quantum Mechanics.
7In this section we will be careful and denote the zero vector as |zero〉. For the rest of the notes, whenever

the context is clear, we will often use 0 to denote the zero vector.
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3. Multiplication by scalar Any ket can be multiplied by an arbitrary complex number
c to yield another vector

c |α〉 = |γ〉 . (4.1.7)

(In quantum theory, |α〉 and c |α〉 are postulated to describe the same system.) This
multiplication is distributive with respect to both vector and scalar addition; if a and b
are arbitrary complex numbers,

a(|α〉+ |β〉) = a |α〉+ a |β〉 (4.1.8)

(a+ b) |α〉 = a |α〉+ b |α〉 . (4.1.9)

Note: If you define a “vector space over scalars,” where the scalars can be more general objects
than complex numbers, then in addition to the above axioms, we have to add: (I) Associativity of
scalar multiplication, where a(b |α〉) = (ab) |α〉 for any scalars a, b and vector |α〉; (II) Existence
of a scalar identity 1, where 1 |α〉 = |α〉.

Examples The Euclidean space RD itself, the space of D-tuples of real numbers

|~a〉 ≡ (a1, a2, . . . , aD), (4.1.10)

with + being the usual addition operation is, of course, the example of a vector space. We shall
check explicitly that RD does in fact satisfy all the above axioms. To begin, let

|~v〉 = (v1, v2, . . . , vD),

|~w〉 = (w1, w2, . . . , wD) and (4.1.11)

|~x〉 = (x1, x2, . . . , xD) (4.1.12)

be vectors in RD.

1. Addition Any two vectors can be added to yield another vector

|~v〉+ |~w〉 = (v1 + w1, . . . , vD + wD) ≡ |~v + ~w〉 . (4.1.13)

Addition is commutative and associative because we are adding/subtracting the vectors
component-by-component:

|~v〉+ |~w〉 = |~v + ~w〉 = (v1 + w1, . . . , vD + wD)

= (w1 + v1, . . . , wD + vD)

= |~w〉+ |~v〉 = |~w + ~v〉 , (4.1.14)

|~v〉+ |~w〉+ |~x〉 = (v1 + w1 + x1, . . . , vD + wD + xD)

= (v1 + (w1 + x1), . . . , vD + (wD + xD))

= ((v1 + w1) + x1, . . . , (vD + wD) + xD)

= |~v〉+ (|~w〉+ |~x〉) = (|~v〉+ |~w〉) + |~x〉 = |~v + ~w + ~x〉 . (4.1.15)
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2. Additive identity (zero vector) and existence of inverse There is a zero vector
|zero〉 – which can be gotten by multiplying any vector by 0, i.e.,

0 |~v〉 = 0(v1, . . . , vD) = (0, . . . , 0) = |zero〉 (4.1.16)

– that acts as an additive identity. Namely, adding |zero〉 to any vector returns the vector
itself:

|zero〉+ |~w〉 = (0, . . . , 0) + (w1, . . . , wD) = |~w〉 . (4.1.17)

For any vector |~x〉 there exists an additive inverse; in fact, the inverse of |~x〉 is just
(−1) |~x〉 = |−~x〉.

|~x〉+ (− |~x〉) = (x1, . . . , xD)− (x1, . . . , xD) = |zero〉 . (4.1.18)

3. Multiplication by scalar Any ket can be multiplied by an arbitrary real number c
to yield another vector

c |~v〉 = c(v1, . . . , vD) = (cv1, . . . , cvD) ≡ |c~v〉 . (4.1.19)

This multiplication is distributive with respect to both vector and scalar addition; if a and
b are arbitrary real numbers,

a(|~v〉+ |~w〉) = (av1 + aw1, av2 + aw2, . . . , avD + awD)

= |a~v〉+ |a~w〉 = a |~v〉+ a |~w〉 , (4.1.20)

(a+ b) |~x〉 = (ax1 + bx1, . . . , axD + bxD)

= |a~x〉+ |b~x〉 = a |~x〉+ b |~x〉 . (4.1.21)

The following are some further examples of vector spaces.

1. The space of polynomials with complex coefficients.

2. The space of square integrable functions on RD (where D is an arbitrary integer greater
or equal to 1); i.e., all functions f(~x) such that

∫
RD dD~x|f(~x)|2 <∞.

3. The space of all homogeneous solutions to a linear (ordinary or partial) differential equa-
tion.

4. The space of M ×N matrices of complex numbers, where M and N are arbitrary integers
greater or equal to 1.

Problem 4.1. Prove that the examples in (1), (3), and (4) are indeed vector spaces, by
running through the above axioms.
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Linear (in)dependence, Basis, Dimension Suppose we pick N vectors from a vector
space, and find that one of them can be expressed as a linear combination of the rest,

|N〉 =
N−1∑

i=1

ci |i〉 , (4.1.22)

where the {ci} are complex numbers. Then we say that this set of N vectors are linearly
dependent. Suppose we have pickedM vectors {|1〉 , |2〉 , |3〉 , . . . , |M〉} such that they are linearly
independent, i.e., no vector is a linear combination of any others, and suppose further that any
arbitrary vector |α〉 from the vector space can now be expressed as a linear combination (aka
superposition) of these vectors

|α〉 =
D∑

i=1

χi |i〉 , {χi ∈ C}. (4.1.23)

In other words, we now have a maximal number of linearly independent vectors – then, M is
called the dimension of the vector space. The {|i〉 |i = 1, 2, . . . ,M} is a complete set of basis
vectors; and such a set of (basis) vectors is said to span the vector space.

For instance, for the D-tuple |~a〉 ≡ (a1, . . . , aD) from the real vector space of RD, we may
choose

|1〉 = (1, 0, 0, . . . ), |2〉 = (0, 1, 0, 0, . . . ),

|3〉 = (0, 0, 1, 0, 0, . . . ), . . . |D〉 = (0, 0, . . . , 0, 0, 1). (4.1.24)

Then, any arbitrary |~a〉 can be written as

|~a〉 = (a1, . . . , aD) =

D∑

i=1

ai |i〉 . (4.1.25)

The basis vectors are the {|i〉} and the dimension is D.

Problem 4.2. Is the space of polynomials of complex coefficients of degree less than or
equal to (n ≥ 1) a vector space? (Namely, this is the set of polynomials of the form Pn(x) =
c0 + c1x+ · · ·+ cnx

n, where the {ci|i = 1, 2, . . . , n} are complex numbers.) If so, write down a
set of basis vectors. What is its dimension? Answer the same questions for the space of D ×D
matrices of complex numbers.

4.2 Inner Products

In Euclidean D-space RD the ordinary dot product, between the real vectors |~a〉 ≡ (a1, . . . , aD)

and |~b〉 ≡ (b1, . . . , bD), is defined as

~a ·~b ≡
D∑

i=1

aibi = δija
ibj . (4.2.1)
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The inner product of linear algebra is again an abstraction of this notion of the dot product,
where the analog of ~a · ~b will be denoted as 〈~a|~b〉. Like the dot product for Euclidean space,
the inner product will allow us to define a notion of the length of vectors and angles between
different vectors.

Dual/“bra” space Given a vector space, an inner product is defined by first introducing
a dual space (aka bra space) to this vector space. Specifically, given a vector |α〉 we write its
dual as 〈α|. We also introduce the notation

|α〉† ≡ 〈α| . (4.2.2)

Importantly, for some complex number c, the dual of c |α〉 is
(c |α〉)† ≡ c∗ 〈α| . (4.2.3)

Moreover, for complex numbers a and b,

(a |α〉+ b |β〉)† ≡ a∗ 〈α|+ b∗ 〈β| . (4.2.4)

Since there is a one-to-one correspondence between the vector space and its dual, it is not difficult
to see this dual space is indeed a vector space.

Now, the primary purpose of these dual vectors is that they act on vectors of the original
vector space to return a complex number:

〈α|β〉 ∈ C. (4.2.5)

Definition. The inner product is now defined by the following properties. For an arbitrary
complex number c,

〈α| (|β〉+ |γ〉) = 〈α|β〉+ 〈α| γ〉 (4.2.6)

〈α| (c |β〉) = c 〈α|β〉 (4.2.7)

〈α|β〉∗ = 〈α|β〉 = 〈β|α〉 (4.2.8)

〈α|α〉 ≥ 0 (4.2.9)

and

〈α|α〉 = 0 (4.2.10)

if and only if |α〉 is the zero vector.
Some words on notation here. Especially in the math literature, the bra-ket notation is not

used. There, the inner product is often denoted by (α, β), where α and β are vectors. Then the
defining properties of the inner product would read instead

(α, β + γ) = (α, β) + (α, γ) (4.2.11)

(α, β)∗ = (α, β) = (β, α) (4.2.12)

(α, α) ≥ 0 (4.2.13)

and

(α, α) = 0 (4.2.14)

if and only if α is the zero vector.
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Problem 4.3. Prove that 〈α|α〉 is a real number.

The following are examples of inner products.

• Take the D-tuple of complex numbers |α〉 ≡ (α1, . . . , αD) and |β〉 ≡ (β1, . . . , βD); and
define the inner product to be

〈α|β〉 ≡
D∑

i=1

(αi)∗βi = δij(α
i)∗βj = α†β. (4.2.15)

• Consider the space of D×D complex matrices. Consider two such matrices X and Y and
define their inner product to be

〈X|Y 〉 ≡ Tr
[
X†Y

]
. (4.2.16)

Here, Tr means the matrix trace and X† is the adjoint of the matrix X .

• Consider the space of polynomials. Suppose |f〉 and |g〉 are two such polynomials of the
vector space. Then

〈f | g〉 ≡
∫ 1

−1

dxf(x)∗g(x) (4.2.17)

defines an inner product. Here, f(x) and g(x) indicates the polynomials are expressed in
terms of the variable x.

Problem 4.4. Prove the above examples are indeed inner products.

Problem 4.5. Prove the Schwarz inequality:

〈α|α〉 〈β|β〉 ≥ |〈α|β〉|2 . (4.2.18)

The analogy in Euclidean space is |~x|2|~y|2 ≥ |~x · ~y|2. Hint: Start with

(〈α|+ c∗ 〈β|) (|α〉+ c |β〉) ≥ 0. (4.2.19)

for any complex number c. (Why is this true?) Now choose an appropriate c to prove the
Schwarz inequality.

Orthogonality Just as we would say two real vectors in RD are perpendicular (aka orthog-
onal) when their dot product is zero, we may now define two vectors |α〉 and |β〉 in a vector
space to be orthogonal when their inner product is zero:

〈α|β〉 = 0 = 〈β|α〉 . (4.2.20)

We also call
√

〈α|α〉 the norm of the vector |α〉; recall, in Euclidean space, the analogous

|~x| =
√
~x · ~x. Given any vector |α〉 that is not the zero vector, we can always construct a vector

from it that is of unit length,

|α̃〉 ≡ |α〉√
〈α|α〉

⇒ 〈α̃| α̃〉 = 1. (4.2.21)
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Suppose we are given a set of basis vectors {|i′〉} of a vector space. Through what is known as
the Gram-Schmidt process, one can always build from them a set of orthonormal basis vectors
{|i〉}; where every basis vector has unit norm and is orthogonal to every other basis vector,

〈i| j〉 = δij . (4.2.22)

As you will see, just as vector calculus problems are often easier to analyze when you choose an
orthogonal coordinate system, linear algebra problems are often easier to study when you use
an orthonormal basis to describe your vector space.

Problem 4.6. Suppose |α〉 and |β〉 are linearly dependent – they are scalar multiples of
each other. However, their inner product is zero. What are |α〉 and |β〉?

Problem 4.7. Let {|1〉 , |2〉 , . . . , |N〉} be a set of N orthonormal vectors. Let |α〉 be an
arbitrary vector lying in the same vector space. Show that the following vector constructed from
|α〉 is orthogonal to all the {|i〉}.

|α̃〉 ≡ |α〉 −
N∑

j=1

|j〉 〈j|α〉 . (4.2.23)

This result is key to the following Gram-Schmidt process.

Gram-Schmidt Let {|α1〉 , |α2〉 , . . . , |αD〉} be a set of D linearly independent vectors that
spans some vector space. The Gram-Schmidt process is an iterative algorithm, based on the
observation in eq. (4.2.23), to generate from it a set of orthonormal set of basis vectors.

1. Take the first vector |α1〉 and normalize it to unit length:

|α̃1〉 =
|α1〉√
〈α1|α1〉

. (4.2.24)

2. Take the second vector |α2〉 and project out |α̃1〉:

|α′
2〉 ≡ |α2〉 − |α̃1〉 〈α̃1|α2〉 , (4.2.25)

and normalize it to unit length

|α̃2〉 ≡
|α′

2〉√
〈α′

2|α′
2〉
. (4.2.26)

3. Take the third vector |α3〉 and project out |α̃1〉 and |α̃2〉:

|α′
3〉 ≡ |α3〉 − |α̃1〉 〈α̃1|α3〉 − |α̃2〉 〈α̃2|α3〉 , (4.2.27)

then normalize it to unit length

|α̃3〉 ≡
|α′

3〉√
〈α′

3|α′
3〉
. (4.2.28)
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4. Repeat . . . Take the ith vector |αi〉 and project out |α̃1〉 through |α̃i−1〉:

|α′
i〉 ≡ |αi〉 −

i−1∑

j=1

|α̃j〉 〈α̃j|αi〉 , (4.2.29)

then normalize it to unit length

|α̃i〉 ≡
|α′

i〉√
〈α′

i|α′
i〉
. (4.2.30)

By construction, |α̃i〉 will be orthogonal to |α̃1〉 through |α̃i−1〉. Therefore, at the end of the
process, we will have D mutually orthogonal and unit norm vectors. Because they are orthogonal
they are linearly independent – hence, we have succeeded in constructing an orthonormal set of
basis vectors.

Example Here is a simple example in 3D Euclidean space endowed with the usual dot
product. Let us have

|α1〉 =̇(2, 0, 0), |α2〉 =̇(1, 1, 1), |α3〉 =̇(1, 0, 1). (4.2.31)

You can check that these vectors are linearly independent by taking the determinant of the 3×3
matrix formed from them. Alternatively, the fact that they generate a set of basis vectors from
the Gram-Schmidt process also implies they are linearly independent.

Normalizing |α1〉 to unity,

|α̃1〉 =
|α1〉√
〈α1|α1〉

=
(2, 0, 0)

2
= (1, 0, 0). (4.2.32)

Next we project out |α̃1〉 from |α2〉.

|α′
2〉 = |α2〉 − |α̃1〉 〈α̃1|α2〉 = (1, 1, 1)− (1, 0, 0)(1 + 0 + 0) = (0, 1, 1). (4.2.33)

Then we normalize it to unit length.

|α̃2〉 =
|α′

2〉√
〈α′

2|α′
2〉

=
(0, 1, 1)√

2
. (4.2.34)

Next we project out |α̃1〉 and |α̃2〉 from |α3〉.

|α′
3〉 = |α3〉 − |α̃1〉 〈α̃1|α3〉 − |α̃2〉 〈α̃2|α3〉

= (1, 0, 1)− (1, 0, 0)(1 + 0 + 0)− (0, 1, 1)√
2

0 + 0 + 1√
2

= (1, 0, 1)− (1, 0, 0)− (0, 1, 1)

2
=

(
0,−1

2
,
1

2

)
. (4.2.35)

Then we normalize it to unit length.

|α̃3〉 =
|α′

3〉√
〈α′

3|α′
3〉

=
(0,−1, 1)√

2
. (4.2.36)
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You can check that

|α̃1〉 = (1, 0, 0), |α̃2〉 =
(0, 1, 1)√

2
, |α̃3〉 =

(0,−1, 1)√
2

, (4.2.37)

are mutually perpendicular and of unit length.

Problem 4.8. Consider the space of polynomials with complex coefficients. Let the inner
product be

〈f | g〉 ≡
∫ +1

−1

dxf(x)∗g(x). (4.2.38)

Starting from the set {|0〉 = 1, |1〉 = x, |2〉 = x2}, construct from them a set of orthonormal
basis vectors spanning the subspace of polynomials of degree equal to or less than 2. Compare
your results with the Legendre polynomials

Pℓ(x) ≡
1

2ℓℓ!

dℓ

dxℓ
(
x2 − 1

)ℓ
, ℓ = 0, 1, 2. (4.2.39)

Orthogonality and Linear independence. We close this subsection with an ob-
servation. If a set of non-zero kets {|i〉 |i = 1, 2, . . . , N − 1, N} are orthogonal, then they are
necessarily linearly independent. This can be proved readily by contradiction. Suppose these
kets were linearly dependent. Then it must be possible to find non-zero complex numbers {C i}
such that

N∑

i=1

C i |i〉 = 0. (4.2.40)

If we now act 〈j| on this equation, for any j ∈ {1, 2, 3, . . . , N},
N∑

i=1

C i 〈j| i〉 =
N∑

i=1

C iδij 〈j| j〉 = Cj 〈j| j〉 = 0. (4.2.41)

That means all the {Cj|j = 1, 2, . . . , N} are in fact zero.
A simple application of this observation is, if you have found D mutually orthogonal kets

{|i〉} in a D dimensional vector space, then these kets form a basis. By normalizing them to
unit length, you’d have obtained an orthonormal basis. Such an example is that of the Pauli
matrices {σµ|µ = 0, 1, 2, 3} in eq. (8.1.26). The vector space of 2 × 2 complex matrices is 4-
dimensional, since there are 4 independent components. Moreover, we have already seen that
the trace Tr

[
X†Y

]
is one way to define an inner product of matrices X and Y . Since

1

2
Tr
[
(σµ)† σν

]
=

1

2
Tr [σµσν ] = δµν , µ, ν ∈ {0, 1, 2, 3}, (4.2.42)

that means, by the argument just given, the 4 Pauli matrices {σµ} form an orthogonal set of
basis vectors for the vector space of complex 2× 2 matrices. That means it must be possible to
choose {pµ} such that the superposition pµσ

µ is equal to any given 2× 2 complex matrix A. In
fact,

pµσ
µ = A, ⇔ pµ =

1

2
Tr [σµA] . (4.2.43)
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4.3 Linear Operators

4.3.1 Definitions and Fundamental Concepts

In quantum theory, a physical observable is associated with a (Hermitian) linear operator acting
on the vector space. What defines a linear operator? Let A be one. Firstly, when it acts from
the left on a vector, it returns another vector

A |α〉 = |α′〉 . (4.3.1)

In other words, if you can tell me what you want the “output” |α′〉 to be, after A acts on any
vector of the vector space |α〉 – you’d have defined A itself. But that’s not all – linearity also
means, for otherwise arbitrary operators A and B and complex numbers c and d,

(A+B) |α〉 = A |α〉+B |α〉 (4.3.2)

A(c |α〉+ d |β〉) = c A |α〉+ d A |β〉 .

An operator always acts on a bra from the right, and returns another bra,

〈α|A = 〈α′| . (4.3.3)

Adjoint We denote the adjoint of the linear operator X , by taking the † of the ket X |α〉
in the following way:

(X |α〉)† = 〈α|X†. (4.3.4)

Multiplication If X and Y are both linear operators, since Y |α〉 is a vector, we can
apply X to it to obtain another vector, X(Y |α〉). This means we ought to be able to multiply
operators, for e.g., XY . We will assume this multiplication is associative, namely

XY Z = (XY )Z = X(Y Z). (4.3.5)

Problem 4.9. By considering the adjoint of XY |α〉, where X and Y are arbitrary linear
operators and |α〉 is an arbitrary vector, prove that

(XY )† = Y †X†. (4.3.6)

Hint: take the adjoint of (XY ) |α〉 and X(Y |α〉).

Eigenvectors and eigenvalues An eigenvector of some linear operator A is a vector
that, when acted upon by A, returns the vector itself multiplied by a complex number a:

X |a〉 = a |a〉 . (4.3.7)

This number a is called the eigenvalue of A.
Ket-bra operator Notice that the product |α〉 〈β| can be considered a linear operator.

To see this, we apply it on some arbitrary vector |γ〉 and observe it returns the vector |α〉
multiplied by a complex number describing the projection of |γ〉 on |β〉,

(|α〉 〈β|) |γ〉 = |α〉 (〈β| γ〉) = (〈β| γ〉) · |α〉 , (4.3.8)
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as long as we assume these products are associative. It obeys the following “linearity” rules. If
|α〉 〈β| and |α′〉 〈β ′| are two different ket-bra operators,

(|α〉 〈β|+ |α′〉 〈β ′|) |γ〉 = |α〉 〈β| γ〉+ |α′〉 〈β ′| γ〉 ; (4.3.9)

and for complex numbers c and d,

|α〉 〈β| (c |γ〉+ d |γ′〉) = c |α〉 〈β| γ〉+ d |α〉 〈β| γ′〉 . (4.3.10)

Problem 4.10. Show that

(|α〉 〈β|)† = |β〉 〈α| . (4.3.11)

Hint: Act |α〉 〈β| on an arbitrary vector, and then take its adjoint.

Projection operator The special case |α〉 〈α| acting on any vector |γ〉 will return
|α〉 〈α| γ〉. Thus, we can view it as a projection operator – it takes an arbitrary vector and
extracts the portion of it “parallel” to |α〉.

Identity The identity operator obeys

I |γ〉 = |γ〉 . (4.3.12)

Inverse The inverse of the operator X is still defined as one that obeys

X−1X = XX−1 = I. (4.3.13)

Strictly speaking, we need to distinguish between the left and right inverse, but in finite dimen-
sional vector spaces, they are the same object.

Superposition, the identity operator, and vector components We will now see
that (square) matrices can be viewed as representations of linear operators on a vector space.
Let {|i〉} denote the basis orthonormal vectors of the vector space,

〈i| j〉 = δij . (4.3.14)

Then we may consider acting an linear operator X on some arbitrary vector |γ〉, which we will
express as a linear combination of the {|i〉}:

|γ〉 =
∑

i

γ̂i |i〉 , {γ̂i ∈ C}. (4.3.15)

By acting both sides with respect to 〈j|, we have

〈j| γ〉 = γ̂j . (4.3.16)

In other words,

|γ〉 =
∑

i

|i〉 〈i| γ〉 . (4.3.17)
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Since |γ〉 was arbitrary, we have identified the identity operator as

I =
∑

i

|i〉 〈i| . (4.3.18)

This is also often known as a completeness relation: summing over the ket-bra operators built
out of the orthonormal basis vectors of a vector space returns the unit (aka identity) operator.
I acting on any vector yields the same vector.

Once a set of orthonormal basis vectors are chosen, notice from the expansion in eq. (4.3.17),
that to specify a vector |γ〉 all we need to do is to specify the complex numbers {〈i| γ〉}. These
can be arranged as a column vector; if the dimension of the vector space is D, then

|γ〉 =̇




〈1| γ〉
〈2| γ〉
〈3| γ〉
. . .

〈D| γ〉



. (4.3.19)

The =̇ is not quite an equality; rather it means “represented by,” in that this column vector
contains as much information as eq. (4.3.17), provided the orthonormal basis vectors are known.

We may also express an arbitrary bra through a superposition of the basis bras {〈i|}, using
eq. (4.3.18).

〈α| =
∑

i

〈α| i〉 〈i| . (4.3.20)

Matrix elements Consider now some operator X acting on an arbitrary vector |γ〉, ex-
pressed through the orthonormal basis vectors {|i〉}.

X |γ〉 =
∑

i

X |i〉 〈i| γ〉 . (4.3.21)

We can insert an identity operator from the left,

X |γ〉 =
∑

i,j

|j〉 〈j |X| i〉 〈i| γ〉 . (4.3.22)

We can also apply the lth basis bra 〈l| from the left on both sides and obtain

〈l|X |γ〉 =
∑

i

〈l |X| i〉 〈i| γ〉 . (4.3.23)

Just as we read off the components of the vector in eq. (4.3.17) as a column vector, we can do
the same here. Again supposing a D dimensional vector space (for notational convenience),

X |γ〉 =̇




〈1 |X| 1〉 〈1 |X| 2〉 . . . 〈1 |X|D〉
〈2 |X| 1〉 〈2 |X| 2〉 . . . 〈2 |X|D〉
. . . . . . . . . . . .

〈D |X| 1〉 〈D |X| 2〉 . . . 〈D |X|D〉







〈1| γ〉
〈2| γ〉
〈3| γ〉
. . .

〈D| γ〉



. (4.3.24)
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In words: X acting on some vector |γ〉 can be represented by the column vector gotten from
acting the matrix 〈j |X| i〉, with row number j and column number i, acting on the column
vector 〈i| γ〉. In index notation, with8

X̂ i
j ≡ 〈i |X| j〉 and γj ≡ 〈j| γ〉 , (4.3.25)

we have

〈i|X |γ〉 = X̂ i
jγ

j . (4.3.26)

Since |γ〉 in eq. (4.3.22) was arbitrary, we may record that any linear operator X admits an
ket-bra operator expansion:

X =
∑

i,j

|j〉 〈j |X| i〉 〈i| =
∑

i,j

|j〉 X̂j
i 〈i| . (4.3.27)

Equivalently, this result follows from inserting the completeness relation in eq. (4.3.18) on the

left and right ofX . We see that specifying the matrix X̂j
i amounts to defining the linear operator

X itself.
Vector Space of Linear Operators You may step through the axioms of Linear Algebra to

verify that the space of Linear operators is, in fact, a vector space itself. Given an orthonormal
basis {|i〉} for the original vector space upon which these linear operators are acting, we see that
the expansion in eq. (4.3.27) – which holds for an arbitrary linear operator X – teaches us the
set of ket-bra operators

{|j〉 〈i| |j, i = 1, 2, 3, . . . , D} (4.3.28)

form the basis of the space of linear operators. The matrix elements 〈j |X| i〉 = X̂j
i are the

expansion coefficients.
Example What is the matrix representation of |β〉 〈α|? We apply 〈i| from the left and

|j〉 from the right to obtain the ij component

〈i| (|α〉 〈β|) |j〉 = 〈i|α〉 〈β| j〉 =̇αiβj. (4.3.29)

Products of operators We can consider Y X , where X and Y are linear operators. By
inserting the completeness relation in eq. (4.3.18),

Y X |γ〉 =
∑

i,j,k

|k〉 〈k| Y |j〉 〈j |X| i〉 〈i| γ〉

=
∑

k

|k〉 Ŷ k
jX̂

j
iγ

i. (4.3.30)

The product Y X can therefore be represented as

Y X=̇




〈1 |Y | 1〉 〈1 |Y | 2〉 . . . 〈1 |Y |D〉
〈2 |Y | 1〉 〈2 |Y | 2〉 . . . 〈2 |Y |D〉
. . . . . . . . . . . .

〈D |Y | 1〉 〈D |Y | 2〉 . . . 〈D |Y |D〉







〈1 |X| 1〉 〈1 |X| 2〉 . . . 〈1 |X|D〉
〈2 |X| 1〉 〈2 |X| 2〉 . . . 〈2 |X|D〉
. . . . . . . . . . . .

〈D |X| 1〉 〈D |X| 2〉 . . . 〈D |X|D〉


 .

(4.3.31)

8In this chapter on the abstract formulation of Linear Algebra, I use a ·̂ to denote a matrix (representation),
in order to distinguish it from the linear operator itself.
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Notice how the rules of matrix multiplication emerges from this abstract formulation of linear
operators acting on a vector space.

Inner product of two kets In an orthonormal basis, the inner product of |α〉 and |β〉 can
be written as a complex “dot product” because we may insert the completeness relation in eq.
(4.3.18),

〈α|β〉 = 〈α |I|β〉 =
∑

i

〈α| i〉 〈i|β〉 =̇δijαiβj = α†β. (4.3.32)

This means if 〈i| β〉 is the column vector representing |β〉 in a given orthonormal basis; then
〈α| i〉, the adjoint of the column 〈i|α〉 representing |α〉, should be viewed as a row vector.

Furthermore, if |γ〉 has unit norm, then

1 = 〈γ| γ〉 =
∑

i

〈γ| i〉 〈i| γ〉 =
∑

i

| 〈i| γ〉|2 =̇δijγiγj = γ†γ. (4.3.33)

Adjoint Through the associativity of products, we also see that, for any states |α〉 and |β〉;
and for any linear operator X ,

〈α|X |β〉 = 〈α| (X |β〉) = ((X |β〉))† |α〉 = (〈β|X†) |α〉 = 〈β|X† |α〉 (4.3.34)

If we take matrix elements of X with respect to an orthonormal basis {|i〉}, we recover our
previous (matrix algebra) definition of the adjoint:

〈
j
∣∣X†

∣∣ i
〉
= 〈i |X| j〉∗ . (4.3.35)

Mapping finite dimensional vector spaces to CD We summarize our preceding dis-
cussion. Even though it is possible to discuss finite dimensional vector spaces in the abstract,
it is always possible to translate the setup at hand to one of the D-tuple of complex numbers,
where D is the dimensionality. First choose a set of orthonormal basis vectors {|1〉 , . . . , |D〉}.
Then, every vector |α〉 can be represented as a column vector; the ith component is the result
of projecting the abstract vector on the ith basis vector 〈i|α〉; conversely, writing a column of
complex numbers can be interpreted to define a vector in this orthonormal basis. The inner
product between two vectors 〈α|β〉 =

∑
i 〈α| i〉 〈i|β〉 boils down to the complex conjugate of

the 〈i|α〉 column vector dotted into the 〈i|β〉 vector. Moreover, every linear operator O can be
represented as a matrix with the element on the ith row and jth column given by 〈i |O| j〉; and
conversely, writing any square matrix Ôi

j can be interpreted to define a linear operator, on this
vector space, with matrix elements 〈i |O| j〉. Product of linear operators becomes products of
matrices, with the usual rules of matrix multiplication.

Object Representation
Vector/Ket: |α〉 =

∑
i |i〉 〈i|α〉 αi = (〈1|α〉 , . . . , 〈D|α〉)T

Dual Vector/Bra: 〈α| =∑i 〈α| i〉 〈i| (α†)i = (〈α| 1〉 , . . . , 〈α|D〉)
Inner product: 〈α|β〉 =

∑
i 〈α| i〉 〈i|β〉 α†β = δijαiβj

Linear operator (LO): X =
∑

i,j |i〉 〈i |X| j〉 〈j| X̂ i
j = 〈i |X| j〉

LO acting on ket: X |γ〉 =
∑

i,j |i〉 〈i |X| j〉 〈j| γ〉 (X̂γ)i = X̂ i
jγ

j

Products of LOs: XY =
∑

i,j,k |i〉 〈i |X| j〉 〈j |Y | k〉 〈k| (X̂Y )ik = X̂ i
j Ŷ

j
k

Adjoint of LO: X† =
∑

i,j |j〉 〈i |X| j〉 〈i| (X̂†)ji = 〈i |X| j〉 = (X̂T )ji

Next we highlight two special types of linear operators.
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4.3.2 Hermitian Operators

A hermitian linear operator X is one that is equal to its own adjoint, namely

X† = X. (4.3.36)

From eq. (4.3.34), we see that a linear operator X is hermitian if and only if

〈α|X |β〉 = 〈β|X |α〉∗ (4.3.37)

for arbitrary vectors |α〉 and |β〉. In particular, if {|i〉 |i = 1, 2, 3, . . . , D} form an orthonormal
basis, we recover the definition of a Hermitian matrix,

〈j|X |i〉 = 〈i|X |j〉∗ . (4.3.38)

We now turn to the following important facts about Hermitian operators.

Hermitian Operators Have Real Spectra: If X is a Hermitian operator,
all its eigenvalues are real and eigenvectors corresponding to different eigenvalues are
orthogonal.

Proof Let |a〉 and |a′〉 be eigenvectors of X , i.e.,

X |a〉 = a |a〉 (4.3.39)

Taking the adjoint of the analogous equation for |a′〉, and using X = X†,

〈a′|X = a′∗ 〈a′| . (4.3.40)

We can multiply 〈a′| from the left on both sides of eq. (4.3.39); and multiply |a〉 from the right
on both sides of eq. (4.3.40).

〈a′|X |a〉 = a 〈a′| a〉 , 〈a′|X |a〉 = a′∗ 〈a′| a〉 (4.3.41)

Subtracting these two equations,

0 = (a− a′∗) 〈a′| a〉 . (4.3.42)

Suppose the eigenvalues are the same, a = a′. Then 0 = (a − a∗) 〈a| a〉; because |a〉 is not a
null vector, this means a = a∗; eigenvalues of Hermitian operators are real. Suppose instead
the eigenvalues are distinct, a 6= a′. Because we have just proven that a′ can be assumed to
be real, we have 0 = (a − a′) 〈a′| a〉. By assumption the factor a − a′ is not zero. Therefore
〈a′| a〉 = 0, namely, eigenvectors corresponding to different eigenvalues of a Hermitian operator
are orthogonal.

Completeness of Hermitian Eigensystem: The eigenkets {|λk〉 |k =
1, 2, . . . , D} of a Hermitian operator span the vector space upon which it is acting.
The full set of eigenvalues {λk|k = 1, 2, . . . , D} of some Hermitian operator is called
its spectrum; and from eq. (4.3.18), completeness of its eigenvectors reads

I =

D∑

k=1

|λk〉 〈λk| . (4.3.43)

In the language of matrix algebra, we’d say that a Hermitian matrix is always diag-
onalizable via a unitary transformation.
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In quantum theory, we postulate that observables such as spin, position, momentum, etc., corre-
spond to Hermitian operators; their eigenvalues are then the possible outcomes of the measure-
ments of these observables. This is because their spectrum are real, which guarantees we get a
real number from performing a measurement on the system at hand.

Degeneracy If more than one eigenket of A has the same eigenvalue, we say A’s spec-
trum is degenerate. The simplest example is the identity operator itself: every basis vector is
an eigenvector with eigenvalue 1.

When an operator is degenerate, the labeling of eigenkets using their eigenvalues become
ambiguous – which eigenket does |λ〉 correspond to, if this subspace is 5 dimensional, say?
What often happens is that one can find a different observable B to distinguish between the
eigenkets of the same λ. For example, we will see below that the negative Laplacian on the 2-
sphere – known as the “square of total angular momentum,” when applied to quantum mechanics
– will have eigenvalues ℓ(ℓ+1), where ℓ ∈ {0, 1, 2, 3, . . .}. It will also turn out to be (2ℓ+1)-fold
degenerate, but this degeneracy can be labeled by an integer m, corresponding to the eigenvalues
of the generator-of-rotation about the North pole J(φ) (where φ is the azimuthal angle). A closely

related fact is that [−~∇2
S2
, J(φ)] = 0, where [X, Y ] ≡ XY − Y X .

− ~∇2
S2 |ℓ,m〉 = ℓ(ℓ+ 1) |ℓ,m〉 , (4.3.44)

ℓ ∈ {0, 1, 2, . . . }, m ∈ {−ℓ,−ℓ + 1, . . . ,−1, 0, 1, . . . , ℓ− 1, ℓ}.

It’s worthwhile to mention, in the context of quantum theory – degeneracy in the spectrum is
often associated with the presence of symmetry. For example, the Stark and Zeeman effects
can be respectively thought of as the breaking of rotational symmetry of an atomic system by
a non-zero magnetic and electric field. Previously degenerate spectral lines become split into
distinct ones, due to these ~E and ~B fields.9 In the context of classical field theory, we will witness
in the section on continuous vector spaces below, how the translation invariance of space leads
to a degenerate spectrum of the Laplacian.

Problem 4.11. Let X be a linear operator with eigenvalues {λi|i = 1, 2, 3, . . . , D} and
orthonormal eigenvectors {|λi〉 |i = 1, 2, 3, . . . , D} that span the given vector space. Show that
X can be expressed as

X =
∑

i

λi |λi〉 〈λi| . (4.3.45)

(Assume a non-degenerate spectra for now.) Verify that the right hand side is represented by a
diagonal matrix in this basis {|λi〉}. Of course, a Hermitian linear operator is a special case of eq.
(4.3.45), where all the {λi} are real. Hint: Given that the eigenkets of X span the vector space,
all you need to verify is that all possible matrix elements of X return what you expect.

How to diagonalize a Hermitian operator? Suppose you are given a Hermitian
operator H in some orthonormal basis {|i〉}, namely

H =
∑

i,j

|i〉 Ĥ i
j 〈j| . (4.3.46)

9See Wikipedia articles on the Stark and Zeeman effects for plots of the energy levels vs. electric/magnetic
field strengths.

41

https://en.wikipedia.org/wiki/Stark_effect
https://en.wikipedia.org/wiki/Zeeman_effect


How does one go about diagonalizing it? Here is where the matrix algebra you are familiar
with comes in. By treating Ĥ i

j as a matrix, you can find its eigenvectors and eigenvalues {λk}.
Specifically, what you are solving for is the unitary matrix Û j

k, whose kth column is the kth

unit length eigenvector of Ĥ i
j, with eigenvalue λk:

Ĥ i
jÛ

j
k = λkÛ

j
k ⇔

∑

j

〈i |H| j〉 〈j|λk〉 = λk 〈i|λk〉 , (4.3.47)

with

〈i |H| j〉 ≡ Ĥ i
j and 〈j|λk〉 ≡ Û j

k. (4.3.48)

Once you have the explicit solutions for (〈1|λk〉 , 〈2|λk〉 , . . . , 〈D|λk〉)T , you can then write the
eigenket itself as

|λk〉 =
∑

i

|i〉 〈i|λk〉 =
∑

i

|i〉 Û i
k. (4.3.49)

The operator H has now been diagonalized as

H =
∑

k

λk |λk〉 〈λk| (4.3.50)

because eq. (4.3.49) says

H =
∑

k

λk |λk〉 〈λk| =
∑

k

λk
∑

i,j

|i〉 〈i|λk〉 〈j|λk〉 〈j| (4.3.51)

=
∑

i,j

|i〉
(∑

k

λk 〈i| λk〉 〈j|λk〉
)
〈j| . (4.3.52)

We may multiply Û † on both sides of eq. (4.3.47) and remember 〈j|λk〉 ≡ Û j
k and (Û †)ij = Û j

i,
to write the Hermitian matrix diagonalization problem as

Ĥ i
j =

∑

k

Û i
k · λk · Û j

k =
∑

k

λk 〈i|λk〉 〈j|λk〉. (4.3.53)

In summary,

H =
∑

i,j

|i〉 Ĥ i
j 〈j| =

∑

k

λk |λk〉 〈λk| (4.3.54)

=
∑

i,j

|i〉
(
Û · diag [λ1, . . . , λD] · Û †

)i
j
〈j| . (4.3.55)

Compatible observables Let X and Y be observables – aka Hermitian operators. We
shall define compatible observables to be ones where the operators commute,

[A,B] ≡ AB −BA = 0. (4.3.56)

They are incompatible when [A,B] 6= 0. Finding the maximal set of mutually compatible set of
observables in a given physical system will tell us the range of eigenvalues that fully capture the
quantum state of the system. To understand this we need the following result.
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Theorem Suppose X and Y are observables – they are Hermitian operators.
Then X and Y are compatible (i.e., commute with each other) if and only if they
are simultaneously diagonalizable.

Proof We will provide the proof for the case where the spectrum of X is non-degenerate.
We have already stated earlier that if X is Hermitian we can expand it in its basis eigenkets.

X =
∑

a

a |a〉 〈a| (4.3.57)

In this basis X is already diagonal. But what about Y ? Suppose [X, Y ] = 0. We consider, for
distinct eigenvalues a and a′ of X ,

〈a′ |[X, Y ]| a〉 = 〈a′ |XY − Y X| a〉 = (a′ − a) 〈a′ |Y | a〉 = 0. (4.3.58)

Since a − a′ 6= 0 by assumption, we must have 〈a′ |Y | a〉 = 0. That means the only non-zero
matrix elements are the diagonal ones 〈a |Y | a〉.10

We have thus shown [X, Y ] = 0 ⇒ X and Y are simultaneously diagonalizable. We now turn
to proving, if X and Y are simultaneously diagonalizable, then [X, Y ] = 0. That is, suppose

X =
∑

a,b

a |a, b〉 〈a, b| and Y =
∑

a,b

b |a, b〉 〈a, b| , (4.3.59)

let’s compute the commutator

[X, Y ] =
∑

a,b,a′,b′

ab′ (|a, b〉 〈a, b| a′, b′〉 〈a′, b′| − |a′, b′〉 〈a, b|) . (4.3.60)

Remember that eigenvectors corresponding to distinct eigenvalues are orthogonal, namely 〈a, b| a′, b′〉
is unity only when a = a′ and b = b′ simultaneously. This means we may discard the summation
over (a′, b′) and set a = a′ and b = b′ within the summand.

[X, Y ] =
∑

a,b

ab (|a, b〉 〈a, b| − |a, b〉 〈a, b| a, b〉 〈a, b|) = 0. (4.3.61)

Problem 4.12. Assuming the spectrum of X is non-degenerate, show that the Y in the
preceding theorem can be expanded in terms of the eigenkets of X as

Y =
∑

a

|a〉 〈a |Y | a〉 〈a| . (4.3.62)

Read off the eigenvalues.

10If the spectrum of X were N -fold degenerate, {|a; i〉 |i = 1, 2, . . . , N} with X |a; i〉 = a |a; i〉, to extend the
proof to this case, all we have to do is to diagonalize the N ×N matrix 〈a; i |Y | a; j〉. That this is always possible
is because Y is Hermitian. Within the subspace spanned by these {|a; i〉}, X =

∑
i a |a; i〉 〈a; i|+ . . . acts like a

times the identity operator, and will therefore definitely commute with Y .
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Probabilities and Expectation value In the context of quantum theory, given a state
|α〉 and an observable O, we may expand the former in terms of the orthonormal eigenkets {|λi〉}
of the latter,

|α〉 =
∑

i

|λi〉 〈λi|α〉 , O |λi〉 = λi |λi〉 . (4.3.63)

It is a postulate of quantum theory that the probability of obtaining a specific λj in an experiment
designed to observe O (which can be energy, spin, etc.) is given by | 〈λj |α〉 |2 = 〈α|λi〉 〈λi|α〉;
if the spectrum is degenerate, so that there are N eigenkets {|λi; j〉 |j = 1, 2, 3, . . . , N} corre-
sponding to λi, then the probability will be

P (λi) =
∑

j

〈α|λi; j〉 〈λi; j|α〉 . (4.3.64)

This is known as the Born rule.
The expectation value of some operator O with respect to some state |α〉 is defined to be

〈α |O|α〉 . (4.3.65)

If O is Hermitian, then the expectation value is real, since

〈α |O|α〉∗ =
〈
α
∣∣O†
∣∣α
〉
= 〈α |O|α〉 . (4.3.66)

In the quantum context, because we may interpret O to be an observable, its expectation value
with respect to some state can be viewed as the average value of the observable. This can be
seen by expanding |α〉 in terms of the eigenstates of O.

〈α |O|α〉 =
∑

i,j

〈α|λi〉 〈λi |O|λj〉 〈λj|α〉

=
∑

i,j

〈α|λi〉 λi 〈λi|λj〉 〈λj|α〉

=
∑

i

| 〈α|λi〉 |2λi. (4.3.67)

The probability of finding λi is | 〈α|λi〉 |2, therefore the expectation value is an average. (In the
sum here, we assume a non-degenerate spectrum for simplicity.)

Suppose instead O is anti-Hermitian, O† = −O. Then we see its expectation value with
respect to some state |α〉 is purely imaginary.

〈α |O|α〉∗ =
〈
α
∣∣O†
∣∣α
〉
= −〈α |O|α〉 (4.3.68)

Pauli matrices from their algebra. Before moving on to unitary operators, let us now
try to construct (up to a phase) the Pauli matrices in eq. (8.1.26). We assume the following.

• The {σi|i = 1, 2, 3} are Hermitian linear operators acting on a 2 dimensional vector space.
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• They obey the algebra

σiσj = δijI+ i
∑

k

ǫijkσk. (4.3.69)

That this is consistent with the Hermitian nature of the {σi} can be checked by taking † on
both sides. We have (σiσj)† = σjσi on the left-hand-side; whereas on the right-hand-side
(δijI+ i

∑
k ǫ

ijkσk)† = δijI− iǫijkσk = δijI+ iǫjikσk = σjσi.

We begin by noting

[σi, σj] = (δij − δji)I+
∑

k

i(ǫijk − ǫjik)σk = 2i
∑

k

ǫijkσk. (4.3.70)

We then define the operators

σ± ≡ σ1 ± iσ2 ⇒ (σ±)† = σ∓. (4.3.71)

and calculate11

[σ3, σ±] = [σ3, σ1]± i[σ3, σ2] = 2iǫ312σ2 ± 2i2ǫ321σ1 (4.3.72)

= 2iσ2 ± 2σ1 = ±2(σ1 ± iσ2),

⇒ [σ3, σ±] = ±2σ±. (4.3.73)

Also,

σ∓σ± = (σ1 ∓ iσ2)(σ1 ± iσ2)

= (σ1)2 + (∓i)(±i)(σ2)2 ∓ iσ2σ1 ± iσ1σ2

= 2I± i(σ1σ2 − σ2σ1) = 2I± i[σ1, σ2] = 2I± 2i2ǫ123σ3

⇒ σ∓σ± = 2(I∓ σ3). (4.3.74)

σ3 and its Matrix representation. Suppose |λ〉 is a unit norm eigenket of σ3. Using
σ3 |λ〉 = λ |λ〉 and (σ3)2 = I,

1 = 〈λ|λ〉 =
〈
λ
∣∣σ3σ3

∣∣λ
〉
=
(
σ3 |λ〉

)† (
σ3 |λ〉

)
= λ2 〈λ|λ〉 = λ2. (4.3.75)

We see immediately that the spectrum is at most λ± = ±1. (We will prove below that the vector
space is indeed spanned by both |±〉.) Since the vector space is 2 dimensional, and since the
eigenvectors of a Hermitian operator with distinct eigenvalues are necessarily orthogonal, we see
that |±〉 span the space at hand. We may thus say

σ3 = |+〉 〈+| − |−〉 〈−| , (4.3.76)

which immediately allows us to read off its matrix representation in this basis {|±〉}, with
〈+ |σ3|+〉 being the top left hand corner entry:

〈
j
∣∣σ3
∣∣ i
〉
=

[
1 0
0 −1

]
. (4.3.77)

11The commutator is linear in that [X,Y + Z] = X(Y + Z) − (Y + Z)X = (XY − Y X) + (XZ − ZX) =
[X,Y ] + [X,Z].
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Observe that we could have considered 〈λ |σiσi| λ〉 for any i ∈ {1, 2, 3}; we are just picking
i = 3 for concreteness. In particular, we see from their algebraic properties that all three Pauli
operators σ1,2,3 have the same spectrum {+1,−1}. Moreover, since the σis do not commute, we
already know they cannot be simultaneously diagonalized.

Raising and lowering (aka Ladder) operators σ±, and σ1,2. Let us now consider

σ3σ± |λ〉 = (σ3σ± − σ±σ3 + σ±σ3) |λ〉
= ([σ3, σ±] + σ±σ3) |λ〉 = (±2σ± + λσ±) |λ〉
= (λ± 2)σ± |λ〉 ⇒ σ± |λ〉 = K±

λ |λ± 2〉 , K±
λ ∈ C. (4.3.78)

This is why the σ± are often called raising/lowering operators: when applied to the eigenket
|λ〉 of σ3 it returns an eigenket with eigenvalue raised/lowered by 2 relative to λ. This sort of
algebraic reasoning is important for the study of group representations; solving the energy levels
of the quantum harmonic oscillator and the Hydrogen atom12; and even the notion of particles
in quantum field theory.

What is the norm of σ± |λ〉?
〈
λ
∣∣σ∓σ±

∣∣λ
〉
= |K±

λ |2 〈λ± 2|λ± 2〉〈
λ
∣∣2(I∓ σ3)

∣∣λ
〉
= |K±

λ |2
2(1∓ λ) = |K±

λ |2. (4.3.79)

This means we can solve K±
λ up to a phase

K±
λ = eiδ

(λ)
±
√

2(1∓ λ), λ ∈ {−1,+1}. (4.3.80)

Note that K+
+ = eiδ

(+)
+

√
2(1− (+1)) = 0, and K−

− = eiδ
(−)
−
√

2(1 + (−1)) = 0, which means

σ+ |+〉 = 0, σ− |−〉 = 0. (4.3.81)

We can interpret this as saying, there are no larger eigenvalues than +1 and no smaller than −1
– this is consistent with our assumption that we have a 2-dimensional vector space. Moreover,

K−
+ = eiδ

(+)
−
√

2(1 + (+1)) = 2eiδ
(+)
− and K+

− = eiδ
(−)
+

√
2(1− (−1)) = 2eiδ

(+)
− .

σ+ |−〉 = 2eiδ
(−)
+ |+〉 , σ− |+〉 = 2eiδ

(+)
− |−〉 . (4.3.82)

At this point, we have proved that the spectrum of σ3 has to include both |±〉, because we can
get from one to the other by applying σ± appropriately. In other words, if |+〉 exists, so does
|−〉 ∝ σ− |+〉; and if |−〉 exists, so does |+〉 ∝ σ+ |−〉.

Also notice we have figured out how σ± acts on the basis kets (up to phases), just from
their algebraic properties. We may now turn this around to write them in terms of the basis
bras/kets:

σ+ = 2eiδ
(−)
+ |+〉 〈−| , σ− = 2eiδ

(+)
− |−〉 〈+| . (4.3.83)

12For the H atom, the algebraic derivation of its energy levels involve the quantum analog of the classical
Laplace-Runge-Lenz vector.
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Since (σ+)† = σ−, we must have δ
(−)
+ = −δ(+)

− ≡ δ.

σ+ = 2eiδ |+〉 〈−| , σ− = 2e−iδ |−〉 〈+| . (4.3.84)

with the corresponding matrix representations, with 〈+ |σ±|+〉 being the top left hand corner
entry:

〈
j
∣∣σ+
∣∣ i
〉
=

[
0 2eiδ

0 0

]
,

〈
j
∣∣σ−
∣∣ i
〉
=

[
0 0

2e−iδ 0

]
. (4.3.85)

Now, we have σ± = σ1 ± iσ2, which means we can solve for

2σ1 = σ+ + σ−, 2iσ2 = σ+ − σ−. (4.3.86)

We have

σ1 = eiδ |+〉 〈−|+ e−iδ |−〉 〈+| , (4.3.87)

σ2 = −ieiδ |+〉 〈−|+ ie−iδ |−〉 〈+| , δ ∈ R, (4.3.88)

with matrix representations

〈
j
∣∣σ1
∣∣ i
〉
=

[
0 eiδ

e−iδ 0

]
,

〈
j
∣∣σ2
∣∣ i
〉
=

[
0 −ieiδ

ie−iδ 0

]
. (4.3.89)

You can check explicitly that the algebra in eq. (4.3.69) holds for any δ. However, we can also
use the fact that unit normal eigenkets can be re-scaled by a phase and still remain unit norm
eigenkets.

σ3
(
eiθ |±〉

)
= ±

(
eiθ |±〉

)
,

(
eiθ |±〉

)† (
eiθ |±〉

)
= 1, θ ∈ R. (4.3.90)

We re-group the phases occurring within our σ3 and σ± as follows.

σ3 = (eiδ/2 |+〉)(eiδ/2 |+〉)† − (e−iδ/2 |−〉)(e−iδ/2 |−〉)†, (4.3.91)

σ+ = 2(eiδ/2 |+〉)(e−iδ/2 |−〉)†, σ− = 2(e−iδ/2 |−〉)(eiδ/2 |+〉)†. (4.3.92)

That is, if we re-define |±′〉 ≡ e±iδ/2 |±〉, followed by dropping the primes, we would have

σ3 = |+〉 〈+| − |−〉 〈−| , (4.3.93)

σ+ = 2 |+〉 〈−| , σ− = 2 |−〉 〈+| , (4.3.94)

and again using σ1 = (σ1 + σ2)/2 and σ2 = −i(σ1 − σ2)/2,

σ1 = |+〉 〈−|+ |−〉 〈+| , (4.3.95)

σ2 = −i |+〉 〈−|+ i |−〉 〈+| , δ ∈ R. (4.3.96)

We see that the Pauli matrices in eq. (8.1.26) correspond to the matrix representations of σi in
the basis built out of the unit norm eigenkets of σ3, with an appropriate choice of phase.
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Note that there is nothing special about choosing our basis as the eigenkets of σ3 – we could
have chosen the eigenkets of σ1 or σ2 as well. The analogous raising and lower operators can
then be constructed from the remaining σis.

Finally, for Û unitary we have already noted that det(Û σ̂iÛ †) = det σ̂i and Tr
[
Û σ̂iÛ †

]
=

Tr [σ̂i]. Therefore, if we choose Û such that Û σ̂iÛ † = diag(1,−1) – since we now know the
eigenvalues of each σ̂i are ±1 – we readily deduce that

det σ̂i = −1, Tr
[
σ̂i
]
= 0. (4.3.97)

(However, σ̂2σ̂iσ̂2 = −(σ̂i)∗ does not hold unless δ = 0.)

4.3.3 Unitary Operation as Change of Orthonormal Basis

A unitary operator U is one whose inverse is its adjoint, i.e.,

U †U = UU † = I. (4.3.98)

Like their Hermitian counterparts, unitary operators play a special role in quantum theory. At a
somewhat mundane level, they describe the change from one set of basis vectors to another. The
analog in Euclidean space is the rotation matrix. But when the quantum dynamics is invariant
under a particular change of basis – i.e., there is a symmetry enjoyed by the system at hand –
then the eigenvectors of these unitary operators play a special role in classifying the dynamics
itself. Also, in order to conserve probabilities, the time evolution operator, which takes an initial
wave function(nal) of the quantum system and evolves it forward in time, is in fact a unitary
operator itself.

Let us begin by understanding the action of a unitary operator as a change of basis vectors.
Up till now we have assumed we can always find an orthonormal set of basis vectors {|i〉 |i =
1, 2, . . . , D}, for aD dimensional vector space. But just as in Euclidean space, this choice of basis
vectors is not unique – in 3-space, for instance, we can rotate {x̂, ŷ, ẑ} to some other {x̂′, ŷ′, ẑ′}
(i.e., redefine what we mean by the x, y and z axes). Hence, let us suppose we have found two
such sets of orthonormal basis vectors

{|1〉 , . . . , |D〉} and {|1′〉 , . . . , |D′〉} . (4.3.99)

(For concreteness the dimension of the vector space is D.) Remember a linear operator is defined
by its action on every element of the vector space; equivalently, by linearity and completeness,
it is defined by how it acts on each basis vector. We may thus define our unitary operator U via

U |i〉 = |i′〉 , i ∈ {1, 2, . . . , D}. (4.3.100)

Its matrix representation in the unprimed basis {|i〉} is gotten by projecting both sides along
|j〉.

〈j |U | i〉 = 〈j| i′〉 , i, j ∈ {1, 2, . . . , D}. (4.3.101)

Is U really unitary? One way to verify this is through its matrix representation. We have

〈j|U † |i〉 = 〈i|U |j〉∗ = 〈j′| i〉 . (4.3.102)
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Whereas U †U in matrix form is
∑

k

〈j|U † |k〉 〈k|U |i〉 =
∑

k

〈k|U |j〉∗ 〈k|U |i〉 =
∑

k

〈k| i′〉 〈k| j′〉∗ =
∑

k

〈j′| k〉 〈k| i′〉 .

(4.3.103)

Because both {|k〉} and {|k′〉} form an orthonormal basis, we may invoke the completeness
relation eq. (4.3.18) to deduce

∑

k

〈j|U † |k〉 〈k|U |i〉 = 〈j′| i′〉 = δji . (4.3.104)

That is, we recover the unit matrix when we multiply the matrix representation of U † to that
of U .13 Since we have not made any additional assumptions about the two arbitrary sets of
orthonormal basis vectors, this verification of the unitary nature of U is itself independent of
the choice of basis.

Alternatively, let us observe that the U defined in eq. (4.3.100) can be expressed as

U =
∑

j

|j′〉 〈j| . (4.3.105)

All we have to verify is U |i〉 = |i′〉 for any i ∈ {1, 2, 3, . . . , D}.

U |i〉 =
∑

j

|j′〉 〈j| i〉 =
∑

j

|j′〉 δji = |i′〉 . (4.3.106)

The unitary nature of U can also be checked explicitly. Remember (|α〉 〈β|)† = |β〉 〈α|.

U †U =
∑

j

|j〉 〈j′|
∑

k

|k′〉 〈k| =
∑

j,k

|j〉 〈j′| k′〉 〈k|

=
∑

j,k

|j〉 δjk 〈k| =
∑

j

|j〉 〈j| = I. (4.3.107)

The very last equality is just the completeness relation in eq. (4.3.18).
Starting from U defined in eq. (4.3.100) as a change-of-basis operator, we have shown U is

unitary whenever the old {|i〉} and new {|i′〉} basis are given. Turning this around – suppose U
is some arbitrary unitary linear operator, given some orthonormal basis {|i〉} we can construct
a new orthonormal basis {|j′〉} by defining

|i′〉 ≡ U |i〉 . (4.3.108)

All we have to show is that {|i′〉} form an orthonormal set.

〈j′| i′〉 = (U |j〉)† (U |i〉) =
〈
j
∣∣U †U

∣∣ i
〉
= 〈j| i〉 = δji . (4.3.109)

We may therefore pause to summarize our findings as follows.

13Strictly speaking we have only verified that the left inverse of U is U †, but for finite dimensional matrices,
the left inverse is also the right inverse.
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A linear operator U implements a change-of-basis from the orthonormal set {|i〉} to
some other (appropriately defined) orthonormal set {|i′〉} if and only if U is unitary.

Change-of-basis of 〈α| i〉 Given a bra 〈α|, we may expand it either in the new {〈i′|} or
old {〈i|} basis bras,

〈α| =
∑

i

〈α| i〉 〈i| =
∑

i

〈α| i′〉 〈i′| . (4.3.110)

We can relate the components of expansions using 〈i |U | k〉 = 〈i| k′〉 (cf. eq. (4.3.101)),
∑

k

〈α| k′〉 〈k′| =
∑

i

〈α| i〉 〈i|

=
∑

i,k

〈α| i〉 〈i| k′〉 〈k′| =
∑

k

(∑

i

〈α| i〉 〈i |U | k〉
)
〈k′| . (4.3.111)

Equating the coefficients of 〈k′| on the left and (far-most) right hand sides, we see the components

of the bra in the new basis can be gotten from that in the old basis using Û ,

〈α| k′〉 =
∑

i

〈α| i〉 〈i |U | k〉 . (4.3.112)

In words: the 〈α| row vector in the basis {〈i′|} is equal to U , written in the basis {〈j |U | i〉},
acting (from the right) on the 〈α| i〉 row vector, the 〈α| in the basis {〈i|}. Moreover, in index
notation,

αk′ = αiÛ
i
k. (4.3.113)

Problem 4.13. Given a vector |α〉, and the orthonormal basis vectors {|i〉}, we can rep-
resent it as a column vector, where the ith component is 〈i|α〉. What does this column vector
look like in the basis {|i′〉}? Show that it is given by the matrix multiplication

〈i′|α〉 =
∑

k

〈
i
∣∣U †
∣∣ k
〉
〈k|α〉 , U |i〉 = |i′〉 . (4.3.114)

In words: the |α〉 column vector in the basis {|i′〉} is equal to U †, written in the basis {
〈
j
∣∣U †
∣∣ i
〉
},

acting (from the left) on the 〈i|α〉 column vector, the |α〉 in the basis {|i〉}.
Furthermore, in index notation,

αi′ = (Û †)ikα
k. (4.3.115)

From the discussion on how components of bra(s) transform under a change-of-basis, together
the analogous discussion of linear operators below, you will begin to see why in index notation,
there is a need to distinguish between upper and lower indices – they transform oppositely from
each other.

Problem 4.14. 2D rotation in 3D. Let’s rotate the basis vectors of the 2D plane, spanned
by the x- and z-axis, by an angle θ. If |1〉, |2〉, and |3〉 respectively denote the unit vectors along
the x, y, and z axes, how should the operator U(θ) act to rotate them? For example, since we
are rotating the 13-plane, U |2〉 = |2〉. (Drawing a picture may help.) Can you then write down
the matrix representation 〈j |U(θ)| i〉?
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Change-of-basis of 〈i |X| j〉 Now we shall proceed to ask, how do we use U to change the
matrix representation of some linear operator X written in the basis {|i〉} to one in the basis
{|i〉′}? Starting from 〈i′ |X| j′〉 we insert the completeness relation eq. (4.3.18) in the basis {|i〉},
on both the left and the right,

〈i′ |X| j′〉 =
∑

k,l

〈i′| k〉 〈k |X| l〉 〈l| j′〉

=
∑

k,l

〈
i
∣∣U †
∣∣ k
〉
〈k |X| l〉 〈l |U | j〉 =

〈
i
∣∣U †XU

∣∣ j
〉
, (4.3.116)

where we have recognized (from equations (4.3.101) and (4.3.102)) 〈i′| k〉 =
〈
i
∣∣U †
∣∣ k
〉
and

〈l| j′〉 = 〈l |U | j〉. If we denote X̂ ′ as the matrix representation of X with respect to the primed

basis; and X̂ and Û as their corresponding operators with respect to the unprimed basis, we
recover the similarity transformation

X̂ ′ = Û †X̂Û . (4.3.117)

In index notation, with primes on the indices reminding us that the matrix is written in the
primed basis {|i′〉} and the unprimed indices in the unprimed basis {|i〉},

X̂ i′
j′ = (Û †)ikX̂

k
lÛ

l
j . (4.3.118)

As already alluded to, we see here the i and j indices transform “oppositely” from each other – so
that, even in matrix algebra, if we view square matrices as (representations of) linear operators
acting on some vector space, then the row index i should have a different position from the
column index j so as to distinguish their transformation properties. This will allow us to readily
implement that fact, when upper and lower indices are repeated, the pair transform as a scalar
– for example, X i′

i′ = X i
i.
14

On the other hand, from the last equality of eq. (4.3.116), we may also view X̂ ′ as the matrix
representation of the operator

X ′ ≡ U †XU (4.3.119)

written in the old basis {|i〉}. To reiterate,

〈i′ |X| j′〉 =
〈
i
∣∣U †XU

∣∣ j
〉
. (4.3.120)

The next two theorems can be interpreted as telling us that the Hermitian/unitary nature of
operators and their spectra are really basis-independent constructs.

Theorem Let X ′ ≡ U †XU . If U is a unitary operator, X and X ′ shares the
same spectrum.

14This issue of upper versus lower indices will also appear in differential geometry. Given a pair of indices that
transform oppositely from each other, we want them to be placed differently (upper vs. lower), so that when we
set their labels equal – with Einstein summation in force – they automatically transforms as a scalar, since the
pair of transformations will undo each other.
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Proof Let |λ〉 be the eigenvector and λ be the corresponding eigenvalue of X .

X |λ〉 = λ |λ〉 (4.3.121)

By inserting a I = U †U and multiplying both sides on the left by U †,

U †XUU † |λ〉 = λU † |λ〉 , (4.3.122)

X ′(U † |λ〉) = λ(U † |λ〉). (4.3.123)

That is, given the eigenvector |λ〉 of X with eigenvalue λ, the corresponding eigenvector of X ′

is U † |λ〉 with precisely the same eigenvalue λ.

Theorem. Let X ′ ≡ U †XU . If X is Hermitian, so is X ′. If X is unitary, so
is X ′.

Proof If X is Hermitian, we consider X ′†.

X ′† =
(
U †XU

)†
= U †X†(U †)† = U †XU = X ′. (4.3.124)

If X is unitary we consider X ′†X ′.

X ′†X ′ =
(
U †XU

)†
(U †XU) = U †X†UU †XU = U †X†XU = U †U = I. (4.3.125)

Remark We won’t prove it here, but it is possible to find a unitary operator U , related to
rotation in R3, that relates any one of the Pauli operators to the other

U †σiU = σj, i 6= j. (4.3.126)

This is consistent with what we have already seen earlier, that all the {σk} have the same
spectrum {−1,+1}.

Physical Significance To put the significance of these statements in a physical context,
recall the eigenvalues of an observable are possible outcomes of a physical experiment, while U
describes a change of basis. Just as classical observables such as lengths, velocity, etc. should not
depend on the coordinate system we use to compute the predictions of the underlying theory –
in the discussion of curved space(time)s we will see the analogy there is called general covariance
– we see here that the possible experimental outcomes from a quantum system is independent of
the choice of basis vectors we use to predict them. Also notice the very Hermitian and Unitary
nature of a linear operator is invariant under a change of basis.

Diagonalization of observable Diagonalization of a matrix is nothing but the change-of-
basis, expressing a linear operator X in some orthonormal basis {|i〉} to one where it becomes
a diagonal matrix with respect to the orthonormal eigenket basis {|λ〉}. That is, suppose you
started with

X =
∑

k

λk |λk〉 〈λk| (4.3.127)

and defined the unitary operator

U |k〉 = |λk〉 ⇔ 〈i |U | k〉 = 〈i|λk〉 . (4.3.128)
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Notice the kth column of Û i
k ≡ 〈i |U | k〉 are the components of the kth unit norm eigenvector

|λk〉 written in the {|i〉} basis. This implies, via two insertions of the completeness relation in
eq. (4.3.18),

X =
∑

i,j,k

λk |i〉 〈i| λk〉 〈λk| j〉 〈j| . (4.3.129)

Taking matrix elements,

〈i |X| j〉 = X̂ i
j =

∑

k,l

〈i|λk〉λkδkl 〈λl| j〉 =
∑

k,l

Û i
kλkδ

k
l (Û

†)lj . (4.3.130)

Multiplying both sides by Û † on the left and Û on the right, we have

Û †X̂Û = diag(λ1, λ2, . . . , λD). (4.3.131)

Schur decomposition. Not all linear operators are diagonalizable. However, we already know
that any square matrix X̂ can be brought to an upper triangular form

Û †X̂Û = Γ̂ + N̂ , Γ̂ ≡ diag (λ1, . . . , λD) , (4.3.132)

where the {λi} are the eigenvalues of X and N̂ is strictly upper triangular. We may now phrase

the Schur decomposition as a change-of-basis from X̂ to its upper triangular form.

Given a linear operator X , it is always possible to find an orthonormal basis such
that its matrix representation is upper triangular, with its eigenvalues forming its
diagonal elements.

Trace Define the trace of a linear operator X as

Tr [X ] =
∑

i

〈i |X| i〉 , 〈i| j〉 = δij . (4.3.133)

The Trace yields a complex number. Let us see that this definition is independent of the
orthonormal basis {|i〉}. Suppose we found a different set of orthonormal basis {|i′〉}, with
〈i′| j′〉 = δij. Now consider

∑

i

〈i′ |X| i′〉 =
∑

i,j,k

〈i′| j〉 〈j |X| k〉 〈k| i′〉 =
∑

i,j,k

〈k| i′〉 〈i′| j〉 〈j |X| k〉

=
∑

j,k

〈k| j〉 〈j |X| k〉 =
∑

k

〈k |X| k〉 . (4.3.134)

Because Tr is invariant under a change of basis, we can view the trace operation that turns
an operator into a genuine scalar. This notion of a scalar is analogous to the quantities (pres-
sure of a gas, temperature, etc.) that do not change no matter what coordinates one uses to
compute/measure them.
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Problem 4.15. Prove the following statements. For linear operators X and Y ,

Tr [XY ] = Tr [Y X ] (4.3.135)

Tr
[
U †XU

]
= Tr [X ] (4.3.136)

Problem 4.16. Find the unit norm eigenvectors that can be expressed as a linear combi-
nation of |1〉 and |2〉, and their corresponding eigenvalues, of the operator

X ≡ a (|1〉 〈1| − |2〉 〈2|+ |1〉 〈2|+ |2〉 〈1|) . (4.3.137)

Assume that |1〉 and |2〉 are orthogonal and of unit norm. (Hint: First calculate the matrix
〈j |X| i〉.)

Now consider the operators built out of the orthonormal basis vectors {|i〉 |i = 1, 2, 3}.

Y ≡ a (|1〉 〈1| − |2〉 〈2| − |3〉 〈3|) , (4.3.138)

Z ≡ b |1〉 〈1| − ib |2〉 〈3|+ ib |3〉 〈2| .

(In equations (4.3.137) and (4.3.138), a and b are real numbers.) Are Y and Z hermitian? Write
down their matrix representations. Verify [Y, Z] = 0 and proceed to simultaneously diagonalize
Y and Z.

Problem 4.17. Pauli matrices re-visited. Refer to the Pauli matrices {σµ} defined in eq.
(8.1.26). Let pµ be a 4-component collection of real numbers. We may then view pµσ

µ (where µ
sums over 0 through 3) as a Hermitian operator acting on a 2 dimensional vector space.

1. Find the eigenvalues λ± and corresponding unit norm eigenvectors ξ± of piσ
i (where i sums

over 1 through 3). These are called the helicity eigenstates. Are they also eigenstates of
pµσ

µ? (Hint: consider [piσ
i, pµσ

µ].)

2. Explain why

piσ̂
i = λ+ξ

+(ξ+)† + λ−ξ
−(ξ−)†. (4.3.139)

Can you write down the analogous expansion for pµσ̂
µ?

3. If we define the square root of an operator or matrix
√
A as the solution to

√
A
√
A = A,

write down the expansion for
√
pµσ̂µ.

4. These 2 component spinors ξ± play a key role in the study of Lorentz symmetry in 4 space-
time dimensions. Consider applying an invertible transformation L B

A on these spinors, i.e.,
replace

(ξ±)A → L B
A (ξ±)B. (4.3.140)

(The A and B indices run from 1 to 2, the components of ξ±.) How does pµσ̂
µ change

under such a transformation? And, how does its determinant change?
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Problem 4.18. Schrödinger’s equation The primary equation in quantum mechanics
(and quantum field theory), governing how states evolve in time, is

i~∂t |ψ(t)〉 = H |ψ(t)〉 , (4.3.141)

where ~ ≈ 1.054572 × 10−34 J s is the reduced Planck’s constant, and H is the Hamiltonian
(≡ Hermitian total energy linear operator) of the system. The physics of a particular system is
encoded within H .

Suppose H is independent of time, and suppose its orthonormal eigenkets {|Ei;nj〉} are
known (nj being the degeneracy label, running over all eigenkets with the same energy Ej), with
H |Ei;ni〉 = Ei |Ei;ni〉 and {Ei ∈ R}, where we will assume the energies are discrete. Show that
the solution to Schrödinger’s equation in (4.3.141) is

|ψ(t)〉 =
∑

j,nj

e−(i/~)Ejt |Ej ;nj〉 〈Ej ;nj|ψ(t = 0)〉 , (4.3.142)

where |ψ(t = 0)〉 is the initial condition, i.e., the state |ψ(t)〉 at t = 0. (Hint: Check that eq.
(4.3.141) and the initial condition are satisfied.) Since the initial state was arbitrary, what you
have verified is that the operator

U(t, t′) ≡
∑

j,nj

e−(i/~)Ej(t−t′) |Ej ;nj〉 〈Ej ;nj| (4.3.143)

obeys Schrödinger’s equation,

i~∂tU(t, t
′) = HU(t, t′). (4.3.144)

Is U(t, t′) unitary? Explain what is the operator U(t = t′)?
Express the expectation value 〈ψ(t) |H|ψ(t)〉 in terms of the energy eigenkets and eigenvalues.

Compare it with the expectation value 〈ψ(t = 0) |H|ψ(t = 0)〉.
What if the Hamiltonian in Schrödinger’s equation depends on time – what is the corre-

sponding U? Consider the following (somewhat formal) solution for U .

U(t, t′) ≡ I− i

~

∫ t

t′
dτ1H(τ1) +

(
− i

~

)2 ∫ t

t′
dτ2

∫ τ2

t′
dτ1H(τ2)H(τ1) + . . . (4.3.145)

= I+

∞∑

ℓ=1

Iℓ(t, t
′), (4.3.146)

where the ℓ-nested integral Iℓ(t, t
′) is

Iℓ(t, t
′) ≡

(
− i

~

)ℓ ∫ t

t′
dτℓ

∫ τℓ

t′
dτℓ−1· · ·

∫ τ3

t′
dτ2

∫ τ2

t′
dτ1H(τℓ)H(τℓ−1) . . .H(τ2)H(τ1). (4.3.147)

(Be aware that, if the Hamiltonian H(t) depends on time, it may not commute with itself at
different times, namely one cannot assume [H(τ1), H(τ2)] = 0 if τ1 6= τ2.) Verify that, for t > t′,

i~∂tU(t, t
′) = H(t)U(t, t′). (4.3.148)
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What is U(t = t′)? You should be able to conclude that |ψ(t)〉 = U(t, t′) |ψ(t′)〉. Hint: Start
with i~∂tIℓ(t, t

′) and employ Leibniz’s rule:

d

dt

(∫ β(t)

α(t)

F (t, z)dz

)
=

∫ β(t)

α(t)

∂F (t, z)

∂t
dz + F (t, β(t))β ′(t)− F (t, α(t))α′(t). (4.3.149)

Bonus: Can you prove Leibniz’s rule, by say, using the limit definition of the derivative?

4.4 Tensor Products of Vector Spaces

In this section we will introduce the concept of a tensor product. It is a way to “multiply” vector
spaces, through the product ⊗, to form a larger vector space. Tensor products not only arise in
quantum theory but is present even in classical electrodynamics, gravitation and field theories of
non-Abelian gauge fields interacting with spin−1/2 matter. In particular, tensor products arise
in quantum theory when you need to, for example, describe both the spatial wave-function and
the spin of a particle.

Definition To set our notation, let us consider multiplying N ≥ 2 distinct vector spaces,
i.e., V1 ⊗ V2 ⊗ · · · ⊗ VN to form a VL. We write the tensor product of a vector |α1; 1〉 from V1,
|α2; 2〉 from V2 and so on through |αN ;N〉 from VN as

|A;L〉 ≡ |α1; 1〉 ⊗ |α2; 2〉 ⊗ · · · ⊗ |αN ;N〉 , (4.4.1)

where it is understood the vector |αi; i〉 in the ith slot (from the left) is an element of the ith
vector space Vi. As we now see, the tensor product is multi-linear because it obeys the following
algebraic rules.

1. The tensor product is distributive over addition. For example,

|α〉 ⊗ (|α′〉+ |β ′〉)⊗ |α′′〉 = |α〉 ⊗ |α′〉 ⊗ |α′′〉+ |α〉 ⊗ |β ′〉 ⊗ |α′′〉 . (4.4.2)

2. Scalar multiplication can be factored out. For example,

c (|α〉 ⊗ |α′〉) = (c |α〉)⊗ |α′〉 = |α〉 ⊗ (c |α′〉). (4.4.3)

Our larger vector space VL is spanned by all vectors of the form in eq. (4.4.1), meaning every
vector in VL can be expressed as a linear combination:

|A′;L〉 ≡
∑

α1,...,αN

Cα1,...,αN |α1; 1〉 ⊗ |α2; 2〉 ⊗ · · · ⊗ |αN ;N〉 ∈ VL. (4.4.4)

(The Cα1,...,αN is just a collection complex numbers.) In fact, if we let {|i; j〉 |i = 1, 2, . . . , Dj}
be the basis vectors of the jth vector space Vj ,

|A′;L〉 =
∑

α1,...,αN

∑

i1,...,iN

Cα1,...,αN 〈i1; 1|α1〉 〈i2; 2|α2〉 . . . 〈iN ;N |αN〉

× |i1; 1〉 ⊗ |i2; 2〉 ⊗ · · · ⊗ |iN ;N〉 . (4.4.5)
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In other words, the basis vectors of this tensor product space VL are formed from products of
the basis vectors from each and every vector space {Vi}.

Dimension If the ith vector space Vi has dimension Di, then the dimension of VL itself
is D1D2 . . .DN−1DN . The reason is, for a given tensor product |i1; 1〉 ⊗ |i2; 2〉 ⊗ · · · ⊗ |iN ;N〉,
there are D1 choices for |i1; 1〉, D2 choices for |i2; 2〉, and so on.

Example Suppose we tensor two copies of the 2-dimensional vector space that the Pauli
operators {σi} act on. Each space is spanned by |±〉. The tensor product space is then spanned
by the following 4 vectors

|1;L〉 = |+〉 ⊗ |+〉 , |2;L〉 = |+〉 ⊗ |−〉 , (4.4.6)

|3;L〉 = |−〉 ⊗ |+〉 , |4;L〉 = |−〉 ⊗ |−〉 . (4.4.7)

(Note that this ordering of the vectors is of course not unique.)
Adjoint and Inner Product Just as we can form tensor products of kets, we can do

so for bras. We have

(|α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αN〉)† = 〈α1| ⊗ 〈α2| ⊗ · · · ⊗ 〈αN | , (4.4.8)

where the ith slot from the left is a bra from the ith vector space Vi. We also have the inner
product

(〈α1| ⊗ 〈α2| ⊗ · · · ⊗ 〈αN |) (c |β1〉 ⊗ |β2〉 ⊗ · · · ⊗ |βN〉+ d |γ1〉 ⊗ |γ2〉 ⊗ · · · ⊗ |γN〉)
= c 〈α1|β1〉 〈α2| β2〉 . . . 〈αN |βN〉+ d 〈α1| γ1〉 〈α2| γ2〉 . . . 〈αN | γN〉 , (4.4.9)

where c and d are complex numbers. For example, the orthonormal nature of the {|i1; 1〉⊗ · · ·⊗
|iN ;N〉} follow from

(〈j1; 1| ⊗ · · · ⊗ 〈jN ;N |) (|i1; 1〉 ⊗ · · · ⊗ |iN ;N〉) = 〈j1; 1| i1; 1〉 〈j2; 2| i2; 2〉 . . . 〈jN ;N | iN ;N〉
= δj1i1 . . . δ

jN
iN
. (4.4.10)

Linear Operators If Xi is a linear operator acting on the ith vector space Vi, we can form
a tensor product of them. Their operation is defined as

(X1 ⊗X2 ⊗ · · · ⊗XN) (c |β1〉 ⊗ |β2〉 ⊗ · · · ⊗ |βN〉+ d |γ1〉 ⊗ |γ2〉 ⊗ · · · ⊗ |γN〉) (4.4.11)

= c(X1 |β1〉)⊗ (X2 |β2〉)⊗ · · · ⊗ (XN |βN〉) + d(X1 |γ1〉)⊗ (X2 |γ2〉)⊗ · · · ⊗ (XN |γN〉),

where c and d are complex numbers.
The most general linear operator Y acting on our tensor product space VL can be built out

of the basis ket-bra operators.

Y =
∑

i1,...,iN
j1,...,jN

(|i1; 1〉 ⊗ · · · ⊗ |iN ;N〉)Ŷ i1...iN
j1...jN

(〈j1; 1| ⊗ · · · ⊗ 〈jN ;N |) , (4.4.12)

Ŷ i1...iN
j1...jN

∈ C. (4.4.13)

Problem 4.19. Tensor transformations. Consider the state

|A′;L〉 =
∑

1≤i1≤D1

∑

1≤i2≤D2

· · ·
∑

1≤iN≤DN

T i1i2...iN−1iN |i1; 1〉 ⊗ |i2; 2〉 ⊗ · · · ⊗ |iN ;N〉 , (4.4.14)
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where {|ij ; j〉} are the Dj orthonormal basis vectors spanning the jth vector space Vj , and
T i1i2...iN−1iN are complex numbers. Consider a change of basis for each vector space, i.e., |i; j〉 →
|i′; j〉. By defining the unitary operator that implements this change-of-basis

U ≡ (1)U ⊗ (2)U ⊗ · · · ⊗ (N)U, (4.4.15)

(i)U ≡
∑

1≤j≤Di

|j′; i〉 〈j; i| , (4.4.16)

expand |A′;L〉 in the new basis {|j′1; 1〉 ⊗ · · · ⊗ |j′N ;N〉}; this will necessarily involve the U †’s.
Define the coefficients of this new basis via

|A′;L〉 =
∑

1≤i′1≤D1

∑

1≤i′2≤D2

· · ·
∑

1≤i′N≤DN

T ′i′1i
′
2...i

′
N−1i

′
N |i′1; 1〉 ⊗ |i′2; 2〉 ⊗ · · · ⊗ |i′N ;N〉 . (4.4.17)

Now relate T ′i′1i
′
2...i

′
N−1i

′
N to the coefficients in the old basis T i1i2...iN−1iN using the matrix elements

(
(i)Û

†
)j

k
≡
〈
j; i
∣∣∣
(
(i)U

)†∣∣∣ k; i
〉
. (4.4.18)

Can you perform a similar change-of-basis for the following dual vector?

〈A′;L| =
∑

1≤i1≤D1

∑

1≤i2≤D2

· · ·
∑

1≤iN≤DN

Ti1i2...iN−1iN 〈i1; 1| ⊗ 〈i2; 2| ⊗ · · · ⊗ 〈iN ;N | (4.4.19)

In differential geometry, tensors will transform in analogous ways.

4.5 Continuous Spaces and Infinite D−Space

For the final section we will deal with vector spaces with continuous spectra, with infinite di-
mensionality. To make this topic rigorous is beyond the scope of these notes; but the interested
reader should consult the functional analysis portion of the math literature. Our goal here is a
practical one: we want to be comfortable enough with continuous spaces to solve problems in
quantum mechanics and (quantum and classical) field theory.

4.5.1 Preliminaries: Dirac’s δ and eigenket integrals

Dirac’s δ-“function” We will see that transitioning from discrete, finite dimensional vec-
tor spaces to continuous ones means summations become integrals; while Kronecker-δs will be
replaced with Dirac-δ functions. In case the latter is not familiar, the Dirac-δ function of one
variable is to be viewed as an object that occurs within an integral, and is defined via

∫ b

a

f(x′)δ(x′ − x)dx′ = f(x), (4.5.1)

for all a less than x and all b greater than x, i.e., a < x < b. This indicates δ(x′ − x) has to be
sharply peaked at x′ = x and zero everywhere, since the result of integral picks out the value of
f solely at x.
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The Dirac δ-function is often loosely viewed as δ(x) = 0 when x 6= 0 and δ(x) = ∞ when
x = 0. An alternate approach is to define δ(x) as a sequence of functions more and more sharply
peaked at x = 0, whose integral over the real line is unity. Three examples are

δ(x) = lim
ǫ→0+

Θ
( ǫ
2
− |x|

) 1

ǫ
(4.5.2)

= lim
ǫ→0+

e−
|x|
ǫ

2ǫ
(4.5.3)

= lim
ǫ→0+

1

π

ǫ

x2 + ǫ2
(4.5.4)

For the first equality, Θ(z) is the step function, defined to be

Θ(z) = 1, for z > 0

= 0, for z < 0. (4.5.5)

Problem 4.20. Justify these three definitions of δ(x). What happens, for finite x 6= 0,
when ǫ → 0+? Then, by holding ǫ fixed, integrate them over the real line, before proceeding to
set ǫ→ 0+.

For later use, we record the following integral representation of the Dirac δ-function.

∫ +∞

−∞

dω

2π
eiω(z−z′) = δ(z − z′) (4.5.6)

Problem 4.21. Can you justify the following?

Θ(z − z′) =

∫ z

z0

dz′′δ(z′′ − z′), z′ > z0. (4.5.7)

We may therefore assert the derivative of the step function is the δ-function,

Θ′(z − z′) = δ(z − z′). (4.5.8)

A few properties of the δ-function are worth highlighting.

• From eq. (4.5.8) – that a δ(z − z′) follows from taking the derivative of a discontinuous
function – in this case, Θ(z − z′) – will be important for the study of Green’s functions.

• If the argument of the δ-function is a function f of some variable z, then as long as f ′(z) 6= 0
whenever f(z) = 0, it may be re-written as

δ (f(z)) =
∑

zi≡ith zero of f(z)

δ(z − zi)

|f ′(zi)|
. (4.5.9)

59



To justify this we recall the fact that, the δ-function itself is non-zero only when its argu-
ment is zero. This explains why we sum over the zeros of f(z). Now we need to fix the
coefficient of the δ-function near each zero. That is, what are the ϕi’s in

δ (f(z)) =
∑

zi≡ith zero of f(z)

δ(z − zi)

ϕi
? (4.5.10)

We now use the fact that integrating a δ-function around the small neighborhood of the ith
zero of f(z) with respect to f has to yield unity. It makes sense to treat f as an integration
variable near its zero because we have assumed its slope is non-zero, and therefore near its
ith zero,

f(z) = f ′(zi)(z − zi) +O((z − zi)
2), (4.5.11)

⇒ df = f ′(zi)dz +O((z − zi)
1)dz. (4.5.12)

The integration around the ith zero reads, for 0 < ǫ≪ 1,

1 =

∫ z=zi+ǫ

z=zi−ǫ

dfδ (f) =

∫ z=zi+ǫ

z=zi−ǫ

dz
∣∣(f ′(zi) +O((z − zi)

1)
)∣∣ δ (z − zi)

ϕi

(4.5.13)

ǫ→0→ |f ′(zi)|
ϕi

. (4.5.14)

(When you change variables within an integral, remember to include the absolute value of
the Jacobian, which is essentially |f ′(zi)| in this case.) The O(zp) means “the next term
in the series has a dependence on the variable z that goes as zp”; this first correction can
be multiplied by other stuff, but has to be proportional to zp.

A simple application of eq. (4.5.9) is, for a ∈ R,

δ(az) =
δ(z)

|a| . (4.5.15)

• Since δ(z) is non-zero only when z = 0, it must be that δ(−z) = δ(z) and more generally

δ(z − z′) = δ(z′ − z). (4.5.16)

• We may also take the derivative of a δ-function. Under an integral sign, we may apply
integration-by-parts as follows:

∫ b

a

δ′(x− x′)f(x)dx = [δ(x− x′)f(x)]x=b
x=a −

∫ b

a

δ(x− x′)f ′(x)dx = −f ′(x′) (4.5.17)

as long as x′ lies strictly between a and b, a < x′ < b, where a and b are both real.

• Dimension What is the dimension of the δ-function? Turns out δ(ξ) has dimensions
of 1/[ξ], i.e., the reciprocal of the dimension of its argument. The reason is

∫
dξδ(ξ) = 1 ⇒ [ξ] [δ(ξ)] = 1. (4.5.18)
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Continuous spectrum Let Ω be a Hermitian operator whose spectrum is continuous;
i.e., Ω |ω〉 = ω |ω〉 with ω being a continuous parameter. If |ω〉 and |ω′〉 are both “unit norm”
eigenvectors of different eigenvalues ω and ω′, we have

〈ω|ω′〉 = δ(ω − ω′). (4.5.19)

(This assumes a “translation symmetry” in this ω-space; we will see later how to modify this
inner product when the translation symmetry is lost.) The completeness relation in eq. (4.3.18)
is given by

∫
dω |ω〉 〈ω| = I. (4.5.20)

An arbitrary vector |α〉 can be expressed as

|α〉 =
∫

dω |ω〉 〈ω|α〉 . (4.5.21)

When the state is normalized to unity, we say

〈α|α〉 =
∫

dω 〈α|ω〉 〈ω|α〉 =
∫

dω| 〈ω|α〉 |2 = 1. (4.5.22)

The inner product between arbitrary vectors |α〉 and |β〉 now reads

〈α|β〉 =
∫

dω 〈α|ω〉 〈ω|β〉 . (4.5.23)

Since by assumption Ω is diagonal, i.e.,

Ω =

∫
dωω |ω〉 〈ω| , (4.5.24)

the matrix elements of Ω are

〈ω |Ω|ω′〉 = ωδ(ω − ω′) = ω′δ(ω − ω′). (4.5.25)

Because of the δ-function, it does not matter if we write ω or ω′ on the right hand side.

4.5.2 Continuous Operators, Translations, and the Fourier transform

An important example that we will deal in detail here, is that of the eigenket of the position
operator ~X, where we assume there is some underlying infinite D-space RD. The arrow indicates
the position operator itself has D components, each one corresponding to a distinct axis of the
D-dimensional Euclidean space. |~x〉 would describe the state that is (infinitely) sharply localized
at the position ~x; namely, it obeys the D-component equation

~X |~x〉 = ~x |~x〉 . (4.5.26)

61



Or, in index notation,

Xk |~x〉 = xk |~x〉 , k ∈ {1, 2, . . . , D}. (4.5.27)

The position eigenkets are normalized as, in Cartesian coordinates,

〈~x| ~x′〉 = δ(D)(~x− ~x′) ≡
D∏

i=1

δ(xi − x′i) = δ(x1 − x′1)δ(x2 − x′2) . . . δ(xD − x′D). (4.5.28)

15Any other vector |α〉 in the Hilbert space can be expanded in terms of the position eigenkets.

|α〉 =
∫

RD

dD~x |~x〉 〈~x|α〉 . (4.5.31)

Notice 〈~x|α〉 is an ordinary (possibly complex) function of the spatial coordinates ~x. We see
that the space of functions emerges from the vector space spanned by the position eigenkets.
Just as we can view 〈i|α〉 in |α〉 =

∑
i |i〉 〈i|α〉 as a column vector, the function f(~x) ≡ 〈~x| f〉

is in some sense a continuous (infinite dimensional) “vector” in this position representation.
In the context of quantum mechanics 〈~x|α〉 would be identified as a wave function, more

commonly denoted as ψ(~x); in particular, | 〈~x|α〉 |2 is interpreted as the probability density that
the system is localized around ~x when its position is measured. This is in turn related to the
demand that the wave function obey

∫
dD~x| 〈~x|α〉 |2 = 1. However, it is worth highlighting here

that our discussion regarding the Hilbert spaces spanned by the position eigenkets {|~x〉} (and

later below, by their momentum counterparts {|~k〉}) does not necessarily have to involve quantum
theory.16 We will provide concrete examples below, such as how the concept of Fourier transform
emerges and how classical field theory problems – the derivation of the Green’s function of the
Laplacian in eq. (9.3.48), for instance – can be tackled using the methods/formalism delineated
here.

15As an important aside, the generalization of the 1D transformation law in eq. (4.5.9) involving the δ-function
has the following higher dimensional generalization. If we are given a transformation ~x ≡ ~x(~y) and ~x′ ≡ ~x′(~y′),
then

δ(D) (~x− ~x′) =
δ(D)(~y − ~y′)

|det ∂xa(~y)/∂yb| =
δ(D)(~y − ~y′)

|det ∂x′a(~y′)/∂y′b| , (4.5.29)

where δ(D)(~x − ~x′) ≡ ∏D
i=1 δ(x

i − x′i), δ(D)(~y − ~y′) ≡ ∏D
i=1 δ(y

i − y′i), and the Jacobian inside the absolute
value occurring in the denominator on the right hand side is the usual determinant of the matrix whose ath row
and bth column is given by ∂xa(~y)/∂yb. (The second and third equalities follow from each other because the
δ-functions allow us to assume ~y = ~y′.) Equation (4.5.29) can be justified by demanding that its integral around
the point ~x = ~x′ gives one. For 0 < ǫ≪ 1, and denoting δ(D)(~x− ~x′) = δ(D)(~y − ~y′)/ϕ(~y′),

1 =

∫

|~x−~x′|≤ǫ

dD~xδ(D)(~x− ~x′) =

∫

|~x−~x′|≤ǫ

dD~y

∣∣∣∣det
∂xa(~y)

∂yb

∣∣∣∣
δ(D)(~y − ~y′)

ϕ(~y′)
=

∣∣∣det ∂x′a(~y′)
∂y′b

∣∣∣
ϕ(~y′)

. (4.5.30)

16This is especially pertinent for those whose first contact with continuous Hilbert spaces was in the context
of a quantum mechanics course.
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Matrix elements Suppose we wish to calculate the matrix element 〈α |Y |β〉 in the
position representation. It is

〈α |Y |β〉 =
∫

dD~x

∫
dD~x′ 〈α|~x〉 〈~x |Y | ~x′〉 〈~x′|β〉

=

∫
dD~x

∫
dD~x′ 〈~x|α〉∗ 〈~x |Y |~x′〉 〈~x′| β〉 . (4.5.32)

If the operator Y ( ~X) were built solely from the position operator ~X, then

〈
~x
∣∣∣Y ( ~X)

∣∣∣ ~x′
〉
= Y (~x)δ(D)(~x− ~x′) = Y (~x′)δ(D)(~x− ~x′); (4.5.33)

and the double integral collapses into one,

〈
α
∣∣∣Y ( ~X)

∣∣∣ β
〉
=

∫
dD~x 〈~x|α〉∗ 〈~x′| β〉Y (~x). (4.5.34)

Problem 4.22. Show that if U is a unitary operator and |α〉 is an arbitrary vector, then
|α〉, U |α〉 and U † |α〉 have the same norm.

Continuous unitary operators Translations and rotation are examples of operations
that involve continuous parameter(s) – for translation it involves a displacement vector; for
rotation we have to specify the axis of rotation as well as the angle of rotation itself.

Exp(anti-Hermitian operator) is unitary It will often be the case that, when
realized as linear operators on some Hilbert space, these continuous operators will
be unitary. Suppose further, when their parameters ~ξ – which we will assume to be
real – are tuned to zero ~0, the identity operator is recovered. When these conditions
are satisfied, the continuous unitary operator U can (in most cases of interest) be

expressed as the exponential of the anti-Hermitian operator −i~ξ · ~K, namely

U(~ξ) = exp
(
−i~ξ · ~K

)
. (4.5.35)

To be clear, we are allowing for N ≥ 1 continuous real parameter(s), which we collectively denote

as ~ξ. The Hermitian operator will also have N distinct components, so ~ξ · ~K ≡
∑

i ξ
iKi.

To check the unitary nature of eq. (4.5.35), we first record that the exponential of an operator
X is defined through the Taylor series

eX ≡ I+X +
X2

2!
+
X3

3!
+ · · · =

∞∑

ℓ=0

Xℓ

ℓ!
. (4.5.36)

For X = −i~ξ · ~K, where ~ξ is real and ~K is Hermitian, we have

X† =
(
−i~ξ · ~K

)†
= i~ξ · ~K† = i~ξ · ~K = −X. (4.5.37)
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That is, X is anti-Hermitian. Now, for ℓ integer, (Xℓ)† = (X†)ℓ = (−X)ℓ. Thus,

(eX)† =
∞∑

ℓ=0

(Xℓ)†

ℓ!
=

∞∑

ℓ=0

(−X)ℓ

ℓ!
= e−X . (4.5.38)

Generically, operators do not commute AB 6= BA. (Such a non-commuting example is rota-
tion.) In that case, exp(A + B) 6= exp(A) exp(B). However, because X and −X do commute,
we can check the unitary nature of expX by Taylor expanding each of the exponentials in
exp(X)(exp(X))† = exp(X) exp(−X) and finding that the series can be re-arranged to that of
exp(X −X) = I. Specifically, whenever A and B do commute

exp(A) exp(B) =
∞∑

ℓ1,ℓ2=0

Aℓ1Bℓ2

ℓ1!ℓ2!
=

∞∑

ℓ=0

1

ℓ!

ℓ∑

s=0

(
ℓ

s

)
AsBℓ−s (4.5.39)

=

∞∑

ℓ=0

(A+B)ℓ

ℓ!
= exp(A+B). (4.5.40)

Translation in RD To make these ideas regarding continuous operators more concrete, we
will now study the case of translation in some detail, realized on a Hilbert space spanned by the
position eigenkets {|~x〉}. To be specific, let T (~d) denote the translation operator parameterized

by the displacement vector ~d. We shall work in D space dimensions. We define the translation
operator by its action

T (~d) |~x〉 =
∣∣∣~x+ ~d

〉
. (4.5.41)

Since |~x〉 and |~x + ~d〉 can be viewed as distinct elements of the set of basis vectors, we shall
see that the translation operator can be viewed as a unitary operator, changing basis from
{|~x〉 |~x ∈ RD} to {|~x+ ~d〉|~x ∈ RD}. The inverse transformation is

T (~d)† |~x〉 =
∣∣∣~x− ~d

〉
. (4.5.42)

Of course we have the identity operator I when ~d = ~0,

T (~0) |~x〉 = |~x〉 ⇒ T (~0) = I. (4.5.43)

The following composition law has to hold

T (~d1)T (~d2) = T (~d1 + ~d2), (4.5.44)

because translation is commutative

T (~d1)T (~d2) |~x〉 = T (~d1)
∣∣∣~x+ ~d2

〉
=
∣∣∣~x+ ~d2 + ~d1

〉
=
∣∣∣~x+ ~d1 + ~d2

〉
= T (~d1 + ~d2) |~x〉 . (4.5.45)

Problem 4.23. Translation operator is unitary. Show that

T (~d) =

∫

RD

dD~x′
∣∣∣~d+ ~x′

〉
〈~x′| (4.5.46)

satisfies eq. (4.5.41) and therefore is the correct ket-bra operator representation of the translation

operator. Check explicitly that T (~d) is unitary.
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Momentum operator Since eq. (4.5.46) tells us the translation operator is unitary, we
may now invoke the form of the continuous unitary operator in eq. (4.5.35) to deduce

T (~ξ) = exp
(
−i~ξ · ~P

)
= exp

(
−iξkPk

)
(4.5.47)

We will call the Hermitian operator ~P the momentum operator.17 In this exp form, eq. (4.5.44)
reads

exp
(
−i~d1 · ~P

)
exp

(
−i~d2 · ~P

)
= exp

(
−i(~d1 + ~d2) · ~P

)
. (4.5.48)

Translation invariance Infinite (flat) D-space RD is the same everywhere and in every di-

rection. This intuitive fact is intimately tied to the property that T (~d) is a unitary operator: it
just changes one orthonormal basis to another, and physically speaking, there is no privileged
set of basis vectors. For instance, the norm of vectors is position independent:

〈
~x+ ~d

∣∣∣ ~x′ + ~d
〉
= δ(D) (~x− ~x′) = 〈~x|~x′〉 . (4.5.49)

As we will see below, if we confine our attention to some finite domain in RD or if space is no
longer flat, then (global) translation symmetry is lost and the translation operator still exists
but is no longer unitary.18 In particular, when the domain is finite eq. (4.5.46) may no longer
make sense; a 1D example would be to consider {|z〉 |0 ≤ z ≤ L},

T (d > 0)
?
=

∫ L

0

dz′ |z′ + d〉 〈z′| . (4.5.50)

When z′ = L, say, the bra in the integrand is 〈L| but the ket |L+ d〉 would make no sense
because L+ d lies outside the domain.

Commutation relations between X i and Pj We have seen, just from postulating a Hermi-
tian position operator X i, and considering the translation operator acting on the space spanned
by its eigenkets {|~x〉}, that there exists a Hermitian momentum operator Pj that occurs in the
exponent of said translation operator. This implies the continuous space at hand can be spanned
by either the position eigenkets {|~x〉} or the momentum eigenkets, which obey

Pj |~k〉 = kj|~k〉. (4.5.51)

Are the position and momentum operators simultaneously diagonalizable? Can we label a state
with both position and momentum? The answer is no.

To see this, we now consider an infinitesimal displacement operator T (d~ξ).

~XT (d~ξ) |~x〉 = ~X
∣∣∣~x+ d~ξ

〉
= (~x+ d~ξ)

∣∣∣~x+ d~ξ
〉
, (4.5.52)

17Strictly speaking Pj here has dimensions of 1/[length], whereas the momentum you might be familiar with
has units of [mass × length/time2].

18When we restrict the domain to a finite one embedded within flat RD, there is still local translation symmetry
in that, performing the same experiment at ~x and at ~x′ should not lead to any physical differences as long as

both ~x and ~x′ lie within the said domain. But global translation symmetry is “broken” because, the domain is
“here” and not “there”; as illustrated by the 1D example, translating too much in one direction would bring you
out of the domain.
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and

T (d~ξ) ~X |~x〉 = ~x
∣∣∣~x+ d~ξ

〉
. (4.5.53)

Since |~x〉 was an arbitrary vector, we may subtract the two equations

[
~X, T (d~ξ)

]
|~x〉 = d~ξ

∣∣∣~x+ d~ξ
〉
= d~ξ |~x〉+O

(
d~ξ2
)
. (4.5.54)

At first order in d~ξ, we have the operator identity

[
~X, T (d~ξ)

]
= d~ξ. (4.5.55)

The left hand side involves operators, but the right hand side only real numbers. At this point
we invoke eq. (4.5.47), and deduce, for infinitesimal displacements,

T (d~ξ) = 1− id~ξ · ~P +O(d~ξ2) (4.5.56)

which in turn means eq. (4.5.55) now reads, as d~ξ → ~0,

[
~X,−id~ξ · ~P

]
= d~ξ (4.5.57)

[
X l, Pj

]
dξj = iδljdξ

j (the lth component) (4.5.58)

Since the {dξj} are independent, the coefficient of dξj on both sides must be equal. This leads
us to the fundamental commutation relation between kth component of the position operator
with the j component of the momentum operator:

[
Xk, Pj

]
= iδkj , j, k ∈ {1, 2, . . . , D}. (4.5.59)

To sum: although Xk and Pj are both Hermitian operators in infinite flat RD, we see they
are incompatible and thus, to span the continuous vector space at hand we can use either the
eigenkets of X i or that of Pj but not both. We will, in fact, witness below how changing from
the position to momentum eigenket basis gives rise to the Fourier transform and its inverse.

|f〉 =
∫

RD

dD~x′ |~x′〉 〈~x′| f〉 , X i |~x′〉 = x′i |~x′〉 (4.5.60)

|f〉 =
∫

RD

dD~k′
∣∣∣~k′
〉 〈

~k′
∣∣∣ f
〉
, Pj

∣∣∣~k′
〉
= k′j

∣∣∣~k′
〉
. (4.5.61)

For those already familiar with quantum theory, notice there is no ~ on the right hand side;
nor will there be any throughout this section. This is not because we have “set ~ = 1” as is
commonly done in theoretical physics literature. Rather, it is because we wish to reiterate that
the linear algebra of continuous operators, just like its discrete finite dimension counterparts, is
really an independent structure on its own. Quantum theory is merely one of its application,
albeit a very important one.
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Problem 4.24. Because translation is commutative, ~d1 + ~d2 = ~d2 + ~d1, argue that the
translation operators commute:

[
T (~d1), T (~d2)

]
= 0. (4.5.62)

By considering infinitesimal displacements ~d1 = d~ξ1 and ~d2 = d~ξ2, show that eq. (4.5.47) leads
to us to conclude that momentum operators commute among themselves,

[Pi, Pj] = 0, i, j ∈ {1, 2, 3, . . . , D}. (4.5.63)

Problem 4.25. Let |~k〉 be an eigenket of the momentum operator ~P . Is |~k〉 an eigenvector

of T (~d)? If so, what is the corresponding eigenvalue?

Problem 4.26. Derive the momentum operator ~P in the position eigenket basis,

〈
~x
∣∣∣ ~P
∣∣∣α
〉
= −i ∂

∂~x
〈~x|α〉 , (4.5.64)

for an arbitrary state |α〉. Hint: begin with
〈
~x
∣∣∣T (d~ξ)

∣∣∣α
〉
=
〈
~x− d~ξ

∣∣∣α
〉
. (4.5.65)

Taylor expand both the operator T (d~ξ) as well as the function
〈
~x− d~ξ

∣∣∣α
〉
, and take the d~ξ → ~0

limit, keeping only the O(d~ξ) terms.

Next, check that this representation of ~P is consistent with eq. (4.5.59) by considering
〈
~x
∣∣[Xk, Pj

]∣∣α
〉
= iδkj 〈~x|α〉 . (4.5.66)

Start by expanding the commutator on the left hand side, and show that you can recover eq.
(4.5.64).

Problem 4.27. Express the following matrix element in the position space representation

〈
α
∣∣∣ ~P
∣∣∣ β
〉
=

∫
dD~x

(
?

)
. (4.5.67)

Problem 4.28. Show that the negative of the Laplacian, namely

−~∇2 ≡ −
∑

i

∂

∂xi
∂

∂xi
(in Cartesian coordinates {xi}), (4.5.68)

is the square of the momentum operator. That is, for an arbitrary state |α〉, show that

〈
~x
∣∣∣ ~P 2
∣∣∣α
〉
= −δij ∂

∂xi
∂

∂xj
〈~x|α〉 ≡ −~∇2 〈~x|α〉 . (4.5.69)
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Problem 4.29. Translation as Taylor series. Use equations (4.5.47) and (4.5.64) to infer,
for an arbitrary state |f〉,

〈
~x+ ~ξ

∣∣∣ f
〉
= exp

(
~ξ · ∂

∂~x

)
〈~x| f〉 . (4.5.70)

Compare the right hand side with the Taylor expansion of the function f(~x+ ~ξ) about ~x.

Problem 4.30. Prove the Campbell-Baker-Hausdorff lemma. For linear operators A and
B, and complex number α,

eiαABe−iαA =
∞∑

ℓ=0

(iα)ℓ

ℓ!
[A, [A, . . . [A︸ ︷︷ ︸

ℓ of these

, B]]], (4.5.71)

where the ℓ = 0 term is understood to be just B. (Hint: Taylor expand the left-hand-side and
use mathematical induction.)

Next, consider the expectation values of the position ~X and momentum ~P operator with
respect to a general state |ψ〉:

〈
ψ
∣∣∣ ~X
∣∣∣ψ
〉

and
〈
ψ
∣∣∣ ~P
∣∣∣ψ
〉
. (4.5.72)

What happens to these expectation values when we replace |ψ〉 → T (~d) |ψ〉?
(Lie) Group theory Our discussion here on the unitary operator T that implements

translations on the Hilbert space spanned by the position eigenkets {|~x〉}, is really an informal
introduction to the theory of continuous groups. The collection of continuous unitary transla-
tion operators {T (~d)} forms a group, which like a vector space is defined by a set of axioms.
Continuous unitary group elements that can be brought to the identity operator, by setting
the continuous real parameters to zero, can always be expressed in the exponential form in eq.
(4.5.35). The Hermitian operators ~K, that is said to “generate” the group elements, may obey
non-trivial commutation relations (aka Lie algebra). For instance, because rotation operations
in Euclidean space do not commute – rotating about the z-axis followed by rotation about the
x-axis, is not the same as rotation about the x-axis followed by about the z-axis – their corre-
sponding unitary operators acting on the Hilbert space spanned by {|~x〉} will give rise to, in 3
dimensional space, [Ki, Kj] = iǫijlKl, for i, j, l ∈ {1, 2, 3}.

Fourier analysis We will now show how the concept of a Fourier transform readily
arises from the formalism we have developed so far. To initiate the discussion we start with eq.
(4.5.64), with |α〉 replaced with a momentum eigenket |~k〉. This yields the eigenvalue/vector
equation for the momentum operator in the position representation.

〈
~x
∣∣∣~P
∣∣∣~k
〉
= ~k〈~x|~k〉 = −i ∂

∂~x
〈~x|~k〉, ⇔ kj〈~x|~k〉 = −i∂〈~x|

~k〉
∂xj

. (4.5.73)

In D-space, this is a set of D first order differential equations for the function 〈~x|~k〉. Via a direct
calculation you can verify that the solution to eq. (4.5.73) is simply the plane wave

〈~x|~k〉 = χ exp
(
i~k · ~x

)
. (4.5.74)
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where χ is complex constant to be fixed in the following way. We want
∫

RD

dDk〈~x|~k〉〈~k|~x′〉 = 〈~x| ~x′〉 = δ(D)(~x− ~x′). (4.5.75)

Using the plane wave solution,

(2π)D|χ|2
∫

dDk

(2π)D
ei
~k·(~x−~x′) = δ(D)(~x− ~x′). (4.5.76)

Now, recall the representation of the D-dimensional δ-function
∫

RD

dDk

(2π)D
ei
~k·(~x−~x′) = δ(D)(~x− ~x′). (4.5.77)

Therefore, up to an overall multiplicative phase eiδ, which we will choose to be unity, χ =
1/(2π)D/2 and eq. (4.5.74) becomes

〈~x|~k〉 = (2π)−D/2 exp
(
i~k · ~x

)
. (4.5.78)

By comparing eq. (4.5.78) with eq. (4.3.101), we see that the plane wave in eq. (4.5.78) can
be viewed as the matrix element of the unitary operator implementing the change-of-basis from
position to momentum space, and vice versa.

We may now examine how the position representation of an arbitrary state 〈~x| f〉 can be
expanded in the momentum eigenbasis.

〈~x| f〉 =
∫

RD

dD~k〈~x|~k〉
〈
~k
∣∣∣ f
〉
=

∫

RD

dD~k

(2π)D/2
ei
~k·~x
〈
~k
∣∣∣ f
〉

(4.5.79)

Similarly, we may expand the momentum representation of an arbitrary state
〈
~k
∣∣∣ f
〉

in the

position eigenbasis.

〈
~k
∣∣∣ f
〉
=

∫

RD

dD~x
〈
~k
∣∣∣ ~x
〉
〈~x| f〉 =

∫

RD

dD~x

(2π)D/2
e−i~k·~x 〈~x| f〉 (4.5.80)

Equations (4.5.79) and (4.5.80) are nothing but the Fourier expansion of some function f(~x) and
its inverse transform.19

Plane waves as orthonormal basis vectors For practical calculations, it is of course cum-
bersome to carry around the position {|~x〉} or momentum eigenkets {|~k〉}. As far as the space of
functions in RD is concerned, i.e., if one works solely in terms of the components f(~x) ≡ 〈~x| f〉,
as opposed to the space spanned by |~x〉, then one can view the plane waves {exp(i~k ·~x)/(2π)D/2}
in the Fourier expansion of eq. (4.5.79) as the orthonormal basis vectors. The coefficients of the

expansion are then the f̃(~k) ≡ 〈~k|f〉.

f(~x) =

∫

RD

dD~k

(2π)D/2
ei
~k·~xf̃(~k) (4.5.81)

19A warning on conventions: everywhere else in these notes, our Fourier transform conventions will be∫
dDk/(2π)D for the momentum integrals and

∫
dDx for the position space integrals. This is just a matter

of where the (2π)s are allocated, and no math/physics content is altered.
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By multiplying both sides by exp(−i~k′ ·~x)/(2π)D/2, integrating over all space, using the integral

representation of the δ-function in eq. (4.5.6), and finally replacing ~k′ → ~k,

f̃(~k) =

∫

RD

dD~x

(2π)D/2
e−i~k·~xf(~x). (4.5.82)

Problem 4.31. Prove that, for the eigenstate of momentum |~k〉, arbitrary states |α〉 and
|β〉,

〈
~k
∣∣∣ ~X
∣∣∣α
〉
= i

∂

∂~k

〈
~k
∣∣∣α
〉

(4.5.83)

〈
β
∣∣∣ ~X
∣∣∣α
〉
=

∫
dD~k

〈
~k
∣∣∣β
〉∗
i
∂

∂~k

〈
~k
∣∣∣α
〉
. (4.5.84)

The ~X is the position operator.

Problem 4.32. Consider the function, with d > 0,

〈~x|ψ〉 =
(√

πd
)−D/2

ei
~k·~x exp

(
− ~x2

2d2

)
. (4.5.85)

Compute
〈
~k′
∣∣∣ψ
〉
, the state |ψ〉 in the momentum eigenbasis. Let ~X and ~P denote the position

and momentum operators. Calculate the following expectation values:
〈
ψ
∣∣∣ ~X
∣∣∣ψ
〉
,

〈
ψ
∣∣∣ ~X2

∣∣∣ψ
〉
,

〈
ψ
∣∣∣ ~P
∣∣∣ψ
〉
,

〈
ψ
∣∣∣ ~P 2
∣∣∣ψ
〉
. (4.5.86)

What is the value of
(〈

ψ
∣∣∣ ~X2

∣∣∣ψ
〉
−
〈
ψ
∣∣∣ ~X
∣∣∣ψ
〉2)(〈

ψ
∣∣∣~P 2
∣∣∣ψ
〉
−
〈
ψ
∣∣∣~P
∣∣∣ψ
〉2)

? (4.5.87)

Hint: In this problem you will need the following results

∫ +∞

−∞

dxe−a(x+iy)2 =

∫ +∞

−∞

dxe−ax2

=

√
π

a
, a > 0, y ∈ R. (4.5.88)

If you encounter an integral of the form
∫

RD

dD~x′e−α~x2

ei~x·(~q−~q′), α > 0, (4.5.89)

you should try to combine the exponents and “complete the square”.

Translation in momentum space We have discussed how to implement translation
in position space using the momentum operator ~P , namely T (~d) = exp(−i~d · ~P ). What would

be the corresponding translation operator in momentum space?20 That is, what is T̃ such that

T̃ (~d)|~k〉 =
∣∣∣~k + ~d

〉
, Pj|~k〉 = kj|~k〉? (4.5.90)

20This question was suggested by Jake Leistico, who also correctly guessed the essential form of eq. (4.5.94).
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Of course, one representation would be the analog of eq. (4.5.46).

T̃ (~d) =

∫

RD

dD~k′
∣∣∣~k′ + ~d

〉〈
~k′
∣∣∣ (4.5.91)

But is there an exponential form, like there is one for the translation in position space (eq.

(4.5.47))? We start with the observation that the momentum eigenstate |~k〉 can be written as a
superposition of the position eigenkets using eq. (4.5.78),

|~k〉 =
∫

RD

dD~x′ |~x′〉
〈
~x′
∣∣∣~k
〉
=

∫

RD

dD~x′

(2π)D/2
ei
~k·~x′ |~x′〉 . (4.5.92)

Now consider

exp(+i~d · ~X)|~k〉 =
∫

RD

dD~x′

(2π)D/2
ei
~k·~x′

ei
~d·~x′ |~x′〉

=

∫

RD

dD~x′

(2π)D/2
ei(

~k+~d)·~x′ |~x′〉 =
∣∣∣~k + ~d

〉
. (4.5.93)

That means

T̃ (~d) = exp
(
i~d · ~X

)
. (4.5.94)

Spectra of ~P and ~P 2 in infinite RD We conclude this section by summarizing the several
interpretations of the plane waves {〈~x|~k〉 ≡ exp(i~k · ~x)/(2π)D/2}.

1. They can be viewed as the orthonormal basis vectors (in the δ-function sense) spanning
the space of complex functions on RD.

2. They can be viewed as the matrix element of the unitary operator U that performs a
change-of-basis between the position and momentum eigenbasis, namely U |~x〉 = |~k〉.

3. They are simultaneous eigenstates of the momentum operators {−i∂j ≡ −i∂/∂xj |j =

1, 2, . . . , D} and the negative Laplacian −~∇2 in the position representation.

−~∇2
~x〈~x|~k〉 = ~k2〈~x|~k〉, −i∂j〈~x|~k〉 = kj〈~x|~k〉, ~k2 ≡ δijkikj . (4.5.95)

The eigenvector/value equation for the momentum operators had been solved previously
in equations (4.5.73) and (4.5.74). For the negative Laplacian, we may check

−~∇2
~x〈~x|~k〉 =

〈
~x
∣∣∣~P 2
∣∣∣~k
〉
= ~k2〈~x|~k〉. (4.5.96)

That the plane waves are simultaneous eigenvectors of Pj and ~P 2 = −~∇2 is because these

operators commute amongst themselves: [Pj , ~P
2] = [Pi, Pj] = 0. This is therefore an

example of degeneracy. For a fixed eigenvalue k2 of the negative Laplacian, there is a
continuous infinity of eigenvalues of the momentum operators, only constrained by

D∑

j=1

(kj)
2 = k2, ~P 2

∣∣k2; k1 . . . kD
〉
= k2

∣∣k2; k1 . . . kD
〉
. (4.5.97)

Physically speaking we may associate this degeneracy with the presence of translation
symmetry of the underlying infinite flat RD.
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4.5.3 Boundary Conditions, Finite Box, Periodic functions and the Fourier Series

Up to now we have not been terribly precise about the boundary conditions obeyed by our states
〈~x| f〉, except to say they are functions residing in an infinite space RD. Let us now rectify this
glaring omission – drop the assumption of infinite space RD – and study how, in particular, the
Hermitian nature of the ~P 2 ≡ −~∇2 operator now depends crucially on the boundary conditions
obeyed by its eigenstates. If ~P 2 is Hermitian,

〈
ψ1

∣∣∣ ~P 2
∣∣∣ψ2

〉
=

〈
ψ1

∣∣∣∣
(
~P 2
)†∣∣∣∣ψ2

〉
=
〈
ψ2

∣∣∣~P 2
∣∣∣ψ1

〉∗
, (4.5.98)

for any states |ψ1,2〉. Inserting a complete set of position eigenkets, and using

〈
~x
∣∣∣~P 2
∣∣∣ψ1,2

〉
= −~∇2

~x 〈~x|ψ1,2〉 , (4.5.99)

we arrive at the condition that, if ~P 2 is Hermitian then the negative Laplacian can be “integrated-
by-parts” to act on either ψ1 or ψ2.
∫

D

dDx 〈ψ1| ~x〉
〈
~x
∣∣∣ ~P 2
∣∣∣ψ2

〉
?
=

∫

D

dDx 〈ψ2| ~x〉∗
〈
~x
∣∣∣~P 2
∣∣∣ψ1

〉∗
,

∫

D

dDxψ1(~x)
∗
(
−~∇2

~xψ2(~x)
)

?
=

∫

D

dDx
(
−~∇2

~xψ1(~x)
∗
)
ψ2(~x), ψ1,2(~x) ≡ 〈~x|ψ1,2〉 . (4.5.100)

Notice we have to specify a domain D to perform the integral. If we now proceed to work from
the left hand side, and use Gauss’ theorem from vector calculus,
∫

D

dDxψ1(~x)
∗
(
−~∇2

~xψ2(~x)
)
=

∫

∂D

dD−1~Σ ·
(
−~∇ψ1(~x)

∗
)
ψ2(~x) +

∫

D

dDx~∇ψ1(~x)
∗ · ~∇ψ2(~x)

=

∫

∂D

dD−1~Σ ·
{(

−~∇ψ1(~x)
∗
)
ψ2(~x) + ψ1(~x)

∗~∇ψ2(~x)
}

+

∫

D

dDxψ1(~x)
∗
(
−~∇2ψ2(~x)

)
(4.5.101)

Here, dD−1~Σ is the (D−1)-dimensional analog of the 2D infinitesimal area element d ~A in vector
calculus, and is proportional to the unit (outward) normal ~n to the boundary of the domain ∂D.

We see that integrating-by-parts the ~P 2 from ψ1 onto ψ2 can be done, but would incur the two
surface integrals. To get rid of them, we may demand the eigenfunctions {ψλ} of ~P 2 or their

normal derivatives {~n · ~∇ψλ} to be zero:

ψλ(∂D) = 0 (Dirichlet) or ~n · ~∇ψλ(∂D) = 0 (Neumann). (4.5.102)

21No boundaries The exception to the requirement for boundary conditions, is when the
domain D itself has no boundaries – there will then be no “surface terms” to speak of, and the
Laplacian is hence automatically Hermitian. In this case, the eigenfunctions often obey periodic
boundary conditions; we will see examples below.

21Actually we may also allow the eigenfunctions to obey a mixed boundary condition, but we will stick to
either Dirichlet or Neumann for simplicity.
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Summary The abstract bra-ket notation 〈ψ1|~P 2|ψ2〉 obscures the fact that boundary con-

ditions are required to ensure the Hermitian nature of ~P 2. By going to the position basis, we
see not only do we have to specify what the domain D of the underlying space is, we have to
either demand the eigenfunctions or their normal derivatives vanish on the boundary ∂D. In
the discussion of partial differential equations below, we will generalize this analysis to curved
spaces.

Example: Finite box The first illustrative example is as follows. Suppose our system
is defined only in a finite box. For the ith Cartesian axis, the box is of length Li. If we demand
that the eigenfunctions of −~∇2 vanish at the boundary of the box, we find the eigensystem

−~∇2
~x 〈~x|~n〉 = λ(~n) 〈~x|~n〉 ,

〈
~x; xi = 0

∣∣~n
〉
=
〈
~x; xi = Li

∣∣~n
〉
= 0, (4.5.103)

i = 1, 2, 3, . . . , D, (4.5.104)

admits the solution

〈~x|~n〉 ∝
D∏

i=1

sin

(
πni

Li
xi
)
, λ(~n) =

D∑

i=1

(
πni

Li

)2

. (4.5.105)

These {ni} runs over the positive integers only; because sine is an odd function, the negative
integers do not yield new solutions.

Remark Notice that, even though ~P 2 is Hermitian in this finite box, the translation

operator T (ξ) ≡ e−i~ξ·~P is no longer unitary and the momentum operator Pj no longer Hermitian,
because T (ξ) may move |x〉 out of the box if the translation distance is larger than L, and thus
can no longer be viewed as a change of basis. (Recall the discussion around eq. (4.5.50).) More

explicitly, the eigenvectors of ~P in eq. (4.5.78) do not vanish on the walls of the box – for e.g., in
1D, exp(ikx) → 1 when x = 0 and exp(ikx) → exp(ikL) 6= 0 when x = L – and therefore do not

even lie in the vector space spanned by the eigenfunctions of ~P 2. (Of course, you can superpose
the momentum eigenstates of different eigenvalues to obtain the states in eq. (4.5.105), but they
will no longer be eigenstates of Pj.) Furthermore, if we had instead demanded the vanishing of
the normal derivative, ∂x exp(ikx) = ik exp(ikx) → ik 6= 0 either, unless k = 0.

Problem 4.33. Verify that the basis eigenkets in eq. (4.5.105) do solve eq. (4.5.103). What
is the correct normalization for 〈~x|~n〉? Also verify that the basis plane waves in eq. (4.5.111)
satisfy the normalization condition in eq. (4.5.110).

Periodic B.C.’s: the Fourier Series. If we stayed within the infinite space, but now
imposed periodic boundary conditions,

〈
~x; xi → xi + Li

∣∣ f
〉
=
〈
~x; xi

∣∣ f
〉
, (4.5.106)

f(x1, . . . , xi + Li, . . . , xD) = f(x1, . . . , xi, . . . , xD) = f(~x), (4.5.107)

this would mean, not all the basis plane waves from eq. (4.5.78) remains in the Hilbert space.
Instead, periodicity means

〈~x; xj = xj + Lj |~k〉 = 〈~x; xj = xj |~k〉
eikj(x

j+Lj) = eikjx
j

, (No sum over j.) (4.5.108)
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(The rest of the plane waves, eiklx
l
for l 6= j, cancel out of the equation.) This further implies

the eigenvalue kj becomes discrete:

eikjL
j

= 1 (No sum over j.) ⇒ kjL
j = 2πn ⇒ kj =

2πnj

Lj
,

nj = 0,±1,±2,±3, . . . . (4.5.109)

We need to re-normalize our basis plane waves. In particular, since space is now periodic, we
ought to only need to integrate over one typical volume.

∫

{0≤xi≤Li|i=1,2,...,D}

dD~x 〈~n′|~x〉 〈~x|~n〉 = δ~n~n′ ≡
D∏

i=1

δn
′i

ni . (4.5.110)

Because we have a set of orthonormal eigenvectors of the negative Laplacian,

〈~x |~n〉 ≡
D∏

j=1

exp
(
i2πn

j

Lj x
j
)

√
Lj

, (4.5.111)

−~∇2 〈~x |~n〉 = λ(~n) 〈~x |~n〉 , λ(~n) =
∑

i

(
2πni

Li

)2

; (4.5.112)

they obey the completeness relation

〈~x| ~x′〉 = δ(D)(~x− ~x′) =
∞∑

n1=−∞

· · ·
∞∑

nD=−∞

〈~x|~n〉 〈~n| ~x′〉 . (4.5.113)

To sum: any periodic function f , subject to eq. (4.5.107), can be expanded as a superposition
of periodic plane waves in eq. (4.5.111),

f(~x) =

∞∑

n1=−∞

· · ·
∞∑

nD=−∞

f̃(n1, . . . , nD)

D∏

j=1

(Lj)−1/2 exp

(
i
2πnj

Lj
xj
)
. (4.5.114)

This is known as the Fourier series. By using the inner product in eq. (4.5.110), or equivalently,
multiplying both sides of eq. (4.5.114) by

∏
j(L

j)−1/2 exp(−i(2πn′j/Lj)xj) and integrating over
a typical volume, we obtain the coefficients of the Fourier series expansion

f̃(n1, n2, . . . , nD) =

∫

0≤xj≤Lj

dD~xf(~x)

D∏

j=1

(Lj)−1/2 exp

(
−i2πn

j

Lj
xj
)
. (4.5.115)

Remark I The exp in eq. (4.5.111) are not a unique set of basis vectors, of course. One
could use sines and cosines instead, for example.
Remark II Even though we are explicitly integrating the ith Cartesian coordinate from 0
to Li in eq. (4.5.115), since the function is periodic, we really just need only to integrate over a
complete period, from κ to κ + Li (for κ real), to achieve the same result. For example, in 1D,
and whenever f(x) is periodic (with a period of L),

∫ L

0

dxf(x) =

∫ κ+L

κ

dxf(x). (4.5.116)

(Drawing a plot here may help to understand this statement.)
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5 Calculus on the Complex Plane

5.1 Differentiation
22The derivative of a complex function f(z) is defined in a similar way as its real counterpart:

f ′(z) ≡ df(z)

dz
≡ lim

∆z→0

f(z +∆z)− f(z)

∆z
. (5.1.1)

However, the meaning is more subtle because ∆z (just like z itself) is now complex. What this
means is that, in taking this limit, it has to yield the same answer no matter what direction you
approach z on the complex plane. For example, if z = x + iy, taking the derivative along the
real direction must be equal to that along the imaginary one,

f ′(z) = lim
∆x→0

f(x+∆x+ iy)− f(x+ iy)

∆x
= ∂xf(z)

= lim
∆y→0

f(x+ i(y +∆y))− f(x+ iy)

i∆y
=
∂f(z)

∂(iy)
=

1

i
∂yf(z), (5.1.2)

where x, y, ∆x and ∆y are real. This direction independence imposes very strong constraints on
complex differentiable functions: they will turn out to be extremely smooth, in that if you can
differentiate them at a given point z, you are guaranteed they are differentiable infinite number
of times there. (This is not true of real functions.) If f(z) is differentiable in some region on the
complex plane, we say f(z) is analytic there.

If the first derivatives of f(z) are continuous, the criteria for determining whether f(z) is
differentiable comes in the following pair of partial differential equations.

Cauchy-Riemann conditions for analyticity Let z = x+ iy and f(z) =
u(x, y) + iv(x, y), where x, y, u and v are real. Let u and v have continuous first
partial derivatives in x and y. Then f(z) is an analytic function in the neighborhood
of z if and only if the following (Cauchy-Riemann) equations are satisfied by the real
and imaginary parts of f :

∂xu = ∂yv, ∂yu = −∂xv. (5.1.3)

To understand why this is true, we first consider differentiating along the (real) x direction, we’d
have

df(z)

dz
= ∂xu+ i∂xv. (5.1.4)

If we differentiate along the (imaginary) iy direction instead, we’d have

df(z)

dz
=

1

i
∂yu+ ∂yv = ∂yv − i∂yu. (5.1.5)

Since these two results must be the same, we may equate their real and imaginary parts to obtain
eq. (5.1.3). (It is at this point, if we did not assume u and v have continuous first derivatives,

22Much of the material here on complex analysis is based on Arfken et al’sMathematical Methods for Physicists.
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that we see the Cauchy-Riemann conditions in eq. (5.1.3) are necessary but not necessarily
sufficient ones for analyticity.)

Conversely, if eq. (5.1.3) are satisfied and if we do assume u and v have continuous first
derivatives, we may consider an arbitrary variation of the function f along the direction dz =
dx+ idy via

df(z) = ∂xf(z)dx+ ∂yf(z)dy = (∂xu+ i∂xv)dx+ (∂yu+ i∂yv)dy

(Use eq. (5.1.3) on the dy terms.)

= (∂xu+ i∂xv)dx+ (−∂xv + i∂xu)dy

= (∂xu+ i∂xv)dx+ (∂xu+ i∂xv)idy

= (∂xu+ i∂xv)dz. (5.1.6)

23Therefore, the complex derivative df/dz yields the same answer regardless of the direction of
variation dz, and is given by

df(z)

dz
= ∂xu+ i∂xv. (5.1.7)

Polar coordinates It is also useful to express the Cauchy-Riemann conditions in polar coor-
dinates (x, y) = r(cos θ, sin θ). We have

∂r =
∂x

∂r
∂x +

∂y

∂r
∂y = cos θ∂x + sin θ∂y (5.1.8)

∂θ =
∂x

∂θ
∂x +

∂y

∂θ
∂y = −r sin θ∂x + r cos θ∂y. (5.1.9)

By viewing this as a matrix equation (∂r, ∂θ)
T = M(∂x, ∂y)

T , we may multiply M−1 on both
sides and obtain the (∂x, ∂y) in terms of the (∂r, ∂θ).

∂x = cos θ∂r −
sin θ

r
∂θ (5.1.10)

∂y = sin θ∂r +
cos θ

r
∂θ. (5.1.11)

The Cauchy-Riemann conditions in eq. (5.1.3) can now be manipulated by replacing the ∂x and
∂y with the right hand sides above. Denoting c ≡ cos θ and s ≡ sin θ,

(
cs∂r −

s2

r
∂θ

)
u =

(
s2∂r +

cs

r
∂θ

)
v, (5.1.12)

(
sc∂r +

c2

r
∂θ

)
u = −

(
c2∂r −

sc

r
∂θ

)
v, (5.1.13)

23In case the assumption of continuous first derivatives is not clear – note that, if ∂xf and ∂yf were not
continuous, then df (the variation of f) in the direction across the discontinuity cannot be computed in terms of
the first derivatives. Drawing a plot for a real function F (x) with a discontinuous first derivative (i.e., a “kink”)
would help.
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and
(
c2∂r −

sc

r
∂θ

)
u =

(
sc∂r +

c2

r
∂θ

)
v, (5.1.14)

(
s2∂r +

sc

r
∂θ

)
u = −

(
cs∂r −

s2

r
∂θ

)
v. (5.1.15)

(We have multiplied both sides of eq. (5.1.3) with appropriate factors of sines and cosines.) Sub-
tracting the first pair and adding the second pair of equations, we arrive at the polar coordinates
version of Cauchy-Riemann:

1

r
∂θu = −∂rv, ∂ru =

1

r
∂θv. (5.1.16)

Examples Complex differentiability is much more restrictive than the real case. An example
is f(z) = |z|. If z is real, then at least for z 6= 0, we may differentiate f(z) – the result is
f ′(z) = 1 for z > 0 and f ′(z) = −1 for z < 0. But in the complex case we would identify, with
z = x+ iy,

f(z) = |z| =
√
x2 + y2 = u(x, y) + iv(x, y) ⇒ v(x, y) = 0. (5.1.17)

It’s not hard to see that the Cauchy-Riemann conditions in eq. (5.1.3) cannot be satisfied since
v is zero while u is non-zero. In fact, any f(z) that remains strictly real across the complex z
plane is not differentiable unless f(z) is constant.

f(z) = u(x, y) ⇒ ∂xu = ∂yv = 0, ∂yu = −∂xv = 0. (5.1.18)

Similarly, if f(z) were purely imaginary across the complex z plane, it is not differentiable unless
f(z) is constant.

f(z) = iv(x, y) ⇒ 0 = ∂xu = ∂yv, 0 = −∂yu = ∂xv. (5.1.19)

Differentiation rules If you know how to differentiate a function f(z) when z is real,
then as long as you can show that f ′(z) exists, the differentiation formula for the complex case
would carry over from the real case. That is, suppose f ′(z) = g(z) when f , g and z are real;
then this form has to hold for complex z. For example, powers are differentiated the same way

d

dz
zα = αzα−1, α ∈ R, (5.1.20)

and

d sin(z)

dz
= cos z,

daz

dz
=

dez lna

dz
= az ln a. (5.1.21)

It is not difficult to check the first derivatives of zα, sin(z) and az are continuous; and the
Cauchy-Riemann conditions are satisfied. For instance, zα = rαeiαθ = rα cos(αθ) + irα sin(αθ)
and eq. (5.1.16) can be verified.

rα−1∂θ cos(αθ) = −αrα−1 sin(αθ)
?
= − sin(αθ)∂rr

α = −αrα−1 sin(αθ), (5.1.22)

cos(αθ)∂rr
α = αrα−1 cos(αθ)

?
= rα−1∂θ sin(αθ) = αrα−1 cos(αθ). (5.1.23)
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(This proof that zα is analytic fails at r = 0; in fact, for α < 1, we see that zα is not analytic
there.) In particular, differentiability is particularly easy to see if f(z) can be defined through
its power series.

Product and chain rules The product and chain rules apply too. For instance,

(fg)′ = f ′g + fg′. (5.1.24)

because

(fg)′ = lim
∆z→0

f(z +∆z)g(z +∆z)− f(z)g(z)

∆z

= lim
∆z→0

(f(z) + f ′ ·∆z)(g(z) + g′∆z)− f(z)g(z)

∆z

= lim
∆z→0

fg + fg′∆z + f ′g∆z +O((∆z)2)− fg

∆z
= f ′g + fg′. (5.1.25)

We will have more to say later about carrying over properties of real differentiable functions to
their complex counterparts.

Problem 5.1. Conformal transformations Complex functions can be thought of as a map
from one 2D plane to another. In this problem, we will see how they define angle preserving
transformations. Consider two paths on a complex plane z = x + iy that intersects at some
point z0. Let the angle between the two lines at z0 be θ. Given some complex function f(z) =
u(x, y) + iv(x, y), this allows us to map the two lines on the (x, y) plane into two lines on
the (u, v) plane. Show that, as long as df(z)/dz 6= 0, the angle between these two lines on
the (u, v) plane at f(z0), is still θ. Hint: imagine parametrizing the two lines with λ, where
the first line is ξ1(λ) = x1(λ) + iy1(λ) while the second line is ξ2(λ) = x2(λ) + iy2(λ). Let
their intersection point be ξ1(λ0) = ξ2(λ0). Now also consider the two lines on the (u, v) plane:
f(ξ1(λ)) = u(ξ1(λ))+iv(ξ1(λ)) and f(ξ2(λ)) = u(ξ2(λ))+iv(ξ2(λ)). On the (x, y)-plane, consider
arg[(dξ1/dλ)/(dξ2/dλ)]; whereas on the (u, v)-plane consider arg[(df(ξ1)/dλ)/(df(ξ2)/dλ)].

2D Laplace’s equation Suppose f(z) = u(x, y)+ iv(x, y), where z = x+ iy
and x, y, u and v are real. If f(z) is complex-differentiable then the Cauchy-Riemann
relations in eq. (5.1.3) imply that both the real and imaginary parts of a complex
function obey Laplace’s equation, namely

(∂2x + ∂2y)u(x, y) = (∂2x + ∂2y)v(x, y) = 0. (5.1.26)

To see this we differentiate eq. (5.1.3) appropriately,

∂x∂yu = ∂2yv, ∂x∂yu = −∂2xv (5.1.27)

∂2xu = ∂x∂yv, −∂2yu = ∂x∂yv. (5.1.28)

We now can equate the right hand sides of the first line; and the left hand sides of the second
line. This leads to (5.1.26).

Because of eq. (5.1.26), complex analysis can be very useful for 2D electrostatic problems.
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Moreover, u and v cannot admit local minimum or maximums, as long as ∂2xu and ∂2xv are
non-zero. In particular, the determinants of the 2× 2 Hessian matrices ∂2u/∂(x, y)i∂(x, y)j and
∂2v/∂(x, y)i∂(x, y)j – and hence the product of their eigenvalues – are negative. For,

det
∂2u

∂(x, y)i∂(x, y)j
= det

[
∂2xu ∂x∂yu
∂x∂yu ∂2yu

]

= ∂2xu∂
2
yu− (∂x∂yu)

2 = −(∂2yu)
2 − (∂2yv)

2 ≤ 0, (5.1.29)

det
∂2v

∂(x, y)i∂(x, y)j
= det

[
∂2xv ∂x∂yv
∂x∂yv ∂2yv

]

= ∂2xv∂
2
yv − (∂x∂yv)

2 = −(∂2yv)
2 − (∂2yu)

2 ≤ 0, (5.1.30)

where both equations (5.1.26) and (5.1.27) were employed.

5.2 Cauchy’s integral theorems, Laurent Series, Analytic Continua-
tion

Complex integration is really a line integral
∫
~ξ · (dx, dy) on the 2D complex plane. Given some

path (aka “contour”) C, defined by z(λ1 ≤ λ ≤ λ2) = x(λ) + iy(λ), with z(λ1) = z1 and
z(λ2) = z2,

∫

C

dzf(z) =

∫

z(λ1≤λ≤λ2)

(dx+ idy) (u(x, y) + iv(x, y))

=

∫

z(λ1≤λ≤λ2)

(udx− vdy) + i

∫

z(λ1≤λ≤λ2)

(vdx+ udy)

=

∫ λ2

λ1

dλ

(
u
dx(λ)

dλ
− v

dy(λ)

dλ

)
+ i

∫ λ2

λ1

dλ

(
v
dx(λ)

dλ
+ u

dy(λ)

dλ

)
. (5.2.1)

The real part of the line integral involves Re~ξ = (u,−v) and its imaginary part Im~ξ = (v, u).
Remark I Because complex integration is a line integral, reversing the direction of contour
C (which we denote as −C) would yield return negative of the original integral.

∫

−C

dzf(z) = −
∫

C

dzf(z) (5.2.2)

Remark II The complex version of the fundamental theorem of calculus has to hold, in that
∫

C

dzf ′(z) =

∫

C

df = f(“upper” end point of C)− f(“lower” end point of C)

=

∫ z2

z1

dzf ′(z) = f(z2)− f(z1). (5.2.3)

Cauchy’s integral theorem In introducing the contour integral in eq.
(5.2.1), we are not assuming any properties about the integrand f(z). However,
if the complex function f(z) is analytic throughout some simply connected region24

24A simply connected region is one where every closed loop in it can be shrunk to a point.
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containing the contour C, then we are lead to one of the key results of complex
integration theory: the integral of f(z) within any closed path C there is zero.

∮

C

f(z)dz = 0 (5.2.4)

Unfortunately the detailed proof will take up too much time and effort, but the mathematically
minded can consult, for example, Brown and Churchill’s Complex Variables and Applications.

Problem 5.2. If the first derivatives of f(z) are assumed to be continuous, then a proof
of this modified Cauchy’s theorem can be carried out by starting with the view that

∮
C
f(z)dz

is a (complex) line integral around a closed loop. Then apply Stokes’ theorem followed by the
Cauchy-Riemann conditions in eq. (5.1.3). Can you fill in the details?

Important Remarks Cauchy’s theorem has an important implication. Suppose we have a
contour integral

∫
C
g(z)dz, where C is some arbitrary (not necessarily closed) contour. Suppose

we have another contour C ′ whose end points coincide with those of C. If the function g(z) is
analytic inside the region bounded by C and C ′, then it has to be that

∫

C

g(z)dz =

∫

C′
g(z)dz. (5.2.5)

The reason is that, by subtracting these two integrals, say (
∫
C
−
∫
C′)g(z)dz, the − sign can be

absorbed by reversing the direction of the C ′ integral. We then have a closed contour integral
(
∫
C
−
∫
C′)g(z)dz =

∮
g(z)dz and Cauchy’s theorem in eq. (5.2.4) applies.

This is a very useful observation because it means, for a given contour integral, you can
deform the contour itself to a shape that would make the integral easier to evaluate. Below, we
will generalize this and show that, even if there are isolated points where the function is not
analytic, you can still pass the contour over these points, but at the cost of incurring additional
terms resulting from taking the residues there. Another possible type of singularity is known as
a branch point, which will then require us to introduce a branch cut.

Note that the simply connected requirement can often be circumvented by considering an
appropriate cut line. For example, suppose C1 and C2 were both counterclockwise (or both
clockwise) contours around an annulus region, within which f(z) is analytic. Then

∮

C1

f(z)dz =

∮

C2

f(z)dz. (5.2.6)

Example I A simple but important example is the following integral, where the contour C
is an arbitrary counterclockwise closed loop that encloses the point z = 0.

I ≡
∮

C

dz

z
(5.2.7)

Cauchy’s integral theorem does not apply directly because 1/z is not analytic at z = 0. By
considering a counterclockwise circle C ′ of radius R > 0, however, we may argue

∮

C

dz

z
=

∮

C′

dz

z
. (5.2.8)
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25We may then employ polar coordinates, so that the path C ′ could be described as z = Reiθ,
where θ would run from 0 to 2π.

∮

C

dz

z
=

∫ 2π

0

d(Reiθ)

Reiθ
=

∫ 2π

0

idθ = 2πi. (5.2.9)

Example II Let’s evaluate
∮
C
zdz and

∮
C
dz directly and by using Cauchy’s integral theorem.

Here, C is some closed contour on the complex plane. Directly:

∮

C

zdz =
z2

2

∣∣∣∣
z=z0

z=z0

= 0,

∮

C

dz = z|z=z0
z=z0

= 0. (5.2.10)

Using Cauchy’s integral theorem – we first note that z and 1 are analytic, since they are powers
of z; we thus conclude the integrals are zero.

Problem 5.3. For some contour C, let M be the maximum of |f(z)| along it and L ≡∫
C

√
dx2 + dy2 be the length of the contour itself, where z = x + iy (for x and y real). Argue

that
∣∣∣∣
∫

C

f(z)dz

∣∣∣∣ ≤
∫

C

|f(z)||dz| ≤M · L. (5.2.11)

Note: |dz| =
√

dx2 + dy2. (Why?) Hints: Can you first argue for the triangle inequality,
|z1 + z2| ≤ |z1| + |z2|, for any two complex numbers z1,2? What about |z1 + z2 + · · · + zN | ≤
|z1| + |z2| + · · · + |zN |? Then view the integral as a discrete sum, and apply this generalized
triangle inequality to it.

Problem 5.4. Evaluate
∮

C

dz

z(z + 1)
, (5.2.12)

where C is an arbitrary contour enclosing the points z = 0 and z = −1. Note that Cauchy’s
integral theorem is not directly applicable here. Hint: Apply a partial fractions decomposition
of the integrand, then for each term, convert this arbitrary contour to an appropriate circle.

The next major result allows us to deduce f(z), for z lying within some contour C, by
knowing its values on C.

Cauchy’s integral formula If f(z) is analytic on and within some closed
counterclockwise contour C, then

∮

C

dz′

2πi

f(z′)

z′ − z
= f(z) if z lies inside C

= 0 if z lies outside C. (5.2.13)

25This is where drawing a picture would help: for simplicity, if C′ lies entirely within C, the first portion of the
cut lines would begin anywhere from C′ to anywhere to C, followed by the reverse trajectory from C to C′ that
runs infinitesimally close to the first portion. Because they are infinitesimally close, the contributions of these two
portions cancel; but we now have a simply connected closed contour integral that amounts to 0 = (

∫
C
−
∫
C′
)dz/z.
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Proof If z lies outside C then the integrand is analytic within its interior and therefore
Cauchy’s integral theorem applies. If z lies within C we may then deform the contour such that
it becomes an infinitesimal counterclockwise circle around z′ ≈ z,

z′ ≡ z + ǫeiθ, 0 < ǫ≪ 1. (5.2.14)

We then have

∮

C

dz′

2πi

f(z′)

z′ − z
=

1

2πi

∫ 2π

0

ǫeiθidθ
f(z + ǫeiθ)

ǫeiθ

=

∫ 2π

0

dθ

2π
f(z + ǫeiθ). (5.2.15)

By taking the limit ǫ→ 0+, we get f(z), since f(z′) is analytic and thus continuous at z′ = z.

Cauchy’s integral formula for derivatives By applying the limit defini-
tion of the derivative, we may obtain an analogous definition for the nth derivative
of f(z). For some closed counterclockwise contour C,

∮

C

dz′

2πi

f(z′)

(z′ − z)n+1
=
f (n)(z)

n!
if z lies inside C

= 0 if z lies outside C. (5.2.16)

This implies – as already advertised earlier – once f ′(z) exists, f (n)(z) also exists for any n.
Complex-differentiable functions are infinitely smooth.

The converse of Cauchy’s integral formula is known as Morera’s theorem, which we will
simply state without proof.

Morera’s theorem If f(z) is continuous in a simply connected region and∮
C
f(z)dz = 0 for any closed contour C within it, then f(z) is analytic throughout

this region.

Now, even though f (n>1)(z) exists once f ′(z) exists (cf. (5.2.16)), f(z) cannot be infinitely
smooth everywhere on the complex z−plane..

Liouville’s theorem If f(z) is analytic and bounded – i.e., |f(z)| is less than
some positive constant M – for all complex z, then f(z) must in fact be a constant.
Apart from the constant function, analytic functions must blow up somewhere on
the complex plane.

Proof To prove this result we employ eq. (5.2.16). Choose a counterclockwise circular
contour C that encloses some arbitrary point z,

|f (n)(z)| ≤ n!

∮

C

|dz′|
2π

|f(z′)|
|(z′ − z)n+1| (5.2.17)

≤ n!
M

2πrn+1

∮

C

|dz′| = n!
M

rn
. (5.2.18)
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Here, r is the radius from z to C. But by Cauchy’s theorem, the circle can be made arbitrarily
large. By sending r → ∞, we see that |f (n)(z)| = 0, the nth derivative of the analytic function
at an arbitrary point z is zero for any integer n ≥ 1. This proves the theorem.

Examples The exponential ez while differentiable everywhere on the complex plane,
does in fact blow up at Re z → ∞. Sines and cosines are oscillatory and bounded on the real
line; and are differentiable everywhere on the complex plane. However, they blow up as one
move towards positive or negative imaginary infinity. Remember sin(z) = (eiz − e−iz)/(2i) and
cos(z) = (eiz + e−iz)/2. Then, for R ∈ R,

sin(iR) =
e−R − eR

2i
, cos(iR) =

e−R + eR

2
. (5.2.19)

Both sin(iR) and cos(iR) blow up as R → ±∞.

Problem 5.5. Fundamental theorem of algebra. Let P (z) = p0 + p1z + . . . pnz
n be an nth

degree polynomial, where n is an integer greater or equal to 1. By considering f(z) = 1/P (z),
show that P (z) has at least one root. (Once a root has been found, we can divide it out from
P (z) and repeat the argument for the remaining (n− 1)-degree polynomial. By induction, this
implies an nth degree polynomial has exactly n roots – this is the fundamental theorem of
algebra.)

Taylor series The generalization of the Taylor series of a real differentiable function to
the complex case is known as the Laurent series. If the function is completely smooth in some
region on the complex plane, then we shall see that it can in fact be Taylor expanded the usual
way, except the expressions are now complex. If there are isolated points where the function
blows up, then it can be (Laurent) expanded about those points, in powers of the complex
variable – except the series begins at some negative integer power, as opposed to the zeroth
power in the usual Taylor series.

To begin, let us show that the geometric series still works in the complex case.

Problem 5.6. By starting with the Nth partial sum,

SN ≡
N∑

ℓ=0

tℓ, (5.2.20)

prove that, as long as |t| < 1,

1

1− t
=

∞∑

ℓ=0

tℓ. (5.2.21)

Now pick a point z0 on the complex plane and identify the nearest point, say z1, where f
is no longer analytic. Consider some closed counterclockwise contour C that lies within the
circular region |z − z0| < |z1 − z0|. Then we may apply Cauchy’s integral formula eq. (5.2.13),
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and deduce a series expansion about z0:

f(z) =

∮

C

dz′

2πi

f(z′)

z′ − z

=

∮

C

dz′

2πi

f(z′)

(z′ − z0)− (z − z0)
=

∮

C

dz′

2πi

f(z′)

(z′ − z0)(1− (z − z0)/(z′ − z0))

=

∞∑

ℓ=0

∮

C

dz′

2πi

f(z′)

(z′ − z0)ℓ+1
(z − z0)

ℓ . (5.2.22)

We have used the geometric series in eq. (5.2.21) and the fact that it converges uniformly to
interchange the order of integration and summation. At this point, if we now recall Cauchy’s
integral formula for the nth derivative of an analytic function, eq. (5.2.16), we have arrived at
its Taylor series.

Taylor series For f(z) complex analytic within the circular region |z− z0| <
|z1 − z0|, where z1 is the nearest point to z0 where f is no longer differentiable,

f(z) =

∞∑

ℓ=0

(z − z0)
ℓf

(ℓ)(z0)

ℓ!
, (5.2.23)

where f (ℓ)(z)/ℓ! is given by eq. (5.2.16).

Problem 5.7. Complex binomial theorem. For p any real number and z any complex
number obeying |z| < 1, prove the complex binomial theorem using eq. (5.2.23),

(1 + z)p =
∞∑

ℓ=0

(
p

ℓ

)
zℓ,

(
p

0

)
≡ 1,

(
p

ℓ

)
=
p(p− 1) . . . (p− (ℓ− 1))

ℓ!
. (5.2.24)

Laurent series We are now ready to derive the Laurent expansion of a function f(z) that
is analytic within an annulus, say bounded by the circles |z − z0| = r1 and |z − z0| = r2 > r1.
That is, the center of the annulus region is z0 and the smaller circle has radius r1 and larger one
r2. To start, we let C1 be a clockwise circular contour with radius r2 > r′1 > r1 and let C2 be a
counterclockwise circular contour with radius r2 > r′2 > r′1 > r1. As long as z lies between these
two circular contours, we have

f(z) =

(∫

C1

+

∫

C2

)
dz′

2πi

f(z′)

z′ − z
. (5.2.25)

Strictly speaking, we need to integrate along a cut line joining the C1 and C2 – and another one
infinitesimally close to it, in the opposite direction – so that we can form a closed contour. But
by assumption f(z) is analytic and therefore continuous; the integrals along these pair of cut
lines must cancel. For the C1 integral, we may write z′ − z = −(z − z0)(1 − (z′ − z0)/(z − z0))
and apply the geometric series in eq. (5.2.21) because |(z′ − z0)/(z− z0)| < 1. Similarly, for the
C2 integral, we may write z′ − z = (z′ − z0)(1− (z − z0)/(z

′ − z0)) and geometric series expand
the right factor because |(z − z0)/(z

′ − z0)| < 1. These lead us to

f(z) =

∞∑

ℓ=0

(z − z0)
ℓ

∫

C2

dz′

2πi

f(z′)

(z′ − z0)ℓ+1
−

∞∑

ℓ=0

1

(z − z0)ℓ+1

∫

C1

dz′

2πi
(z′ − z0)

ℓf(z′). (5.2.26)
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Remember complex integration can be thought of as a line integral, which reverses sign if we
reverse the direction of the line integration. Therefore we may absorb the − sign in front of
the C1 integral(s) by turning C1 from a clockwise circle into C ′

1 = −C1, a counterclockwise one.
Moreover, note that we may now deform the contour C ′

1 into C2,

∫

C′
1

dz′

2πi
(z′ − z0)

ℓf(z′) =

∫

C2

dz′

2πi
(z′ − z0)

ℓf(z′), (5.2.27)

because for positive ℓ the integrand (z′ − z0)
ℓf(z′) is analytic in the region lying between the

circles C ′
1 and C2. At this point we have

f(z) =

∞∑

ℓ=0

∫

C2

dz′

2πi

(
(z − z0)

ℓ f(z′)

(z′ − z0)ℓ+1
+

1

(z − z0)ℓ+1
(z′ − z0)

ℓf(z′)

)
. (5.2.28)

Proceeding to re-label the second series by replacing ℓ + 1 → −ℓ′, so that the summation then
runs from −1 through −∞, the Laurent series emerges.

Laurent series Let f(z) be analytic within the annulus r1 < |z − z0| < r2 <
|z1−z0|, where z0 is some complex number such that f(z) may not be analytic within
|z − z0| < r1; z1 is the nearest point outside of |z − z0| ≥ r1 where f(z) fails to be
differentiable; and the radii r2 > r1 > 0 are real positive numbers. The Laurent
expansion of f(z) about z0, valid throughout the entire annulus, reads

f(z) =

∞∑

ℓ=−∞

Lℓ(z0) · (z − z0)
ℓ, (5.2.29)

Lℓ(z0) ≡
∫

C

dz′

2πi

f(z′)

(z′ − z0)ℓ+1
. (5.2.30)

The C is any counterclockwise closed contour containing both z and the inner circle
|z − z0| = r1.

Uniqueness It is worth asserting that the Laurent expansion of a function, in the region
where it is analytic, is unique. That means it is not always necessary to perform the integrals
in eq. (5.2.29) to obtain the expansion coefficients Lℓ.

Problem 5.8. For complex z, a and b, obtain the Laurent expansion of

f(z) ≡ 1

(z − a)(z − b)
, a 6= b, (5.2.31)

about z = a, in the region 0 < |z − a| < |a− b| using eq. (5.2.29). Check your result either by
writing

1

z − b
= − 1

1− (z − a)/(b− a)

1

b− a
. (5.2.32)

and employing the geometric series in eq. (5.2.21), or directly performing a Taylor expansion of
1/(z − b) about z = a.
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Problem 5.9. Schwarz reflection principle. Proof the following statement using Laurent
expansion. If a function f(z = x+ iy) = u(x, y)+ iv(x, y) can be Laurent expanded (for x, y, u,
and v real) about some point on the real line, and if f(z) is real whenever z is real, then

(f(z))∗ = u(x, y)− iv(x, y) = f(z∗) = u(x,−y) + iv(x,−y). (5.2.33)

Comment on why this is called the “reflection principle”.

We now turn to an important result that allows us to extend the definitions of complex differ-
entiable functions beyond their original range of validity.

Analytic continuation An analytic function f(z) is fixed uniquely through-
out a given region Σ on the complex plane, once its value is specified on a line segment
lying within Σ.

This in turn means, suppose we have an analytic function f1(z) defined in a region Σ1 on the
complex plane, and suppose we found another analytic function f2(z) defined in some region Σ2

such that f2(z) agrees with f1(z) in their common region of intersection. (It is important that
Σ2 does have some overlap with Σ1.) Then we may view f2(z) as an analytic continuation of
f1(z), because this extension is unique – it is not possible to find a f3(z) that agrees with f1(z)
in the common intersection between Σ1 and Σ2, yet behave different in the rest of Σ2.

These results inform us, any real differentiable function we are familiar with can be extended
to the complex plane, simply by knowing its Taylor expansion. For example, ex is infinitely
differentiable on the real line, and its definition can be readily extended into the complex plane
via its Taylor expansion.

An example of analytic continuation is that of the geometric series. If we define

f1(z) ≡
∞∑

ℓ=0

zℓ, |z| < 1, (5.2.34)

and

f2(z) ≡
1

1− z
, (5.2.35)

then we know they agree in the region |z| < 1 and therefore any line segment within it. But
while f1(z) is defined only in this region, f2(z) is valid for any z 6= 1. Therefore, we may view
1/(1− z) as the analytic continuation of f1(z) for the region |z| > 1. Also observe that we can
now understand why the series is valid only for |z| < 1: the series of f1(z) is really the Taylor
expansion of f2(z) about z = 0, and since the nearest singularity is at z = 1, the circular region
of validity employed in our (constructive) Taylor series proof is in fact |z| < 1.

Problem 5.10. One key application of analytic continuation is that, some special functions
in mathematical physics admit a power series expansion that has a finite radius of convergence.
This can occur if the differential equations they solve have singular points. Many of these special
functions also admit an integral representation, whose range of validity lies beyond that of the
power series. This allows the domain of these special functions to be extended.
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The hypergeometric function 2F1(α, β; γ; z) is such an example. For |z| < 1 it has a power
series expansion

2F1(α, β; γ; z) =

∞∑

ℓ=0

Cℓ(α, β; γ)
zℓ

ℓ!
,

C0(α, β; γ) ≡ 1,

Cℓ≥1(α, β; γ) ≡
α(α + 1) . . . (α + (ℓ− 1)) · β(β + 1) . . . (β + (ℓ− 1))

γ(γ + 1) . . . (γ + (ℓ− 1))
. (5.2.36)

On the other hand, it also has the following integral representation,

2F1(α, β; γ; z) =
Γ(γ)

Γ(γ − β)Γ(β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− tz)−αdt, Re(γ) >Re(β) > 0.

(5.2.37)

(Here, Γ(z) is known as the Gamma function; see http://dlmf.nist.gov/5.) Show that eq. (5.2.37)
does in fact agree with eq. (5.2.36) for |z| < 1. You can apply the binomial expansion in eq.
(5.2.24) to (1− tz)−α, followed by result

∫ 1

0

dt(1− t)α−1tβ−1 =
Γ(α)Γ(β)

Γ(α + β)
, Re(α), Re(β) > 0. (5.2.38)

You may also need the property

zΓ(z) = Γ(z + 1). (5.2.39)

Therefore eq. (5.2.37) extends eq. (5.2.36) into the region |z| > 1.

5.3 Poles and Residues

In this section we will consider the closed counterclockwise contour integral

∮

C

dz

2πi
f(z), (5.3.1)

where f(z) is analytic everywhere on and within C except at isolated singular points of f(z) –
which we will denote as {z1, . . . , zn}, for (n ≥ 1)-integer. That is, we will assume there is no
other type of singularities. We will show that the result is the sum of the residues of f(z) at
these points. This case will turn out to have a diverse range of physical applications, including
the study of the vibrations of black holes.

We begin with some jargon.
Nomenclature If a function f(z) admits a Laurent expansion about z = z0 starting

from 1/(z − z0)
m, for m some positive integer,

f(z) =

∞∑

ℓ=−m

Lℓ · (z − z0)
ℓ, (5.3.2)
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we say the function has a pole of order m at z = z0. If m = ∞ we say the function has an
essential singularity. The residue of a function f at some location z0 is simply the coefficient
L−1 of the negative one power (ℓ = −1 term) of the Laurent series expansion about z = z0.

The key to the result already advertised is the following.

Problem 5.11. If n is an arbitrary integer, show that
∮

C

(z′ − z)n
dz′

2πi
= 1, when n = −1,

= 0, when n 6= −1, (5.3.3)

where C is any contour (whose interior defines a simply connected domain) that encloses the
point z′ = z.

By assumption, we may deform our contour C so that they become the collection of closed
counterclockwise contours {C ′

i|i = 1, 2, . . . , n} around each and every isolated point. This means
∮

C

f(z′)
dz′

2πi
=
∑

i

∮

C′
i

f(z′)
dz′

2πi
. (5.3.4)

Strictly speaking, to preserve the full closed contour structure of the original C, we need to join
these new contours – say C ′

i to C
′
i+1, C

′
i+1 to C ′

i+2, and so on – by a pair of contour lines placed
infinitesimally apart, for e.g., one from C ′

i → C ′
i+1 and the other C ′

i+1 → C ′
i. But by assumption

f(z) is analytic and therefore continuous there, and thus the contribution from these pairs will
surely cancel. Let us perform a Laurent expansion of f(z) about zi, the ith singular point, and
then proceed to integrate the series term-by-term using eq. (5.3.3).

∮

C′
i

f(z′)
dz′

2πi
=

∫

C′
i

∞∑

ℓ=−mi

L
(i)
ℓ · (z′ − zi)

ℓ dz
′

2πi
= L

(i)
−1. (5.3.5)

Residue theorem As advertised, the closed counterclockwise contour in-
tegral of a function that is analytic everywhere on and within the contour, except
at isolated points {zi}, yields the sum of the residues at each of these points. In
equation form,

∮

C

f(z′)
dz′

2πi
=
∑

i

L
(i)
−1, (5.3.6)

where L
(i)
−1 is the residue at the ith singular point zi.

Example I Let us start with a simple application of this result. Let C be some closed
counterclockwise contour containing the points z = 0, a, b.

I =

∮

C

dz

2πi

1

z(z − a)(z − b)
. (5.3.7)

One way to do this is to perform a partial fractions expansion first.

I =

∮

C

dz

2πi

(
1

abz
+

1

a(a− b)(z − a)
+

1

b(b− a)(z − b)

)
. (5.3.8)
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In this form, the residues are apparent, because we can view the first term as some Laurent
expansion about z = 0 with only the negative one power; the second term as some Laurent
expansion about z = a; the third about z = b. Therefore, the sum of the residues yield

I =
1

ab
+

1

a(a− b)
+

1

b(b− a)
=

(a− b) + b− a

ab(a− b)
= 0. (5.3.9)

If you don’t do a partial fractions decomposition, you may instead recognize, as long as the 3
points z = 0, a, b are distinct, then near z = 0 the factor 1/((z−a)(z−b)) is analytic and admits
an ordinary Taylor series that begins at the zeroth order in z, i.e.,

1

z(z − a)(z − b)
=

1

z

(
1

ab
+O(z)

)
. (5.3.10)

Because the higher positive powers of the Taylor series cannot contribute to the 1/z term of
the Laurent expansion, to extract the negative one power of z in the Laurent expansion of the
integrand, we simply evaluate this factor at z = 0. Likewise, near z = a, the factor 1/(z(z − b))
is analytic and can be Taylor expanded in zero and positive powers of (z − a). To understand
the residue of the integrand at z = a we simply evaluate 1/(z(z − b)) at z = a. Ditto for the
z = b singularity.

∮

C

dz

2πi

1

z(z − a)(z − b)
=

∑

zi=0,a,b

(
Residue of

1

z(z − a)(z − b)
at zi

)

=
1

ab
+

1

a(a− b)
+

1

b(b− a)
= 0. (5.3.11)

The reason why the result is zero can actually be understood via contour integration as well. If
you now consider a closed clockwise contour C∞ at infinity and view the integral (

∫
C
+
∫
C∞

)f(z)dz,
you will be able to convert it into a closed contour integral by linking C and C∞ via two infinitesi-
mally close radial lines which would not actually contribute to the answer. But (

∫
C
+
∫
C∞

)f(z)dz =∫
C∞

f(z)dz because C∞ does not contribute either – why? Therefore, since there are no poles
in the region enclosed by C∞ and C, the answer has to be zero.

Example II Let C be a closed counterclockwise contour around the origin z = 0. Let us
do

I ≡
∮

C

exp(1/z2)dz. (5.3.12)

We Taylor expand the exp, and notice there is no term that goes as 1/z. Hence,

I =

∞∑

ℓ=0

1

ℓ!

∮

C

dz

z2ℓ
= 0. (5.3.13)

A major application of contour integration is to that of integrals involving real variables.
Application I: Trigonometric integrals If we have an integral of the form

∫ 2π

0

dθf(cos θ, sin θ), (5.3.14)
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then it may help to change from θ to

z ≡ eiθ ⇒ dz = idθ · eiθ = idθ · z, (5.3.15)

and

sin θ =
z − 1/z

2i
, cos θ =

z + 1/z

2
. (5.3.16)

The integral is converted into a sum over residues:

∫ 2π

0

dθf(cos θ, sin θ) = 2π

∮

|z|=1

dz

2πiz
f

(
z + 1/z

2
,
z − 1/z

2i

)

= 2π
∑

j


jth residue of

f
(

z+1/z
2
, z−1/z

2i

)

z
for |z| < 1


 . (5.3.17)

Example For a ∈ R,

I =

∫ 2π

0

dθ

a + cos θ
=

∮

|z|=1

dz

iz

1

a + (1/2)(z + 1/z)
=

∮

|z|=1

dz

i

1

az + (1/2)(z2 + 1)

= 4π

∮

|z|=1

dz

2πi

1

(z − z+)(z − z−)
, z± ≡ −a±

√
a2 − 1. (5.3.18)

Assume, for the moment, that |a| < 1. Then | − a ±
√
a2 − 1|2 = | − a ± i

√
1− a2|2 =

|a2 + (1 − a2)|2 = 1. Both z± lie on the unit circle, and the contour integral does not make
much sense as it stands because the contour C passes through both z±. So let us assume that
a is real but |a| > 1. When a runs from 1 to infinity, −a −

√
a2 − 1 runs from −1 to −∞;

while −a +
√
a2 − 1 = −(a −

√
a2 − 1) runs from −1 to 0 because a >

√
a2 − 1. When −a

runs from 1 to ∞, on the other hand, −a −
√
a2 − 1 runs from 1 to 0; while −a +

√
a2 − 1

runs from 1 to ∞. In other words, for a > 1, z+ = −a +
√
a2 − 1 lies within the unit circle

and the relevant residue is 1/(z+ − z−) = 1/(2
√
a2 − 1) = sgn(a)/(2

√
a2 − 1). For a < −1 it is

z− = −a −
√
a2 − 1 that lies within the unit circle and the relevant residue is 1/(z− − z+) =

−1/(2
√
a2 − 1) = sgn(a)/(2

√
a2 − 1). Therefore,

∫ 2π

0

dθ

a+ cos θ
=

2πsgn(a)√
a2 − 1

, a ∈ R, |a| > 1. (5.3.19)

Application II: Integrals along the real line If you need to do
∫ +∞

−∞
f(z)dz, it may

help to view it as a complex integral and “close the contour” either in the upper or lower half
of the complex plane – thereby converting the integral along the real line into one involving the
sum of residues in the upper or lower plane.

An example is the following

I ≡
∫ ∞

−∞

dz

z2 + z + 1
. (5.3.20)
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Let us complexify the integrand and consider its behavior in the limit z = limρ→∞ ρeiθ, either
for 0 ≤ θ ≤ π (large semi-circle in the upper half plane) or π ≤ θ ≤ 2π (large semi-circle in the
lower half plane).

lim
ρ→∞

∣∣∣∣
idθ · ρeiθ

ρ2ei2θ + ρeiθ + 1

∣∣∣∣→ lim
ρ→∞

dθ

ρ
= 0. (5.3.21)

This is saying the integral along this large semi-circle either in the upper or lower half complex
plane is zero. Therefore I is equal to the integral along the real axis plus the contour integral
along the semi-circle, since the latter contributes nothing. But the advantage of this view is that
we now have a closed contour integral. Because the roots of the polynomial in the denominator
of the integrand are e−i2π/3 and ei2π/3, so we may write

I = 2πi

∮

C

dz

2πi

1

(z − e−i2π/3)(z − ei2π/3)
. (5.3.22)

Closing the contour in the upper half plane yields a counterclockwise path, which yields

I =
2πi

ei2π/3 − e−i2π/3
=

π

sin(2π/3)
. (5.3.23)

Closing the contour in the lower half plane yields a clockwise path, which yields

I =
−2πi

e−i2π/3 − ei2π/3
=

π

sin(2π/3)
. (5.3.24)

Of course, the two answers have to match.
Example: Fourier transform The Fourier transform is in fact a special case of the integral

on the real line that can often be converted to a closed contour integral.

f(t) =

∫ ∞

−∞

f̃(ω)eiωt
dω

2π
, t ∈ R. (5.3.25)

We will assume t is real and f̃ has only isolated singularities.26 Let C be a large semi-circular
path, either in the upper or lower complex plane; consider the following integral along C.

I ′ ≡
∫

C

f̃(ω)eiωt
dω

2π
= lim

ρ→∞

∫
f̃
(
ρeiθ

)
eiρ(cos θ)te−ρ(sin θ)t idθ · ρeiθ

2π
(5.3.26)

At this point we see that, for t < 0, unless f̃ goes to zero much faster than the e−ρ(sin θ)t for
large ρ, the integral blows up in the upper half plane where (sin θ) > 0. For t > 0, unless f
goes to zero much faster than the e−ρ(sin θ)t for large ρ, the integral blows up in the lower half
plane where (sin θ) < 0. In other words, the sign of t will determine how you should “close the
contour” – in the upper or lower half plane.

Let us suppose |f̃ | ≤M on the semi-circle and consider the magnitude of this integral,

|I ′| ≤ lim
ρ→∞

(
ρM

∫
e−ρ(sin θ)t dθ

2π

)
, (5.3.27)

26In physical applications f̃ may have branch cuts; this will be dealt with in the next section.
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Remember if t > 0 we integrate over θ ∈ [0, π], and if t < 0 we do θ ∈ [−π, 0]. Either case
reduces to

|I ′| ≤ lim
ρ→∞

(
2ρM

∫ π/2

0

e−ρ(sin θ)|t| dθ

2π

)
, (5.3.28)

because

∫ π

0

F (sin(θ))dθ = 2

∫ π/2

0

F (sin(θ))dθ (5.3.29)

for any function F . The next observation is that, over the range θ ∈ [0, π/2],

2θ

π
≤ sin θ, (5.3.30)

because y = 2θ/π is a straight line joining the origin to the maximum of y = sin θ at θ = π/2.
(Making a plot here helps.) This in turn means we can replace sin θ with 2θ/π in the exponent,
i.e., exploit the inequality e−X < e−Y if X > Y > 0, and deduce

|I ′| ≤ lim
ρ→∞

(
2ρM

∫ π/2

0

e−2ρθ|t|/π dθ

2π

)
(5.3.31)

= lim
ρ→∞

(
ρM

π
π
e−ρπ|t|/π − 1

−2ρ|t|

)
=

1

2|t| limρ→∞
M (5.3.32)

As long as |f̃(ω)| goes to zero as ρ→ ∞, we see that I ′ (which is really 0) can be added to the

Fourier integral f(t) along the real line, converting f(t) to a closed contour integral. If f̃(ω) is
analytic except at isolated points, then I can be evaluated through the sum of residues at these
points.

To summarize, when faced with the frequency-transform type integral in eq. (5.3.25),

• If t > 0 and if |f̃(ω)| goes to zero as |ω| → ∞ on the large semi-circle path of radius |ω|
on the upper half complex plane, then we close the contour there and convert the integral
f(t) =

∫∞

−∞
f̃(ω)eiωt dω

2π
to i times the sum of the residues of f̃(ω)eiωt for Im(ω) > 0 –

provided the function f̃(ω) is analytic except at isolated points there.

• If t < 0 and if |f̃(ω)| goes to zero as |ω| → ∞ on the large semi-circle path of radius |ω|
on the lower half complex plane, then we close the contour there and convert the integral
f(t) =

∫∞

−∞
f̃(ω)eiωt dω

2π
to −i times the sum of the residues of f̃(ω)eiωt for Im(ω) < 0 –

provided the function f̃(ω) is analytic except at isolated points there.

• A quick guide to how to close the contour is to evaluate the exponential on the imaginary
ω axis, and take the infinite radius limit of |ω|, namely lim|ω|→∞ eit(±i|ω|) = lim|ω|→∞ e∓t|ω|,
where the upper sign is for the positive infinity on the imaginary axis and the lower sign
for negative infinity. We want the exponential to go to zero, so we have to choose the
upper/lower sign based on the sign of t.
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If f̃(ω) requires branch cut(s) in either the lower or upper half complex planes – branch cuts
will be discussed shortly – we may still use this closing of the contour to tackle the Fourier
integral f(t). In such a situation, there will often be additional contributions from the part of
the contour hugging the branch cut itself.

An example is the following integral

I(t) ≡
∫ +∞

−∞

dω

2π

eiωt

(ω + i)2(ω − 2i)
, t ∈ R. (5.3.33)

The denominator (ω+ i)2(ω− 2i) has a double root at ω = −i (in the lower half complex plane)
and a single root at ω = 2i (in the upper half complex plane). You can check readily that
1/((ω+ i)2(ω− 2i)) does go to zero as |ω| → ∞. If t > 0 we close the integral on the upper half
complex plane. Since eiωt/(ω + i)2 is analytic there, we simply apply Cauchy’s integral formula
in eq. (5.2.13).

I(t > 0) = i
ei(2i)t

(2i+ i)2
= −ie

−2t

9
. (5.3.34)

If t < 0 we then need form a closed clockwise contour C by closing the integral along the real
line in the lower half plane. Here, eiωt/(ω − 2i) is analytic, and we can invoke eq. (5.2.16),

I(t < 0) = i

∮

C

dω

2πi

eiωt

(ω + i)2(ω − 2i)
= −i d

dω

(
eiωt

ω − 2i

)

ω=−i

= −iet1− 3t

9
(5.3.35)

To summarize,
∫ +∞

−∞

dω

2π

eiωt

(ω + i)2(ω − 2i)
= −ie

−2t

9
Θ(t)− iet

1− 3t

9
Θ(−t), (5.3.36)

where Θ(t) is the step function.
We can check this result as follows. Since I(t = 0) = −i/9 can be evaluated independently,

this indicates we should expect the I(t) to be continuous there: I(t = 0+) = I(t = −0+) = −i/9.
Also notice, if we apply a t-derivative on I(t) and interchange the integration and derivative
operation, each d/dt amounts to a iω. Therefore, we can check the following differential equations
obeyed by I(t):

(
1

i

d

dt
+ i

)2(
1

i

d

dt
− 2i

)
I(t) = δ(t), (5.3.37)

(
1

i

d

dt
+ i

)2

I(t) =

∫ +∞

−∞

dω

2π

eiωt

ω − 2i
= iΘ(t)e−2t, (5.3.38)

(
1

i

d

dt
− 2i

)
I(t) =

∫ +∞

−∞

dω

2π

eiωt

(ω + i)2
= −iΘ(−t)itet = Θ(−t)tet. (5.3.39)

Problem 5.12. Evaluate ∫ ∞

−∞

dz

z3 + i
. (5.3.40)
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Problem 5.13. Show that the integral representation of the step function Θ(t) is

Θ(t) =

∫ +∞

−∞

dω

2πi

eiωt

ω − i0+
. (5.3.41)

The ω− i0+ means the purely imaginary root lies very slightly above 0; alternatively one would
view it as an instruction to deform the contour by making an infinitesimally small counterclock-
wise semi-circle going slightly below the real axis around the origin.

Next, let a and b be non-zero real numbers. Evaluate

I(a, b) ≡
∫ +∞

−∞

dω

2πi

eiωa

ω + ib
. (5.3.42)

Problem 5.14. (From Arfken et al.) Sometimes this “closing-the-contour” trick need not
involve closing the contour at infinity. Show by contour integration that

I ≡
∫ ∞

0

(ln x)2

1 + x2
dx =

π3

8
. (5.3.43)

Hint: Put x = z ≡ et and try to evaluate the integral now along the contour that runs along the
real line from t = −R to t = R – for R ≫ 1 – then along a vertical line from t = R to t = R+ iπ,
then along the horizontal line from t = R+ iπ to t = −R+ iπ, then along the vertical line back
to t = −R; then take the R → +∞ limit.

Problem 5.15. Evaluate

I(a) ≡
∫ ∞

−∞

sin(ax)

x
dx, a ∈ R. (5.3.44)

Hint(s): First convert the sine into exponentials and deform the contour along the real line
into one that makes a infinitesimally small semi-circular detour around the origin z = 0. The
semi-circle can be clockwise, passing above z = 0 or counterclockwise, going below z = 0. Make
sure you justify why making such a small deformation does not affect the answer.

Problem 5.16. Evaluate

I(t) ≡
∫ +∞

−∞

dω

2π

e−iωt

(ω − ia)2(ω + ib)2
, t ∈ R; a, b > 0. (5.3.45)

5.4 Branch Points, Branch Cuts

Branch points and Riemann sheets A branch point of a function f(z) is a point z0 on
the complex plane such that going around z0 in an infinitesimally small circle does not give you
back the same function value. That is,

f
(
z0 + ǫ · eiθ

)
6= f

(
z0 + ǫ · ei(θ+2π)

)
, 0 < ǫ≪ 1. (5.4.1)
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Example I One example is the power zα, for α non-integer. Zero is a branch point because,
for 0 < ǫ≪ 1, we may considering circling it n ∈ Z+ times.

(ǫe2πni)α = ǫαe2πnαi 6= ǫα. (5.4.2)

If α = 1/2, then circling zero twice would bring us back to the same function value. If α = 1/m,
where m is a positive integer, we would need to circle zero m times to get back to the same
function value. What this is teaching us is that, to define the function f(z) = z1/m properly,
we need m “Riemann sheets” of the complex plane. To see this, we first define a cut line
along the positive real line and proceed to explore the function f by sampling its values along
a continuous line. If we start from a point slightly above the real axis, z1/m there is defined
as |z|1/m, where the positive root is assumed here. As we move around the complex plane,
let us use polar coordinates to write z = ρeiθ; once θ runs beyond 2π, i.e., once the contour
circles around the origin more than one revolution, we exit the first complex plane and enter
the second. For example, when z is slightly above the real axis on the second sheet, we define
z = |z|1/mei2π/m; and anywhere else on the second sheet we have z = |z|1/mei(2π/m)+iθ , where
θ is still measured with respect to the real axis. We can continue this process, circling the
origin, with each increasing counterclockwise revolution taking us from one sheet to the next.
On the nth sheet our function reads z = |z|1/mei(2πn/m)+iθ . It is the mth sheet that needs to be
joined with the very first sheet, because by the mth sheet we have covered all the m solutions of
what we mean by taking the mth root of a complex number. (If we had explored the function
using a clockwise path instead, we’d migrated from the first sheet to the mth sheet, then to the
(m−1)th sheet and so on.) Finally, if α were not rational – it is not the ratio of two integers – we
would need an infinite number of Riemann sheets to fully describe zα as a complex differentiable
function of z.

The presence of the branch cut(s) is necessary because we need to join one Riemann sheet to
the next, so as to construct an analytic function mapping the full domain back to the complex
plane. However, as long as one Riemann sheet is joined to the next so that the function is
analytic across this boundary, and as long as the full domain is mapped properly onto the
complex plane, the location of the branch cut(s) is arbitrary. For example, for the f(z) = zα

case above, as opposed to the real line, we can define our branch cut to run along the radial line
{ρeiθ0 |ρ ≥ 0} for any 0 < θ0 ≤ 2π. All we are doing is re-defining where to join one sheet to
another, with the nth sheet mapping one copy of the complex plane {ρei(θ0+ϕ)|ρ ≥ 0, 0 ≤ ϕ < 2π}
to {|z|αeiα(θ0+ϕ)|ρ ≥ 0, 0 ≤ ϕ < 2π}. Of course, in this new definition, the 2π − θ0 ≤ ϕ < 2π
portion of the nth sheet would have belonged to the (n+ 1)th sheet in the old definition – but,
taken as a whole, the collection of all relevant Riemann sheets still cover the same domain as
before.

Example II ln is another example. You already know the answer but let us work out the
complex derivative of ln z. Because eln z = z, we have

(eln z)′ = eln z · (ln z)′ = z · (ln z)′ = 1. (5.4.3)

This implies,

d ln z

dz
=

1

z
, z 6= 0, (5.4.4)
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which in turn says ln z is analytic away from the origin. We may now consider making m
infinitesimal circular trips around z = 0.

ln(ǫei2πm) = ln(ǫei2πm) = ln ǫ+ i2πm 6= ln ǫ. (5.4.5)

Just as for f(z) = zα when α is irrational, it is in fact not possible to return to the same function
value – the more revolutions you take, the further you move in the imaginary direction. ln(z)
for z = x+ iy actually maps the mth Riemann sheet to a horizontal band on the complex plane,
lying between 2π(m− 1) ≤ Im ln(z) ≤ 2πm.

Breakdown of Laurent series To understand the need for multiple Riemann sheets further,
it is instructive to go back to our discussion of the Laurent series using an annulus around the
isolated singular point, which lead up to eq. (5.2.29). For both f(z) = zα and f(z) = ln(z),
the branch point is at z = 0. If we had used a single complex plane, with say a branch cut
along the positive real line, f(z) would not even be continuous – let alone analytic – across the
z = x > 0 line: f(z = x + i0+) = xα 6= f(z = x − i0+) = xαei2πα, for instance. Therefore the
derivation there would not go through, and a Laurent series for either zα or ln z about z = 0
cannot be justified. But as far as integration is concerned, provided we keep track of how many
times the contour wraps around the origin – and therefore how many Riemann sheets have been
transversed – both zα and ln z are analytic once all relevant Riemann sheets have been taken into
account. For example, let us do

∮
C
ln(z)dz, where C begins from the point z1 ≡ r1e

iθ1 and loops
around the origin n times and ends on the point z2 ≡ r2e

iθ2+i2πn for (n ≥ 1)-integer. Across these
n sheets and away from z = 0, ln(z) is analytic. We may therefore invoke Cauchy’s theorem
in eq. (5.2.4) to deduce the result depends on the path only through its ‘winding number’ n.
Because (z ln(z)− z)′ = ln z,

∫ z2

z1

ln(z)dz = r2e
iθ2 (ln r2 + i(θ2 + 2πn)− 1)− r1e

iθ1 (ln r1 + iθ1 − 1) . (5.4.6)

Likewise, for the same integration contour C,
∫ z2

z1

zαdz =
rα+1
2

α + 1
ei(α+1)(θ2+2πn) − rα+1

1

α + 1
ei(α+1)θ1 . (5.4.7)

Branches On the other hand, the purpose of defining a branch cut, is that it allows us to
define a single-valued function on a single complex plane – a branch of a multivalued function –
as long as we agree never to cross over this cut when moving about on the complex plane. For
example, a branch cut along the negative real line means

√
z =

√
reiθ with −π < θ < π; you

don’t pass over the cut line along z < 0 when you move around on the complex plane.
Another common example is given by the following branch of

√
z2 − 1:

√
z + 1

√
z − 1 =

√
r1r2e

i(θ1+θ2)/2, (5.4.8)

where z + 1 ≡ r1e
iθ1 and z − 1 ≡ r2e

iθ2 ; and
√
r1r2 is the positive square root of r1r2 > 0. By

circling the branch point you can see the function is well defined if we cut along −1 < z < +1,
because (θ1+ θ2)/2 goes from 0 to (θ1+ θ2)/2 = 2π.27 Otherwise, if the cut is defined as z < −1

27Arfken et al. goes through various points along this circling-the-(z = ±1) process, but the main point is that
there is no jump after a complete circle, unlike what you’d get circling the branch point of, say z1/3. On the
other hand, you may want to use the z+1 ≡ r1e

iθ1 and z− 1 ≡ r2e
iθ2 parametrization here and understand how

many Riemann sheets it would take define the whole
√
z2 − 1.
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(on the negative real line) together with z > 1 (on the positive real line), the branch points at
z = ±1 cannot be circled and the function is still well defined and single-valued.

Yet another example is given by the Legendre function

Q0(z) = ln

[
z + 1

z − 1

]
. (5.4.9)

The branch points, where the argument of the ln goes to zero, is at z = ±1. Qν(z) is usually
defined with a cut line along −1 < z < +1 on the real line. Let’s circle the branch points
counterclockwise, with

z + 1 ≡ r1e
iθ1 and z − 1 ≡ r2e

iθ2 (5.4.10)

as before. Then,

Q0(z) = ln

[
z + 1

z − 1

]
= ln

r1
r2

+ i (θ1 − θ2) . (5.4.11)

After one closed loop, we go from θ1− θ2 = 0−0 = 0 to θ1− θ2 = 2π−2π = 0; there is no jump.
When x lies on the real line between −1 and 1, Q0(x) is then defined as

Q0(x) =
1

2
Q0(x+ i0+) +

1

2
Q0(x− i0+), (5.4.12)

where the i0+ in the first term on the right means the real line is approached from the upper half
plane and the second term means it is approached from the lower half plane. What does that
give us? Approaching from above means θ1 = 0 and θ2 = π; so ln(z + i0+ + 1)/(z + i0+ − 1) =
ln |(z + 1)/(z − 1)| − iπ. Approaching from below means θ1 = 2π and θ2 = π; therefore
ln(z − i0+ + 1)/(z − i0+ − 1) = ln |(z + 1)/(z − 1)|+ iπ. Hence the average of the two yields

Q0(x) = ln

[
1 + x

1− x

]
, −1 < x < +1. (5.4.13)

because the imaginary parts cancel while |z + 1| = x+ 1 and |z − 1| = 1− x in this region.
Example Let us exploit the following branch of natural log

ln z = ln r + iθ, z = reiθ, 0 ≤ θ < 2π (5.4.14)

to evaluate the integral encountered in eq. (5.3.43).

I ≡
∫ ∞

0

(ln x)2

1 + x2
dx =

π3

8
. (5.4.15)

To begin we will actually consider

I ′ ≡ lim
R→∞
ǫ→0

∮

C1+C2+C3+C4

(ln z)2

1 + z2
dz, (5.4.16)
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where C1 runs over z ∈ (−∞,−ǫ] (for 0 ≤ ǫ ≪ 1), C2 over the infinitesimal semi-circle z = ǫeiθ

(for θ ∈ [π, 0]), C3 over z ∈ [ǫ,+∞) and C4 over the (infinite) semi-circle Reiθ (for R → +∞
and θ ∈ [0, π]).

First, we show that the contribution from C2 and C4 are zero once the limits R → ∞ and
ǫ→ 0 are taken.

∣∣∣∣limǫ→0

∫

C2

(ln z)2

1 + z2
dz

∣∣∣∣ =
∣∣∣∣limǫ→0

∫ 0

π

idθǫeiθ
(ln ǫ+ iθ)2

1 + ǫ2e2iθ

∣∣∣∣

≤ lim
ǫ→0

∫ π

0

dθǫ| ln ǫ+ iθ|2 = 0. (5.4.17)

and
∣∣∣∣ limR→∞

∫

C4

(ln z)2

1 + z2
dz

∣∣∣∣ =
∣∣∣∣ limR→∞

∫ π

0

idθReiθ
(lnR + iθ)2

1 +R2e2iθ

∣∣∣∣

≤ lim
R→∞

∫ π

0

dθ| lnR + iθ|2/R = 0. (5.4.18)

Moreover, I ′ can be evaluated via the residue theorem; within the closed contour, the integrand
blows up at z = i.

I ′ ≡ 2πi lim
R→∞
ǫ→0

∮

C1+C2+C3+C4

(ln z)2

(z + i)(z − i)

dz

2πi

= 2πi
(ln i)2

2i
= π(ln(1) + i(π/2))2 = −π

3

4
. (5.4.19)

This means the sum of the integral along C1 and C3 yields −π3/4. If we use polar coordinates
along both C1 and C2, namely z = reiθ,

∫ 0

∞

dreiπ
(ln r + iπ)2

1 + r2ei2π
+

∫ ∞

0

(ln r)2

1 + r2
dr = −π

3

4
(5.4.20)

∫ ∞

0

dr
2(ln r)2 + i2π ln r − π2

1 + r2
= −π

3

4
(5.4.21)

We may equate the real and imaginary parts of both sides. The imaginary one, in particular,
says

∫ ∞

0

dr
ln r

1 + r2
= 0, (5.4.22)

while the real part now hands us

2I = π2

∫ ∞

0

dr

1 + r2
− π3

4

= π2 [arctan(r)]r=∞
r=0 − π3

4
=
π3(2− 1)

4
=
π3

4
(5.4.23)

We have managed to solve for the integral I
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Problem 5.17. If x is a non-zero real number, justify the identity

ln(x+ i0+) = ln |x|+ iπΘ(−x), (5.4.24)

where Θ is the step function.

Problem 5.18. (From Arfken et al.) For −1 < a < 1, show that

∫ ∞

0

dx
xa

(x+ 1)2
=

πa

sin(πa)
. (5.4.25)

Hint: Complexify the integrand, then define a branch cut along the positive real line. Consider
the closed counterclockwise contour that starts at the origin z = 0, goes along the positive real
line, sweeps out an infinite counterclockwise circle which returns to the positive infinity end of
the real line, then runs along the positive real axis back to z = 0.

5.5 Fourier Transforms

We have seen how the Fourier transform pairs arise within the linear algebra of states represented
in some position basis corresponding to some D dimensional infinite flat space. Denoting the
state/function as f , and using Cartesian coordinates, the pairs read

f(~x) =

∫

RD

dD~k

(2π)D
f̃(~k)ei

~k·~x (5.5.1)

f̃(~k) =

∫

RD

dD~xf(~x)e−i~k·~x (5.5.2)

Note that we have normalized our integrals differently from the linear algebra discussion. There,
we had a 1/(2π)D/2 in both integrals, but here we have a 1/(2π)D in the momentum space
integrals and no (2π)s in the position space ones. Always check the Fourier conventions of the
literature you are reading. By inserting eq. (5.5.2) into eq. (5.5.1) we may obtain the integral
representation of the δ-function

δ(D)(~x− ~x′) =

∫

RD

dDk

(2π)D
ei
~k·(~x−~x′). (5.5.3)

In physical applications, almost any function residing in infinite space can be Fourier trans-
formed. The meaning of the Fourier expansion in eq. (5.5.1) is that of resolving a given profile
f(~x) – which can be a wave function of an elementary particle, or a component of an electro-
magnetic signal – into its basis wave vectors. Remember the magnitude of the wave vector is
the reciprocal of the wave length, |~k| ∼ 1/λ. Heuristically, this indicates the coarser features in
the profile – those you’d notice at first glance – come from the modes with longer wavelengths,
small |~k| values. The finer features requires us to know accurately the Fourier coefficients of the

waves with very large |~k|, i.e., short wavelengths.
In many physical problems we only need to understand the coarser features, the Fourier

modes up to some inverse wavelength |~k| ∼ ΛUV. (This in turn means ΛUV lets us define what

we mean by coarse (≡ |~k| < ΛUV) and fine (≡ |~k| > ΛUV) features.) In fact, it is often not
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possible to experimentally probe the Fourier modes of very small wavelengths, or equivalently,
phenomenon at very short distances, because it would expend too much resources to do so. For
instance, it much easier to study the overall appearance of the desk you are sitting at – its
physical size, color of its surface, etc. – than the atoms that make it up. This is also the essence
of why it is very difficult to probe quantum aspects of gravity: humanity does not currently
have the resources to construct a powerful enough accelerator to understand elementary particle
interactions at the energy scales where quantum gravity plays a significant role.

Problem 5.19. A simple example illustrating how Fourier transforms help us understand
the coarse (≡ long wavelength) versus fine (≡ short wavelength) features of some profile is to
consider a Gaussian of width σ, but with some small oscillations added on top of it.

f(x) = exp

(
−1

2

(
x− x0
σ

)2
)
(1 + ǫ sin(ωx)) , |ǫ| ≪ 1. (5.5.4)

Assume that the wavelength of the oscillations is much shorter than the width of the Gaussian,
1/ω ≪ σ. Find the Fourier transform f̃(k) of f(x) and comment on how, discarding the short
wavelength coefficients of the Fourier expansion of f(x) still reproduces its gross features, namely
the overall shape of the Gaussian itself. Notice, however, if ǫ is not small, then the oscillations
– and hence the higher |~k| modes – cannot be ignored.

Problem 5.20. Find the inverse Fourier transform of the “top hat” in 3 dimensions:

f̃(~k) ≡ Θ
(
Λ− |~k|

)
(5.5.5)

f(~x) =? (5.5.6)

Bonus problem: Can you do it for arbitrary D dimensions? Hint: You may need to know how to
write down spherical coordinates in D dimensions. Then examine eq. 10.9.4 of the NIST page
here.

Problem 5.21. What is the Fourier transform of a multidimensional Gaussian

f(~x) = exp
(
−xiMijx

j
)
, (5.5.7)

whereMij is a real symmetric matrix? (You may assume all its eigenvalues are strictly positive.)
Hint: You need to diagonalize Mij . The Fourier transform result would involve both its inverse
and determinant. Furthermore, your result should justify the statement: “The Fourier transform
of a Gaussian is another Gaussian”.

Problem 5.22. If f(~x) is real, show that f̃(~k)∗ = f̃(−~k). Similarly, if f(~x) is a real periodic
function in D-space, show that the Fourier series coefficients in eq. (4.5.114) and (4.5.115) obey

f̃(n1, . . . , nD)∗ = f̃(−n1, . . . ,−nD).
Suppose we restrict the space of functions on infinite RD to those that are even under parity,

f(~x) = f(−~x). Show that

f(~x) =

∫

RD

dD~k

(2π)D
cos
(
~k · ~x

)
f̃(~k). (5.5.8)
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What’s the inverse Fourier transform? If instead we restrict to the space of odd parity functions,
f(−~x) = −f(~x), show that

f(~x) = i

∫

RD

dD~k

(2π)D
sin
(
~k · ~x

)
f̃(~k). (5.5.9)

Again, write down the inverse Fourier transform. Can you write down the analogous Fourier/inverse
Fourier series for even and odd parity periodic functions on RD?

Problem 5.23. For a complex f(~x), show that

∫

RD

dDx|f(~x)|2 =
∫

RD

dDk

(2π)D
|f̃(~k)|2, (5.5.10)

∫

RD

dDxM ij∂if(~x)
∗∂jf(~x) =

∫

RD

dDk

(2π)D
M ijkikj|f̃(~k)|2, (5.5.11)

where you should assume the matrix M ij does not depend on position ~x.
Next, prove the convolution theorem: the Fourier transform of the convolution of two func-

tions F and G

f(~x) ≡
∫

RD

dDyF (~x− ~y)G(~y) (5.5.12)

is the product of their Fourier transforms

f̃(~k) = F̃ (~k)G̃(~k). (5.5.13)

You may need to employ the integral representation of the δ-function; or invoke linear algebraic
arguments.

5.5.1 Application: Damped Driven Simple Harmonic Oscillator

Many physical problems – from RLC circuits to perturbative Quantum Field Theory (pQFT)
– reduces to some variant of the driven damped harmonic oscillator.28 We will study it in the
form of the 2nd order ordinary differential equation (ODE)

m ẍ(t) + f ẋ(t) + k x(t) = F (t), f, k > 0, (5.5.14)

where each dot represents a time derivative; for e.g., ẍ ≡ d2x/dt2. You can interpret this
equation as Newton’s second law (in 1D) for a particle with trajectory x(t) of mass m. The f

28In pQFT the different Fourier modes of (possibly multiple) fields are the harmonic oscillators. If the equations
are nonlinear, that means modes of different momenta drive/excite each other. Similar remarks apply for different
fields that appear together in their differential equations. If you study fields residing in an expanding universe
like ours, you’ll find that the expansion of the universe provides friction and hence each Fourier mode behaves
as a damped oscillator. The quantum aspects include the perspective that the Fourier modes themselves are
both waves propagating in spacetime as well as particles that can be localized, say by the silicon wafers of the
detectors at the Large Hadron Collider (LHC) in Geneva. These particles – the Fourier modes – can also be
created from and absorbed by the vacuum.
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term corresponds to some frictional force that is proportional to the velocity of the particle itself;
the k > 0 refers to the spring constant, if the particle is in some locally-parabolic potential; and
F (t) is some other time-dependent external force. For convenience we will divide both sides by
m and re-scale the constants and F (t) so that our ODE now becomes

ẍ(t) + 2γẋ(t) + Ω2x(t) = F (t), Ω ≥ γ > 0. (5.5.15)

(For technical convenience, we have further restricted Ω to be greater or equal to γ.) We will
perform a Fourier analysis of this problem by transforming both the trajectory and the external
force,

x(t) =

∫ +∞

−∞

x̃(ω)eiωt
dω

2π
, F (t) =

∫ +∞

−∞

F̃ (ω)eiωt
dω

2π
. (5.5.16)

I will first find the particular solution xp(t) for the trajectory due to the presence of the external
force F (t), through the Green’s function G(t−t′) of the differential operator (d/dt)2+2γ(d/dt)+
Ω2. I will then show the fundamental importance of the Green’s function by showing how you
can obtain the homogeneous solution to the damped simple harmonic oscillator equation, once
you have specified the position x(t′) and velocity ẋ(t′) at some initial time t′. (This is, of course,
to be expected, since we have a 2nd order ODE.)

First, we begin by taking the Fourier transform of the ODE itself.

Problem 5.24. Show that, in frequency space, eq. (5.5.15) is
(
−ω2 + 2iωγ + Ω2

)
x̃(ω) = F̃ (ω). (5.5.17)

In effect, each time derivative d/dt is replaced with iω. We see that the differential equation in
eq. (5.5.15) is converted into an algebraic one in eq. (5.5.17).

Inhomogeneous (particular) solution For F 6= 0, we may infer from eq. (5.5.17) that

the particular solution – the part of x̃(ω) that is due to F̃ (ω) – is

x̃p(ω) =
F̃ (ω)

−ω2 + 2iωγ + Ω2
, (5.5.18)

which in turn implies

xp(t) =

∫ +∞

−∞

dω

2π
eiωt

F̃ (ω)

−ω2 + 2iωγ + Ω2

=

∫ +∞

−∞

dt′F (t′)G(t− t′) (5.5.19)

where

G(t− t′) =

∫ +∞

−∞

dω

2π

eiω(t−t′)

−ω2 + 2iωγ + Ω2
. (5.5.20)

To get to eq. (5.5.19) we have inserted the inverse Fourier transform

F̃ (ω) =

∫ +∞

−∞

dt′F (t′)e−iωt′ . (5.5.21)
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Problem 5.25. Show that the Green’s function in eq. (5.5.20) obeys the damped harmonic
oscillator equation eq. (5.5.15), but driven by a impulsive force (“point-source-at-time t′”)

(
d2

dt2
+ 2γ

d

dt
+ Ω2

)
G(t− t′) =

(
d2

dt′2
− 2γ

d

dt′
+ Ω2

)
G(t− t′) = δ(t− t′), (5.5.22)

so that eq. (5.5.19) can be interpreted as the xp(t) sourced/driven by the superposition of
impulsive forces over all times, weighted by F (t′). Explain why the differential equation with
respect to t′ has a different sign in front of the 2γ term. By “closing the contour” appropriately,
verify that eq. (5.5.20) yields

G(t− t′) = Θ(t− t′)e−γ(t−t′)
sin
(√

Ω2 − γ2(t− t′)
)

√
Ω2 − γ2

. (5.5.23)

Notice the Green’s function obeys causality. Any force F (t′) from the future of t, i.e., t′ > t,
does not contribute to the trajectory in eq. (5.5.19) due to the step function Θ(t − t′) in eq.
(5.5.23). That is,

xp(t) =

∫ t

−∞

dt′F (t′)G(t− t′). (5.5.24)

Initial value formulation and homogeneous solutions With the Green’s function
G(t− t′) at hand and the particular solution sourced by F (t) understood – let us now move on
to use G(t− t′) to obtain the homogeneous solution of the damped simple harmonic oscillator.
Let xh(t) be the homogeneous solution satisfying

(
d2

dt2
+ 2γ

d

dt
+ Ω2

)
xh(t) = 0. (5.5.25)

We then start by examining the following integral

I(t, t′) ≡
∫ ∞

t′
dt′′
{
xh(t

′′)

(
d2

dt′′2
− 2γ

d

dt′′
+ Ω2

)
G(t− t′′)

−G(t− t′′)

(
d2

dt′′2
+ 2γ

d

dt′′
+ Ω2

)
xh(t

′′)
}
. (5.5.26)

Using the equations (5.5.22) and (5.5.25) obeyed by G(t − t′) and xh(t), we may immediately
infer that

I(t, t′) =

∫ ∞

t′
dt′xh(t

′′)δ(t− t′′) = Θ(t− t′)xh(t). (5.5.27)

(The step function arises because, if t lies outside of [t′,∞), and is therefore less than t′, the
integral will not pick up the δ-function contribution and the result would be zero.) On the
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other hand, we may in eq. (5.5.26) cancel the Ω2 terms, and then integrate-by-parts one of the
derivatives from the G̈, Ġ, and ẍh terms.

I(t, t′) =

[
xh(t

′′)

(
d

dt′′
− 2γ

)
G(t− t′′)−G(t− t′′)

dxh(t
′′)

dt′′

]t′′=∞

t′′=t′
(5.5.28)

+

∫ ∞

t′
dt′′
(
− dxh(t

′′)

dt′′
dG(t− t′′)

dt′′
+ 2γ

dxh(t
′′)

dt′′
G(t− t′′)

+
dG(t− t′′)

dt′′
dxh(t

′′)

dt′′
− 2γG(t− t′′)

dxh(t
′′)

dt′′

)
.

Observe that the integral on the second and third lines is zero because the integrands cancel.
Moreover, because of the Θ(t− t′) (namely, causality), we may assert limt′→∞G(t− t′) = G(t′ >
t) = 0. Recalling eq. (5.5.27), we have arrived at

Θ(t− t′)xh(t) = G(t− t′)
dxh(t

′)

dt′
+

(
2γG(t− t′) +

dG(t− t′)

dt

)
xh(t

′). (5.5.29)

Because we have not made any assumptions about our trajectory – except it satisfies the homo-
geneous equation in eq. (5.5.25) – we have shown that, for an arbitrary initial position xh(t

′)
and velocity ẋh(t

′), the Green’s function G(t− t′) can in fact also be used to obtain the homo-
geneous solution for t > t′, where Θ(t− t′) = 1. In particular, since xh(t

′) and ẋh(t
′) are freely

specifiable, they must be completely independent of each other. Furthermore, the right hand
side of eq. (5.5.29) must span the 2-dimensional space of solutions to eq. (5.5.25). Therefore,
the coefficients of xh(t

′) and ẋh(t
′) must in fact be the two linearly independent homogeneous

solutions to xh(t),

x
(1)
h (t) = G(t > t′) = e−γ(t−t′)

sin
(√

Ω2 − γ2(t− t′)
)

√
Ω2 − γ2

, (5.5.30)

x
(2)
h (t) = 2γG(t > t′) + ∂tG(t > t′)

= e−γ(t−t′)



γ · sin

(√
Ω2 − γ2(t− t′)

)

√
Ω2 − γ2

+ cos
(√

Ω2 − γ2(t− t′)
)

 . (5.5.31)

29That x
(1,2)
h must be independent for any γ > 0 and Ω2 is worth reiterating, because this is a

potential issue for the damped harmonic oscillator equation when γ = Ω. We can check directly
that, in this limit, x

(1,2)
h remain linearly independent. On the other hand, if we had solved the

homogeneous equation by taking the real (or imaginary part) of an exponential; namely, try

xh(t) = Re eiωt, (5.5.33)

29Note that

dG(t− t′)

dt
= Θ(t− t′)

d

dt


e−γ(t−t′)

sin
(√

Ω2 − γ2(t− t′)
)

√
Ω2 − γ2


 . (5.5.32)

Although differentiating Θ(t− t′) gives δ(t− t′), its coefficient is proportional to sin(
√

Ω2 − γ2(t− t′))/
√
Ω2 − γ2,

which is zero when t = t′, even if Ω = γ.
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we would find, upon inserting eq. (5.5.33) into eq. (5.5.25), that

ω = ω± ≡ iγ ±
√

Ω2 − γ2. (5.5.34)

This means, when Ω = γ, we obtain repeated roots and the otherwise linearly independent
solutions

x
(±)
h (t) = Re e−γt±i

√
Ω2−γ2t (5.5.35)

become linearly dependent there – both x
(±)
h (t) = e−γt.

Problem 5.26. Explain why the real or imaginary part of a complex solution to a homo-
geneous real linear differential equation is also a solution. Now, start from eq. (5.5.33) and
verify that eq. (5.5.35) are indeed solutions to eq. (5.5.25) for Ω 6= γ. Comment on why the
presence of t′ in equations (5.5.30) and (5.5.31) amount to arbitrary constants multiplying the
homogeneous solutions in eq. (5.5.35).

Problem 5.27. Suppose for some initial time t0, xh(t0) = 0 and ẋh(t0) = V0. There is an
external force given by

F (t) = Im
(
e−(t/τ)2eiµt

)
, for −2πn/µ ≤ t ≤ 2πn/µ, µ > 0, . (5.5.36)

and F (t) = 0 otherwise. (n is an integer greater than 1.) Solve for the motion x(t > t0) of the
damped simple harmonic oscillator, in terms of t0, V0, τ , µ and n.

5.6 Fourier Series

Consider a periodic function f(x) with period L, meaning

f(x+ L) = f(x). (5.6.1)

Then its Fourier series representation is given by

f(x) =

∞∑

n=−∞

Cne
i 2πn

L
x, (5.6.2)

Cn =
1

L

∫

one period

dx′f(x′)e−i 2πn
L

x′
.

(I have derived this in our linear algebra discussion.) The Fourier series can be viewed as the
discrete analog of the Fourier transform. In fact, one way to go from the Fourier series to the
Fourier transform, is to take the infinite box limit L → ∞. Just as the meaning of the Fourier
transform is the decomposition of some wave profile into its continuous infinity of wave modes,
the Fourier series can be viewed as the discrete analog of that. One example is that of waves
propagating on a guitar or violin string – the string (of length L) is tied down at the end points,
so the amplitude of the wave ψ has to vanish there

ψ(x = 0) = ψ(x = L) = 0. (5.6.3)
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Even though the Fourier series is supposed to represent the profile ψ of a periodic function,
there is nothing to stop us from imagining duplicating our guitar/violin string infinite number
of times. Then, the decomposition in (5.6.2) applies, and is simply the superposition of possible
vibrational modes allowed on the string itself.

Problem 5.28. (From Riley et al.) Find the Fourier series representation of the Dirac
comb, i.e., find the {Cn} in

∞∑

n=−∞

δ(x+ nL) =

∞∑

n=−∞

Cne
i 2πn

L
x, x ∈ R. (5.6.4)

Then prove the Poisson summation formula; where for an arbitrary function f(x) and its Fourier

transform f̃ ,

∞∑

n=−∞

f(x+ nL) =
1

L

∞∑

n=−∞

f̃

(
2πn

L

)
ei

2πn
L

x. (5.6.5)

Hint: Note that

f(x+ nL) =

∫ +∞

−∞

dx′f(x′)δ(x− x′ + nL). (5.6.6)

Problem 5.29. Gibbs phenomenon The Fourier series of a discontinuous function suffers
from what is known as the Gibbs phenomenon – near the discontinuity, the Fourier series does
not fit the actual function very well. As a simple example, consider the periodic function f(x)
where within a period x ∈ [0, L),

f(x) = −1, −L/2 ≤ x ≤ 0 (5.6.7)

= 1, 0 ≤ x ≤ L/2. (5.6.8)

Find its Fourier series representation

f(x) =
∞∑

n=−∞

Cne
i 2πn

L
x. (5.6.9)

Since this is an odd function, you should find that the series becomes a sum over sines – cosine is
an even function – which in turn means you can rewrite the summation as one only over positive
integers n. Truncate this sum at N = 20 and N = 50, namely

fN(x) ≡
N∑

n=−N

Cne
i 2πn

L
x, (5.6.10)

and find a computer program to plot fN(x) as well as f(x) in eq. (5.6.7). You should see
the fN (x) over/undershooting the f(x) near the latter’s discontinuities, even for very large
N ≫ 1.30

30See §5.7 of James Nearing’s Math Methods book for a pedagogical discussion of how to estimate both the
location and magnitude of the (first) maximum overshoot.
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6 Advanced Calculus: Special Techniques and Asymp-

totic Expansions

Integration is usually much harder than differentiation. Any function f(x) you can build out
of powers, logs, trigonometric functions, etc., can usually be readily differentiated.31 But to
integrate a function in closed form you have to know another function g(x) whose derivative
yields f(x); that’s the essential content of the fundamental theorem of calculus.

∫
f(x)dx

?
=

∫
g′(x)dx = g(x) + constant (6.0.1)

Here, I will discuss integration techniques that I feel are not commonly found in standard treat-
ments of calculus. Among them, some techniques will show how to extract approximate answers
from integrals. This is, in fact, a good place to highlight the importance of approximation tech-
niques in physics. For example, most of the predictions from quantum field theory – our funda-
mental framework to describe elementary particle interactions at the highest energies/smallest
distances – is based on perturbation theory.

6.1 Gaussian integrals

As a start, let us consider the following “Gaussian” integral:

IG(a) ≡
∫ +∞

−∞

e−ax2

dx, (6.1.1)

where Re(a) > 0. (Why is this restriction necessary?) Let us suppose that a > 0 for now. Then,
we may consider squaring the integral, i.e., the 2-dimensional (2D) case:

(IG(a))
2 =

∫ +∞

−∞

∫ +∞

−∞

e−ax2

e−ay2dxdy. (6.1.2)

You might think “doubling” the problem is only going to make it harder, not easier. But let
us now view (x, y) as Cartesian coordinates on the 2D plane and proceed to change to polar
coordinates, (x, y) = r(cosφ, sinφ); this yields dxdy = dφdr · r.

(IG(a))
2 =

∫ +∞

−∞

e−a(x2+y2)dxdy =

∫ 2π

0

dφ

∫ +∞

0

dr · re−ar2 (6.1.3)

The integral over φ is straightforward; whereas the radial one now contains an additional r in
the integrand – this is exactly what makes the integral do-able.

(IG(a))
2 = 2π

∫ +∞

0

dr
1

−2a
∂re

−ar2

=

[−π
a
e−ar2

]r=∞

r=0

=
π

a
(6.1.4)

31The ease of differentiation ceases once you start dealing with “special functions”; see, for e.g., here for a
discussion on how to differentiate the Bessel function Jν(z) with respect to its order ν.
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Because e−ax2
is a positive number if a is positive, we know that IG(a > 0) must be a positive

number too. Since (IG(a))
2 = π/a the Gaussian integral itself is just the positive square root

∫ +∞

−∞

e−ax2

dx =

√
π

a
, Re(a) > 0. (6.1.5)

Because both sides of eq. (6.1.5) can be differentiated readily with respect to a (for a 6= 0),
by analytic continuation, even though we started out assuming a is positive, we may now relax
that assumption and only impose Re(a) > 0. If you are uncomfortable with this analytic
continuation argument, you can also tackle the integral directly. Suppose a = ρeiδ, with ρ > 0
and −π/2 < δ < π/2. Then we may rotate the contour for the x integration from x ∈ (−∞,+∞)
to the contour C defined by z ≡ e−iδ/2ξ, where ξ ∈ (−∞,+∞). (The 2 arcs at infinity contribute
nothing to the integral – can you prove it?)

IG(a) =

∫ ξ=+∞

ξ=−∞

e−ρeiδ(e−iδ/2ξ)2d(e−iδ/2ξ)

=
1

eiδ/2

∫ ξ=+∞

ξ=−∞

e−ρξ2dξ (6.1.6)

At this point, since ρ > 0 we may refer to our result for IG(a > 0) and conclude

IG(a) =
1

eiδ/2

√
π

ρ
=

√
π

ρeiδ
=

√
π

a
, −π

2
< arg[a] <

π

2
. (6.1.7)

Problem 6.1. Compute, for Re(a) > 0,

∫ +∞

0

e−ax2

dx, for Re(a) > 0 (6.1.8)

∫ +∞

−∞

e−ax2

xndx, for n odd (6.1.9)

∫ +∞

−∞

e−ax2

xndx, for n even (6.1.10)

∫ +∞

0

e−ax2

xβdx, for Re(β) > −1 (6.1.11)

Hint: For the very last integral, consider the change of variables x′ ≡ √
ax, and refer to eq.

5.2.1 of the NIST page here.

Problem 6.2. There are many applications of the Gaussian integral in physics. Here,
we give an application in geometry, and calculate the solid angle in D spatial dimensions. In
D-space, the solid angle ΩD−1 subtended by a sphere of radius r is defined through the relation

Surface area of sphere ≡ ΩD−1 · rD−1. (6.1.12)

Since r is the only length scale in the problem, and since area in D-space has to scale as
[LengthD−1], we see that ΩD−1 is independent of the radius r. Moreover, the volume of a
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spherical shell of radius r and thickness dr must be the area of the sphere times dr. Now, argue
that the D dimensional integral in spherical coordinates becomes

(IG(a = 1))D =

∫

RD

dD~xe−~x2

= ΩD−1

∫ ∞

0

dr · rD−1e−r2 . (6.1.13)

Next, evaluate (IG(a = 1))D directly. Then use the results of the previous problem to compute
the last equality of eq. (6.1.13). At this point you should arrive at

ΩD−1 =
2πD/2

Γ(D/2)
, (6.1.14)

where Γ is the Gamma function.

6.2 Complexification

Sometimes complexifying the integral makes it easier. Here’s a simple example from Matthews
and Walker [8].

I =

∫ ∞

0

dxe−ax cos(λx), a > 0, λ ∈ R. (6.2.1)

If we regard cos(λx) as the real part of eiλx,

I = Re

∫ ∞

0

dxe−(a−iλ)x

= Re

[
e−(a−iλ)x

−(a− iλ)

]x=∞

x=0

= Re
1

a− iλ
= Re

a+ iλ

a2 + λ2
=

a

a2 + λ2
(6.2.2)

Problem 6.3. What is
∫ ∞

0

dxe−ax sin(λx), a > 0, λ ∈ R? (6.2.3)

6.3 Differentiation under the integral sign (Leibniz’s theorem)

Differentiation under the integral sign, or Leibniz’s theorem, is the result

d

dz

∫ b(z)

a(z)

dsF (z, s) = b′(z)F (z, b(z)) − a′(z)F (z, a(z)) +

∫ b(z)

a(z)

ds
∂F (z, s)

∂z
. (6.3.1)

Problem 6.4. By using the limit definition of the derivative, i.e.,

d

dz
H(z) = lim

δ→0

H(z + δ)−H(z)

δ
, (6.3.2)

argue the validity of eq. (6.3.1).
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Why this result is useful for integration can be illustrated by some examples. The art involves
creative insertion of some auxiliary parameter α in the integrand. Let’s start with

Γ(n+ 1) =

∫ ∞

0

dttne−t, n a positive integer. (6.3.3)

For Re(n) > −1 this is in fact the definition of the Gamma function. We introduce the parameter
as follows

In(α) =

∫ ∞

0

dttne−αt, α > 0, (6.3.4)

and notice

In(α) = (−∂α)n
∫ ∞

0

dte−αt = (−∂α)n
1

α

= (−)n(−1)(−2) . . . (−n)α−1−n = n!α−1−n (6.3.5)

By setting α = 1, we see that the Gamma function Γ(z) evaluated at integer values of z returns
the factorial.

Γ(n+ 1) = In(α = 1) = n!. (6.3.6)

Next, we consider a trickier example:
∫ ∞

−∞

sin(x)

x
dx. (6.3.7)

This can be evaluated via a contour integral. But here we do so by introducing a α ∈ R,

I(α) ≡
∫ ∞

−∞

sin(αx)

x
dx. (6.3.8)

Observe that the integral is odd with respect to α, I(−α) = −I(α). Differentiating once,

I ′(α) =

∫ ∞

−∞

cos(αx)dx =

∫ ∞

−∞

eiαxdx = 2πδ(α). (6.3.9)

(cos(αx) can be replaced with eiαx because the i sin(αx) portion integrates to zero.) Remember
the derivative of the step function Θ(α) is the Dirac δ-function δ(α): Θ′(z) = Θ′(−z) = δ(z).
Taking into account I(−α) = −I(α), we can now deduce the answer to take the form

I(α) = π (Θ(α)−Θ(−α)) = πsgn(α), (6.3.10)

There is no integration constant here because it will spoil the property I(−α) = −I(α). What
remains is to choose α = 1,

I(1) =

∫ ∞

−∞

sin(x)

x
dx = π. (6.3.11)

Problem 6.5. Evaluate the following integral

I(α) =

∫ π

0

ln
[
1− 2α cos(x) + α2

]
dx, |α| 6= 1, (6.3.12)

by differentiating once with respect to α, changing variables to t ≡ tan(x/2), and then using
complex analysis. (Do not copy the solution from Wikipedia!) You may need to consider the
cases |α| > 1 and |α| < 1 separately.
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6.4 Symmetry

You may sometimes need to do integrals in higher than one dimension. If it arises from a
physical problem, it may exhibit symmetry properties you should definitely exploit. The case of
rotational symmetry is a common and important one, and we shall focus on it here. A simple
example is as follows. In 3-dimensional (3D) space, we define

I(~k) ≡
∫

S2

dΩn̂

4π
ei
~k·n̂. (6.4.1)

The
∫
S2
dΩ means we are integrating the unit radial vector n̂ with respect to the solid angles on

the sphere; ~k · ~x is just the Euclidean dot product. For example, if we use spherical coordinates,
the Cartesian components of the unit vector would be

n̂ = (sin θ cosφ, sin θ sin φ, cos θ), (6.4.2)

and dΩ = d(cos θ)dφ. The key point here is that we have a rotationally invariant integral. In
particular, the (θ, φ) here are measured with respect to some (x1, x2, x3)-axes. If we rotated
them to some other (orthonormal) (x′1, x′2, x′3)-axes related via some rotation matrix Ri

j,

n̂i(θ, φ) = Ri
jn̂

′j(θ′, φ′), (6.4.3)

where detRi
j = 1; in matrix notation n̂ = Rn̂′ and RTR = I. Then d(cos θ)dφ = dΩ =

dΩ′ detRi
j = dΩ′ = d(cos θ′)dφ′, and

I(R~k) =

∫

S2

dΩn̂

4π
ei
~k·(RT n̂) =

∫

S2

dΩ′
n̂′

4π
ei
~k·n̂′

= I(~k). (6.4.4)

In other words, because R was an arbitrary rotation matrix, I(~k) = I(|~k|); the integral cannot

possibly depend on the direction of ~k, but only on the magnitude |~k|. That in turn means we

may as well pretend ~k points along the x3-axis, so that the dot product ~k · n̂′ only involved the
cos θ ≡ n̂′ · ê3.

I(|~k|) =
∫ 2π

0

dφ

∫ +1

−1

d(cos θ)

4π
ei|

~k| cos θ =
ei|

~k| − e−i|~k|

2i|~k|
. (6.4.5)

We arrive at

∫

S2

dΩn̂

4π
ei
~k·n̂ =

sin |~k|
|~k|

. (6.4.6)

Problem 6.6. With n̂ denoting the unit radial vector in 3−space, evaluate

I(~x) =

∫

S2

dΩn̂

|~x− ~r| , ~r ≡ rn̂. (6.4.7)

Note that the answer for |~x| > |~r| = r differs from that when |~x| < |~r| = r. Can you explain the
physical significance? Hint: This can be viewed as an electrostatics problem.
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Problem 6.7. A problem that combines both rotational symmetry and the higher dimen-
sional version of “differentiation under the integral sign” is the (tensorial) integral

∫

S2

dΩ

4π
n̂i1n̂i2 . . . n̂iN , (6.4.8)

where N is an integer greater than or equal to 1. The answer for odd N can be understood
by asking, how does the integrand and the measure dΩn̂ transform under a parity flip of the
coordinate system, namely under n̂ → −n̂? What’s the answer for even N? Hint: consider
differentiating eq. (6.4.6) with respect to ki1 , . . . , kiN ; how is that related to the Taylor expansion

of (sin |~k|)/|~k|?

Problem 6.8. Can you generalize eq. (6.4.6) to D spatial dimensions, namely

∫

SD−1

dΩn̂e
i~k·n̂ =? (6.4.9)

The ~k is an arbitrary vector in D-space and n̂ is the unit radial vector in the same. Hint: Refer
to eq. 10.9.4 of the NIST page here.

Example from Matthews and Walker [8] Next, we consider the following integral involving

two arbitrary vectors ~a and ~k in 3D space.

I
(
~a,~k
)
=

∫

S2
dΩn̂

~a · n̂
1 + ~k · n̂

(6.4.10)

First, we write it as ~a dotted into a vector integral ~J , namely

I
(
~a,~k
)
= ~a · ~J, ~J

(
~k
)
≡
∫

S2
dΩn̂

n̂

1 + ~k · n̂
. (6.4.11)

Let us now consider replacing ~k with a rotated version of ~k. This amounts to replacing ~k → R~k,
where R is an orthogonal 3× 3 matrix of unit determinant, with RTR = RRT = I. We shall see
that ~J transforms as a vector ~J → R~J under this same rotation. This is because

∫
dΩn̂ →

∫
dΩn̂′ ,

for n̂′ ≡ RT n̂, and

~J
(
R~k
)
=

∫

S2
dΩn̂

R(RT n̂)

1 + ~k · (RT n̂)

= R

∫

S2
dΩn̂′

n̂′

1 + ~k · n̂′
= R~J(~k). (6.4.12)

But the only vector that ~J depends on is ~k. Therefore the result of ~J has to be some scalar
function f times ~k.

~J = f · ~k, ⇒ I
(
~a,~k
)
= f~a · ~k. (6.4.13)
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To calculate f we now dot both sides with ~k.

f =
~J · ~k
~k2

=
1

~k2

∫

S2
dΩn̂

~k · n̂
1 + ~k · n̂

(6.4.14)

At this point, the nature of the remaining scalar integral is very similar to the one we’ve en-
countered previously. Choosing ~k to point along the ê3 axis,

f =
2π

~k2

∫ +1

−1

d(cos θ)
|~k| cos θ

1 + |~k| cos θ

=
2π

~k2

∫ +1

−1

dc

(
1− 1

1 + |~k|c

)
=

4π

~k2

(
1− 1

2|~k|
ln

(
1 + |~k|
1− |~k|

))
. (6.4.15)

Therefore,

∫

S2
dΩn̂

~a · n̂
1 + ~k · n̂

=
4π
(
~k · ~a

)

~k2

(
1− 1

2|~k|
ln

(
1 + |~k|
1− |~k|

))
. (6.4.16)

This technique of reducing tensor integrals into scalar ones find applications even in quantum
field theory calculations.

Problem 6.9. Calculate

Aij(~a) ≡
∫

d3k

(2π)3
kikj

~k2 + (~k · ~a)4
, (6.4.17)

where ~a is some (dimensionless) vector in 3D Euclidean space. Do so by first arguing that this
integral transforms as a tensor in D-space under rotations. In other words, if Ri

j is a rotation
matrix, under the rotation

ai → Ri
ja

j, (6.4.18)

we have

Aij(Rk
la

l) = Ri
lR

j
kA

kl(~a). (6.4.19)

Hint: The only rank-2 tensors available here are δij and aiaj , so we must have

Aij = f1δ
ij + f2a

iaj . (6.4.20)

To find f1,2 take the trace and also consider Aijaiaj .

6.5 Asymptotic expansion of integrals
32Many solutions to physical problems, say arising from some differential equations, can be ex-
pressed as integrals. Moreover the “special functions” of mathematical physics, whose properties
are well studied – Bessel, Legendre, hypergeometric, etc. – all have integral representations. Of-
ten we wish to study these functions when their arguments are either very small or very large,
and it is then useful to have techniques to extract an answer from these integrals in such limits.
This topic is known as the “asymptotic expansion of integrals”.

32The material in this section is partly based on Chapter 3 of Matthews and Walker’s “Mathematical Methods

of Physics” [8]; and the latter portions are heavily based on Chapter 6 of Bender and Orszag’s “Advanced
mathematical methods for scientists and engineers” [9].
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6.5.1 Integration-by-parts (IBP)

In this section we will discuss how to use integration-by-parts (IBP) to approximate integrals.
Previously we evaluated

2√
π

∫ +∞

0

e−t2dt = 1. (6.5.1)

The erf function is defined as

erf(x) ≡ 2√
π

∫ x

0

dte−t2 . (6.5.2)

Its small argument limit can be obtained by Taylor expansion,

erf(x≪ 1) =
2√
π

∫ x

0

dt

(
1− t2 +

t4

2!
− t6

3!
+ . . .

)

=
2√
π

(
x− x3

3
+
t5

10
− t7

42
+ . . .

)
. (6.5.3)

But what about its large argument limit erf(x ≫ 1)? We may write

erf(x) =
2√
π

(∫ ∞

0

dt−
∫ ∞

x

dt

)
e−t2

= 1− 2√
π
I(x), I(x) ≡

∫ ∞

x

dte−t2 . (6.5.4)

Integration-by-parts may be employed as follows.

I(x) =

∫ ∞

x

dt
1

−2t
∂te

−t2 =

[
e−t2

−2t

]t=∞

t=x

−
∫ ∞

x

dt∂t

(
1

−2t

)
e−t2

=
e−x2

2x
−
∫ ∞

x

dt
e−t2

2t2
=
e−x2

2x
−
∫ ∞

x

dt
1

2t2(−2t)
∂te

−t2 (6.5.5)

=
e−x2

2x
− e−x2

4x3
+

∫ ∞

x

dt
3

4t4
e−t2

Problem 6.10. After n integration by parts,
∫ ∞

x

dte−t2 = e−x2
n∑

ℓ=1

(−)ℓ−11 · 3 · 5 . . . (2ℓ− 3)

2ℓx2ℓ−1
− (−)n

1 · 3 · 5 . . . (2n− 1)

2n

∫ ∞

x

dt
e−t2

t2n
. (6.5.6)

This result can be found in Matthew and Walker, but can you prove it more systematically
by mathematical induction? For a fixed x, find the n such that the next term generated by
integration-by-parts is larger than the previous term. This series does not converge – why?

If we drop the remainder integral in eq. (6.5.6), the resulting series does not converge as
n→ ∞. However, for large x ≫ 1, it is not difficult to argue that the first few terms do offer an
excellent approximation, since each subsequent term is suppressed relative to the previous by a
1/x factor.33

33In fact, as observed by Matthews and Walker [8], since this is an oscillating series, the optimal n to truncate
the series is the one right before the smallest.
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Problem 6.11. Using integration-by-parts, develop a large x≫ 1 expansion for

I(x) ≡
∫ ∞

x

dt
sin(t)

t
. (6.5.7)

Hint: Consider instead
∫∞

x
dt exp(it)

t
.

What is an asymptotic series? A Taylor expansion of say ex

ex = 1 + x+
x

2!
+
x3

3!
+ . . . (6.5.8)

converges for all |x|. In fact, for a fixed |x|, we know summing up more terms of the series

N∑

ℓ=0

xℓ

ℓ!
, (6.5.9)

– the larger N we go – the closer to the actual value of ex we would get.
An asymptotic series of the sort we have encountered above, and will be doing so below, is

a series of the sort

SN(x) = A0 +
A1

x
+
A2

x2
+ · · ·+ AN

xN
. (6.5.10)

For a fixed |x| the series oftentimes diverges as we sum up more and more terms (N → ∞).
However, for a fixed N , it can usually be argued that as x → +∞ the SN(x) becomes an
increasingly better approximation to the object we derived it from in the first place.

As Matthews and Walker [8] further explains:

“. . . an asymptotic series may be added, multiplied, and integrated to obtain the
asymptotic series for the corresponding sum, product and integrals of the correspond-
ing functions. Also, the asymptotic series of a given function is unique, but . . .An
asymptotic series does not specify a function uniquely.”

6.5.2 Laplace’s Method, Method of Stationary Phase, Steepest Descent

Exponential suppression The asymptotic methods we are about to encounter in this sec-
tion rely on the fact that, the integrals we are computing really receive most of their contribution
from a small region of the integration region. Outside of the relevant region the integrand itself
is highly exponentially suppressed – a basic illustration of this is

I(x) =

∫ x

0

e−t = 1− e−x. (6.5.11)

As x → ∞ we have I(∞) = 1. Even though it takes an infinite range of integration to obtain
1, we see that most of the contribution (≫ 99%) comes from t = 0 to t ∼ O(10). For example,
e−5 ≈ 6.7 × 10−3 and e−10 ≈ 4.5 × 10−5. You may also think about evaluating this integral
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numerically; what this shows is that it is not necessary to sample your integrand out to very
large t to get an accurate answer.34

Laplace’s Method We now turn to integrals of the form

I(x) =

∫ b

a

f(t)exφ(t)dt (6.5.12)

where both f and φ are real. (There is no need to ever consider the complex f case since it can
always be split into real and imaginary parts.) We will consider the x → +∞ limit and try to
extract the leading order behavior of the integral.

The main strategy goes roughly as follows. Find the location of the maximum of φ(t) – say
it is at t = c. This can occur in between the limits of integration a < c < b or at one of the end
points c = a or c = b. As long as f(c) 6= 0, we may expand both f(t) and φ(t) around t = c.
For simplicity we display the case where a < c < b:

I(x) ∼ exφ(c)
∫ c+κ

c−κ

(f(c) + (t− c)f ′(c) + . . . ) exp

(
x

{
φ(p)(c)

p!
(t− c)p + . . .

})
dt, (6.5.13)

where we have assumed the first non-zero derivative of φ is at the pth order, and κ is some small
number (κ < |b− a|) such that the expansion can be justified, because the errors incurred from

switching from
∫ b

a
→
∫ c+κ

c−κ
are exponentially suppressed. (Since φ(t = c) is maximum, φ′(c) is

usually – but not always! – zero.) Then, term by term, these integrals, oftentimes after a change
of variables, can be tackled using the Gamma function integral representation

Γ(z) ≡
∫ ∞

0

tz−1e−tdt, Re(z) > 0, (6.5.14)

by extending the former’s limits to infinity,
∫ c+κ

c−κ
→
∫ +∞

−∞
. This last step, like the expansion in

eq. (6.5.13), is usually justified because the errors incurred are again exponentially small.
Examples The first example, where φ′(c) 6= 0, is related to the integral representation of

the parabolic cylinder function; for Re(ν) > 0,

I(x) =

∫ 100

0

tν−1e−t2/2e−xtdt. (6.5.15)

Here, φ(t) = −t and its maximum is at the lower limit of integration. For large t the integrand
is exponentially suppressed, and we expect the contribution to arise mainly for t ∈ [0, a few). In
this region we may Taylor expand e−t2/2. Term-by-term, we may then extend the upper limit of
integration to infinity, provided we can justify the errors incurred are small enough for x≫ 1.

I(x→ ∞) ∼
∫ ∞

0

tν−1

(
1− t2

2
+ . . .

)
e−xtdt

34In the Fourier transform section I pointed out how, if you merely need to resolve the coarser features of your
wave profile, then provided the short wavelength modes do not have very large amplitudes, only the coefficients
of the modes with longer wavelengths need to be known accurately. Here, we shall see some integrals only
require us to know their integrands in a small region, if all we need is an approximate (but oftentimes highly
accurate) answer. This is a good rule of thumb to keep in mind when tackling difficult, apparently complicated,
problems in physics: focus on the most relevant contributions to the final answer, and often this will simplify the
problem-solving process.
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=

∫ ∞

0

(xt)ν−1

xν−1

(
1− (xt)2

2x2
+ . . .

)
e−(xt)d(xt)

x

=
Γ(ν)

xν
(
1 +O

(
x−2
))
. (6.5.16)

The second example is

I(x→ ∞) =

∫ 88

0

exp(−x cosh(t))√
sinh(t)

dt

∼
∫ ∞

0

exp
(
−x
{
1 + t2

2
+ . . .

})

√
t
√
1 + t2/6 + . . .

dt

∼ e−x

∫ ∞

0

(x/2)1/4 exp
(
−(
√
x/2t)2

)

√√
x/2t

d(
√
x/2t)√
x/2

. (6.5.17)

To obtain higher order corrections to this integral, we would have to be expand both the exp
and the square root in the denominator. But the t2/2 + . . . comes multiplied with a x whereas
the denominator is x-independent, so you’d need to make sure to keep enough terms to ensure
you have captured all the contributions to the next- and next-to-next leading corrections, etc.
We will be content with just the dominant behavior: we put z ≡ t2 ⇒ dz = 2tdt = 2

√
zdt.

∫ 88

0

exp(−x cosh(t))√
sinh(t)

dt ∼ e−x

(x/2)1/4

∫ ∞

0

z(1−
1
4
− 1

2)−1e−z dz

2

= e−x Γ(1/4)

23/4x1/4
. (6.5.18)

In both examples, the integrand really behaves very differently from the first few terms of its
expanded version for t≫ 1, but the main point here is – it doesn’t matter! The error incurred,
for very large x, is exponentially suppressed anyway. If you care deeply about rigor, you may
have to prove this assertion on a case-by-case basis; see Example 7 and 8 of Bender & Orszag’s
Chapter 6 [9] for careful discussions of two specific integrals.

Stirling’s formula Can Laplace’s method apply to obtain a large x ≫ 1 limit represen-
tation of the Gamma function itself?

Γ(x) =

∫ ∞

0

tx−1e−tdt =

∫ ∞

0

e(x−1) ln(t)e−tdt (6.5.19)

It does not appear so because here φ(t) = ln(t) and the maximum is at t = ∞. Actually, the
maximum of the exponent is at

d

dt
((x− 1) ln(t)− t) =

x− 1

t
− 1 = 0 ⇒ t = x− 1. (6.5.20)

Re-scale t→ (x− 1)t:

Γ(x) = (x− 1)e(x−1) ln(x−1)

∫ ∞

0

e(x−1)(ln(t)−t)dt. (6.5.21)
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Comparison with eq. (6.5.12) tells us φ(t) = ln(t) − t and f(t) = 1. We may now expand the
exponent about its maximum at 1:

ln(t)− t = −1 − (t− 1)2

2
+

(t− 1)3

3
+ . . . . (6.5.22)

This means

Γ(x) ∼
√

2

x− 1
(x− 1)xe−(x−1) (6.5.23)

×
∫ +∞

−∞

exp

(
−
(√

x− 1
t− 1√

2

)2

+O((t− 1)3)

)
d(
√
x− 1t/

√
2).

Noting x− 1 ≈ x for large x; we arrive at Stirling’s formula,

Γ(x→ ∞) ∼
√

2π

x

xx

ex
. (6.5.24)

Problem 6.12. What is the leading behavior of

I(x) ≡
∫ 50.12345+e

√
2+π

√
e

0

e−x·tπ
√

1 +
√
tdt (6.5.25)

in the limit x→ +∞? And, how does the first correction scale with x?

Problem 6.13. What is the leading behavior of

I(x) =

∫ π/2

−π/2

e−x cos(t)2

(cos(t))p
dt, (6.5.26)

for 0 ≤ p < 1, in the limit x→ +∞? Note that there are two maximums of φ(t) here.

Method of Stationary Phase We now consider the case where the exponent is purely
imaginary,

I(x) =

∫ b

a

f(t)eixφ(t)dt. (6.5.27)

Here, both f and φ are real. As we did previously, we will consider the x → +∞ limit and try
to extract the leading order behavior of the integral.

What will be very useful, to this end, is the following lemma.

The Riemann-Lebesgue lemma states that I(x→ ∞) in eq. (6.5.27) goes to zero

provided: (I)
∫ b

a
|f(t)|dt < ∞; (II) φ(t) is continuously differentiable; and (III) φ(t)

is not constant over a finite range within t ∈ [a, b].
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We will not prove this result, but it is heuristically very plausible: as long as φ(t) is not constant,
the eixφ(t) fluctuates wildly as x → +∞ on the t ∈ [a, b] interval. For large enough x, f(t) will
be roughly constant over ‘each period’ of eixφ(t), which in turn means f(t)eixφ(t) will integrate to
zero over this same ‘period’.

Case I: φ(t) has no turning points The first implication of the Riemann-Lebesgue lemma
is that, if φ′(t) is not zero anywhere within t ∈ [a, b]; and as long as f(t)/φ′(t) is smooth enough
within t ∈ [a, b] and exists on the end points; then we can use integration-by-parts to show that
the integral in eq. (6.5.27) has to scale as 1/x as x → ∞.

I(x) =

∫ b

a

f(t)

ixφ′(t)

d

dt
eixφ(t)dt

=
1

ix

{[
f(t)

φ′(t)
eixφ(t)

]b

a

−
∫ b

a

eixφ(t)
d

dt

(
f(t)

φ′(t)

)
dt

}
. (6.5.28)

The integral on the second line within the curly brackets is one where Riemann-Lebesgue applies.
Therefore it goes to zero relative to the (boundary) term preceding it, as x → ∞. Therefore
what remains is

∫ b

a

f(t)eixφ(t)dt ∼ 1

ix

[
f(t)

φ′(t)
eixφ(t)

]b

a

, x→ +∞, φ′(a ≤ t ≤ b) 6= 0. (6.5.29)

Case II: φ(c) has at least one turning point If there is at least one point where the phase is
stationary, φ′(a ≤ c ≤ b) = 0, then provided f(c) 6= 0, we shall see that the dominant behavior
of the integral in eq. (6.5.27) scales as 1/x1/p, where p is the lowest order derivative of φ that is
non-zero at t = c. Because 1/p < 1, the 1/x behavior we found above is sub-dominant to 1/x1/p

– hence the need to analyze the two cases separately.
Let us, for simplicity, assume the stationary point is at a, the lower limit. We shall discover

the leading behavior to be

∫ b

a

f(t)eixφ(t)dt ∼ f(a) exp

(
ixφ(a)± i

π

2p

)
Γ(1/p)

p

(
p!

x|φ(p)(a)|

)1/p

, (6.5.30)

where φ(p)(a) is first non-vanishing derivative of φ(t) at the stationary point t = a; while the +
sign is to be chosen if φ(p)(a) > 0 and − if φ(p)(a) < 0.

To understand eq. (6.5.30), we decompose the integral into

I(x) =

∫ a+κ

a

f(t)eixφ(t)dt +

∫ b

a+κ

f(t)eixφ(t)dt. (6.5.31)

The second integral scales as 1/x, as already discussed, since we assume there are no stationary
points there. The first integral, which we shall denote as S(x), may be expanded in the following
way provided κ is chosen appropriately:

S(x) =

∫ a+κ

a

(f(a) + . . . )eixφ(a) exp

(
ix

p!
(t− a)pφ(p)(a) + . . .

)
dt. (6.5.32)

119



To convert the oscillating exp into a real, dampened one, let us rotate our contour. Around
t = a, we may change variables to t − a ≡ ρeiθ ⇒ (t − a)p = ρpeipθ = iρp (i.e., θ = π/(2p)) if
φ(p)(a) > 0; and (t− a)p = ρpeipθ = −iρp (i.e., θ = −π/(2p)) if φ(p)(a) < 0. Since our stationary
point is at the lower limit, this is for ρ > 0.35

S(x→ ∞)

∼ f(a)eixφ(a)e±iπ/(2p)

∫ +∞

0

exp

(
− x

p!
|φ(p)(a)|ρp

)
d(ρp)

p · ρp−1
(6.5.33)

∼ f(a)eixφ(a)
e±iπ/(2p)

p( x
p!
|φ(p)(a)|)1/p

∫ +∞

0

(
x

p!
|φ(p)(a)|s

) 1
p
−1

exp

(
− x

p!
|φ(p)(a)|s

)
d

(
x

p!
|φ(p)(a)|s

)
.

This establishes the result in eq. (6.5.30).

Problem 6.14. Starting from the following integral representation of the Bessel function

Jn(x) =
1

π

∫ π

0

cos (nθ − x sin θ) dθ (6.5.34)

where n = 0, 1, 2, 3, . . . , show that the leading behavior as x→ +∞ is

Jn(x) ∼
√

2

πx
cos
(
x− nπ

2
− π

4

)
. (6.5.35)

Hint: Express the cosine as the real part of an exponential. Note the stationary point is two-
sided, but it is fairly straightforward to deform the contour appropriately.

Method of Steepest Descent We now allow our exponent to be complex.

I(x) =

∫

C

f(t)exu(t)eixv(t)dt, (6.5.36)

The f , u and v are real; C is some contour on the complex t plane; and as before we will study
the x→ ∞ limit. We will assume u+ iv forms an analytic function of t.

The method of steepest descent is the strategy to deform the contour C to some C ′ such that
it lies on a constant-phase path – where the imaginary part of the exponent does not change
along it.

I(x) = eixv
∫

C′
f(t)exu(t)dt (6.5.37)

One reason for doing so is that the constant phase contour also coincides with the steepest descent
one of the real part of the exponent – unless the contour passes through a saddle point, where
more than one steepest descent paths can intersect. Along a steepest descent path, Laplace’s
method can then be employed to obtain an asymptotic series.

35If p is even, and if the stationary point is not one of the end points, observe that we can choose θ =
±(π/(2p) + π) ⇒ eipθ = ±i for the ρ < 0 portion of the contour – i.e., run a straight line rotated by θ through
the stationary point – and the final result would simply be twice of eq. (6.5.30).
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To understand this further we recall that the gradient is perpendicular to the lines of constant
potential, i.e., the gradient points along the curves of most rapid change. Assuming u+ iv is an
analytic function, and denoting t = x + iy (for x and y real), the Cauchy-Riemann equations
they obey

∂xu = ∂yv, ∂yu = −∂xv (6.5.38)

means the dot product of their gradients is zero:

~∇u · ~∇v = ∂xu∂xv + ∂yu∂yv = ∂yv∂xv − ∂xv∂yv = 0. (6.5.39)

To sum:

A constant phase line – namely, the contour line where v is constant – is neces-
sarily perpendicular to ~∇v. But since ~∇u · ~∇v = 0 in the relevant region of the 2D
complex (t = x+ iy)-plane where u(t) + iv(t) is assumed to be analytic, a constant

phase line must therefore be (anti)parallel to ~∇u, the direction of most rapid change
of the real amplitude exu.

We will examine the following simple example:

I(x) =

∫ 1

0

ln(t)eixtdt. (6.5.40)

We deform the contour
∫ 1

0
so it becomes the sum of the straight lines C1, C2 and C3. C1 runs

from t = 0 along the positive imaginary axis to infinity. C2 runs horizontally from i∞ to i∞+1.
Then C3 runs from i∞ + 1 back down to 1. There is no contribution from C2 because the
integrand there is ln(i∞)e−x∞, which is zero for positive x.

I(x) = i

∫ ∞

0

ln(it)e−xtdt− i

∫ ∞

0

ln(1 + it)eix(1+it)dt

= i

∫ ∞

0

ln(it)e−xtdt− ieix
∫ ∞

0

ln(1 + it)e−xtdt. (6.5.41)

Notice the exponents in both integrands have now zero (and therefore constant) phases.

I(x) = i

∫ ∞

0

ln(i(xt)/x)e−(xt)d(xt)

x
− ieix

∫ ∞

0

ln(1 + i(xt)/x)e−(xt)d(xt)

x

= i

∫ ∞

0

(ln(z)− ln(x) + iπ/2)e−z dz

x
− ieix

∫ ∞

0

(
i
z

x
+O(x−2)

)
e−z dz

x
. (6.5.42)

The only integral that remains unfamiliar is the first one
∫ ∞

0

e−z ln(z) =
∂

∂µ

∣∣∣∣
µ=1

∫ ∞

0

e−ze(µ−1) ln(z) =
∂

∂µ

∣∣∣∣
µ=1

∫ ∞

0

e−zzµ−1

= Γ′(1) = −γE (6.5.43)

The γE = 0.577216 . . . is known as the Euler-Mascheroni constant. At this point,
∫ 1

0

ln(t)eixtdt ∼ i

x

(
−γE − ln(x) + i

π

2
− ieix

x
+O(x−2)

)
, x→ +∞. (6.5.44)
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Problem 6.15. Perform an asymptotic expansion of

I(k) ≡
∫ +1

−1

eikx
2

dx (6.5.45)

using the steepest descent method. Hint: Find the point t = t0 on the real line where the phase
is stationary. Then deform the integration contour such that it passes through t0 and has a
stationary phase everywhere. Can you also tackle I(k) using integration-by-parts?

6.6 JWKB solution to −ǫ2ψ′′(x) + U(x)ψ(x) = 0, for 0 < ǫ≪ 1

Many physicists encounter for the first time the following Jeffreys-Wentzel-Kramers-Brillouin
(JWKB; akaWKB) method and its higher dimensional generalization, when solving the Schrödinger
equation – and are told that the approximation amounts to the semi-classical limit where Planck’s
constant tends to zero, ~ → 0. Here, I want to highlight its general nature: it is not just ap-
plicable to quantum mechanical problems but oftentimes finds relevance when the wavelength
of the solution at hand can be regarded as ‘small’ compared to the other length scales in the
physical setup. The statement that electromagnetic waves in curved spacetimes or non-trivial
media propagate predominantly on the null cone in the (effective) geometry, is in fact an example
of such a ‘short wavelength’ approximation.

We will focus on the 1D case. Many physical problems reduce to the following 2nd order
linear ordinary differential equation (ODE):

−ǫ2ψ′′(x) + U(x)ψ(x) = 0, (6.6.1)

where ǫ is a “small” (usually fictitious) parameter. This second order ODE is very general
because both the Schrödinger and the (frequency space) Klein-Gordon equation with some po-
tential reduces to this form. (Also recall that the first derivative terms in all second order
ODEs may be removed via a redefinition of ψ.) The main goal of this section is to obtain its
approximate solutions.

We will use the ansatz

ψ(x) =
∞∑

ℓ=0

ǫℓαℓ(x)e
iS(x)/ǫ.

Plugging this into our ODE, we obtain

0 =

∞∑

ℓ=0

ǫℓ
(
αℓ(x)

(
S ′(x)2 + U(x)

)
− i
(
αℓ−1(x)S

′′(x) + 2S ′(x)α′
ℓ−1(x)

)
− α′′

ℓ−2(x)
)

(6.6.2)

with the understanding that α−2(x) = α−1(x) = 0. We need to set the coefficients of ǫℓ to zero.
The first two terms (ℓ = 0, 1) give us solutions to S(x) and α0(x).

0 = a0
(
S ′(x)2 + U(x)

)
⇒ S±(x) = σ0 ± i

∫ x

dx′
√
U(x′); σ0 = const.

0 = −iǫ (2α′
0(x)S

′(x) + α0(x)S
′′(x)) , ⇒ α0(x) =

C0

U(x)1/4

(While the solutions S±(x) contains two possible signs, the ± in S ′ and S ′′ factors out of the
second equation and thus α0 does not have two possible signs.)
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Problem 6.16. Recursion relation for higher order terms By considering the ℓ ≥ 2 terms
in eq. (6.6.2), show that there is a recursion relation between αℓ(x) and αℓ+1(x). Can you use
them to deduce the following two linearly independent JWKB solutions?

0 = −ǫ2ψ′′
±(x) + U(x)ψ±(x) (6.6.3)

ψ±(x) =
1

U(x)1/4
exp

[
∓1

ǫ

∫ x

dx′
√
U(x′)

] ∞∑

ℓ=0

ǫℓQ(ℓ|±)(x), (6.6.4)

Q(ℓ|±)(x) = ±1

2

∫ x dx′

U(x′)1/4
d2

dx′2

(
Q(ℓ−1|±)(x

′)

U(x′)1/4

)
, Q(0|±)(x) ≡ 1 (6.6.5)

To lowest order

ψ±(x) =
1

U1/4(x)
exp

[
∓1

ǫ

∫ x

dx′
√
U [x′]

]
(1 +O[ǫ]) . (6.6.6)

Note: in these solutions, the
√· and 4

√· are positive roots.

JWKB Counts Derivatives In terms of the Q(n)s we see that the JWKB method is
really an approximation that works whenever each dimensionless derivative d/dx acting on some
power of U(x) yields a smaller quantity, i.e., roughly speaking d lnU(x)/dx ∼ ǫ≪ 1; this small
derivative approximation is related to the short wavelength approximation. Also notice from
the exponential exp[iS/ǫ] ∼ exp[±(i/ǫ)

∫ √
−U ] that the 1/ǫ indicates an integral (namely, an

inverse derivative). To sum:

The ficticious parameter ǫ≪ 1 in the JWKB solution of −ǫ2ψ′′ +Uψ = 0 counts
the number of derivatives; whereas 1/ǫ is an integral. The JWKB approximation
works well whenever each additional dimensionless derivative acting on some power
of U yields a smaller and smaller quantity.

Breakdown and connection formulas There is an important aspect of JWKB that I
plan to discuss in detail in a future version of these lecture notes. From the 1/ 4

√
U(x) prefactor of

the solution in eq. (6.6.4), we see the approximation breaks down at x = x0 whenever U(x0) = 0.
The JWKB solutions on either side of x = x0 then need to be joined by matching onto a valid
solution in the region x ∼ x0. One common approach is to replace U with its first non-vanishing
derivative, U(x) → ((x−x0)n/n!)U (n)(x0); if n = 1, the corresponding solutions to the 2nd order
ODE are Airy functions – see, for e.g., Sakurai’s Modern Quantum Mechanics for a discussion.
Another approach, which can be found in Matthews and Walker [8], is to complexify the JWKB
solutions, perform analytic continuation, and match them on the complex plane.
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7 Differential Geometry of Curved Spaces

7.1 Preliminaries, Tangent Vectors, Metric, and Curvature

Being fluent in the mathematics of differential geometry is mandatory if you wish to understand
Einstein’s General Relativity, humanity’s current theory of gravity. But it also gives you a
coherent framework to understand the multi-variable calculus you have learned, and will allow
you to generalize it readily to dimensions other than the 3 spatial ones you are familiar with.
In this section I will provide a practical introduction to differential geometry, and will show
you how to recover from it what you have encountered in 2D/3D vector calculus. My goal here
is that you will understand the subject well enough to perform concrete calculations, without
worrying too much about the more abstract notions like, for e.g., what a manifold is.

I will assume you have an intuitive sense of what space means – after all, we live in it!
Spacetime is simply space with an extra time dimension appended to it, although the notion
of ‘distance’ in spacetime is a bit more subtle than that in space alone. To specify the (local)
geometry of a space or spacetime means we need to understand how to express distances in terms
of the coordinates we are using. For example, in Cartesian coordinates (x, y, z) and by invoking
Pythagoras’ theorem, the square of the distance (dℓ)2 between (x, y, z) and (x+dx, y+dy, z+dz)
in flat (aka Euclidean) space is

(dℓ)2 = (dx)2 + (dy)2 + (dz)2. (7.1.1)

36A significant amount of machinery in differential geometry involves understanding how to
employ arbitrary coordinate systems – and switching between different ones. For instance, we
may convert the Cartesian coordinates flat space of eq. (7.1.1) into spherical coordinates,

(x, y, z) ≡ r (sin θ · cos φ, sin θ · sinφ, cos θ) , (7.1.2)

and find

(dℓ)2 = dr2 + r2(dθ2 + sin(θ)2dφ2). (7.1.3)

The geometries in eq. (7.1.1) and eq. (7.1.3) are exactly the same. All we have done is to express
them in different coordinate systems.

Conventions This is a good place to (re-)introduce the Einstein summation convention
and the index convection. First, instead of (x, y, z), we can instead use xi ≡ (x1, x2, x3); here, the
superscript does not mean we are raising x to the first, second and third powers. A derivative
with respect to the ith coordinate is ∂i ≡ ∂/∂xi. The advantage of such a notation is its

36In 4-dimensional flat spacetime, with time t in addition to the three spatial coordinates {x, y, z}, the in-
finitesimal distance is given by a modified form of Pythagoras’ theorem: ds2 ≡ (dt)2 − (dx)2 − (dy)2 − (dz)2.
(The opposite sign convention, i.e., ds2 ≡ −(dt)2 + (dx)2 + (dy)2 + (dz)2, is also equally valid.) Why the “time”
part of the distance differs in sign from the “space” part of the metric would lead us to a discussion of the
underlying Lorentz symmetry. Because I wish to postpone the latter for the moment, I will develop differential
geometry for curved spaces, not curved spacetimes. Despite this restriction, rest assured most of the subsequent
formulas do carry over to curved spacetimes by simply replacing Latin/English alphabets with Greek ones – see
the “Conventions” paragraph below.
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compactness: we can say we are using coordinates {xi}, where i ∈ {1, 2, 3}.37 Not only that, we
can employ Einstein’s summation convention, which says all repeated indices are automatically
summed over their relevant range. For example, eq. (7.1.1) now reads:

(dx1)2 + (dx2)2 + (dx3)2 = δijdx
idxj ≡

∑

1≤i,j≤3

δijdx
idxj . (7.1.4)

(We say the indices of the {dxi} are being contracted with that of δij.) The symbol δij is known
as the Kronecker delta, defined as

δij = 1, i = j, (7.1.5)

= 0, i 6= j. (7.1.6)

Of course, δij is simply the ij component of the identity matrix. Already, we can see δij can
be readily defined in an arbitrary D dimensional space, by allowing i, j to run from 1 through
D. With these conventions, we can re-express the change of variables from eq. (7.1.1) and eq.
(7.1.3) as follows. First write

ξi ≡ (r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ < 2π). (7.1.7)

Then (7.1.1) becomes

δijdx
idxj = δab

∂xa

∂ξi
∂xb

∂ξj
dξidξj =

∂~x

∂ξi
· ∂~x
∂ξj

dξidξj, (7.1.8)

where in the second equality we have, for convenience, expressed the contraction with the Kro-
necker delta as an ordinary (vector calculus) dot product. At this point, let us notice, if we call
the coefficients of the quadratic form gij ; for example, δijdx

idxj ≡ gijdx
idxj , we have

gi′j′(~ξ) =
∂~x

∂ξi
· ∂~x
∂ξj

, (7.1.9)

where the primes on the indices are there to remind us this is not gij(~x) = δij, the components
written in the Cartesian coordinates, but rather the ones written in spherical coordinates. In
fact, what we are finding in eq. (7.1.8) is

gi′j′(~ξ) = gab(~x)
∂xa

∂ξi
∂xb

∂ξj
. (7.1.10)

Let’s proceed to work out the above dot products out. Firstly,

∂~x

∂r
= (sin θ · cos φ, sin θ · sinφ, cos θ) , (7.1.11)

∂~x

∂θ
= r (cos θ · cosφ, cos θ · sinφ,− sin θ) , (7.1.12)

∂~x

∂φ
= r (− sin θ · sinφ, sin θ · cosφ, 0) . (7.1.13)

37It is common to use the English alphabets to denote space coordinates and Greek letters to denote spacetime
ones. We will adopt this convention in these notes, but note that it is not a universal one; so be sure to check
the notation of the book you are reading.
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A direct calculation should return the results

grθ = gθr =
∂~x

∂r
· ∂~x
∂θ

= 0, grφ = gφr =
∂~x

∂r
· ∂~x
∂φ

= 0, gθφ = gφθ =
∂~x

∂θ
· ∂~x
∂φ

= 0;

(7.1.14)

and

grr =
∂~x

∂r
· ∂~x
∂r

≡
(
∂~x

∂r
· ∂~x
∂r

)2

= 1, (7.1.15)

gθθ =

(
∂~x

∂θ

)2

= r2, (7.1.16)

gφφ =

(
∂~x

∂φ

)2

= r2 sin2(θ). (7.1.17)

Altogether, these yield eq. (7.1.3).
Tangent vectors In Euclidean space, we may define vectors by drawing a directed

straight line between one point to another. In curved space, the notion of a ‘straight line’ is
not straightforward, and as such we no longer try to implement such a definition of a vector.
Instead, the notion of tangent vectors, and their higher rank tensor generalizations, now play
central roles in curved spacetime geometry and physics. Imagine, for instance, a thin layer of
water flowing over an undulating 2D surface – an example of a tangent vector on a curved space
is provided by the velocity of an infinitesimal volume within the flow.

More generally, let ~x(λ) denote the trajectory swept out by an infinitesimal volume of fluid
as a function of (fictitious) time λ, transversing through a (D ≥ 2)−dimensional space. (The ~x
need not be Cartesian coordinates.) We may then define the tangent vector vi(λ) ≡ d~x(λ)/dλ.
Conversely, given a vector field vi(~x) – a (D ≥ 2)−component object defined at every point in
space – we may find a trajectory ~x(λ) such that d~x/dλ = vi(~x(λ)). (This amounts to integrating
an ODE, and in this context is why ~x(λ) is called the integral curve of vi.) In other words,
tangent vectors do fit the mental picture that the name suggests, as ‘little arrows’ based at each
point in space, describing the local ‘velocity’ of some (perhaps fictitious) flow.

You may readily check that tangent vectors at a given point p in space do indeed form a
vector space. However, we have written the components vi but did not explain what their basis
vectors were. Geometrically speaking, v tells us in what direction and how quickly to move
away from the point p. This can be formalized by recognizing that the number of independent
directions that one can move away from p corresponds to the number of independent partial
derivatives on some arbitrary (scalar) function defined on the curved space; namely ∂if(~x) for
i = 1, 2, . . . , D, where {xi} are the coordinates used. Furthermore, the set of {∂i} do span a
vector space, based at p. We would thus say that any tangent vector v is a superposition of
partial derivatives:

v = vi(~x)
∂

∂xi
≡ vi(x1, x2, . . . , xD)

∂

∂xi
≡ vi∂i. (7.1.18)

As already alluded to, given these components {vi}, the vector v can be thought of as the
velocity with respect to some (fictitious) time λ by solving the ordinary differential equation
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vi = dxi(λ)/dλ. We may now see this more explicitly; vi∂if(~x) is the time derivative of f along
the integral curve of ~v because

vi∂if (~x(λ)) =
dxi

dλ
∂if(~x) =

df(λ)

dλ
. (7.1.19)

To sum: the {∂i} are the basis kets based at a given point p in the curved space, allowing us to
enumerate all the independent directions along which we may compute the ‘time derivative’ of
f at the same point p.

General spatial metric In a generic curved space, the square of the infinitesimal
distance between the neighboring points ~x and ~x+d~x, which we will continue to denote as (dℓ)2,
is no longer given by eq. (7.1.1) – because we cannot expect Pythagoras’ theorem to apply. But
by scaling arguments it should still be quadratic in the infinitesimal distances {dxi}. The most
general of such expression is

(dℓ)2 = gij(~x)dx
idxj . (7.1.20)

Since it measures distances, gij needs to be real. It is also symmetric, since any antisymmetric
portion would drop out of the summation in eq. (7.1.20) anyway. (Why?) Finally, because we
are discussing curved spaces for now, gij needs to have strictly positive eigenvalues.

Additionally, given gij, we can proceed to define the inverse metric gij in any coordinate
system, as the matrix inverse of gij :

gijgjl ≡ δil . (7.1.21)

Everything else in a differential geometric calculation follows from the curved metric in eq.
(7.1.20), once it is specified for a given setup:38 the ensuing Christoffel symbols, Riemann/Ricci
tensors, covariant derivatives/curl/divergence; what defines straight lines; parallel transporta-
tion; etc.
Distances If you are given a path ~x(λ1 ≤ λ ≤ λ2) between the points ~x(λ1) = ~x1 and
~x(λ2) = ~x2, then the distance swept out by this path is given by the integral

ℓ =

∫

~x(λ1≤λ≤λ2)

√
gij (~x(λ)) dxidxj =

∫ λ2

λ1

dλ

√
gij (~x(λ))

dxi(λ)

dλ

dxj(λ)

dλ
. (7.1.22)

Problem 7.1. Show that this definition of distance is invariant under change of the pa-
rameter λ, as long as the transformation is orientation preserving. That is, suppose we replace
λ→ λ(λ′) and thus dλ = (dλ/dλ′)dλ′ – then as long as dλ/dλ′ > 0, we have

ℓ =

∫ λ′
2

λ′
1

dλ′
√
gij (~x(λ′))

dxi(λ′)

dλ′
dxj(λ′)

dλ′
, (7.1.23)

where λ(λ′1,2) = λ1,2. Why can we always choose λ such that
√
gij (~x(λ))

dxi(λ)

dλ

dxj(λ)

dλ
= constant, (7.1.24)

i.e., the square root factor can be made constant along the entire path linking ~x1 to ~x2? Hint: Up
to a re-scaling and a 1D translation, this amounts using the path length itself as the parameter
λ.

38As with most physics texts on differential geometry, we will ignore torsion.
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Kets and Bras Earlier, while discussing tangent vectors, we stated that the {∂i} are
the ket’s, the basis tangent vectors at a given point in space. The infinitesimal distances {dxi}
can now, in turn, be thought of as the basis dual vectors (the bra’s) – through the definition

〈
dxi
∣∣ ∂j
〉
= δij . (7.1.25)

Why this is a useful perspective is due to the following. Let us consider an infinitesimal variation
of our arbitrary function at ~x:

df = ∂if(~x)dx
i. (7.1.26)

Then, given a vector field v, we can employ eq. (7.1.25) to construct the derivative of the latter
along the former, at some point ~x, by

〈df | v〉 = vj∂if(~x)
〈
dxi
∣∣ ∂j
〉
= vi∂if(~x). (7.1.27)

What about the inner products 〈dxi| dxj〉 and 〈∂i| ∂j〉? They are
〈
dxi
∣∣ dxj

〉
= gij and 〈∂i| ∂j〉 = gij. (7.1.28)

This is because

gij
∣∣dxj

〉
≡ |∂i〉 ⇔ gij

〈
dxj
∣∣ ≡ 〈∂i| ; (7.1.29)

or, equivalently,
∣∣dxj

〉
≡ gij |∂i〉 ⇔

〈
dxj
∣∣ ≡ gij 〈∂i| . (7.1.30)

In other words,

At a given point in a curved space, one may define two different vector spaces
– one spanned by the basis tangent vectors {|∂i〉} and another by its dual ‘bras’
{|dxi〉}. Moreover, these two vector spaces are connected through the metric gij and
its inverse.

Parallel transport and Curvature Roughly speaking, a curved space is one where the
usual rules of Euclidean (flat) space no longer apply. For example, Pythagoras’ theorem does
not hold; and the sum of the angles of an extended triangle is not π.

The quantitative criteria to distinguish a curved space from a flat one, is to parallel transport
a tangent vector vi(~x) around a closed loop on a coordinate grid. If, upon bringing it back to the
same location ~x, the tangent vector is the same one we started with – for all possible coordinate
loops – then the space is flat. Otherwise the space is curved. In particular, if you parallel
transport a vector around an infinitesimal closed loop formed by a pair of ‘y-coordinate’ and
‘z-coordinate’ lines, starting from any one of its corners, and if the resulting vector is compared
with original one, you would find that the difference is proportional to the Riemann curvature
tensor Ri

jkl. Specifically, suppose vi is parallel transported along a parallelogram, from ~x to
~x + d~y; then to ~x + d~y + d~z; then to ~x+ d~z; then back to ~x. Then, denoting the end result as
v′i, we would find that

v′i − vi ∝ Ri
jklv

jdykdzl. (7.1.31)
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Therefore, whether or not a geometry is locally curved is determined by this tensor. Of course,
we have not defined what parallel transport actually is; to do so requires knowing the covariant
derivative – but let us first turn to a simple example where our intuition still holds.

2−sphere as an example A common textbook example of a curved space is that of a
2−sphere of some fixed radius, sitting in 3D flat space, parametrized by the usual spherical
coordinates (0 ≤ θ ≤ π, 0 ≤ φ < 2π).39 Start at the north pole with the tangent vector v = ∂θ
pointing towards the equator with azimuthal direction φ = φ0. Let us parallel transport v along
itself, i.e., with φ = φ0 fixed, until we reach the equator itself. At this point, the vector is
perpendicular to the equator, pointing towards the South pole. Next, we parallel transport v
along the equator from φ = φ0 to some other longitude φ = φ′

0; here, v is still perpendicular to
the equator, and still pointing towards the South pole. Finally, we parallel transport it back to
the North pole, along the φ = φ′

0 line. Back at the North pole, v now points along the φ = φ′
0

longitude line and no longer along the original φ = φ0 line. Therefore, v does not return to
itself after parallel transport around a closed loop: the 2−sphere is a curved surface. This same
example also provides us a triangle whose sum of its internal angles is π + |φ0 − φ′

0| > π.40

Finally, notice in this 2-sphere example, the question of what a straight line means – let alone
using it to define a vector, as one might do in flat space – does not produce a clear answer.

Comparing tangent vectors at different places That tangent vectors cannot, in general,
be parallel transported in a curved space also tells us comparing tangent vectors based at dif-
ferent locations is not a straightforward procedure, especially compared to the situation in flat
Euclidean space. This is because, if ~v(~x) is to be compared to ~w(~x′) by parallel transporting
~v(~x) to ~x′; different results will be obtained by simply choosing different paths to get from ~x to
~x′.

Intrinsic vs extrinsic curvature A 2D cylinder (embedded in 3D flat space) formed
by rolling up a flat rectangular piece of paper has a surface that is intrinsically flat – the Riemann
tensor is zero everywhere because the intrinsic geometry of the surface is the same flat metric
before the paper was rolled up. However, the paper as viewed by an ambient 3D observer does
have an extrinsic curvature due to its cylindrical shape. To characterize extrinsic curvature
mathematically, one would erect a vector perpendicular to the surface in question and parallel
transport it along this same surface: the latter is flat if the vector remains parallel; otherwise it
is curved. In curved spacetimes, when this vector refers to the flow of time and is perpendicular
to some spatial surface, the extrinsic curvature also describes its time evolution.

7.2 Locally Flat Coordinates & Symmetries, Infinitesimal Volumes,

General Tensors, Orthonormal Basis

Locally flat coordinates41 and symmetries It is a mathematical fact that, given some
fixed point yi0 on the curved space, one can find coordinates yi such that locally the metric does

39Any curved space can in fact always be viewed as a curved surface residing in a higher dimensional flat space.
40The 2−sphere has positive curvature; whereas a saddle has negative curvature, and would support a triangle

whose angles add up to less than π. In a very similar spirit, the Cosmic Microwave Background (CMB) sky
contains hot and cold spots, whose angular size provide evidence that we reside in a spatially flat universe. See
the Wilkinson Microwave Anisotropy Probe (WMAP) pages here and here.

41Also known as Riemann normal coordinates.
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become flat:

lim
~y→~y0

gij(~y) = δij + g2 · Rikjl(~y0) (y − y0)
k(y − y0)

l + . . . , (7.2.1)

with a similar result for curved spacetimes. In this “locally flat” coordinate system, the first
corrections to the flat Euclidean metric is quadratic in the displacement vector ~y − ~y0, and
Rikjl(~y0) is the Riemann tensor – which is the chief measure of curvature – evaluated at ~y0. (The
g2 is just a numerical constant, whose precise value is not important for our discussion.) In a
curved spacetime, that geometry can always be viewed as locally flat is why the mathematics you
are encountering here is the appropriate framework for reconciling gravity as a force, Einstein’s
equivalence principle, and the Lorentz symmetry of Special Relativity.

Note that under spatial rotations {R̂i
j}, which obeys R̂a

iR̂
b
jδab = δij, if we define in Euclidean

space the following change-of-Cartesian coordinates (from ~x to ~x′)

xi ≡ R̂i
jx

′j ; (7.2.2)

the flat metric would retain the same form

δijdx
idxj = δabR̂

a
iR̂

b
jdx

′idx′j = δijdx
′idx′j . (7.2.3)

A similar calculation would tell us flat Euclidean space is invariant under parity flips, i.e.,
x′k ≡ −xk for some fixed k, as well as spatial translations ~x′ ≡ ~x+ ~a, for constant ~a. To sum:

At a given point in a curved space, it is always possible to find a coordinate system
– i.e., a geometric viewpoint/‘frame’ – such that the space is flat up to distances of
O(1/|maxRijlk(~y0)|1/2), and hence ‘locally’ invariant under rotations, translations,
and reflections.

This is why it took a while before humanity came to recognize we live on the curved surface of
the (approximately spherical) Earth: locally, the Earth’s surface looks flat!
Coordinate-transforming the metric Note that, in the context of eq. (7.1.20), ~x is not
a vector in Euclidean space, but rather another way of denoting xa without introducing too
many dummy indices {a, b, . . . , i, j, . . . }. Also, xi in eq. (7.1.20) are not necessary Cartesian
coordinates, but can be completely arbitrary. The metric gij(~x) can viewed as a 3×3 (or D×D,
in D dimensions) matrix of functions of ~x, telling us how the notion of distance vary as one moves
about in the space. Just as we were able to translate from Cartesian coordinates to spherical
ones in Euclidean 3-space, in this generic curved space, we can change from ~x to ~ξ, i.e., one
arbitrary coordinate system to another, so that

gij (~x) dx
idxj = gij

(
~x(~ξ)

) ∂xi(~ξ)
∂ξa

∂xj(~ξ)

∂ξb
dξadξb ≡ gab(~ξ)dξ

adξb. (7.2.4)

We can attribute all the coordinate transformation to how it affects the components of the
metric:

gab(~ξ) = gij

(
~x(~ξ)

) ∂xi(~ξ)
∂ξa

∂xj(~ξ)

∂ξb
. (7.2.5)
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The left hand side are the metric components in ~ξ coordinates. The right hand side consists of
the Jacobians ∂x/∂ξ contracted with the metric components in ~x coordinates – but now with

the ~x replaced with ~x(~ξ), their corresponding expressions in terms of ~ξ.
Inverse metric Previously, we defined gij to be the matrix inverse of the metric tensor gij.
We can also view gij as components of the tensor

gij(~x)∂i ⊗ ∂j , (7.2.6)

where we have now used ⊗ to indicate we are taking the tensor product of the partial derivatives
∂i and ∂j . In gij (~x) dx

idxj we really should also have dxi ⊗ dxj , but I prefer to stick with the
more intuitive idea that the metric (with lower indices) is the sum of squares of distances. Just

as we know how dxi transforms under ~x→ ~x(~ξ), we also can work out how the partial derivatives
transform.

gij(~x)
∂

∂xi
⊗ ∂

∂xj
= gab

(
~x(~ξ)

) ∂ξi
∂xa

∂ξj

∂xb
∂

∂ξi
⊗ ∂

∂ξj
(7.2.7)

In terms of its components, we can read off their transformation rules:

gij(~ξ) = gab
(
~x(~ξ)

) ∂ξi
∂xa

∂ξj

∂xb
. (7.2.8)

The left hand side is the inverse metric written in the ~ξ coordinate system, whereas the right
hand side involves the inverse metric written in the ~x coordinate system – contracted with two
Jacobian’s ∂ξ/∂x – except all the ~x are replaced with the expressions ~x(~ξ) in terms of ~ξ.

A technical point: here and below, the Jacobian ∂xa(~ξ)/∂ξj can be calculated in terms of
~ξ by direct differentiation if we have defined ~x in terms of ~ξ, namely ~x(~ξ). But the Jacobian

(∂ξi/∂xa) in terms of ~ξ requires a matrix inversion. For, by the chain rule,

∂xi

∂ξl
∂ξl

∂xj
=
∂xi

∂xj
= δij , and

∂ξi

∂xl
∂xl

∂ξj
=
∂ξi

∂ξj
= δij . (7.2.9)

In other words, given ~x → ~x(~ξ), we can compute J a
i ≡ ∂xa/∂ξi in terms of ~ξ, with a being the

row number and i as the column number. Then find the inverse, i.e., (J −1)ai and identify it

with ∂ξa/∂xi in terms of ~ξ.
General tensor A scalar ϕ is an object with no indices that transforms as

ϕ(~ξ) = ϕ
(
~x(~ξ)

)
. (7.2.10)

That is, take ϕ(~x) and simply replace ~x → ~x(~ξ) to obtain ϕ(~ξ).
A vector vi(~x)∂i transforms as, by the chain rule,

vi(~x)
∂

∂xi
= vi(~x(~ξ))

∂ξj

∂xi
∂

∂ξj
≡ vj(~ξ)

∂

∂ξj
(7.2.11)

If we attribute all the transformations to the components, the components in the ~x-coordinate
system vi(~x) is related to those in the ~y-coordinate system vi(~ξ) through the relation

vi(~ξ) = vi(~x(~ξ))
∂ξj

∂xi
. (7.2.12)
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Similarly, a 1-form Aidx
i transforms, by the chain rule,

Ai(~x)dx
i = Ai(~x(~ξ))

∂xi

∂ξj
dξj ≡ Aj(~ξ)dξ

j. (7.2.13)

If we again attribute all the coordinate transformations to the components; the ones in the
~x-system Ai(~x) is related to the ones in the ~ξ-system Ai(~ξ) through

Aj(~ξ) = Ai(~x(~ξ))
∂xi

∂ξj
. (7.2.14)

By taking tensor products of {|∂i〉} and {〈dxi|}, we may define a rank
(
N
M

)
tensor T as an object

with N “upper indices” and M “lower indices” that transforms as

T i1i2...iN
jij2...jM

(~ξ) = T a1a2...aN
bib2...bM

(
~x(~ξ)

) ∂ξi1
∂xa1

. . .
∂ξiN

∂xaN
∂xb1

∂ξj1
. . .

∂xbM

∂ξjM
. (7.2.15)

The left hand side are the tensor components in ~ξ coordinates and the right hand side are the
Jacobians ∂x/∂ξ and ∂ξ/∂x contracted with the tensor components in ~x coordinates – but now

with the ~x replaced with ~x(~ξ), their corresponding expressions in terms of ~ξ. This multi-indexed
object should be viewed as the components of

T i1i2...iN
jij2...jM

(~x)

∣∣∣∣
∂

∂xi1

〉
⊗ · · · ⊗

∣∣∣∣
∂

∂xiN

〉
⊗
〈
dxj1

∣∣⊗ · · · ⊗
〈
dxjM

∣∣ . (7.2.16)

42Above, we only considered T with all upper indices followed by all lower indices. Suppose we
had T i k

j ; it is the components of

T i k
j (~x) |∂i〉 ⊗

〈
dxj
∣∣⊗ |∂k〉 . (7.2.17)

Raising and lowering tensor indices The indices on a tensor are moved – from upper
to lower, or vice versa – using the metric tensor. For example,

Tm1...ma n1...nb
i = gijT

m1...majn1...nb , (7.2.18)

T i
m1...ma n1...nb

= gijTm1...majn1...nb
. (7.2.19)

42Strictly speaking, when discussing the metric and its inverse above, we should also have respectively expressed
them as gij

〈
dxi
∣∣⊗
〈
dxj
∣∣ and gij |∂i〉 ⊗ |∂j〉, with the appropriate bras and kets enveloping the {dxi} and {∂i}.

We did not do so because we wanted to highlight the geometric interpretation of gijdx
idxj as the square of the

distance between ~x and ~x+d~x, where the notion of dxi as (a component of) an infinitesimal ‘vector’ – as opposed
to being a 1-form – is, in our opinion, more useful for building the reader’s geometric intuition.
It may help the physicist reader to think of a scalar field in eq. (7.2.10) as an observable, such as the temperature

T (~x) of the 2D undulating surface mentioned above. If you were provided such an expression for T (~x), together
with an accompanying definition for the coordinate system ~x; then, to convert this same temperature field to a
different coordinate system (say, ~ξ) one would, in fact, do T (~ξ) ≡ T (~x(~ξ)), because you’d want ~ξ to refer to the

same point in space as ~x = ~x(~ξ). For a general tensor in eq. (7.2.16), the tensor components T i1i2...iN
jij2...jM

may then be regarding as scalars describing some weighted superposition of the tensor product of basis vectors
and 1-forms. Its transformation rules in eq. (7.2.15) are really a shorthand for the lazy physicist who does not
want to carry the basis vectors/1-forms around in his/her calculations.
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Because upper indices transform oppositely from lower indices – see eq. (7.2.9) – when we
contract a upper and lower index, it now transforms as a scalar. For example,

Ai
l(
~ξ)Blj(~ξ) =

∂ξi

∂xm
Am

a

(
~x(~ξ)

) ∂xa
∂ξl

∂ξl

∂xc
Bcn

(
~x(~ξ)

) ∂ξj
∂xn

=
∂ξi

∂xm
∂ξj

∂xn
Am

c

(
~x(~ξ)

)
Bcn

(
~x(~ξ)

)
. (7.2.20)

General covariance Tensors are ubiquitous in physics: the electric and magnetic fields can
be packaged into one Faraday tensor Fµν ; the energy-momentum-shear-stress tensor of matter
Tµν is what sources the curved geometry of spacetime in Einstein’s theory of General Relativity;
etc. The coordinate transformation rules in eq. (7.2.15) that defines a tensor is actually the
statement that, the mathematical description of the physical world (the tensors themselves in
eq. (7.2.16)) should not depend on the coordinate system employed. Any expression or equation
with physical meaning – i.e., it yields quantities that can in principle be measured – must be put
in a form that is generally covariant: either a scalar or tensor under coordinate transformations.43

An example is, it makes no sense to assert that your new-found law of physics depends on g11,
the 11 component of the inverse metric – for, in what coordinate system is this law expressed
in? What happens when we use a different coordinate system to describe the outcome of some
experiment designed to test this law?

Another aspect of general covariance is that, although tensor equations should hold in any
coordinate system – if you suspect that two tensors quantities are actually equal, say

Si1i2... = T i1i2..., (7.2.21)

it suffices to find one coordinate system to prove this equality. It is not necessary to prove this
by using abstract indices/coordinates because, as long as the coordinate transformations are
invertible, then once we have verified the equality in one system, the proof in any other follows
immediately once the required transformations are specified. One common application of this
observation is to apply the fact mentioned around eq. (7.2.1), that at any given point in a
curved space(time), one can always choose coordinates where the metric there is flat. You will
often find this “locally flat” coordinate system simplifies calculations – and perhaps even aids in
gaining some intuition about the relevant physics, since the expressions usually reduce to their
more familiar counterparts in flat space. A simple but important example of this brings us to
the next concept: what is the curved analog of the infinitesimal volume, which we would usually
write as dDx in Cartesian coordinates?

Determinant of metric and the infinitesimal volume The determinant of the
metric transforms as

det gij(~ξ) = det

[
gab

(
~x(~ξ)

) ∂xa
∂ξi

∂xb

∂ξj

]
. (7.2.22)

Using the properties detA ·B = detA detB and detAT = detA, for any two square matrices A
and B,

det gij(~ξ) =

(
det

∂xa(~ξ)

∂ξb

)2

det gij

(
~x(~ξ)

)
. (7.2.23)

43You may also demand your equations/quantities to be tensors/scalars under group transformations.
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The square root of the determinant of the metric is often denoted as
√
|g|. It transforms as

√∣∣∣g(~ξ)
∣∣∣ =

√∣∣∣g
(
~x(~ξ)

)∣∣∣
∣∣∣∣∣det

∂xa(~ξ)

∂ξb

∣∣∣∣∣ . (7.2.24)

We have previously noted that, given any point ~x0 in the curved space, we can always choose
local coordinates {~x} such that the metric there is flat. This means at ~x0 the infinitesimal
volume of space is dD~x and det gij(~x0) = 1. Recall from multi-variable calculus that, whenever

we transform ~x→ ~x(~ξ), the integration measure would correspondingly transform as

dD~x = dD~ξ

∣∣∣∣det
∂xi

∂ξa

∣∣∣∣ , (7.2.25)

where ∂xi/∂ξa is the Jacobian matrix with row number i and column number a. Comparing
this multi-variable calculus result to eq. (7.2.24) specialized to our metric in terms of {~x}
but evaluated at ~x0, we see the determinant of the Jacobian is in fact the square root of the
determinant of the metric in some other coordinates ~ξ,

√∣∣∣g(~ξ)
∣∣∣ =

(√∣∣∣g
(
~x(~ξ)

)∣∣∣
∣∣∣∣∣det

∂xi(~ξ)

∂ξa

∣∣∣∣∣

)

~x=~x0

=

∣∣∣∣∣det
∂xi(~ξ)

∂ξa

∣∣∣∣∣
~x=~x0

. (7.2.26)

In flat space and by employing Cartesian coordinates {~x}, the infinitesimal volume (at some
location ~x = ~x0) is d

D~x. What is its curved analog? What we have just shown is that, by going

from ~ξ to a locally flat coordinate system {~x},

dD~x = dD~ξ

∣∣∣∣∣det
∂xi(~ξ)

∂ξa

∣∣∣∣∣
~x=~x0

= dD~ξ

√
|g(~ξ)|. (7.2.27)

However, since ~x0 was an arbitrary point in our curved space, we have argued that, in a general
coordinate system ~ξ, the infinitesimal volume is given by

dD~ξ

√∣∣∣g(~ξ)
∣∣∣ ≡ dξ1 . . .dξD

√∣∣∣g(~ξ)
∣∣∣. (7.2.28)

Problem 7.2. Upon an orientation preserving change of coordinates ~y → ~y(~ξ), where
det ∂y/∂ξ > 0, show that

dD~y
√

|g(~y)| = dD~ξ

√∣∣∣g(~ξ)
∣∣∣. (7.2.29)

Therefore calling dD~x
√

|g(~x)| an infinitesimal volume is a generally covariant statement.
Note: g(~y) is the determinant of the metric written in the ~y coordinate system; whereas

g(~ξ) is that of the metric written in the ~ξ coordinate system. The latter is not the same as the

determinant of the metric written in the ~y-coordinates, with ~y replaced with ~y(~ξ); i.e., be careful
that the determinant is not a scalar.
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Volume integrals If ϕ(~x) is some scalar quantity, finding its volume integral within
some domain D in a generally covariant way can be now carried out using the infinitesimal
volume we have uncovered; it reads

I ≡
∫

D

dD~x
√

|g(~x)|ϕ(~x). (7.2.30)

In other words, I is the same result no matter what coordinates we used to compute the integral
on the right hand side.

Problem 7.3. Spherical coordinates in D space dimensions. In D space dimensions, we
may denote the D-th unit vector as êD; and n̂D−1 as the unit radial vector, parametrized by the
angles {0 ≤ θ1 < 2π, 0 ≤ θ2 ≤ π, . . . , 0 ≤ θD−2 ≤ π}, in the plane perpendicular to êD. Let
r ≡ |~x| and n̂D be the unit radial vector in the D space. Any vector ~x in this space can thus be
expressed as

~x = rn̂
(
~θ
)
= r cos(θD−1)êD + r sin(θD−1)n̂D−1, 0 ≤ θD−1 ≤ π. (7.2.31)

(Can you see why this is nothing but the Gram-Schmidt process?) Just like in the 3D case,
r cos(θD−1) is the projection of ~x along the êD direction; while r sin(θD−1) is that along the
radial direction in the plane perpendicular to êD.

First show that the Cartesian metric δij in D-space transforms to

(dℓ)2 = dr2 + r2dΩ2
D = dr2 + r2

(
(dθD−1)2 + (sin θD−1)2dΩ2

D−1

)
, (7.2.32)

where dΩ2
N is the square of the infinitesimal solid angle in N spatial dimensions, and is given by

dΩ2
N ≡

N−1∑

I,J=1

Ω
(N)
IJ dθIdθJ, Ω

(N)
IJ ≡

N∑

i,j=1

δij
∂n̂i

N

∂θI
∂n̂j

N

∂θJ
. (7.2.33)

Proceed to argue that the full D-metric in spherical coordinates is

dℓ2 = dr2 + r2

(
(dθD−1)2 +

D−1∑

I=2

s2D−1 . . . s
2
D−I+1(dθ

D−I)2

)
, (7.2.34)

θ1 ∈ [0, 2π), θ2, . . . , θD−1 ∈ [0, π]. (7.2.35)

(Here, sI ≡ sin θI.) Show that the determinant of the angular metric Ω
(N)
IJ obeys a recursion

relation

det Ω
(N)
IJ =

(
sin θN−1

)2(N−2) · det Ω(N−1)
IJ . (7.2.36)

Explain why this implies there is a recursion relation between the infinitesimal solid angle in D
space and that in (D − 1) space. Moreover, show that the integration volume measure dD~x in
Cartesian coordinates then becomes, in spherical coordinates,

dD~x = dr · rD−1 · dθ1 . . .dθD−1
(
sin θD−1

)D−2
√

det Ω
(D−1)
IJ . (7.2.37)
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Problem 7.4. Let xi be Cartesian coordinates and

ξi ≡ (r, θ, φ) (7.2.38)

be the usual spherical coordinates; see eq. (7.1.7). Calculate ∂ξi/∂xa in terms of ~ξ and thereby,

from the flat metric δij in Cartesian coordinates, find the inverse metric gij(~ξ) in the spherical
coordinate system.

Symmetries (aka isometries) and infinitesimal displacements In some Cartesian
coordinates {xi} the flat space metric is δijdx

idxj . Suppose we chose a different set of axes
for new Cartesian coordinates {x′i}, the metric will still take the same form, namely δijdx

′idx′j .
Likewise, on a 2-sphere the metric is dθ2+(sin θ)2dφ2 with a given choice of axes for the 3D space
the sphere is embedded in; upon any rotation to a new axis, so the new angles are now (θ′, φ′),
the 2-sphere metric is still of the same form dθ′2+(sin θ′)2dφ′2. All we have to do, in both cases,
is swap the symbols ~x → ~x′ and (θ, φ) → (θ′, φ′). The reason why we can simply swap symbols
to express the same geometry in different coordinate systems, is because of the symmetries
present: for flat space and the 2-sphere, the geometries are respectively indistinguishable under
translation/rotation and rotation about its center.

Motivated by this observation that geometries enjoying symmetries (aka isometries) retain
their form under an active coordinate transformation – one that corresponds to an actual dis-
placement from one location to another44 – we now consider a infinitesimal coordinate transfor-
mation as follows. Starting from ~x, we define a new set of coordinates ~x′ through an infinitesimal
vector ~ξ(~x),

~x′ ≡ ~x− ~ξ(~x). (7.2.39)

(The − sign is for technical convenience.) One interpretation of this definition is that of an
active coordinate transformation – given some location ~x, we now move to a point ~x′ that is
displaced infinitesimally far away, with the displacement itself described by −~ξ(~x). On the

other hand, since ~ξ is assumed to be “small,” we may replace in the above equation, ~ξ(~x) with
~ξ(~x′) ≡ ~ξ(~x→ ~x′). This is because the error incurred would be of O(ξ2).

~x = ~x′ + ~ξ(~x′) +O(ξ2) ⇒ ∂xi

∂x′a
= δia + ∂a′ξ

i(~x′) +O(ξ∂ξ) (7.2.40)

How does this change our metric?

gij (~x) dx
idxj = gij

(
~x′ + ~ξ(~x′) + . . .

) (
δia + ∂a′ξ

i + . . .
) (
δjb + ∂b′ξ

j + . . .
)
dx′adx′b

= (gij (~x
′) + ξc∂c′gij(~x

′) + . . . )
(
δia + ∂a′ξ

i + . . .
) (
δjb + ∂b′ξ

j + . . .
)
dx′adx′b

=
(
gij(~x

′) + δξgij(~x
′) +O(ξ2)

)
dx′idx′j , (7.2.41)

where

δξgij(~x
′) ≡ ξc(~x′)

∂gij(~x
′)

∂x′c
+ gia(~x

′)
∂ξa(~x′)

∂x′j
+ gja(~x

′)
∂ξa(~x′)

∂x′i
. (7.2.42)

44As opposed to a passive coordinate transformation, which is one where a different set of coordinates are used
to describe the same location in the geometry.
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At this point, we see that if the geometry enjoys a symmetry along the entire curve whose
tangent vector is ~ξ, then it must retain its form gij(~x)dx

idxj = gij(~x
′)dx′idx′j and therefore,45

δξgij = 0, (isometry along ~ξ). (7.2.43)

46Conversely, if δξgij = 0 everywhere in space, then starting from some point ~x, we can make

incremental displacements along the curve whose tangent vector is ~ξ, and therefore find that
the metric retain its form along its entirety. Now, a vector ~ξ that satisfies δξgij = 0 is called a
Killing vector. We may then summarize:

A geometry enjoys an isometry along ~ξ if and only if ~ξ is a Killing vector satisfying
eq. (7.2.43) everywhere in space.

Problem 7.5. Can you justify the statement: “If the metric gij is independent of one of
the coordinates, say xk, then ∂k is a Killing vector of the geometry”?

Orthonormal frame So far, we have been writing tensors in the coordinate basis – the
basis vectors of our tensors are formed out of tensor products of {dxi} and {∂i}. To interpret
components of tensors, however, we need them written in an orthonormal basis. This amounts to
using a uniform set of measuring sticks on all axes, i.e., a local set of (non-coordinate) Cartesian
axes where one “tick mark” on each axis translates to the same length.

As an example, suppose we wish to describe some fluid’s velocity vx∂x + vy∂y on a 2 di-
mensional flat space. In Cartesian coordinates vx(x, y) and vy(x, y) describe the velocity at

some point ~ξ = (x, y) flowing in the x- and y-directions respectively. Suppose we used polar
coordinates, however,

ξi = r(cosφ, sinφ). (7.2.44)

The metric would read

(dℓ)2 = dr2 + r2dφ2. (7.2.45)

The velocity now reads vr(~ξ)∂r + vφ(~ξ)∂φ, where v
r(~ξ) has an interpretation of “rate of flow in

the radial direction”. However, notice the dimensions of the vφ is not even the same as that
of vr; if vr were of [Length/Time], then vφ is of [1/Time]. At this point we recall – just as dr
(which is dual to ∂r) can be interpreted as an infinitesimal length in the radial direction, the arc
length rdφ (which is dual to (1/r)∂φ) is the corresponding one in the perpendicular azimuthal

direction. Using these as a guide, we would now express the velocity at ~ξ as

v = vr
∂

∂r
+ (r · vφ)

(
1

r

∂

∂φ

)
, (7.2.46)

so that now vφ̂ ≡ r · vφ may be interpreted as the velocity in the azimuthal direction.

45We reiterate, by the same form, we mean gij(~x) and gij(~x
′) are the same functions if we treat ~x and ~x′ as

dummy variables. For example, g33(r, θ) = (r sin θ)2 and g3′3′(r
′, θ′) = (r′ sin θ′)2 in the 2-sphere metric.

46δξgij is known as the Lie derivative of the metric along ξ, and is commonly denoted as (£ξg)ij .
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More formally, given a (real, symmetric) metric gij we may always find a orthogonal trans-
formation Oa

i that diagonalizes it; and by absorbing into this transformation the eigenvalues of
the metric, the orthonormal frame fields emerge:

gijdx
idxj =

∑

a,b

(
Oa

i · λaδab · Ob
j

)
dxidxj

=
∑

a,b

(√
λaO

a
i · δab ·

√
λbO

b
j

)
dxidxj

=
(
δabε

â
iε

b̂
j

)
dxidxj = δab

(
εâidx

i
) (
εb̂

j
dxj
)
, (7.2.47)

εâi ≡
√
λaO

a
i, (No sum over a.). (7.2.48)

In the first equality, we have exploited the fact that any real symmetric matrix gij can be diag-
onalized by an appropriate orthogonal matrix Oa

i, with real eigenvalues {λa}; in the second we
have exploited the assumption that we are working in Riemannian spaces, where all eigenvalues
of the metric are positive,47 to take the positive square roots of the eigenvalues; in the third we
have defined the orthonormal frame vector fields as εâi =

√
λaO

a
i, with no sum over a. Finally,

from eq. (7.2.47) and by defining the infinitesimal lengths εâ ≡ εâidx
i, we arrive at the following

curved space parallel to Pythagoras’ theorem in flat space:

(dℓ)2 = gijdx
idxj =

(
ε1̂
)2

+
(
ε2̂
)2

+ · · ·+
(
εD̂
)2
. (7.2.49)

The metric components are now

gij = δabε
â
iε

b̂
j
. (7.2.50)

Whereas the metric determinant reads

det gij =
(
det εâi

)2
. (7.2.51)

We say the metric on the right hand side of eq. (7.2.47) is written in an orthonormal frame,
because in this basis {εâidxi|a = 1, 2, . . . , D}, the metric components are identical to the flat
Cartesian ones. We have put a ·̂ over the a-index, to distinguish from the i-index, because the
latter transforms as a tensor

εâi(
~ξ) = εâj

(
~x(~ξ)

) ∂xj(~ξ)
∂ξi

. (7.2.52)

This also implies the i-index can be moved using the metric; for example

εâi(~x) ≡ gij(~x)εâj(~x). (7.2.53)

The â index does not transform under coordinate transformations. But it can be rotated by an
orthogonal matrix Râ

b̂
(~ξ), which itself can depend on the space coordinates, while keeping the

metric in eq. (7.2.47) the same object. By orthogonal matrix, we mean any R that obeys

R̂â
ĉδabR̂

b̂
f̂
= δcf (7.2.54)

R̂T R̂ = I. (7.2.55)

47As opposed to semi-Riemannian/Lorentzian spaces, where the eigenvalue associated with the ‘time’ direction
has a different sign from the rest.
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Upon the replacement

εâi(~x) → R̂â
b̂
(~x)εb̂

i
(~x), (7.2.56)

we have

gijdx
idxj →

(
δabR̂

â
ĉR̂

â
f̂

)
εĉiε

f̂

j
dxidxj = gijdx

idxj. (7.2.57)

The interpretation of eq. (7.2.56) is that the choice of local Cartesian-like (non-coordinate) axes
are not unique; just as the Cartesian coordinate system in flat space can be redefined through a
rotation R obeying RTR = I, these local axes can also be rotated freely. It is a consequence of
this OD symmetry that upper and lower orthonormal frame indices actually transform the same
way. We begin by demanding that rank-1 tensors in an orthonormal frame transform as

V â′ = R̂â
ĉV

ĉ, Vâ′ = (R̂−1)f̂
â
Vf̂ (7.2.58)

so that

V â′Vâ′ = V âVâ. (7.2.59)

But R̂T R̂ = I means R̂−1 = R̂T and thus the ath row and cth column of the inverse, namely
(R̂−1)âĉ, is equal to the cth row and ath column of R̂ itself: (R̂−1)âĉ = R̂ĉ

â.

Vâ′ =
∑

f

R̂â
f̂
Vf̂ . (7.2.60)

In other words, Vâ transforms just like V â.
To sum, we have shown that the orthonormal frame index is moved by the Kronecker delta;

V â′ = Vâ′ for any vector written in an orthonormal frame, and in particular,

εâi(~x) = δabεb̂i(~x) = εâi(~x). (7.2.61)

Next, we also demonstrate that these vector fields are indeed of unit length.

εf̂
j
εb̂j = εf̂

j
εb̂

k
gjk = δfb, (7.2.62)

ε j

f̂
εb̂j = ε j

f̂
ε k
b̂
gjk = δfb. (7.2.63)

To understand this we begin with the diagonalization of the metric, δcfε
ĉ
iε

f̂

j
= gij . Contracting

both sides with the orthonormal frame vector εb̂j,

δcfε
ĉ
iε

f̂

j
εb̂j = εb̂

i
, (7.2.64)

(εb̂jεf̂ j)ε
f̂

i
= εb̂

i
. (7.2.65)

If we let M denote the matrix M b
f ≡ (εb̂jεf̂ j), then we have i = 1, 2, . . . , D matrix equations

M · εi = εi. As long as the determinant of gab is non-zero, then {εi} are linearly independent
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vectors spanning RD (see eq. (7.2.51)). Since every εi is an eigenvector of M with eigenvalue
one, that means M = I, and we have proved eq. (7.2.62).

To summarize,

gij = δabε
â
iε

b̂
j
, gij = δabε i

â ε
j

b̂
,

δab = gijε
i

â ε
j

b̂
, δab = gijεâiε

b̂
j
. (7.2.66)

Now, any tensor with written in a coordinate basis can be converted to one in an orthonormal
basis by contracting with the orthonormal frame fields εâi in eq. (7.2.47). For example, the
velocity field in an orthonormal frame is

vâ = εâiv
i. (7.2.67)

For the two dimension example above,

(dr)2 + (rdφ)2 = δrr(dr)
2 + δφφ(rdφ)

2, (7.2.68)

allowing us to read off the only non-zero components of the orthonormal frame fields are

εr̂r = 1, εφ̂
φ
= r; (7.2.69)

which in turn implies

vr̂ = εr̂rv
r = vr, vφ̂ = εφ̂

φ
vφ = r vφ. (7.2.70)

More generally, what we are doing here is really switching from writing the same tensor in
coordinates basis {dxi} and {∂i} to an orthonormal basis {εâidxi} and {ε i

â ∂i}. For example,

T l
ijk

〈
dxi
∣∣⊗
〈
dxj
∣∣⊗
〈
dxk
∣∣⊗ |∂l〉 = T l̂

î̂jk̂

〈
εî
∣∣∣⊗
〈
εĵ
∣∣∣⊗
〈
εk̂
∣∣∣⊗
∣∣εl̂
〉

(7.2.71)

εî ≡ εî
a
dxa ε̂i ≡ ε a

î
∂a. (7.2.72)

Even though the physical dimension of the whole tensor [T ] is necessarily consistent, because
the {dxi} and {∂i} do not have the same dimensions – compare, for e.g., dr versus dθ in
spherical coordinates – the components of tensors in a coordinate basis do not all have the same
dimensions, making their interpretation difficult. By using orthonormal frame fields as defined
in eq. (7.2.72), we see that

∑

a

(
εâ
)2

= δabε
â
iε

b̂
j
dxidxj = gijdx

idxj (7.2.73)

[
εâ
]
= Length; (7.2.74)

and
∑

a

(εâ)
2 = δabε i

â ε
j

b̂
∂i∂j = gij∂i∂j (7.2.75)

[εâ] = 1/Length; (7.2.76)
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which in turn implies, for instance, the consistency of the physical dimensions of the orthonormal

components T l̂

îĵk̂
in eq. (7.2.71):

[T l̂

îĵk̂
][εî]3[εl̂] = [T ], (7.2.77)

[
T l̂

îĵk̂

]
=

[T ]

Length2 . (7.2.78)

Problem 7.6. Find the orthonormal frame fields {εâi} in 3-dimensional Cartesian, Spherical
and Cylindrical coordinate systems. Hint: Just like the 2D case above, by packaging the metric
gijdx

idxj appropriately, you can read off the frame fields without further work.

(Curved) Dot Product So far we have viewed the metric (dℓ)2 as the square of the
distance between ~x and ~x+d~x, generalizing Pythagoras’ theorem in flat space. The generalization
of the dot product between two (tangent) vectors U and V at some location ~x is

U(~x) · V (~x) ≡ gij(~x)U
i(~x)V j(~x). (7.2.79)

That this is in fact the analogy of the dot product in Euclidean space can be readily seen by
going to the orthonormal frame:

U(~x) · V (~x) = δijU
î(~x)V ĵ(~x). (7.2.80)

Line integral The line integral that occurs in 3D vector calculus, is commonly written as∫
~A ·d~x. While the dot product notation is very convenient and oftentimes quite intuitive, there

is an implicit assumption that the underlying coordinate system is Cartesian in flat space. The
integrand that actually transforms covariantly is the tensor Aidx

i, where the {xi} are no longer
necessarily Cartesian. The line integral itself then consists of integrating this over a prescribed
path ~x(λ1 ≤ λ ≤ λ2), namely

∫

~x(λ1≤λ≤λ2)

Aidx
i =

∫ λ2

λ1

Ai (~x(λ))
dxi(λ)

dλ
dλ. (7.2.81)

7.3 Covariant derivatives, Parallel Transport, Levi-Civita, Hodge

Dual

Covariant Derivative How do we take derivatives of tensors in such a way that we get
back a tensor in return? To start, let us see that the partial derivative of a tensor is not a tensor.
Consider

∂Tj(~ξ)

∂ξi
=
∂xa

∂ξi
∂

∂xa

(
Tb

(
~x(~ξ)

) ∂xb
∂ξj

)

=
∂xa

∂ξi
∂xb

∂ξj

∂Tb

(
~x(~ξ)

)

∂xa
+

∂2xb

∂ξj∂ξi
Tb

(
~x(~ξ)

)
. (7.3.1)

The second derivative ∂2xb/∂ξi∂ξj term is what spoils the coordinate transformation rule we
desire. To fix this, we introduce the concept of the covariant derivative ∇, which is built out of
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the partial derivative and the Christoffel symbols Γi
jk, which in turn is built out of the metric

tensor,

Γi
jk =

1

2
gil (∂jgkl + ∂kgjl − ∂lgjk) . (7.3.2)

Notice the Christoffel symbol is symmetric in its lower indices: Γi
jk = Γi

kj.
For a scalar ϕ the covariant derivative is just the partial derivative

∇iϕ = ∂iϕ. (7.3.3)

For a
(
0
1

)
or
(
1
0

)
tensor, its covariant derivative reads

∇iTj = ∂iTj − Γl
ijTl, (7.3.4)

∇iT
j = ∂iT

j + Γj
ilT

l. (7.3.5)

Under ~x→ ~x(~ξ), we have,

∇ξiϕ(~ξ) =
∂xa

∂ξi
∇xaϕ

(
~x(~ξ)

)
(7.3.6)

∇ξiTj(ξ) =
∂xa

∂ξi
∂xb

∂ξj
∇xaTb

(
~x(~ξ)

)
. (7.3.7)

For a general
(
N
M

)
tensor, we have

∇kT
i1i2...iN

jij2...jM
= ∂kT

i1i2...iN
jij2...jM

(7.3.8)

+ Γi1
klT

li2...iN
jij2...jM

+ Γi2
klT

i1l...iN
jij2...jM

+ · · ·+ ΓiN
klT

i1...iN−1l
jij2...jM

− Γl
kj1
T i1...iN

lj2...jM
− Γl

kj2
T i1...iN

j1l...jM
− · · · − Γl

kjM
T i1...iN

j1...jM−1l
.

48By using eq. (7.3.1) we may infer how the Christoffel symbols themselves must transform –
they are not tensors. Firstly,

∇ξiTj(~ξ) = ∂ξiTj(~ξ)− Γl
ij(
~ξ)Tl(~ξ)

=
∂xa

∂ξi
∂xb

∂ξj
∂xaTb

(
~x(~ξ)

)
+

(
∂2xb

∂ξj∂ξi
− Γl

ij(
~ξ)
∂xb(~ξ)

∂ξl

)
Tb

(
~x(~ξ)

)
(7.3.9)

On the other hand,

∇ξiTj(~ξ) =
∂xa

∂ξi
∂xb

∂ξj
∇xaTb

(
~x(~ξ)

)

=
∂xa

∂ξi
∂xb

∂ξj

{
∂xaTb

(
~x(~ξ)

)
− Γl

ab

(
~x(~ξ)

)
Tl

(
~x(~ξ)

)}
(7.3.10)

48The semi-colon is sometimes also used to denote the covariant derivative. For example, ∇l∇iT
jk ≡ T jk

;il.
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Comparing equations (7.3.9) and (7.3.10) leads us to relate the Christoffel symbol written in ~ξ

coordinates Γl
ij(
~ξ) and that written in ~x coordinates Γl

ij(~x).

Γl
ij(
~ξ) = Γk

mn

(
~x(~ξ)

) ∂ξl

∂xk(~ξ)

∂xm(~ξ)

∂ξi
∂xn(~ξ)

∂ξj
+

∂ξl

∂xk(~ξ)

∂2xk(~ξ)

∂ξj∂ξi
. (7.3.11)

On the right hand side, all ~x have been replaced with ~x(~ξ).49

The covariant derivative, like its partial derivative counterpart, obeys the product rule. Sup-
pressing the indices, if T1 and T2 are both tensors, we have

∇ (T1T2) = (∇T1)T2 + T1(∇T2). (7.3.12)

As you will see below, the metric is parallel transported in all directions,

∇igjk = ∇ig
jk = 0. (7.3.13)

Combined with the product rule in eq. (7.3.12), this means when raising and lowering of indices
of a covariant derivative of a tensor, the metric may be passed in and out of the ∇. For example,

gia∇jT
kal = ∇jgia · T kal + gia∇jT

kal = ∇j(giaT
kal)

= ∇jT
k l
i . (7.3.14)

Remark I have introduced the Christoffel symbol here by showing how it allows us to define a
derivative operator on a tensor that returns a tensor. I should mention here that, alternatively, it
is also possible to view Γi

jk as “rotation matrices,” describing the failure of parallel transporting
the basis bras {〈dxi|} and kets {|∂i〉} as they are moved from one point in space to a neighboring
point infinitesimally far away. Specifically,

∇i

〈
dxj
∣∣ = −Γj

ik

〈
dxk
∣∣ and ∇i |∂j〉 = Γl

ij |∂l〉 . (7.3.15)

Within this perspective, the tensor components are scalars. The product rule then yields, for
instance,

∇i (Va 〈dxa|) = (∇iVa) 〈dxa|+ Va∇i 〈dxa|
= (∂iVj − VaΓ

a
ij)
〈
dxj
∣∣ . (7.3.16)

Riemann and Ricci tensors I will not use them very much in the rest of our discussion
in this section (§(7)), but I should still highlight that the Riemann and Ricci tensors are fun-
damental to describing curvature. The Riemann tensor is built out of the Christoffel symbols
via

Ri
jkl = ∂kΓ

i
lj − ∂lΓ

i
kj + Γi

skΓ
s
lj − Γi

slΓ
s
kj. (7.3.17)

49We note in passing that in gauge theory – which encompasses humanity’s current description of the non-
gravitational forces (electromagnetic-weak (SU2)left-handed fermions× (U1)hypercharge and strong nuclear (SU3)color)
– the fundamental fields there {Ab

µ} transforms (in a group theory sense) in a very similar fashion as the
Christoffel symbols do (under a coordinate transformation) in eq. (7.3.11).
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The failure of parallel transport of some vector V i around an infinitesimally small loop, is
characterized by

[∇k,∇l]V
i ≡ (∇k∇l −∇l∇k)V

i = Ri
jklV

j, (7.3.18)

[∇k,∇l]Vj ≡ (∇k∇l −∇l∇k)Vj = −Ri
jklVi. (7.3.19)

The generalization to higher rank tensors is

[∇i,∇j]T
k1...kN

l1...lM
= Rk1

aijT
ak2...kN

l1...lM
+Rk2

aijT
k1ak3...kN

l1...lM
+ · · ·+RkN

aijT
k1...kN−1a

l1...lM

− Ra
l1ij
T k1...kN

al2...lM
− Ra

l2ij
T k1...kN

l1al3...lM
− · · · −Ra

lM ijT
k1...kN

l1...lM−1a
.

(7.3.20)

The Riemann tensor obeys the following symmetries.

Rijab = Rabij , Rijab = −Rjiab, Rabij = −Rabji. (7.3.21)

The Riemann tensor also obeys the Bianchi identities50

Ri
[jkl] = ∇[iR

jk
lm] = 0. (7.3.22)

In D dimensions, the Riemann tensor has D2(D2−1)/12 algebraically independent components.
In particular, in D = 1 dimension, space is always flat because R1111 = −R1111 = 0.

The Ricci tensor is defined as the non-trivial contraction of a pair of the Riemann tensor’s
indices.

Rjl ≡ Ri
jil. (7.3.23)

It is symmetric

Rij = Rji. (7.3.24)

Finally the Ricci scalar results from a contraction of the Ricci tensor’s indices.

R ≡ gjlRjl. (7.3.25)

Contracting eq. (7.3.22) appropriately yields the Bianchi identities involving the Ricci tensor
and scalar

∇i
(
Rij −

gij
2
R
)
= 0. (7.3.26)

This is a good place to pause and state, the Christoffel symbols in eq. (7.3.2), covariant deriva-
tives, and the Riemann/Ricci tensors, etc., are in general very tedious to compute. If you ever
have to do so on a regular basis, say for research, I highly recommend familiarizing yourself with
one of the various software packages available that could do them for you.

50The symbol [. . . ] means the indices within it are fully anti-symmetrized; in particular, T[ijk] = Tijk − Tikj −
Tjik + Tjki − Tkji + Tkij . We will have more to say about this operation later on.
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Geodesics Recall the distance integral in eq. (7.1.22). If you wish to determine the
shortest path (aka geodesic) between some given pair of points ~x1 and ~x2, you will need to
minimize eq. (7.1.22). This is a “calculus of variation” problem. The argument runs as follows.
Suppose you found the path ~z(λ) that yields the shortest ℓ. Then, if you consider a slight
variation δ~z of the path, namely consider

~x(λ) = ~z(λ) + δ~z(λ), (7.3.27)

we must find the contribution to ℓ at first order in δ~z to be zero. This is analogous to the
vanishing of the first derivatives of a function at its minimum.51 In other words, in the integrand
of eq. (7.1.22) we must replace

gij (~x(λ)) → gij (~z(λ) + δ~z(λ)) = gij (~z(λ)) + δzk(λ)
∂gij (~z(λ))

∂zk
+O(δz2) (7.3.28)

dxi(λ)

dλ
→ dzi(λ)

dλ
+

dδzi(λ)

dλ
. (7.3.29)

Since δ~z was arbitrary, at first order, its coefficient within the integrand must vanish. If we
further specialize to affine parameters λ such that

√
gij(dzi/dλ)(dzj/dλ) = constant along the entire path ~z(λ), (7.3.30)

then one would arrive at the following second order non-linear ODE. Minimizing the distance ℓ
between ~x1 and ~x2 leads to the shortest path ~z(λ) (≡ geodesic) obeying:

0 =
d2zi

dλ2
+ Γi

jk (gab(~z))
dzj

dλ

dzk

dλ
, (7.3.31)

with the boundary conditions

~z(λ1) = ~x1, ~z(λ2) = ~x2. (7.3.32)

The converse is also true, in that – if the geodesic equation in eq. (7.3.31) holds, then gij
(dzi/dλ)(dzj/dλ) is a constant along the entire geodesic. Denoting z̈i ≡ d2zi/dλ2 and żi ≡
dzi/dλ,

d

dλ

(
gij ż

iżj
)
= 2z̈iżjgij + żk∂kgij ż

iżj

= 2z̈iżjgij + żkżiżj (∂kgij + ∂igkj − ∂jgik) (7.3.33)

Note that the last two terms inside the parenthesis of the second equality cancels. The reason
for inserting them is because the expression contained within the parenthesis is related to the
Christoffel symbol; keeping in mind eq. (7.3.2),

d

dλ

(
gij ż

iżj
)
= 2żi

{
z̈jgij + żkżjgil

glm

2
(∂kgjm + ∂jgkm − ∂mgjk)

}

= 2gilż
i
{
z̈l + żk żjΓl

kj

}
= 0. (7.3.34)

The last equality follows because the expression in the {. . . } is the left hand side of eq. (7.3.31).
This constancy of gij (dz

i/dλ)(dzj/dλ) is useful for solving the geodesic equation itself.

51There is some smoothness condition being assumed here. For instance, the tip of the pyramid (or a cone) is
the maximum height achieved, but the derivative slightly away from the tip is negative in all directions.
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Problem 7.7. Noether’s theorem for Lagrangian mechanics Show that the affine
parameter form of the geodesic (7.3.31) follows from demanding the following integral be ex-
tremized:

ℓ2 = (λ2 − λ1)

∫ λ2

λ1

dλgij (~z(λ))
dzi

dλ

dzj

dλ
. (7.3.35)

(In the General Relativity literature, ℓ2/2 (half of eq. (7.3.35)) is known as Synge’s world
function.) That is, show that eq. (7.3.31) follows from applying the Euler-Lagrange equations
to the Lagrangian

L ≡ 1

2
gij ż

iżj , żi ≡ dzi

dλ
. (7.3.36)

Now argue that the Hamiltonian H is equal to the Lagrangian L. Can you prove that H , and
therefore L, is a constant of motion? Moreover, if the geodesic equation (7.3.31) is satisfied by
zµ(λ), argue that the integral in eq. (7.3.35) yields the square of the geodesic distance between
~x1 ≡ ~z(λ1) and ~x2 ≡ ~z(λ2)?

Conserved quantities from symmetries Finally, suppose ∂k is a Killing vector. Explain
why

∂L

∂żk
= constant. (7.3.37)

This is an example of Noether’s theorem. For example, in flat Euclidean space, since the metric in
Cartesian coordinates is a constant δij , all the {∂i|i = 1, 2, . . . , D} are Killing vectors. Therefore,
from L = (1/2)δij ż

iżj , and we have

d

dλ

dzi

dλ
= 0 ⇒ dzi

dλ
= constant. (7.3.38)

This is, in fact, the statement that the center of mass of an isolated system obeying Newtonian
mechanics moves with a constant velocity. By re-writing the Euclidean metric in spherical
coordinates, provide the proper definition of angular momentum (about theD−axis) and proceed
to prove that it is conserved.

Geodesics on a 2−sphere How many geodesics are there joining any two points on the
2−sphere? How many geodesics are there joining the North Pole and South Pole? Solve the
geodesic equation (cf. eq. (7.3.31)) on the unit 2−sphere described by

dℓ2 = dθ2 + sin(θ)2dφ2. (7.3.39)

Explain how your answer would change if the sphere were of radius R instead. Hint: To solve the
geodesic equation it helps to exploit the spherical symmetry of the problem; for e.g., what are
the geodesics emanating from the North Pole? Then transform the answer to the more general
case.

Christoffel symbols from Lagrangian As an example of how the action princi-
ple in eq. (7.3.35) allows us to extract the Christoffel symbols, let us consider the following
D−dimensional metric:

dℓ2 ≡ a(~x)2d~x · d~x, (7.3.40)
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where a(~x) is an arbitrary function. The Lagrangian in eq. (7.3.36) is now

L =
1

2
a2δij ż

iżj , żi ≡ dzi

dλ
. (7.3.41)

Applying the Euler-Lagrange equations,

d

dλ

∂L

∂żi
− ∂L

∂zi
= 0 (7.3.42)

d

dλ

(
a2żi

)
− a∂ia~̇z

2 = 0 (7.3.43)

2ażj∂ja ż
i + a2z̈i − a∂ia~̇z

2 = 0 (7.3.44)

z̈i +

(
∂ja

a
δil +

∂la

a
δij −

∂ia

a
δlj

)
żlżj = z̈i + Γi

lj ż
lżj = 0. (7.3.45)

Using {. . . } to indicate symmetrization of the indices, we have derived

Γi
lj =

1

a

(
∂{jaδ

i
l} − ∂iaδlj

)

=
(
δk{jδ

i
l} − δkiδlj

)
∂k ln a. (7.3.46)

Problem 7.8. It is always possible to find a coordinate system with coordinates ~y such
that, as ~y → ~y0, the Christoffel symbols vanish

Γk
ij(~y0) = 0. (7.3.47)

Can you demonstrate why this is true from the equivalence principle encoded in eq. (7.2.1)? Hint:
it is important that, locally, the first deviation from flat space is quadratic in the displacement
vector (y − y0)

i.

Remark That there is always an orthonormal frame where the metric is flat – recall
eq. (7.2.47) – as well as the existence of a locally flat coordinate system, is why the measure
of curvature, in particular the Riemann tensor in eq. (7.3.17), depends on gradients (second
derivatives) of the metric.

Problem 7.9. Why do the Christoffel symbols take on the form in eq. (7.3.2)? It comes
from assuming that the Christoffel symbol obeys the symmetry Γi

jk = Γi
kj – this is the torsion-

free condition – and demanding that the covariant derivative of a metric is a zero tensor,

∇igjk = 0. (7.3.48)

This can be expanded as

∇igjk = 0 = ∂igjk − Γl
ijglk − Γl

ikgjl. (7.3.49)

Expand also ∇jgki and ∇kgij, and show that

2Γl
ijglk = ∂igjk + ∂jgik − ∂kgij. (7.3.50)

Divide both sides by 2 and contract both sides with gkm to obtain Γm
ij in eq. (7.3.2).
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Problem 7.10. Can you show that the δξgij in eq. (7.2.42) can be re-written in a more
covariant looking expression

δξgij(~x
′) = ∇iξj +∇jξi? (7.3.51)

δξgij = ∇iξj + ∇jξi = 0 is known as Killing’s equation,52 and a vector that satisfies Killing’s
equation is called a Killing vector. Showing that δξgij is a tensor indicate such a characterization
of symmetry is a generally covariant statement.

Hint: Convert all partial derivatives into covariant ones by adding/subtracting Christoffel
symbols appropriately; for instance ∂aξ

i = ∇aξ
i − Γi

abξ
b.

Problem 7.11. Argue that, if a tensor T i1i2...iN is zero in some coordinate system, it must
be zero in any other coordinate system.

Problem 7.12. Prove that the tensor T i2...iN
i1

is zero if and only if the corresponding tensor
Ti1i2...iN is zero. Then, using the product rule, explain why ∇igjk = 0 implies ∇ig

jk = 0. Hint:
start with ∇i(gajgbkg

jk).

Problem 7.13. Calculate the Christoffel symbols of the 3-dimensional Euclidean metric
in Cartesian coordinates δij . Then calculate the Christoffel symbols for the same space, but
in spherical coordinates: (dℓ)2 = dr2 + r2(dθ2 + (sin θ)2dφ2). To start you off, the non-zero
components of the metric are

grr = 1, gθθ = r2, gφφ = r2(sin θ)2; (7.3.52)

grr = 1, gθθ = r−2, gφφ =
1

r2(sin θ)2
. (7.3.53)

Also derive the Christoffel symbols in spherical coordinates from their Cartesian counterparts
using eq. (7.3.11). This lets you cross-check your results; you should also feel free to use software
to help. Partial answer: the non-zero components in spherical coordinates are

Γr
θθ = −r, Γr

φφ = −r(sin θ)2, (7.3.54)

Γθ
rθ = Γθ

θr =
1

r
, Γθ

φφ = − cos θ · sin θ, (7.3.55)

Γφ
rφ = Γφ

φr =
1

r
, Γφ

θφ = Γφ
φθ = cot θ. (7.3.56)

To provide an example, let us calculate the Christoffel symbols of 2D flat space written in
cylindrical coordinates ξi ≡ (r, φ),

dℓ2 = dr2 + r2dφ, r ≥ 0, φ ∈ [0, 2π). (7.3.57)

This means the non-zero components of the metric are

grr = 1, gφφ = r2, grr = 1, gφφ = r−2. (7.3.58)

52The maximum number of linearly independent Killing vectors in D dimensions is D(D + 1)/2. See Chapter
13 of Weinberg’s Gravitation and Cosmology for a discussion.
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Keeping the diagonal nature of the metric in mind, let us start with

Γr
ij =

1

2
grk (∂igjk + ∂jgik − ∂kgij) =

1

2
grr (∂igjr + ∂jgir − ∂rgij)

=
1

2

(
δrj∂igrr + δri ∂jgrr − δφi δ

φ
j ∂rr

2
)
= −δφi δφj r. (7.3.59)

In the third equality we have used the fact that the only gij that depends on r (and therefore
yield a non-zero r-derivative) is gφφ. Now for the

Γφ
ij =

1

2
gφφ (∂igjφ + ∂jgiφ − ∂φgij)

=
1

2r2

(
δφj ∂igφφ + δφi ∂jgφφ

)
=

1

2r2

(
δφj δ

r
i ∂rr

2 + δφi δ
r
j∂rr

2
)

=
1

r

(
δφj δ

r
i + δφi δ

r
j

)
. (7.3.60)

If we had started from Cartesian coordinates xi,

xi = r(cosφ, sinφ), (7.3.61)

we know the Christoffel symbols in Cartesian coordinates are all zero, since the metric compo-
nents are constant. If we wish to use eq. (7.3.11) to calculate the Christoffel symbols in (r, φ),
the first term on the right hand side is zero and what we need are the ∂x/∂ξ and ∂2x/∂ξ∂ξ
matrices. The first derivative matrices are

∂xi

∂ξj
=

[
cosφ −r sinφ
sinφ r cosφ

]i

j

(7.3.62)

∂ξi

∂xj
=

((
∂x

∂ξ

)−1
)i

j

=

[
cos φ sinφ

−r−1 sin φ r−1 cosφ

]i

j

, (7.3.63)

whereas the second derivative matrices are

∂2x1

∂ξiξj
=

[
0 − sinφ

− sinφ −r cosφ

]
(7.3.64)

∂2x2

∂ξiξj
=

[
0 cosφ

cosφ −r sin φ

]
. (7.3.65)

Therefore, from eq. (7.3.11),

Γr
ij(r, φ) =

∂r

∂xk
∂xk

∂ξi∂ξj
(7.3.66)

= cosφ ·
[

0 − sinφ
− sinφ −r cosφ

]
+ sinφ ·

[
0 cosφ

cosφ −r sinφ

]
=

[
0 0
0 −r

]
.

Similarly,

Γφ
ij(r, φ) =

∂φ

∂xk
∂xk

∂ξi∂ξj
(7.3.67)

= −r−1 sin φ

[
0 − sin φ

− sin φ −r cosφ

]
+ r−1 cosφ

[
0 cosφ

cosφ −r sin φ

]
=

[
0 r−1

r−1 0

]
.
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Parallel transport Let vi be a (tangent) vector field and T j1...jN be some tensor. (Here,
the placement of indices on the T is not important, but we will assume for convenience, all of
them are upper indices.) We say that the tensor T is invariant under parallel transport along
the vector v when

vi∇iT
j1...jN = 0. (7.3.68)

Problem 7.14. As an example, let’s calculate the Christoffel symbols of the metric on the
2-sphere with unit radius,

(dℓ)2 = dθ2 + (sin θ)2dφ2. (7.3.69)

Do not calculate from scratch – remember you have already computed the Christoffel symbols in
3D Euclidean space. How do you extract the 2-sphere Christoffel symbols from that calculation?

In the coordinate system (θ, φ), define the vector vi = (vθ, vφ) = (1, 0), i.e., v = ∂θ. This is
the vector tangent to the sphere, at a given location (0 ≤ θ ≤ π, 0 ≤ φ < 2π) on the sphere,
such that it points away from the North and towards the South pole, along a constant longitude
line. Show that it is parallel transported along itself, as quantified by the statement

vi∇iv
j = ∇θv

j = 0. (7.3.70)

Also calculate ∇φv
j; comment on the result at θ = π/2. Hint: recall our earlier 2-sphere

discussion, where we considered parallel transporting a tangent vector from the North pole to
the equator, along the equator, then back up to the North pole.

Variation of the metric & divergence of tensors If we perturb the metric slightly

gij → gij + hij , (7.3.71)

where the components of hij are to be viewed as “small”, the inverse metric will become

gij → gij − hij + hikh j
k +O

(
h3
)
, (7.3.72)

then the square root of the determinant of the metric will change as

√
|g| →

√
|g|
(
1 +

1

2
gabhab +O(h2)

)
. (7.3.73)

Problem 7.15. Use the matrix identity, where for any square matrix X ,

det eX = eTr[X], (7.3.74)

53to prove eq. (7.3.73). (The Tr X means the trace of the matrix X – sum over its diagonal
terms.) Hint: Start with det(gij +hij) = det(gij) ·det(δij +hij), with hij ≡ gikhkj. Then massage
δij + hij = exp(ln(δij + hij)).

53See, for e.g., Theorem 3.10 of arXiv: math-ph/0005032.
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Problem 7.16. Use eq. (7.3.73) and the definition of the Christoffel symbol to show that

∂i ln
√

|g| = 1

2
gab∂igab = Γs

is. (7.3.75)

Problem 7.17. Divergence of tensors. Verify the following formulas for the divergence
of a vector V i, a fully antisymmetric rank-(N ≤ D) tensor F i1i2...iN and a symmetric tensor
Sij = Sji,

∇iV
i =

∂i

(√
|g|V i

)

√
|g|

, (7.3.76)

∇jF
ji2...iN =

∂j

(√
|g|F ji2...iN

)

√
|g|

, (7.3.77)

∇iS
ij =

∂i

(√
|g|Sij

)

√
|g|

+ Γj
abS

ab. (7.3.78)

Note that, fully antisymmetric means, swapping any pair of indices costs a minus sign,

F i1...ia−1iaia+1...ib−1ibib+1...iN = −F i1...ia−1ibia+1...ib−1iaib+1...iN . (7.3.79)

Comment on how these expressions, equations (7.3.76)-(7.3.78), transform under a coordinate

transformation, i.e., ~x→ ~x(~ξ).

Gradient of a scalar It is worth highlighting that the gradient of a scalar, with upper
indices, depends on the metric; whereas the covariant derivative on the same scalar, with lower
indices, does not.

∇iϕ = gij∇jϕ = gij∂jϕ. (7.3.80)

This means, even in flat space, ∇iϕ is not always equal to ∇iϕ. (They are equal in Cartesian
coordinates.) For instance, in spherical coordinates (r, θ, φ), where

gij = diag(1, r−2, r−2(sin θ)−2); (7.3.81)

the gradient of a scalar is

∇iϕ =
(
∂rϕ, r

−2∂θϕ, r
−2(sin θ)−2∂φϕ

)
. (7.3.82)

while the same object with lower indices is simply

∇iϕ = (∂rϕ, ∂θϕ, ∂φϕ) . (7.3.83)

Divergence of a vector The divergence of a vector V i is

∇iV
i = ∇iVi. (7.3.84)

Laplacian of a scalar The Laplacian of a scalar ψ can be thought of as the divergence of
its gradient. In 3D vector calculus you would write is as ~∇2 but in curved spaces we may also
write it as � or ∇i∇i:

�ψ ≡ ~∇2ψ = ∇i∇iψ = gij∇i∇jψ. (7.3.85)
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Problem 7.18. Show that the Laplacian of a scalar can be written more explicitly in terms
of the determinant of the metric and the inverse metric as

�ψ ≡ ∇i∇iψ =
1√
|g|
∂i

(√
|g|gij∂jψ

)
. (7.3.86)

Hint: Start with the expansion ∇i∇iψ = ∂i∇iψ + Γi
ij∇jψ.

Levi-Civita Tensor We have just seen how to write the divergence in any curved or
flat space. We will now see that the curl from vector calculus also has a differential geometric
formulation as an antisymmetric tensor, which will allow us to generalize the former to not only
curved spaces but also arbitrary dimensions greater than 2. But first, we have to introduce the
Levi-Civita tensor, and with it, the Hodge dual.

In D spatial dimensions we first define a Levi-Civita symbol

ǫi1i2...iD−1iD . (7.3.87)

It is defined by the following properties.

• It is completely antisymmetric in its indices. This means swapping any of the indices
ia ↔ ib (for a 6= b) will return

ǫi1i2...ia−1iaia+1...ib−1ibib+1...iD−1iD = −ǫi1i2...ia−1ibia+1...ib−1iaib+1...iD−1iD . (7.3.88)

• For a given ordering of the D distinct coordinates {xi|i = 1, 2, 3, . . . , D}, ǫ123...D ≡ 1.
Below, we will have more to say about this choice.

These are sufficient to define every component of the Levi-Civita symbol. From the first defini-
tion, if any of the D indices are the same, say ia = ib, then the Levi-Civita symbol returns zero.
(Why?) From the second definition, when all the indices are distinct, ǫi1i2...iD−1iD is a +1 if it
takes even number of swaps to go from {1, . . . , D} to {i1, . . . , iD}; and is a −1 if it takes an odd
number of swaps to do the same.

For example, in the (perhaps familiar) 3 dimensional case, in Cartesian coordinates (x1, x2, x3),

1 = ǫ123 = −ǫ213 = −ǫ321 = −ǫ132 = ǫ231 = ǫ312. (7.3.89)

The Levi-Civita tensor ǫ̃i1...iD is defined as

ǫ̃i1i2...iD ≡
√
|g|ǫi1i2...iD . (7.3.90)

Let us understand why it is a (pseudo-)tensor. Because the Levi-Civita symbol is just a multi-
index array of ±1 and 0, it does not change under coordinate transformations. Equation (7.2.24)
then implies

√
|g(~ξ)|ǫa1a2...aD =

√∣∣∣g
(
~x(~ξ)

)∣∣∣
∣∣∣∣∣det

∂xi(~ξ)

∂ξj

∣∣∣∣∣ ǫa1a2...aD . (7.3.91)
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On the right hand side,
∣∣∣g
(
~x(~ξ)

)∣∣∣ is the absolute value of the determinant of gij written in the

coordinates ~x but with ~x replaced with ~x(~ξ).
If ǫ̃i1i2...iD were a tensor, on the other hand, it must obey eq. (7.2.15),

√
|g(~ξ)|ǫa1a2...aD

?
=

√∣∣∣g
(
~x(~ξ)

)∣∣∣ǫi1...iD
∂xi1

∂ξa1
. . .

∂xiD

∂ξaD
,

=

√∣∣∣g
(
~x(~ξ)

)∣∣∣
(
det

∂xi

∂ξj

)
ǫa1...aD , (7.3.92)

where in the second line we have recalled the co-factor expansion determinant of any matrix M ,

ǫa1...aD detM = ǫi1...iDM
i1
a1
. . .M iD

aD
. (7.3.93)

Comparing equations (7.3.91) and (7.3.92) tells us the Levi-Civita ǫ̃a1...aD transforms as a tensor
for orientation-preserving coordinate transformations, namely for all coordinate transformations
obeying

det
∂xi

∂ξj
= ǫi1i2...iD

∂xi1

∂ξ1
∂xi2

∂ξ2
. . .

∂xiD

∂ξD
> 0. (7.3.94)

Parity flips This restriction on the sign of the determinant of the Jacobian means the Levi-
Civita tensor is invariant under “parity”, and is why I call it a pseudo-tensor. Parity flips are
transformations that reverse the orientation of some coordinate axis, say ξi ≡ −xi (for some
fixed i) and ξj = xj for j 6= i. For the Levi-Civita tensor,

√
g(~x)ǫi1...iD =

√
g(~ξ)

∣∣∣∣∣∣
det diag[1, . . . , 1, −1︸︷︷︸

ith component

, 1, . . . , 1]

∣∣∣∣∣∣
ǫi1...iD =

√
g(~ξ)ǫi1...iD ; (7.3.95)

whereas, under the usual rules of coordinate transformations (eq. (7.2.15)) we would have
expected a ‘true’ tensor Ti1...iD to behave, for instance, as

T(1)(2)...(i−1)(i)(i+1)...(D)(~x)
∂xi

∂ξi
= −T(1)(2)...(i−1)(i)(i+1)...(D)(~ξ). (7.3.96)

Orientation of coordinate system What is orientation? It is the choice of how one orders
the coordinates in use, say (x1, x2, . . . , xD), together with the convention that ǫ12...D ≡ 1.

In 2D flat spacetime, for example, we may choose the ‘right-handed’ (x1, x2) as Cartesian
coordinates, ǫ12 ≡ 1, and obtain the infinitesimal volume d2~x = dx1dx2. We can switch to
cylindrical coordinates

~x(~ξ) = r(cosφ, sinφ). (7.3.97)

so that

∂xi

∂r
= (cosφ, sinφ),

∂xi

∂φ
= r(− sinφ, cosφ), r ≥ 0, φ ∈ [0, 2π). (7.3.98)
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If we ordered (ξ1, ξ2) = (r, φ), we would have

ǫi1i2
∂xi1

∂r

∂xi2

∂φ
= det

[
cos φ −r sin φ
sinφ r cosφ

]
= r(cosφ)2 + r(sinφ)2 = r. (7.3.99)

If we instead ordered (ξ1, ξ2) = (φ, r), we would have

ǫi1i2
∂xi1

∂φ

∂xi2

∂r
= det

[
−r sinφ cosφ
r cos φ sinφ

]
= −r(sinφ)2 − r(cosφ)2 = −r. (7.3.100)

We can see that going from (x1, x2) to (ξ1, ξ2) ≡ (r, φ) is orientation preserving; and we should
also choose ǫrφ ≡ 1.54

Problem 7.19. By going from Cartesian coordinates (x1, x2, x3) to spherical ones,

~x(~ξ) = r(sin θ cosφ, sin θ sinφ, cos θ), (7.3.101)

determine what is the orientation preserving ordering of the coordinates of ~ξ, and is ǫrθφ equal
+1 or −1?

Infinitesimal volume re-visited The infinitesimal volume we encountered earlier can really
be written as

d(vol.) = dD~x
√
|g(~x)|ǫ12...D = dD~x

√
|g(~x)|, (7.3.102)

so that under a coordinate transformation ~x → ~x(~ξ), the necessarily positive infinitesimal volume

written in ~x transforms into another positive infinitesimal volume, but written in ~ξ:

dD~x
√

|g(~x)|ǫ12...D = dD~ξ

√∣∣∣g(~ξ)
∣∣∣ǫ12...D. (7.3.103)

Below, we will see that dD~x
√

|g(~x)| in modern integration theory is viewed as a differential
D−form.

Problem 7.20. We may consider the infinitesimal volume in 3D flat space in Cartesian
coordinates

d(vol.) = dx1dx2dx3. (7.3.104)

Now, let us switch to spherical coordinates ~ξ, with the ordering in the previous problem. Show
that it is given by

dx1dx2dx3 = d3~ξ

√
|g(~ξ)|,

√
|g(~ξ)| = ǫi1i2i3

∂xi1

∂ξ1
∂xi2

∂ξ2
∂xi3

∂ξ3
. (7.3.105)

Can you compare

√
|g(~ξ)| with the volume of the parallelepiped formed by ∂ξ1x

i, ∂ξ2x
i and

∂ξ3x
i?55

54We have gone from a ‘right-handed’ coordinate system (x1, x2) to a ‘right-handed’ (r, φ); we could also have
gone from a ‘left-handed’ one (x2, x1) to a ‘left-handed’ (φ, r) and this would still be orientation-preserving.

55Because of the existence of locally flat coordinates {yi}, the interpretation of
√
|g(ξ)| as the volume of

parallelepiped formed by {∂ξ1yi, . . . , ∂ξDyi} actually holds very generally.

154



Cross-Product in Flat 3D, Right-hand rule Notice the notion of orientation in 3D is
closely tied to the “right-hand rule” in vector calculus. Let ~X and ~Y be vectors in Euclidean
3-space. In Cartesian coordinates, where gij = δij, you may check that their cross product is

(
~X × ~Y

)k
= ǫijkX iY j . (7.3.106)

For example, if ~X is parallel to the positive x1 axis and ~Y parallel to the positive x2-axis, so
that ~X = | ~X|(1, 0, 0) and ~Y = |~Y |(0, 1, 0), the cross product reads

(
~X × ~Y

)k
→ | ~X||~Y |ǫ12k = | ~X||~Y |δk3 , (7.3.107)

i.e., it is parallel to the positive x3 axis. (Remember k cannot be either 1 or 2 because ǫijk is
fully antisymmetric.) If we had chosen ǫ123 = ǫ123 ≡ −1, then the cross product would become
the “left-hand rule”. Below, I will continue to point out, where appropriate, how this issue of
orientation arises in differential geometry.

Problem 7.21. Show that the Levi-Civita tensor with all upper indices is given by

ǫ̃i1i2...iD =
sgn det(gab)√

|g|
ǫi1i2...iD . (7.3.108)

In curved spaces, the sign of the det gab = 1; whereas in curved spacetimes it depends on the
signature used for the flat metric.56 Hint: Raise the indices by contracting with inverse metrics,
then recall the cofactor expansion definition of the determinant.

Problem 7.22. Show that the covariant derivative of the Levi-Civita tensor is zero.

∇j ǫ̃i1i2...iD = 0. (7.3.109)

(Hint: Start by expanding the covariant derivative in terms of Christoffel symbols; then go
through some combinatoric reasoning or invoke the equivalence principle.) From this, explain
why the following equalities are true; for some vector V ,

∇j

(
ǫ̃i1i2...iD−2jkVk

)
= ǫ̃i1i2...iD−2jk∇jVk = ǫ̃i1i2...iD−2jk∂jVk. (7.3.110)

Why is ∇iVj −∇jVi = ∂iVj − ∂jVi for any Vi? Hint: expand the covariant derivatives in terms
of the partial derivatives and the Christoffel symbols.

Combinatorics This is an appropriate place to state how to actually construct a fully
antisymmetric tensor from a given tensor Ti1...iN . Denoting Π(i1 . . . iN) to be a permutation of
the indices {i1 . . . iN}, the antisymmetrization procedure is given by

T[i1...iN ] =

N !∑

permutations Π of {i1,i2,...,iN}

σΠ · TΠ(i1...iN ) (7.3.111)

=
∑

even permutations Π of {i1,i2,...,iN}

TΠ(i1...iN ) −
∑

odd permutations Π of {i1,i2,...,iN}

TΠ(i1...iN ).

56See eq. (7.2.51) to understand why the sign of the determinant of the metric is always determined by the
sign of the determinant of its flat counterpart.
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In words: for a rank−N tensor, T[i1...iN ] consists of a sum of N ! terms. The first is Ti1...iN .
Each and every other term consists of T with its indices permuted over all the N ! − 1 distinct
remaining possibilities, multiplied by σΠ = +1 if it took even number of index swaps to get to
the given permutation, and σΠ = −1 if it took an odd number of swaps. (The σΠ is often called
the sign of the permutation Π.) For example,

T[ij] = Tij − Tji, T[ijk] = Tijk − Tikj − Tjik + Tjki + Tkij − Tkji. (7.3.112)

Can you see why eq. (7.3.111) yields a fully antisymmetric object? Consider any pair of distinct
indices, say ia and ib, for 1 ≤ (a 6= b) ≤ N . Since the sum on its right hand side contains every
permutation (multiplied by the sign) – we may group the terms in the sum of eq. (7.3.111)
into pairs, say σΠℓ

Tj1...ia...ib...jN −σΠℓ
Tj1...ib...ia...jN . That is, for a given term σΠℓ

Tj1...ia...ib...jN there
must be a counterpart with ia ↔ ib swapped, multipled by a minus sign, because – if the first
term involved even (odd) number of swaps to get to, then the second must have involved an odd
(even) number. If we now considered swapping ia ↔ ib in every term in the sum on the right
hand side of eq. (7.3.111),

T[i1...ia...ib...iN ] = σΠℓ
Tj1...ia...ib...jN − σΠℓ

Tj1...ib...ia...jN + . . . , (7.3.113)

T[i1...ib...ia...iN ] = − (σΠℓ
Tj1...ia...ib...jN − σΠℓ

Tj1...ib...ia...jN + . . . ) . (7.3.114)

Problem 7.23. Given Ti1i2...iN , how do we construct a fully symmetric object from it, i.e.,
such that swapping any two indices returns the same object?

Problem 7.24. If the Levi-Civita symbol is subject to the convention ǫ12...D ≡ 1, explain
why it is equivalent to the following expansion in Kronecker δs.

ǫi1i2...iD = δ1[i1δ
2
i2
. . . δD−1

iD−1
δDiD] (7.3.115)

Can you also explain why the following is true?

ǫa1a2...aD−1aD detA = ǫi1i2...iD−1iDA
i1
a1
Ai2

a2
. . . A

iD−1

aD−1
AiD

aD
(7.3.116)

Problem 7.25. Argue that

T[i1...iN ] = T[i1...iN−1]iN − T[iN i2...iN−1]i1 − T[i1iN i3...iN−1]i2 (7.3.117)

−T[i1i2iN i4...iN−1]i3 − · · · − T[i1...iN−2iN ]iN−1
.

Product of Levi-Civita tensors The product of two Levi-Civita tensors will be im-
portant for the discussions to come. We have

ǫ̃i1...iNk1...kD−N ǫ̃j1...jNk1...kD−N
= sgn det(gab) · ANδ

i1
[j1
. . . δiNjN ], 1 ≤ N ≤ D, (7.3.118)

ǫ̃k1...kD ǫ̃k1...kD = sgn det(gab) · A0, AN≥0 ≡ (D −N)!. (7.3.119)

(Remember 0! = 1! = 1; also, δi1[j1 . . . δ
iN
jN ] = δ

[i1
j1
. . . δ

iN ]
jN

.) Let us first understand why there are
a bunch of Kronecker deltas on the right hand side, starting from the N = D case – where no
indices are contracted.

sgn det(gab)ǫ̃
i1...iD ǫ̃j1...jD = ǫi1...iDǫj1...jD = δi1[j1 . . . δ

iD
jD] (7.3.120)
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(This means AD = 1.) The first equality follows from eq. (7.3.108). The second may seem a bit
surprising, because the indices {i1, . . . , iD} are attached to a completely different ǫ̃ tensor from
the {j1, . . . , jD}. However, if we manipulate

δi1[j1 . . . δ
iD
jD] = δi1[1 . . . δ

iD
D]σj = δ1[1 . . . δ

D
D]σiσj = σiσj = ǫi1...iDǫj1...jD , (7.3.121)

where σi = 1 if it took even number of swaps to re-arrange {i1, . . . , iD} to {1, . . . , D} and σi = −1
if it took odd number of swaps; similarly, σj = 1 if it took even number of swaps to re-arrange
{j1, . . . , jD} to {1, . . . , D} and σj = −1 if it took odd number of swaps. But σi is precisely the
Levi-Civita symbol ǫi1...iD and likewise σj = ǫj1...jD . The (≥ 1)-contractions between the ǫ̃s can, in
principle, be obtained by contracting the right hand side of (7.3.120). Because one contraction
of the (N + 1) Kronecker deltas have to return N Kronecker deltas, by induction, we now see
why the right hand side of eq. (7.3.118) takes the form it does for any N .

What remains is to figure out the actual value of AN . We will do so recursively, by finding
a relationship between AN and AN−1. We will then calculate A1 and use it to generate all the
higher ANs. Starting from eq. (7.3.118), and employing eq. (7.3.117),

ǫ̃i1...iN−1σk1...kD−N ǫ̃j1...jN−1σk1...kD−N
= ANδ

i1
[j1
. . . δ

iN−1

jN−1
δσσ] (7.3.122)

= AN

(
δi1[j1 . . . δ

iN−1

jN−1]
δσσ − δi1[σδ

i2
j2
. . . δ

iN−1

jN−1]
δσj1 − δi1[j1δ

i2
σ δ

i3
j3
. . . δ

iN−1

jN−1]
δσj2 − · · · − δi1[j1 . . . δ

iN−2

jN−2
δ
iN−1

σ] δσjN−1

)

= AN · (D − (N − 1))δi1[j1 . . . δ
iN−1

jN−1]
≡ AN−1δ

i1
[j1
. . . δ

iN−1

jN−1]
.

(The last equality is a definition, because AN−1 is the coefficient of δi1[j1 . . . δ
iN−1

jN−1]
.) We have the

relationship

AN =
AN−1

D − (N − 1)
. (7.3.123)

If we contract every index, we have to sum over all the D! (non-zero components of the Levi-
Civita symbol)2,

ǫ̃i1...iD ǫ̃i1...iD = sgn det(gab) ·
∑

i1,...,iD

(ǫi1...iD)
2 = sgn det(gab) ·D! (7.3.124)

That means A0 = D!. If we contracted every index but one,

ǫ̃ik1...kD ǫ̃jk1...kD = sgn det(gab)A1δ
i
j . (7.3.125)

Contracting the i and j indices, and invoking eq. (7.3.124),

sgn det(gab) ·D! = sgn det(gab)A1 ·D ⇒ A1 = (D − 1)!. (7.3.126)

That means we may use A1 (or, actually, A0) to generate all other AN≥0s,

AN =
AN−1

(D − (N − 1))
=

1

D − (N − 1)

AN−2

D − (N − 2)
= . . .

=
A1

(D − 1)(D − 2)(D − 3) . . . (D − (N − 1))
=

(D − 1)!

(D − 1)(D − 2)(D − 3) . . . (D − (N − 1))

157



=
(D − 1)(D − 2)(D − 3) . . . (D − (N − 1))(D −N)(D − (N + 1)) . . . 3 · 2 · 1

(D − 1)(D − 2)(D − 3) . . . (D − (N − 1))

= (D −N)!. (7.3.127)

Note that 0! = 1, so AD = 1 as we have found earlier.

Problem 7.26. Matrix determinants revisited Explain why the cofactor expansion
definition of a square matrix in eq. (3.2.1) can also be expressed as

detA = ǫi1i2...iD−1iDA1
i1
A2

i2
. . . AD−1

iD−1
AD

iD
(7.3.128)

provided we define ǫi1i2...iD−1iD in the same way we defined its lower index counterpart, including
ǫ123...D ≡ 1. That is, why can we cofactor expand about either the rows or the columns of a
matrix, to obtain its determinant? What does that tell us about the relation detAT = detA?
Can you also prove, using our result for the product of two Levi-Civita symbols, that det(A·B) =
(detA)(detB)?

Problem 7.27. In 3D vector calculus, the curl of a gradient of a scalar is zero – how would
you express that using the ǫ̃ tensor? What about the statement that the divergence of a curl of
a vector field is zero? Can you also derive, using the ǫ̃ tensor in Cartesian coordinates and eq.
(7.3.118), the 3D vector cross product identity

~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B) ~C? (7.3.129)

Hodge dual We are now ready to define the Hodge dual. Given a fully antisymmetric
rank-N tensor Ti1...iN , its Hodge dual – which I shall denote as T̃ j1...jD−N – is a fully antisymmetric
rank-(D −N) tensor whose components are

T̃ j1...jD−N ≡ 1

N !
ǫ̃j1...jD−N i1...iNTi1...iN . (7.3.130)

Invertible Note that the Hodge dual is an invertible operation, as long as we
are dealing with fully antisymmetric tensors, in that given T̃ j1...jD−N we can recover
Ti1...iN and vice versa.57 All you have to do is contract both sides with the Levi-Civita
tensor, namely

Ti1...iN =
(−)N(D−N)

(D −N)!
ǫ̃j1...jD−N i1...iN T̃

j1...jD−N . (7.3.131)

In other words T̃ j1...jD−N and Ti1...iN contain the same amount of information.

Problem 7.28. Using eq. (7.3.118), verify the proportionality constant (−)N(D−N)/(D −
N)! in the inverse Hodge dual of eq. (7.3.131), and thereby prove that the Hodge dual is indeed
invertible for fully antisymmetric tensors.

57The fully antisymmetric property is crucial here: any symmetric portion of a tensor contracted with the
Levi-Civita tensor would be lost. For example, an arbitrary rank-2 tensor can always be decomposed as Tij =
(1/2)T{ij} + (1/2)T[ij]; then, ǫ̃

i1...iD−2jkTjk = ǫ̃i1...iD−2jk((1/2)T{jk} + (1/2)T[jk]) = (1/2)ǫ̃i1...iD−2jkT[jk]. The

symmetric part is lost because ǫ̃i1...iD−2jkT{jk} = −ǫ̃i1...iD−2kjT{kj}.
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Curl The curl of a vector field Ai can now either be defined as the antisymmetric rank-2
tensor

Fij ≡ ∂[iAj] (7.3.132)

or its rank-(D − 2) Hodge dual

F̃ i1i2...iD−2 ≡ 1

2
ǫ̃i1i2...iD−2jk∂[jAk]. (7.3.133)

(D = 3)-dimensional space is a special case where both the original vector field Ai and the

Hodge dual F̃ i are rank-1 tensors. This is usually how electromagnetism is taught: that in 3D
the magnetic field is a vector arising from the curl of the vector potential Ai:

Bk =
1

2
ǫ̃ijk∂[jAk] = ǫ̃ijk∂jAk. (7.3.134)

In particular, when we specialize to 3D flat space with Cartesian coordinates:
(
~∇× ~A

)i
= ǫijk∂jAk, (Flat 3D Cartesian). (7.3.135)

(
~∇× ~A

)1
= ǫ123∂2A3 + ǫ132∂3A2 = ∂2A3 − ∂3A2, etc. (7.3.136)

By setting i = 1, 2, 3 we can recover the usual definition of the curl in 3D vector calculus. But
you may have noticed from equations (7.3.132) and (7.3.133), in any other dimension, that the
magnetic field is really not a (rank−1) vector but should be viewed either as a rank−2 curl or
a rank−(D − 2) Hodge dual of this curl.

Divergence versus Curl We can extend the definition of a curl of a vector field to that
of a rank−N fully antisymmetric Bi1...iN as

∇[σBi1...iN ] = ∂[σBi1...iN ]. (7.3.137)

(Can you explain why the ∇ can be replaced with ∂?) With the Levi-Civita tensor, we can
convert the curl of an antisymmetric tensor into the divergence of its dual,

∇σB̃
j1...jD−N−1σ =

1

N !
ǫ̃j1...jD−N−1σi1...iN∇σBi1...iN (7.3.138)

= (N + 1) · ǫ̃j1...jD−N−1σi1...iN∂[σBi1...iN ]. (7.3.139)

Problem 7.29. Show, by contracting both sides of eq. (7.3.134) with an appropriate ǫ̃-
tensor, that

ǫ̃ijkB
k = 2∂[iAj]. (7.3.140)

Assume sgn det(gab) = 1.

Problem 7.30. In D-dimensional space, is the Hodge dual of a rank-D fully antisym-
metric tensor Fi1...iD invertible? Hint: If Fi1...iD is fully antisymmetric, how many independent

components does it have? Can you use that observation to relate F̃ and Fi1...iD in

F̃ ≡ 1

D!
ǫ̃i1...iDFi1...iD? (7.3.141)
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Problem 7.31. Curl, divergence and all that The electromagnetism textbook by
J.D.Jackson contains on its very last page explicit forms of the gradient and Laplacian of a
scalar as well as divergence and curl of a vector – in Cartesian, cylindrical, and spherical coordi-
nates in 3-dimensional flat space. Can you derive them with differential geometric techniques?
Note that the vectors there are expressed in an orthonormal basis.

Cartesian coordinates In Cartesian coordinates {x1, x2, x3} ∈ R3, we have the metric

dℓ2 = δijdx
idxj . (7.3.142)

Show that the gradient of a scalar ψ is

~∇ψ = (∂1ψ, ∂2ψ, ∂3ψ) = (∂1ψ, ∂2ψ, ∂3ψ); (7.3.143)

the Laplacian of a scalar ψ is

∇i∇iψ = δij∂i∂jψ =
(
∂21 + ∂22 + ∂23

)
ψ; (7.3.144)

the divergence of a vector A is

∇iA
i = ∂iA

i; (7.3.145)

and the curl of a vector A is

(~∇× ~A)i = ǫijk∂jAk. (7.3.146)

Cylindrical coordinates In cylindrical coordinates {ρ ≥ 0, 0 ≤ φ < 2π, z ∈ R}, employ the
following parametrization for the Cartesian components of the 3D Euclidean coordinate vector

~x = (ρ cosφ, ρ sinφ, z) (7.3.147)

to argue that the flat metric is translated from gij = δij to

dℓ2 = dρ2 + ρ2dφ2 + dz2. (7.3.148)

Show that the gradient of a scalar ψ is

∇ρ̂ψ = ∂ρψ, ∇φ̂ψ =
1

ρ
∂φψ, ∇ẑψ = ∂zψ; (7.3.149)

the Laplacian of a scalar ψ is

∇i∇iψ =
1

ρ
∂ρ (ρ∂ρψ) +

1

ρ2
∂2φψ + ∂2zψ; (7.3.150)

the divergence of a vector A is

∇iA
i =

1

ρ

(
∂ρ
(
ρAρ̂

)
+ ∂φA

φ̂
)
+ ∂zA

ẑ; (7.3.151)
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and the curl of a vector A is

ǫ̃ρ̂jk∂jAk =
1

ρ
∂φA

ẑ − ∂zA
φ̂, ǫ̃φ̂jk∂jAk = ∂zA

ρ̂ − ∂ρA
ẑ,

ǫ̃ẑjk∂jAk =
1

ρ

(
∂ρ

(
ρAφ̂

)
− ∂φA

ρ̂
)
. (7.3.152)

Spherical coordinates In spherical coordinates {r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ < 2π} the Cartesian
components of the 3D Euclidean coordinate vector reads

~x = (r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)) . (7.3.153)

Show that the flat metric is now

dℓ2 = dr2 + r2
(
dθ2 + (sin θ)2dφ2

)
; (7.3.154)

the gradient of a scalar ψ is

∇r̂ψ = ∂rψ, ∇θ̂ψ =
1

r
∂θψ, ∇φ̂ψ =

1

r sin θ
∂φψ; (7.3.155)

the Laplacian of a scalar ψ is

∇i∇iψ =
1

r2
∂r
(
r2∂rψ

)
+

1

r2 sin θ
∂θ (sin θ · ∂θψ) +

1

r2(sin θ)2
∂2φψ; (7.3.156)

the divergence of a vector A reads

∇iA
i =

1

r2
∂r
(
r2Ar̂

)
+

1

r sin θ
∂θ

(
sin θ ·Aθ̂

)
+

1

r sin θ
∂φA

φ̂; (7.3.157)

and the curl of a vector A is given by

ǫ̃r̂jk∂jAk =
1

r sin θ

(
∂θ(sin θ · Aφ̂)− ∂φA

θ̂
)
, ǫ̃θ̂jk∂jAk =

1

r sin θ
∂φA

r̂ − 1

r
∂r(rA

φ̂),

ǫ̃φ̂jk∂jAk =
1

r

(
∂r

(
rAθ̂

)
− ∂θA

r̂
)
. (7.3.158)

7.4 Hypersurfaces

7.4.1 Induced Metrics

There are many physical and mathematical problems where we wish to study some (N < D)-
dimensional (hyper)surface residing (aka embedded) in aD dimensional ambient space. One way
to describe this surface is to first endow it with N coordinates {ξI|I = 1, 2, . . . , N}, whose indices
we will denote with capital letters to distinguish from the D coordinates {xi} parametrizing the

ambient space. Then the position of the point ~ξ on this hypersurface in the ambient perspective
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is given by ~x(~ξ). Distances on this hypersurface can be measured using the ambient metric by
restricting the latter on the former, i.e.,

gijdx
idxj → gij

(
~x(~ξ)

) ∂xi(~ξ)
∂ξI

∂xj(~ξ)

∂ξJ
dξIdξJ ≡ HIJ(~ξ)dξ

IdξJ. (7.4.1)

The HIJ is the (induced) metric on the hypersurface.58

Observe that the N vectors
{
∂xi

∂ξI
∂i

∣∣∣∣ I = 1, 2, . . . , N

}
, (7.4.2)

are tangent to this hypersurface. They form a basis set of tangent vectors at a given point ~x(~ξ),
but from the ambient D-dimensional perspective. On the other hand, the ∂/∂ξI themselves
form a basis set of tangent vectors, from the perspective of an observer confined to live on this
hypersurface.

Example A simple example is provided by the 2-sphere of radius R embedded in 3D flat
space. We already know that it can be parametrized by two angles ξI ≡ (0 ≤ θ ≤ π, 0 ≤ φ < 2π),
such that from the ambient perspective, the sphere is described by

xi(~ξ) = R(sin θ cosφ, sin θ sinφ, cos θ), (Cartesian components). (7.4.3)

(Remember R is a fixed quantity here.) The induced metric on the sphere itself, according to
eq. (7.4.1), will lead us to the expected result

HIJ(~ξ)dξ
IdξJ = R2

(
dθ2 + (sin θ)2dφ2

)
. (7.4.4)

Area of 2D surface in 3D flat space A common vector calculus problem is to give some
function f(x, y) of two variables, where x and y are to be interpreted as Cartesian coordinates on
a flat plane; then proceed to ask what its area is for some specified domain on the (x, y)-plane.
We see such a problem can be phrased as a differential geometric one. First, we view f as the z
coordinate of some hypersurface embedded in 3-dimensional flat space, so that

X i ≡ (x, y, z) = (x, y, f(x, y)). (7.4.5)

The tangent vectors (∂X i/∂ξI) are

∂X i

∂x
= (1, 0, ∂xf) ,

∂X i

∂y
= (0, 1, ∂yf) . (7.4.6)

The induced metric, according to eq. (7.4.1), is given by

HIJ(~ξ)dξ
IdξJ = δij

(
∂X i

∂x

∂Xj

∂x
(dx)2 +

∂X i

∂y

∂Xj

∂y
(dy)2 + 2

∂X i

∂x

∂Xj

∂y
dxdy

)
,

HIJ(~ξ)
·
=

[
1 + (∂xf)

2 ∂xf∂yf
∂xf∂yf 1 + (∂yf)

2

]
, ξI ≡ (x, y), (7.4.7)

58The Lorentzian signature of curved spacetimes, as opposed to the Euclidean one in curved spaces, complicates
the study of hypersurfaces in the former. One has to distinguish between timelike, spacelike and null surfaces.
For a pedagogical discussion see Eric Poisson’s A Relativist’s Toolkit – in fact, much of the material in this
section is heavily based on its Chapter 3. Note, however, it is not necessary to know General Relativity to study
hypersurfaces in curved spacetimes.
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where on the second line the “
·
=” means it is “represented by” the matrix to its right – the

first row corresponds, from left to right, to the xx, xy components; the second row yx and yy
components. Recall that the infinitesimal volume (= 2D area) is given in any coordinate system

~ξ by d2ξ

√
detHIJ(~ξ). That means from taking the det of eq. (7.4.7), if the domain on (x, y) is

denoted as D, the corresponding area swept out by f is given by the 2D integral
∫

D

dxdy
√
detHIJ(x, y) =

∫

D

dxdy
√
(1 + (∂xf)2)(1 + (∂yf)2)− (∂xf∂yf)2

=

∫

D

dxdy
√
1 + (∂xf(x, y))2 + (∂yf(x, y))2. (7.4.8)

Differential Forms and Volume Although we have not (and shall not) employ differential
forms very much, it is very much part of modern integration theory. One no longer writes∫
d3~xf(~x), for instance, but rather

∫
f(~x)dx1 ∧ dx2 ∧ dx3. (7.4.9)

More generally, whenever the following N−form occur under an integral sign, we have the
definition

dx1 ∧ dx2 ∧ · · · ∧ dxN−1 ∧ dxN︸ ︷︷ ︸
(Differential form notation)

≡ dN~x︸︷︷︸
Physicists’ colloquial math-speak

. (7.4.10)

(Here N ≤ D, where D is the dimension of space.) This needs to be supplemented with the
constraint that it is a fully antisymmetric object:

dxi1 ∧ dxi2 ∧ · · · ∧ dxiN−1 ∧ dxiN = ǫi1...iNdx
1 ∧ dx2 ∧ · · · ∧ dxN−1 ∧ dxN . (7.4.11)

The superposition of rank-(N ≤ D) differential forms spanned by {(1/N !)Fi1...iNdx
i1∧· · ·∧dxiN},

for arbitrary but fully antisymmetric {Fi1...iN}, forms a vector space.
Why differential forms are fundamental to integration theory is because, it is this antisym-

metry that allows its proper definition as the volume spanned by an N−parallelepiped. For one,
the antisymmetric nature of forms is responsible for the Jacobian upon a change-of-variables
~x(~y) familiar from multi-variable calculus – using eq. (7.4.11):

dx1 ∧ dx2 ∧ · · · ∧ dxN−1 ∧ dxN =
∂x1

∂yi1
∂x2

∂yi2
. . .

∂xN

∂yiN
dyi1 ∧ dyi2 ∧ · · · ∧ dyiN−1 ∧ dyiN

=
∂x1

∂yi1
∂x2

∂yi2
. . .

∂xN

∂yiN
ǫi1...iNdy1 ∧ dy2 ∧ · · · ∧ dyN−1 ∧ dyN

=

(
det

∂xa

∂yb

)
dy1 ∧ dy2 ∧ · · · ∧ dyN−1 ∧ dyN . (7.4.12)

In a (D ≥ 2)−dimensional flat space, you might be familiar with the statement that D linearly
independent vectors define a D−parallelepiped. Its volume, in turn, is computed through the
determinant of the matrix whose columns (or rows) are these vectors. If we now consider the
(N ≤ D)−form built out of N scalar fields {ΦI|I = 1, 2, . . . , N}, i.e.,

dΦ1 ∧ · · · ∧ dΦN , (7.4.13)
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let us see how it defines an infinitesimal N−volume by generalizing the notion of volume-as-
determinants.59 Focusing on theN = 2 case, if ~v ≡ (p1dx

1, . . . , pDdx
D) and ~w ≡ (q1dx

1, . . . , qDdx
D)

are two linearly independent vectors formed from pi = ∂iΦ
1 and qi = ∂iΦ

2, then

dΦ1 ∧ dΦ2 = (pidx
i) ∧ (qjdx

j) = piqjdx
i ∧ dxj (7.4.14)

is in fact the 2D area spanned by the parallelepiped defined by ~v and ~w. For, since dΦ1 ∧ dΦ2 is
a coordinate scalar, we may choose a locally flat coordinate system {yi} such that pi and qi lie
on the (1, 2)−plane; i.e., pi>2 = qi>2 = 0 and

dΦ1 ∧ dΦ2 = (pidy
i) ∧ (qjdy

j) = p1q2dy
1 ∧ dy2 + p2q1dy

2 ∧ dy1

= (p1q2 − p2q1)ddx
1dx2 = det

[
~v ~w

]
; (7.4.15)

where now

~v =
(
∂1Φ

1dy1, ∂2Φ
1dy2,~0

)
, (7.4.16)

~w =
(
∂1Φ

2dy1, ∂2Φ
2dy2,~0

)
. (7.4.17)

This argument can be readily extended to higher 2 < N ≤ D.

7.4.2 Fluxes, Gauss-Stokes’ theorems, Poincaré lemma

Normal to hypersurface Suppose the hypersurface is (D− 1) dimensional, sitting in a D
dimensional ambient space. Then it could also be described by first identifying a scalar function
of the ambient space f(~x) such that some constant-f surface coincides with the hypersurface,

f(~x) = C ≡ constant. (7.4.18)

For example, a 2-sphere of radius R can be defined in Cartesian coordinates ~x as

f(~x) = R2, where f(~x) = ~x2. (7.4.19)

Given the function f , we now show that df = 0 can be used to define a unit normal ni through

ni ≡ ∇if√
∇jf∇jf

=
gik∂kf√

glm∇lf∇mf
. (7.4.20)

That ni is of unit length can be checked by a direct calculation. For ni to be normal to the
hypersurface means, when dotted into the latter’s tangent vectors from our previous discussion,
it returns zero:

∂xi(~ξ)

∂ξI
∂if(~x)

∣∣∣∣∣
on hypersurface

=
∂

∂ξI
f
(
~x(~ξ)

)
= ∂If(~ξ) = 0. (7.4.21)

59These scalar fields {ΦI} can also be thought of as coordinates parametrizing some N−dimensional sub-space
of the ambient D−dimensional space.
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The second and third equalities constitute just a re-statement that f is constant on our hyper-
surface. Using ni we can also write down the induced metric on the hypersurface as

Hij = gij − ninj . (7.4.22)

This makes sense as an induced metric on the hypersurface of one lower dimension than that of
the ambient D-space, because Hij is itself orthogonal to n

i:

Hijn
j = (gij − ninj)n

j = ni − ni = 0. (7.4.23)

Any other vector u dotted into the metric will have its n-component subtracted out:

H i
ju

j =
(
δij − ninj

)
uj = ui − ni(nju

j). (7.4.24)

Problem 7.32. For the 2-sphere in 3-dimensional flat space, defined by eq. (7.4.19), calcu-
late the components of the induced metric Hij in eq. (7.4.22) and compare it that in eq. (7.4.4).

Hint: compute d
√
~x2 in terms of {dxi} and exploit the constraint ~x2 = R2; then consider what

is the −(nidx
i)2 occurring in Hijdx

idxj, when written in spherical coordinates?

Problem 7.33. Consider some 2-dimensional surface parametrized by ξI = (σ, ρ), whose
trajectory in D-dimensional flat space is provided by the Cartesian coordinates ~x(σ, ρ). What is
the formula analogous to eq. (7.4.8), which yields the area of this 2D surface over some domain
D on the (σ, ρ) plane? Hint: First ask, “what is the 2D induced metric?” Answer:

Area =

∫

D

dσdρ
√

(∂σ~x)2(∂ρ~x)2 − (∂σ~x · ∂ρ~x)2, (∂I~x)
2 ≡ ∂Ix

i∂Ix
jδij . (7.4.25)

(This is not too far from the Nambu-Goto action of string theory.)

Directed surface elements What is the analog of d ~(Area) from vector calculus? This
question is important for the discussion of the curved version of Gauss’ theorem, as well as the
description of fluxes – rate of flow of, say, a fluid – across surface areas. If we have a (D − 1)
dimensional hypersurface with induced metric HIJ(ξ

K), determinant H ≡ detHIJ, and a unit
normal ni to it, then the answer is

dD−1Σi ≡ dD−1~ξ

√
|H(~ξ)|ni

(
~x(~ξ)

)
(7.4.26)

= dD−1~ξ ǫ̃ij1j2...jD−1

(
~x(~ξ)

) ∂xj1(~ξ)
∂ξ1

∂xj2(~ξ)

∂ξ2
. . .

∂xjD−1(~ξ)

∂ξD−1
. (7.4.27)

The difference between equations (7.4.26) and (7.4.27) is that the first requires knowing the
normal vector beforehand, while the second description is purely intrinsic to the hypersurface
and can be computed once its parametrization ~x(~ξ) is provided. Also be aware that the choice
of orientation of the {ξI} should be consistent with that of the ambient {~x} and the infinitesimal
volume dD~x

√
|g|ǫ12...D.

The dD−1ξ
√
|H| is the (scalar) infinitesimal area (= (D − 1)-volume) and ni provides the

direction. The second equality requires justification. Let’s define {E i
I |I = 1, 2, 3, . . . , D − 1} to

be the (D − 1) vector fields

E i
I (
~ξ) ≡ ∂xi(~ξ)

∂ξI
. (7.4.28)
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Problem 7.34. Show that the tensor in eq. (7.4.27),

ñi ≡ ǫ̃ij1j2...jD−1
E j1
1 . . . E jD−1

D−1 (7.4.29)

is orthogonal to all the (D − 1) vectors {E i
I }. Since ni is the sole remaining direction in the D

space, ñi must be proportional to ni

ñi = ϕ · ni. (7.4.30)

To find ϕ we merely have to dot both sides with ni,

ϕ(~ξ) =

√
|g(~x(~ξ))|ǫij1j2...jD−1

ni∂x
j1(~ξ)

∂ξ1
. . .

∂xjD−1(~ξ)

∂ξD−1
. (7.4.31)

Given a point of the surface ~x(~ξ) we can always choose the coordinates ~x of the ambient space
such that, at least in a neighborhood of this point, x1 refers to the direction orthogonal to the
surface and the {x2, x3, . . . , xD} lie on the surface itself. Argue that, in this coordinate system,
eq. (7.4.20) becomes

ni =
g(i)(1)√
g(1)(1)

, (7.4.32)

and therefore eq. (7.4.31) reads

ϕ(~ξ) =

√
|g(~x(~ξ))|

√
g(1)(1). (7.4.33)

Cramer’s rule (cf. (3.2.12)) from matrix algebra reads: the ij component (the ith row and jth
column) of the inverse of a matrix (A−1)ij is ((−)i+j/ detA) times the determinant of A with the
jth row and ith column removed. Use this and the definition of the induced metric to conclude
that

ϕ(~ξ) =

√
|H(~ξ)|, (7.4.34)

thereby proving the equality of equations (7.4.26) and (7.4.27).

Gauss’ theorem We are now ready to state (without proof) Gauss’ theorem. In 3D
vector calculus, Gauss tells us the volume integral, over some domain D, of the divergence of a
vector field is equal to the flux of the same vector field across the boundary ∂D of the domain.
Exactly the same statement applies in a D dimensional ambient curved space with some closed
(D − 1) dimensional hypersurface that defines ∂D.

Let V i be an arbitrary vector field, and let ~x(~ξ) describe this closed boundary sur-
face so that it has an (outward) directed surface element dD−1Σi given by equations
(7.4.26) and (7.4.27). Then

∫

D

dDx
√

|g(~x)|∇iV
i(~x) =

∫

∂D

dD−1ΣiV
i
(
~x(~ξ)

)
. (7.4.35)
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Flux Just as in 3D vector calculus, the dD−1ΣiV
i can be viewed as the flux of some fluid

described by V i across an infinitesimal element of the hypersurface ∂D.
Remark Gauss’ theorem is not terribly surprising if you recognize the integrand as a total
derivative,

√
|g|∇iV

i = ∂i(
√

|g|V i) (7.4.36)

(recall eq. (7.3.76)) and therefore it should integrate to become a surface term (≡ (D − 1)-
dimensional integral). The right hand side of eq. (7.4.35) merely makes this surface integral

explicit, in terms of the coordinates ~ξ describing the boundary ∂D.
Closed surface Note that if you apply Gauss’ theorem eq. (7.4.35), on a closed surface
such as the sphere, the result is immediately zero. A closed surface is one where there are no
boundaries. (For the 2-sphere, imagine starting with the Northern Hemisphere; the boundary is
then the equator. By moving this boundary south-wards, i.e., from one latitude line to the next,
until it vanishes at the South Pole – our boundary-less surface becomes the 2-sphere.) Since
there are no boundaries, the right hand side of eq. (7.4.35) is automatically zero.

Problem 7.35. We may see this directly for the 2-sphere case. The metric on the 2-sphere
of radius R is

dℓ2 = R2(dθ2 + (sin θ)2dφ2), θ ∈ [0, π], φ ∈ [0, 2π). (7.4.37)

Let V i be an arbitrary smooth vector field on the 2-sphere. Show explicitly – namely, do the
integral – that

∫

S2
d2x
√

|g(~x)|∇iV
i = 0. (7.4.38)

Hint: For the φ-integral, remember that φ = 0 and φ = 2π refer to the same point, for a fixed
θ.

Problem 7.36. Hudge dual formulation of Gauss’ theorem in D-space. Let us
consider the Hodge dual of the vector field in eq. (7.4.35),

Ṽi1...iD−1
≡ ǫ̃i1...iD−1jV

j . (7.4.39)

First show that

ǫ̃ji1...iD−1∇jṼi1...iD−1
∝ ∂[1Ṽ23...D] ∝ ∇iV

i. (7.4.40)

(Find the proportionality factors.) Then deduce the dual formulation of Gauss’ theorem, namely,
the relationship between

∫

D

dDx∂[1Ṽ23...D] and

∫

∂D

dD−1ξṼi1...iD−1

(
~x(~ξ)

) ∂xi1(~ξ)
∂ξ1

· · · ∂x
iD−1(~ξ)

∂ξD−1
. (7.4.41)

The Ṽi1...iD−1
∂ξ1x

i1 . . . ∂ξD−1xiD−1 can be viewed as the original tensor Ṽi1...iD−1
, but projected

onto the boundary ∂D.
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In passing, I should point out, what you have shown in eq. (7.4.41) can be written in a
compact manner using differential forms notation:

∫

D

dṼ =

∫

∂D

Ṽ , (7.4.42)

by viewing the fully antisymmetric object Ṽ as a differential (D − 1)-form.

Coulomb potential A basic application of Gauss’ theorem is the derivation of the (spher-
ically symmetric) Coulomb potential of a unit point charge in D spatial dimensions, satisfying

∇i∇iψ = −δ(D)(~x− ~x′) (7.4.43)

in flat space. Let us consider as domain D the sphere of radius r centered at the point charge
at ~x′. Using spherical coordinates, ~x = rn̂(~ξ), where n̂ is the unit radial vector emanating from
~x′, the induced metric on the boundary ∂D is simply the metric of the (D− 1)-sphere. We now
identify in eq. (7.4.35) V i = ∇iψ. The normal vector is simply ni∂i = ∂r, and so Gauss’ law
using eq. (7.4.26) reads

−1 =

∫

SD−1

dD−1~ξ
√

|H|rD−1∂rψ(r). (7.4.44)

The
∫
SD−1 d

D−1~ξ
√
|H| = 2πD/2/Γ(D/2) is simply the solid angle subtended by the (D−1)-sphere

(≡ volume of the (D − 1)-sphere of unit radius). So at this point we have

∂rψ(r) = − Γ(D/2)

2πD/2rD−1
⇒ ψ(r) =

Γ(D/2)

4((D − 2)/2)πD/2rD−2
=

Γ(D
2
− 1)

4πD/2rD−2
. (7.4.45)

I have used the Gamma-function identity Γ(z)z = Γ(z+1). Replacing r → |~x−~x′|, we conclude
that the Coulomb potential due to a unit strength electric charge is

ψ(~x) =
Γ(D

2
− 1)

4πD/2|~x− ~x′|D−2
. (7.4.46)

It is instructive to also use Gauss’ law using eq. (7.4.27).

−1 =

∫

SD−1

dD−1~ξǫi1...iD−1j
∂xi1

∂ξ1
· · · ∂x

iD−1

∂ξD−1
gjk(~x(~ξ))∂kψ(r ≡

√
~x2). (7.4.47)

On the surface of the sphere, we have the completeness relation (cf. (4.3.18)):

gjk(~x(~ξ)) = δIJ
∂xj

∂ξI
∂xk

∂ξJ
+
∂xj

∂r

∂xk

∂r
. (7.4.48)

(This is also the coordinate transformation for the inverse metric from Cartesian to Spherical
coordinates.) At this point,

−1 =

∫

SD−1

dD−1~ξǫi1...iD−1j
∂xi1

∂ξ1
· · · ∂x

iD−1

∂ξD−1

(
δIJ
∂xj

∂ξI
∂xk

∂ξJ
+
∂xj

∂r

∂xk

∂r

)
∂kψ(r ≡

√
~x2)

=

∫

SD−1

dD−1~ξǫi1...iD−1j
∂xi1

∂ξ1
· · · ∂x

iD−1

∂ξD−1

∂xj

∂r

(
∂xk

∂r
∂kψ(r ≡

√
~x2)

)
. (7.4.49)
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The Levi-Civita symbol contracted with the Jacobians can now be recognized as simply the

determinant of the D-dimensional metric written in spherical coordinates

√
|g(r, ~ξ)|. (Note the

determinant is positive because of the way we ordered our coordinates.) That is in fact equal

to

√
|H(r, ~ξ)| because grr = 1. Whereas (∂xk/∂r)∂kψ = ∂rψ. We have therefore recovered the

previous result using eq. (7.4.26).
Tensor elements Suppose we have a (N < D)-dimensional domain D parametrized by

{~x(ξI)|I = 1, 2, . . . , N} whose boundary ∂D is parametrized by {~x(θA)|A = 1, 2, . . . , N − 1}. We
may define a (D −N)-tensor element that generalizes the one in eq. (7.4.27)

dNΣi1...iD−N
≡ dNξ ǫ̃i1...iD−N j1j2...jN

(
~x(~ξ)

) ∂xj1(~ξ)
∂ξ1

∂xj2(~ξ)

∂ξ2
. . .

∂xjN (~ξ)

∂ξN
. (7.4.50)

We may further define the boundary surface element

dN−1Σi1...iD−Nk ≡ dN−1θ ǫ̃i1...iD−Nkj1...jN−1

(
~x(~θ)

) ∂xj1(~θ)
∂θ1

∂xj2(~θ)

∂θ2
. . .

∂xjN−1(~θ)

∂θN−1
. (7.4.51)

Stokes’ theorem60 Stokes’ theorem is the assertion that, in a (N < D)-
dimensional simply connected subregion D of some D-dimensional ambient space,
the divergence of a fully antisymmetric rank (D − N + 1) tensor field Bi1...iD−Nk

integrated over the domain D can also be expressed as the integral of Bi1...iD−Nk over
its boundary ∂D. Namely,

∫

D

dNΣi1...iD−N
∇kB

i1...iD−Nk =
1

D −N + 1

∫

∂D

dN−1Σi1...iD−NkB
i1...iD−Nk, (7.4.52)

N < D, B[i1...iD−Nk] = (D −N + 1)!Bi1...iD−Nk.

Problem 7.37. Hodge dual formulation of Stokes’ theorem. Define

B̃j1...jN−1
≡ 1

(D −N + 1)!
ǫ̃j1...jN−1i1...iD−NkB

i1...iD−Nk. (7.4.53)

Can you convert eq. (7.4.52) into a relationship between

∫

D

dN~ξ∂[i1B̃i2...iN ]
∂xi1

∂ξ1
. . .

∂xiN

∂ξN
and

∫

∂D

dN−1~θB̃i1...iN−1

∂xi1

∂θ1
. . .

∂xiN−1

∂θN−1
? (7.4.54)

Furthermore, explain why the Jacobians can be “brought inside the derivative”.

∂[i1B̃i2...iN ]
∂xi1

∂ξ1
. . .

∂xiN

∂ξN
=
∂xi1

∂ξ[1
∂|i1|

(
∂xi2

∂ξ2
. . .

∂xiN

∂ξN ]
B̃i2...iN

)
. (7.4.55)

The | · | around i1 indicate it is not to be part of the anti-symmetrization; only do so for the
ξ-indices.

60Just like for the Gauss’ theorem case, in equations (7.4.50) and (7.4.51), the ~ξ and ~θ coordinate systems need
to be defined with orientations consistent with the ambient dD~x

√
|g(~x)|ǫ12...D one.
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Like for Gauss’ theorem, we point out that – by viewing B̃j1...jN−1
as components of a (N−1)-

form, Stokes’ theorem in eq. (7.4.52) reduces to the simple expression

∫

D

dB̃ =

∫

∂D

B̃. (7.4.56)

Relation to 3D vector calculus Stokes’ theorem in vector calculus states that the flux of the
curl of a vector field over some 2D domain D sitting in the ambient 3D space, is equal to the
line integral of the same vector field along the boundary ∂D of the domain. Because eq. (7.4.52)
may not appear, at first sight, to be related to the Stokes’ theorem from 3D vector calculus, we
shall work it out in some detail.

Problem 7.38. Consider some 2D hypersurface D residing in a 3D curved space. For
simplicity, let us foliate D with constant ρ surfaces; let the other coordinate be φ, so ~x(0 ≤ ρ ≤
ρ>, 0 ≤ φ ≤ 2π) describes a given point on D and the boundary ∂D is given by the closed loop
~x(ρ = ρ>, 0 ≤ φ ≤ 2π). Let

Bik ≡ ǫ̃ikjAj (7.4.57)

for some vector field Aj . This implies in Cartesian coordinates,

∇kB
ik =

(
~∇× ~A

)i
. (7.4.58)

Denote ~ξ = (ρ, φ). Show that Stokes’ theorem in eq. (7.4.52) reduces to the N = 2 vector
calculus case:

∫ ρ>

0

dρ

∫ 2π

0

dφ

√
|H(~ξ)|~n ·

(
~∇× ~A

)
=

∫ 2π

0

dφ
∂~x(ρ>, φ)

∂φ
· ~A(~x(ρ>, φ)). (7.4.59)

where the unit normal vector is given by

~n =
(∂~x(~ξ)/∂ρ)× (∂~x(~ξ)/∂φ)∣∣∣(∂~x(~ξ)/∂ρ)× (∂~x(~ξ)/∂φ)

∣∣∣
. (7.4.60)

Of course, once you’ve verified Stokes’ theorem for a particular coordinate system, you know by
general covariance it holds in any coordinate system, i.e.,

∫

D

d2ξ

√
|H(~ξ)|niǫ̃

ijk∂jAk =

∫

∂D

Aidx
i. (7.4.61)

Step-by-step guide: Start with eq. (7.4.27), and show that in a Cartesian basis,

d2Σi = d2ξ

(
∂~x

∂ρ
× ∂~x

∂φ

)i

. (7.4.62)
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The induced metric on the 2D domain D is

HIJ = δij∂Ix
i∂Jx

j . (7.4.63)

Work out its determinant. Then work out

|(∂~x/∂ρ)× (∂~x/∂φ)|2 (7.4.64)

using the identity

ǫ̃ijkǫ̃lmk = δilδ
j
m − δimδ

j
l . (7.4.65)

Can you thus relate

√
|H(~ξ)| to |(∂~x/∂ρ)× (∂~x/∂φ)|, and thereby verify the left hand side of

eq. (7.4.52) yields the left hand side of (7.4.59)?
For the right hand side of eq. (7.4.59), begin by arguing that the boundary (line) element in

eq. (7.4.51) becomes

dΣki = dφ ǫ̃kij
∂xj

∂φ
. (7.4.66)

Then use ǫ̃ij1j2 ǫ̃kj1j2 = 2δik to then show that the right hand side of eq. (7.4.52) is now that of
eq. (7.4.59).

Problem 7.39. Discuss how the tensor element in eq. (7.4.50) transforms under a change

of hypersurface coordinates ~ξ → ~ξ(~ξ′). Do the same for the tensor element in eq. (7.4.51): how

does it transforms under a change of hypersurface coordinates ~θ → ~θ(~θ′)?

Poincaré Lemma In 3D vector calculus you have learned that a vector ~B is divergence-
less everywhere in space iff it is the curl of another vector ~A.

~∇ · ~B = 0 ⇔ ~B = ~∇× ~A. (7.4.67)

And, the curl of a vector ~B is zero everywhere in space iff it is the gradient of scalar ψ.

~∇× ~B = 0 ⇔ ~B = ~∇ψ. (7.4.68)

Here, we shall see that these statements are special cases of the following.

Poincaré lemma In an arbitrary D dimensional curved space, let Bi1...iN (~x)
be a fully antisymmetric rank-N tensor field, with N ≤ D. Then, everywhere within
a simply connected region of space,

Bi1...iN = ∂[i1Ci2...iN ], (7.4.69)

– i.e., B is the “curl” of a fully antisymmetric rank-(N − 1) tensor C – if and only if

∂[jBi1...iN ] = 0. (7.4.70)

In differential form notation, by treating C as a (N − 1)-form and B as a N -form,
Poincaré would read: throughout a simply connected region of space,

dB = 0 iff B = dC. (7.4.71)
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Example I: Electromagnetism Let us recover the 3D vector calculus statement above, that
the divergence-less nature of the magnetic field is equivalent to it being the curl of some vector
field. Consider the dual of the magnetic field Bi:

B̃ij ≡ ǫ̃ijkBk. (7.4.72)

The Poincaré Lemma says B̃ij = ∂[iAj] if and only if ∂[kB̃ij] = 0 everywhere in space. We shall
proceed to take the dual of these two conditions. Via eq. (7.3.118), the first is equivalent to

ǫ̃kijB̃ij = ǫ̃kij∂[iAj],

= 2ǫ̃kij∂iAj. (7.4.73)

On the other hand, employing eq. (7.3.118),

ǫ̃kijB̃ij = ǫ̃kij ǫ̃ijlB
l = 2Bk; (7.4.74)

and therefore ~B is the curl of Ai:

Bk = ǫ̃kij∂iAj (7.4.75)

While the latter condition dB̃ = 0 is, again utilizing eq. (7.3.118), equivalent to

0 = ǫ̃kij∂kB̃ij

= ǫ̃kij ǫ̃
ijl∇kBl = 2∇lB

l. (7.4.76)

That is, the divergence of ~B is zero.
Example II A simple application is that of the line integral

I(~x, ~x′;P) ≡
∫

P

Aidx
i, (7.4.77)

where P is some path in D-space joining ~x′ to ~x. Poincaré tells us, if ∂[iAj] = 0 everywhere in
space, then Ai = ∂iϕ, the Ai is a gradient of a scalar ϕ. Then Aidx

i = ∂iϕdx
i = dϕ, and the

integral itself is actually path independent – it depends only on the end points:

∫ ~x

~x′
Aidx

i =

∫

P

dϕ = ϕ(~x)− ϕ(~x′), whenever ∂[iAj] = 0. (7.4.78)

Problem 7.40. Make a similar translation, from the Poincaré Lemma, to the 3D vector
calculus statement that a vector B is curl-less if and only if it is a pure gradient everywhere.

Problem 7.41. Consider the vector potential, written in 3D Cartesian coordinates,

Aidx
i =

x1dx2 − x2dx1

(x1)2 + (x2)2
. (7.4.79)

Can you calculate

Fij = ∂[iAj]? (7.4.80)
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Consider a 2D surface whose boundary ∂D circle around the (0, 0,−∞ < x3 < +∞) line once.
Can you use Stokes’ theorem to show that

Fij = 2πǫij3δ(x
1)δ(x2)? (7.4.81)

Hint: Convert from Cartesian to polar coordinates (x, y, z) = (r cosφ, r sinφ, z); the line integral
on the right hand side of eq. (7.4.61) should simplify considerably. This problem illustrates the
subtlety regarding the “simply connected” requirement of the Poincaré lemma. The magnetic
field Fij here describes that of a highly localized solenoid lying along the z-axis; its corresponding
vector potential is a pure gradient in any simply connected 3−volume not containing the z-axis,
but it is no longer a pure gradient in say a solid torus region encircling (but still not containing)
it.
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8 Differential Geometry In Curved Spacetimes

We now move on to differential geometry in curved spacetimes. I assume the reader is familiar
with basic elements of Special Relativity and with the discussion in §(7) – in many instances,
I will simply bring over the results from there to the curved spacetime context. In §(8.1) I
discuss Lorentz/Poincaré symmetry in flat spacetime, since it is fundamental to both Special
and General Relativity. I then cover curved spacetime differential geometry proper from §(8.2)
through §(8.4), focusing on issues not well developed in §(7). These three sections, together with
§(7), are intended to form the first portion – the kinematics of curved space(time)s part61 – of
a course on gravitation. Following that, §(8.5) contains somewhat specialized content regarding
the expansion of geometric quantities off some fixed ‘background’ geometry; and finally, in §(8.6)
we compile conformal transformation properties of geometric objects.

8.1 Poincaré and Lorentz symmetry

Poincaré and Lorentz symmetries play fundamental roles in our understanding of both classical
relativistic physics and quantum theories of elementary particle interactions. In this section, we
shall study it in some detail.

The metric of flat spacetime is, in Cartesian coordinates {xµ},

ds2 ≡ ηµνdx
µdxν , (8.1.1)

ηµν ≡ diag[1,−1, . . . ,−1]. (8.1.2)

Strictly speaking we should be writing eq. (8.2.1) in the ‘dimensionally-correct’ form

ds2 = c2dt2 − d~x · d~x; (8.1.3)

where c is the speed of light and [ds2] = [Length2]. However, as explained in §(C), since the
speed of light shows up frequently in relativity and gravitational physics, it is often advantageous
to set c = 1, which in turn means all speeds are measured using c as the base unit. (v = 0.23
would mean v = 0.23c, for instance.) We shall do so throughout this section.

Notice too, we have switched from Latin/English alphabets in §(7), say i, j, k, · · · ∈ {1, 2, 3, . . . , D}
to Greek ones µ, ν, · · · ∈ {0, 1, 2, . . . , D ≡ d − 1}; the former run over the spatial coordinates
while the latter over time (0th) and space (1, . . . , D). Also note that the opposite ‘mostly plus’
sign convention ηµν = diag[−1,+1, . . . ,+1] is equally valid and, in fact, more popular in the
contemporary physics literature.

We shall define Poincaré transformations62 x(x′) to be the set of all coordinate transforma-
tions that leave the flat spacetime metric invariant:

ds2 = ηµνdx
µdxν = ηα′β′dx′αdx′β . (8.1.4)

As we will now proceed to demonstrate, the most general invertible Poincaré transformation is

xµ = aµ + Λµ
νx

′ν , (8.1.5)

61As opposed to the dynamics of spacetime, which involves studying General Relativity, Einstein’s field equa-
tions for the metric, and its applications.

62Poincaré transformations are also sometimes known as inhomogeneous Lorentz transformations.
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where aµ is a constant vector describing a spacetime translation; and Λµ
ν is an arbitrary

(spacetime-constant) Lorentz transformation, which in turn is defined as one that leaves ηµν
invariant in the following manner:

Λµ
αΛ

ν
βηµν = ηαβ. (8.1.6)

Derivation of eq. (8.1.4)63 Now, under a coordinate transformation, eq. (8.1.4) reads

ηµνdx
µdxν = ηµν

∂xµ

∂x′α
∂xν

∂x′β
dx′αdx′β = ηα′β′dx′αdx′β . (8.1.7)

Let us differentiate both sides of eq. (8.1.7) with respect to x′σ.

ηµν
∂2xµ

∂x′σ∂x′α
∂xν

∂x′β
+ ηµν

∂xµ

∂x′α
∂2xν

∂x′σ∂x′β
= 0. (8.1.8)

Next, consider symmetrizing σα and anti-symmetrizing σβ.

2ηµν
∂2xµ

∂x′σ∂x′α
∂xν

∂x′β
+ ηµν

∂xµ

∂x′α
∂2xν

∂x′σ∂x′β
+ ηµν

∂xµ

∂x′σ
∂2xν

∂x′α∂x′β
= 0 (8.1.9)

ηµν
∂2xµ

∂x′σ∂x′α
∂xν

∂x′β
− ηµν

∂2xµ

∂x′β∂x′α
∂xν

∂x′σ
= 0 (8.1.10)

Since partial derivatives commute, the second term from the left of eq. (8.1.8) vanishes upon
anti-symmetrization of σβ. Adding equations (8.1.9) and (8.1.10) hands us

3ηµν
∂2xµ

∂x′σ∂x′α
∂xν

∂x′β
+ ηµν

∂xµ

∂x′α
∂2xν

∂x′σ∂x′β
= 0. (8.1.11)

Finally, subtracting eq. (8.1.8) from eq. (8.1.11) produces

2ηµν
∂2xµ

∂x′σ∂x′α
∂xν

∂x′β
= 0. (8.1.12)

Because we have assumed Poincaré transformations are invertible, we may contract both sides
with ∂x′β/∂xκ.

ηµν
∂2xµ

∂x′σ∂x′α
∂xν

∂x′β
∂x′β

∂xκ
= ηµν

∂2xµ

∂x′σ∂x′α
δνκ = 0. (8.1.13)

Finally, we contract both sides with ηκρ:

ηµ′κ′ηκ
′ρ ∂2xµ

∂x′σ∂x′α
=

∂2xρ

∂x′σ∂x′α
= 0. (8.1.14)

In words: since the second x′-derivative of x has to vanish, the transformation from x to x′ can
at most go linearly as x′; it cannot involve higher powers of x′. This implies the form in eq.
(8.1.5). Plugging eq. (8.1.5) the latter into eq. (8.1.7), we recover the necessary definition of
the Lorentz transformation in eq. (8.1.6).

63This argument can be found in Weinberg [13].
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The most general invertible coordinate transformations that leave the Cartesian
Minkowski metric invariant involve the (spacetime-constant) Lorentz transformations
{Λµ

α} of eq (8.1.6) plus constant spacetime translations.

(Homogeneous) Lorentz Transformations form a Group If Λµ
α and Λ′µ

α denotes
different Lorentz transformations, then notice the composition

Λ′′µ
α ≡ Λµ

σΛ
′σ
α (8.1.15)

is also a Lorentz transformation. For, keeping in mind the fundamental definition in eq. (8.1.6),
we may directly compute

Λ′′µ
αΛ

′′ν
βηµν = Λµ

σΛ
′σ
αΛ

ν
ρΛ

′ρ
βηµν

= Λ′σ
αΛ

′ρ
βησρ = ηαβ . (8.1.16)

To summarize:

The set of all Lorentz transformations {Λµ
α} satisfying eq. (8.1.6), together with

the composition law in eq. (8.1.15) for defining successive Lorentz transformations,
form a Group.

Proof Let Λµ
α, Λ

′µ
α and Λ′′µ

α denote distinct Lorentz transformations.

• Closure Above, we have just verified that applying successive Lorentz transforma-
tions yields another Lorentz transformation; for e.g., Λµ

σΛ
′σ
ν and Λµ

σΛ
′σ
ρΛ

′′ρ
ν are Lorentz

transformations.

• Associativity Because applying successive Lorentz transformations amount to matrix
multiplication, and since the latter is associative, that means Lorentz transformations are
associative:

Λ · Λ′ · Λ′′ = Λ · (Λ′ · Λ′′) = (Λ · Λ′) · Λ′′. (8.1.17)

• Identity δµα is the identity Lorentz transformation:

δµσΛ
σ
ν = Λµ

σδ
σ
ν = Λµ

ν , (8.1.18)

and

δµαδ
ν
βηµν = ηαβ . (8.1.19)

• Inverse Let us take the determinant of both sides of eq. (8.1.6) – by viewing the latter
as matrix multiplication, we have ΛT · η · Λ = η, which in turn means

(det Λ)2 = 1 ⇒ det Λ = ±1. (8.1.20)

Here, we have recalled detAT = detA for any square matrix A. Since the determinant of
Λ is strictly non-zero, what eq. (8.1.20) teaches us is that Λ is always invertible: Λ−1 is
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guaranteed to exist. What remains is to check that, if Λ is a Lorentz transformation, so is
Λ−1. Starting with the matrix form of eq. (8.1.6), and utilizing (Λ−1)T = (ΛT )−1,

ΛTηΛ = η (8.1.21)

(ΛT )−1ΛTηΛΛ−1 = (ΛT )−1 · η · Λ−1 (8.1.22)

η = (Λ−1)T · η · Λ−1. (8.1.23)

Lorentzian ‘inner product’ is preserved That Λ is a Lorentz transformation means
it is a linear operator that preserves the Lorentzian inner product. For suppose v and w are
arbitrary vectors, the inner product of v′ ≡ Λv and w′ ≡ Λw is that between v and w.

v′ · w′ ≡ ηαβv
′αw′β = ηαβΛ

α
µΛ

β
νv

µwν (8.1.24)

= ηµνv
µwν = v · w. (8.1.25)

This is very much analogous to rotations in RD being the linear transformations that preserve
the Euclidean inner product between spatial vectors: ~v · ~w = ~v′ · ~w′ for all R̂T R̂ = ID×D, where
~v′ ≡ R̂~v and ~w′ ≡ R̂ ~w.

Problem 8.1. 4D Lorentz Group and SL2,C Define {σµ} to be the basis set of 2 × 2
complex matrices formed by the 2× 2 identity matrix together with the Pauli matrices, namely

σ0 ≡
[
1 0
0 1

]
, σ1 ≡

[
0 1
1 0

]
, σ2 ≡

[
0 −i
i 0

]
, σ3 ≡

[
1 0
0 −1

]
. (8.1.26)

Now let pµ ≡ (p0, p1, p2, p3) be a 4-component collection of real numbers, and verify that

det pµσ
µ = ηµνpµpν ≡ p2. (8.1.27)

Next, consider the following transformation,

pµσ
µ → L† · pµσµ · L, (8.1.28)

where L is some arbitrary 2× 2 complex matrix. (This transformation preserves the Hermitian
nature of pµσ

µ for real pµ.) Then consider taking their determinant:

det[pµσ
µ] → det

[
L† · pµσµ · L

]
(8.1.29)

What property must L obey in order that this leaves the determinant invariant, i.e.,

det[pµσ
µ] = det

[
L† · pµσµ · L

]
= p2? (8.1.30)

Argue that the set of all L’s obeying eq. (8.1.30), with | detL| = 1 (this is the ‘S’≡‘special’ in
SL2,C), forms a group.

We wish to study in some detail what the most general form Λµ
α may take. To this end, we

shall do so by examining how it acts on some arbitrary vector field vµ. Even though this section
deals with Minkowski spacetime, this vµ may also be viewed as a vector in a curved spacetime
written in an orthonormal basis.
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Rotations Let us recall that any spatial vector vi may be rotated to point along the
1−axis while preserving its Euclidean length. That is, there is always a R̂, obeying R̂T R̂ = I

such that

R̂i
jv

j=̇± |~v|(1, 0, . . . , 0)T , |~v| ≡
√
δijvivj . (8.1.31)

64Conversely, since R̂ is necessarily invertible, any spatial vector vi can be obtained by rotating
it from |~v|(1,~0T ). Moreover, in D + 1 notation, these rotation matrices can be written as

R̂µ
ν=̇

[
1 ~0T

~0 R̂i
j

]
(8.1.32)

R̂0
νv

ν = v0, (8.1.33)

R̂i
νv

ν = R̂i
jv

j = (±|~v|, 0, . . . , 0)T . (8.1.34)

These considerations tell us, if we wish to study Lorentz transformations that are not rotations,
we may reduce their study to the (1 + 1)D case. To see this, we first observe that

Λ




v0

v1

...
vD


 = Λ

[
1 ~0T

~0 R̂

]


v0

±|~v|
~0


 . (8.1.35)

And if the result of this matrix multiplication yields non-zero spatial components, namely
(v′0, v′1, . . . , v′D)T , we may again find a rotation matrix R̂′ such that

Λ




v0

v1

...
vD


 =




v′0

v′1

...
v′D


 =

[
1 ~0T

~0 R̂′

]


v′0

±|~v′|
~0


 . (8.1.36)

At this point, we have reduced our study of Lorentz transformations to

[
1 ~0T

~0 R̂′T

]
Λ

[
1 ~0T

~0 R̂

]

v0

v1

~0


 ≡ Λ′



v0

v1

~0


 =



v′0

v′1

~0


 . (8.1.37)

Because Λ was arbitrary so is Λ′, since one can be gotten from another via rotations.
Time Reversal & Parity Flips Suppose the time component of the vector vµ were

negative (v0 < 0), we may write it as
[
−|v0|
~v

]
= T̂

[
|v0|
~v

]
, T̂ ≡

[
−1 ~0T

~0 ID×D

]
; (8.1.38)

where T̂ is the time reversal matrix since it reverses the sign of the time component of the vector.
You may readily check that T̂ itself is a Lorentz transformation in that it satisfies T̂ TηT̂ = η.

64This R̂ is not unique: for example, by choosing another rotation matrix R̂′′ that only rotates the space
orthogonal to vi, R̂R̂′′~v and R̂~v both yield the same result.
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Problem 8.2. Parity flip of the ith axis Suppose we wish to flip the sign of the ith spatial
component of the vector, namely vi → −vi. You can probably guess, this may be implemented
via the diagonal matrix with all entries set to unity, except the ith component – which is set
instead to −1.

iP̂
µ
νv

ν = vµ, µ 6= i, (8.1.39)

iP̂
i
νv

ν = −vi, (8.1.40)

iP̂ ≡ diag[1, 1, . . . , 1, −1︸︷︷︸
(i+1)th component

, 1, . . . , 1]. (8.1.41)

Define the rotation matrix R̂µ
ν such that it leaves all the axes orthogonal to the 1st and ith

invariant, namely

R̂µ
ν ê

ν
ℓ = êνℓ , (8.1.42)

êµℓ ≡ δµℓ , ℓ 6= 1, i; (8.1.43)

while rotating the (1, i)-plane clockwise by π/2:

R̂ · ê1 = −êi, R̂ · êi = +ê1. (8.1.44)

Now argue that

iP̂ = R̂T · 1P̂ · R̂. (8.1.45)

Is iP̂ a Lorentz transformation?

Lorentz Boosts As already discussed, we may focus on the 2D case to elucidate the
form of the most general Lorentz boost. This is the transformations that would mix time and
space components, and yet leave the metric of spacetime ηµν = diag[1,−1] invariant. (Neither
time reversal, parity flips, nor spatial rotations mix time and space.) This is what revolutionized
humanity’s understanding of spacetime at the beginning of the 1900’s: inspired by the fact that
the speed of light is the same in all inertial frames, Einstein discovered Special Relativity, that
the space and time coordinates of one frame have to become intertwined when being translated
to those in another frame. We will turn this around later when discussing Maxwell’s equations:
the constancy of the speed of light in all inertial frames is in fact a consequence of the Lorentz
covariance of the former.

Problem 8.3. We wish to find a 2×2 matrix Λ that obeys ΛT ·η ·Λ = η, where ηµν = diag[1,−1].
By examining the diagonal terms of ΛT · η · Λ = η, show that

Λ=̇

[
σ1 cosh(ξ1) σ2 sinh(ξ2)
σ3 sinh(ξ1) σ4 cosh(ξ2)

]
, (8.1.46)

where the σ1,2,3,4 are either +1 or−1; altogether, there are 16 choices of signs. (Hint: x2−y2 = c2,
for constant c, describes a hyperbola on the (x, y) plane.) From the off diagonal terms of
ΛT · η · Λ = η, argue that either ξ1 = ξ2 ≡ ξ or ξ1 = −ξ2 ≡ ξ. Then explain why, if Λ0

0 were not
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positive, we can always multiply it by a time reversal matrix to render it so; and likewise Λ1
1

can always be rendered positive by multiplying it by a parity flip. By requiring Λ0
0 and Λ1

1 be
both positive, therefore, prove that the resulting 2D Lorentz boost is

Λµ
ν(ξ) =

[
cosh(ξ) sinh(ξ)
sinh(ξ) cosh(ξ)

]
. (8.1.47)

This ξ is known as rapidity. In 2D, the rotation matrix is

R̂i
j(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
; (8.1.48)

and therefore rapidity ξ is to the Lorentz boost in eq. (8.1.47) what the angle θ is to rotation

R̂i
j(θ) in eq. (8.1.48).

2D Lorentz Group: In (1+1)D, the continuous boost in Λµ
ν(ξ) in eq. (8.1.47),

the continuous rotation R̂i
j(θ) in eq. (8.1.48); and the discrete time reversal and

spatial reflection operators

T̂ =

[
−1 0
0 1

]
and P̂ =

[
1 0
0 −1

]
; (8.1.49)

altogether form the full set of Lorentz transformations – i.e., all solutions to eq.
(8.2.3) consist of products of these 4 matrices.

To understand the meaning of the rapidity ξ, let us consider applying it to an arbitrary 2D
vector Uµ.

U ′ ≡ Λ · U =

[
U0 cosh(ξ) + U1 sinh(ξ)
U1 cosh(ξ) + U0 sinh(ξ)

]
. (8.1.50)

Lorentz Boost: Timelike case Suppose U were timelike, U2 > 0 ⇒ (U0)2 > (U1)2 ⇒
|U0/U1| > 1. Then it is not possible to find a finite ξ such that U ′0 = 0, because that would
amount to solving tanh(ξ) = −U0/U1 but tanh lies between −1 and +1 while −U0/U1 is either
less than −1 or greater than +1. On the other hand, it does mean we may solve for ξ that
would set the spatial component to zero: tanh(ξ) = −U1/U0. Recall that tangent vectors may
be interpreted as the derivative of the spacetime coordinates with respect to some parameter λ,
namely Uµ ≡ dxµ/dλ. Therefore

U1

U0
=

dx1

dλ

dλ

dx0
=

dx1

dx0
≡ v (8.1.51)

is the velocity associated with Uµ in the frame {xµ}. Starting from tanh(ξ) = −v, some algebra
would then hand us (cf. eq. (8.1.47))

cosh(ξ) = γ ≡ 1√
1− v2

, (8.1.52)

sinh(ξ) = −γ · v = − v√
1− v2

, (8.1.53)

Λµ
ν =

[
γ −γ · v

−γ · v γ

]
. (8.1.54)
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This in turn yields

U ′ =
(
sgn(U0)

√
ηµνUµUν , 0

)T
; (8.1.55)

leading us to interpret the Λµ
ν we have found in eq. (8.1.54) as the boost that bring observers

to the frame where the flow associated with Uµ is ‘at rest’. (Note that, if Uµ = dxµ/dτ , where
τ is proper time, then ηµνU

µUν = 1.)
As an important aside, we may generalize the two-dimensional Lorentz boost in eq. (8.1.54)

to D−dimensions. One way to do it, is to simply append to the 2D Lorentz-boost matrix a
(D−2)× (D−2) identity matrix (that leaves the 2− through D−spatial components unaltered)
in a block diagonal form:

Λµ
ν

?
=




γ −γ · v 0
−γ · v γ 0

0 0 I(D−2)×(D−2)


 . (8.1.56)

But this is not doing much: we are still only boosting in the 1−direction. What if we wish to
boost in vi direction, where vi is now some arbitrary spatial vector? To this end, we may promote
the (0, 1) and (1, 0) components of eq. (8.1.54) to the spatial vectors Λ0

i and Λi
0 parallel to vi.

Whereas the (1, 1) component of eq. (8.1.54) is to be viewed as acting on the 1D space parallel to
vi, namely the operator vivj/~v2. (As a check: When vi = v(1,~0), vivj/~v2 = δi1δ

j
1.) The identity

operator acting on the orthogonal (D− 2)× (D− 2) space, i.e., the analog of I(D−2)×(D−2) in eq.
(8.1.56), is Πij = δij − vivj/~v2. (Notice: Πijvj = (δij − vivj/~v2)vj = 0.) Altogether, the Lorentz
boost in the vi direction is given by

Λµ
ν(~v)=̇

[
γ −γvi

−γvi γ vivj

~v2
+
(
δij − vivj

~v2

)
]
, ~v2 ≡ δabv

abb. (8.1.57)

It may be worthwhile to phrase this discussion in terms of the Cartesian coordinates {xµ} and
{x′µ} parametrizing the two inertial frames. What we have shown is that the Lorentz boost in
eq. (8.1.57) describes

U ′µ = Λµ
ν(~v)U

ν , (8.1.58)

Uµ =
dxµ

dλ
, U ′µ =

dx′µ

dλ
=
(
sgn(U0)

√
ηµνUµUν , 0

)T
. (8.1.59)

λ is the intrinsic 1D coordinate parametrizing the worldlines, and by definition does not alter
under Lorentz boost. The above statement is therefore equivalent to

dx′µ = Λµ
ν(~v)dx

ν , (8.1.60)

x′µ = Λµ
ν(~v)x

ν + aµ, (8.1.61)

where the spacetime translation aµ shows up here as integration constants.

Problem 8.4. Lorentz boost in (D + 1)−dimensions If vµ ≡ (1, vi), check via a di-
rection calculation that the Λµ

ν in eq. (8.1.57) produces a Λµ
νv

ν that has no non-trivial spa-
tial components. Also check that eq. (8.1.57) is, in fact, a Lorentz transformation. What is
Λµ

σ(~v)Λ
σ
ν(−~v)?
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Lorentz Boost: Spacelike case Suppose U were spacelike, U2 < 0 ⇒ (U0)2 <
(U1)2 ⇒ |U1/U0| = |dx1/dx0| ≡ |v| > 1. Then, recalling eq. (8.1.50), it is not possible to find a
finite ξ such that U ′1 = 0, because that would amount to solving tanh(ξ) = −U1/U0, but tanh
lies between −1 and +1 whereas −U1/U0 = −v is either less than −1 or greater than +1. On
the other hand, it is certainly possible to have U ′0 = 0. Simply do tanh(ξ) = −U0/U1 = −1/v.
Similar algebra to the timelike case then hands us

cosh(ξ) =
(
1− v−2

)−1/2
=

|v|√
v2 − 1

, (8.1.62)

sinh(ξ) = −(1/v)
(
1− v−2

)−1/2
= − sgn(v)√

v2 − 1
, (8.1.63)

U ′ =
(
0, sgn(v)

√
−ηµνUµUν

)T
, v ≡ U1

U0
. (8.1.64)

We may interpret U ′µ and Uµ as infinitesimal vectors joining the same pair of spacetime points
but in their respective frames. Specifically, U ′µ are the components in the frame where the pair
lies on the same constant-time surface (U ′0 = 0). While Uµ are the components in a boosted
frame.

Lorentz Boost: Null (aka lightlike) case If U were null, that means (U0)2 = (U1)2,
which in turn means

Uµ = ω(1,±1) (8.1.65)

for some real number ω. Upon a Lorentz boost, eq. (8.1.50) tells us

U ′ ≡ Λ · U = ω

[
cosh(ξ)± sinh(ξ)
sinh(ξ)± cosh(ξ)

]
. (8.1.66)

As we shall see below, if Uµ describes the d−momentum of a photon, so that |ω| is its frequency
in the un-boosted frame, the U ′0/U0 = cosh(ξ)±sinh(ξ) describes the photon’s red- or blue-shift
in the boosted frame. Notice it is not possible to set either the time nor the space component
to zero, unless ξ → ±∞.

Summary Our analysis of the group of matrices {Λ} obeying Λα
µΛ

β
νηαβ =

ηµν reveals that these Lorentz transformations consists of: time reversals, parity
flips, spatial rotations and Lorentz boosts. A timelike vector can always be Lorentz-
boosted so that all its spatial components are zero; while a spacelike vector can
always be Lorentz-boosted so that its time component is zero.

Problem 8.5. Null, spacelike vs. timelike Do null vectors form a vector space? Simi-
arly, do spacelike or timelike vectors form a vector space?

Problem 8.6. Determinants and discontinuities What are the determinants of the
time reversal T̂ and parity flips { iP̂} matrices? What is the determinant of the Lorentz boost
matrix in eq. (8.1.47)? Hint: Your answers should tells us, as long as the determinants of Lorentz
transformations are real, Lorentz transformations involving odd number of time-reversals and/or
parity flips cannot be continuously connected to the identity transformation. Whereas, when
the rapidity ξ and rotation angle θ are set to zero, Lorentz boosts and rotations respectively
become the identity in a continuous manner.
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Problem 8.7. Non-singular Coordinate transformations form a group Let us verify
explicitly that the Jacobians associated with general non-singular coordinate transformations
form a group. Specifically, let us consider transforming from the coordinate system xα to yµ,
and assume xα in terms of yµ has been provided (i.e., xα(yµ) is known). We may also proceed
to consider transforming to a third coordinate system, from yµ to zκ.

• Closure Denote the Jacobian as, for e.g., J α
µ[x → y] ≡ ∂xα/∂yµ. If we define the

group operation as simply that of matrix multiplication, verify that

J α
σ[x→ y]J σ

ν [y → z] = J α
ν [x→ z]. (8.1.67)

In words: multiplying the transformation matrix bringing us from x to y followed by that
from y to z, yields the Jacobian that brings us from x directly to z. This composition law
is what we would need, if the group operation is to implement coordinate transformations.

• Associativity Explain why the composition law for Jacobians is associative.

• Identity What is the identity Jacobian? What is the most general coordinate trans-
formation it corresponds to?

• Inverse By non-singular, we mean detJ α
µ 6= 0. What does this imply about the

existence of the inverse (J −1)αµ?

8.2 Constancy of c; Orthonormal Frames; Timelike, Spacelike vs.
Null Vectors; Gravitational Time Dilation

Flat Spacetimes Cartesian coordinates play a basic but special role in interpreting physics
in both flat Euclidean space δij and flat Minkowski spacetime ηµν : they parametrize time du-
rations and spatial distances in orthogonal directions – i.e., every increasing tick mark along
a given Cartesian axis corresponds directly to a measurement of increasing length or time in
that direction. This is generically not so, say, for coordinates in curved space(time) because the
notion of what constitutes a ‘straight line’ is significantly more subtle there; or even spherical
coordinates (r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ < 2π) in flat 3D space – for the latter, only the radial
coordinate r corresponds to actual distance (from the origin).

We will therefore begin in flat spacetime written in Cartesian coordinates {xµ ≡ (t, ~x)}. Flat
spacetime is also otherwise known as Minkowski spacetime, and the ‘square’ of the distance
between xµ and xµ + dxµ, is given by

ds2 = ηµνdx
µdxν = (dx0)2 − d~x · d~x

= (dt)2 − δijdx
idxj ; (8.2.1)

where the Minkowski metric tensor reads

ηµν=̇diag[1,−1, . . . ,−1]. (8.2.2)
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Constancy of c One of the primary motivations that led Einstein to recognize eq. (8.2.1)
as the proper geometric setting to describe physics, is the realization that the speed of light c
is constant in all inertial frames. In modern physics, the latter is viewed as a consequence of
spacetime translation and Lorentz symmetry, as well as the null character of the trajectories
swept out by photons. That is, for transformation matrices {Λ} satisfying

Λα
µΛ

β
νηαβ = ηµν , (8.2.3)

and constant vectors {aµ} we have

ηµνdx
µdxν = ηµνdx

′µdx′ν (8.2.4)

whenever

xα = Λα
µx

′µ + aα. (8.2.5)

The physical interpretation is that the frames parametrized by {xµ = (t, ~x)} and {x′µ = (t′, ~x′)}
are inertial frames: compact bodies with no external forces acting on them will sweep out
geodesics d2xµ/dτ 2 = 0 = d2x′µ/dτ ′2, where the proper times τ and τ ′ are defined through
the relations dτ = dt

√
1− (d~x/dt)2 and dτ ′ = dt′

√
1− (d~x′/dt′)2. To interpret physical phe-

nomenon taking place in one frame from the other frame’s perspective, one would first have to
figure out how to translate between x and x′.

Let xµ be the spacetime Cartesian coordinates of a single photon; in a different Lorentz frame
it has Cartesian coordinates x′µ. Invoking its null character, namely ds2 = 0 – which holds in
any inertial frame – we have (dx0)2 = d~x · d~x and (dx′0)2 = d~x′ · d~x′. This in turn tells us the
speeds in both frames is unity:

|d~x|
dx0

=
|d~x′|
dx′0

= 1. (8.2.6)

A more thorough and hence deeper justification would be to recognize, it is the sign difference
between the ‘time’ part and the ‘space’ part of the metric in eq. (8.2.1) – together with its
Lorentz invariance – that gives rise to the wave equations obeyed by the photon. Equation
(8.2.6) then follows as a consequence.

Curved Spacetime, Spacetime Volume & Orthonormal Basis The generalization
of the ‘distance-squared’ between xµ to xµ +dxµ, from the Minkowski to the curved case, is the
following “line element”:

ds2 = gµν(x)dx
µdxν , (8.2.7)

where x is simply shorthand for the spacetime coordinates {xµ}, which we emphasize may no
longer be Cartesian. We also need to demand that gµν be real, symmetric, and has 1 positive
eigenvalue associated with the one ‘time’ coordinate and (d − 1) negative ones for the spatial
coordinates. The infinitesimal spacetime volume continues to take the form

d(vol.) = ddx
√

|g(x)|, (8.2.8)

where |g(x)| = | det gµν(x)| is now the absolute value of the determinant of the metric gµν .
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Just like the curved space case, to interpret physics in the neighborhood of some spacetime
location xµ, we introduce an orthonormal basis {εµ̂α} through the ‘diagonalization’ process:

gµν(x) = ηαβε
α̂
µ(x)ε

β̂

ν
(x). (8.2.9)

By defining εα̂ ≡ εα̂µdx
µ, the analog to achieving a Cartesian-like expression for the spacetime

metric is

ds2 =
(
ε0̂
)2

−
D∑

i=1

(
εî
)2

= ηµνε
µ̂εν̂ . (8.2.10)

This means under a local Lorentz transformation – i.e., for all

Λµ
α(x)Λ

ν
β(x)ηµν = ηαβ, (8.2.11)

ε′µ̂(x) = Λµ
α(x)ε

′α̂(x) (8.2.12)

– the metric remains the same:

ds2 = ηµνε
µ̂εν̂ = ηµνε

′µ̂ε′ν̂ . (8.2.13)

By viewing ε̂ as the matrix with the αth row and µth column given by εα̂µ, the determinant of
the metric gµν can be written as

det gµν(x) = (det ε̂)2 det ηµν . (8.2.14)

The infinitesimal spacetime volume in eq. (8.2.8) now can be expressed as

ddx
√

|g(x)| = ddx det ε̂ (8.2.15)

= ε0̂ ∧ ε1̂ ∧ · · · ∧ εd̂−1. (8.2.16)

The second equality follows because

ε0̂ ∧ · · · ∧ εd̂−1 = ε0̂
µ1
dxµ1 ∧ · · · ∧ ε0̂

µd
dxµd

= ǫµ1...µd
ε0̂

µ1
. . . εd̂−1

µd

dx0 ∧ · · · ∧ dxd−1 = (det ε̂)ddx. (8.2.17)

Of course, that gµν may be ‘diagonalized’ follows from the fact that gµν is a real symmetric
matrix:

gµν =
∑

α,β

Oα
µλαηαβO

β
ν =

∑

α,β

εα̂µηαβε
β̂

ν
, (8.2.18)

where all {λα} are positive by assumption, so we may take their positive root:

εα̂µ =
√
λαO

α
µ, {λα > 0}, (No sum over α). (8.2.19)
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That ε0̂
µ
acts as ‘standard clock’ and {εî

µ
|i = 1, 2, . . . , D} act as ‘standard rulers’ is because

they are of unit length:

gµνεα̂µε
β̂

ν
= ηαβ. (8.2.20)

The ·̂ on the index indicates it is to be moved with the flat metric, namely

εα̂µ = ηαβεβ̂µ and εα̂µ = ηαβε
β̂

µ
; (8.2.21)

while the spacetime index is to be moved with the spacetime metric

εα̂µ = gµνεα̂ν and εα̂µ = gµνε
α̂ν . (8.2.22)

In other words, we view ε µ
α̂ as the µth spacetime component of the αth vector field in the

basis set {ε µ
α̂ |α = 0, 1, 2, . . . , D ≡ d − 1}. We may elaborate on the interpretation that {εα̂µ}

act as ‘standard clock/rulers’ as follows. For a test (scalar) function f(x) defined throughout
spacetime, the rate of change of f along ε0̂ is

〈df | ε0̂〉 = ε µ

0̂
∂µf ≡ df

dy0
; (8.2.23)

whereas that along ε̂i is

〈df | ε̂i〉 = ε µ

î
∂µf ≡ df

dyi
; (8.2.24)

where y0 and {yi} are to be viewed as ‘time’ and ‘spatial’ parameters along the integral curves
of {ε α

µ̂ }. That these are Cartesian-like can now be expressed as

〈
d

dyµ

∣∣∣∣
d

dyν

〉
= ε α

µ̂ ε β
ν̂ 〈∂α| ∂β〉 = ε α

µ̂ ε β
ν̂ gαβ = ηµν . (8.2.25)

It is worth reiterating that the first equalities of eq. (8.2.18) are really assumptions, in that
the definitions of curved spaces include assuming all the eigenvalues of the metric are positive
whereas that of curved spacetimes include assuming all but one eigenvalue is negative.65

Note that the {d/dyµ} in eq. (8.2.25) do not, generically, commute. For instance, acting on
a scalar function,

[
d

dyµ
,

d

dyν

]
f(x) =

(
d

dyµ
d

dyν
− d

dyν
d

dyµ

)
f(x) (8.2.26)

=
(
ε α
µ̂ ∂αε

β
ν̂ − ε α

ν̂ ∂αε
β

µ̂

)
∂βf(x) 6= 0. (8.2.27)

A theorem in differential geometry – see, for instance, Schutz [12] for a pedagogical discussion –
tells us:

65In d−spacetime dimensions, with our sign convention in place, if there were n ‘time’ directions and (d − n)
‘spatial’ ones, then this carries with it the assumption that gµν has n positive eigenvalues and (d − n) negative
ones.
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A set of 1 < N ≤ d vector fields {d/dξµ} form a coordinate basis in the
N−dimensional space(time) they inhabit, if and only if they commute.

When N = d, and if [d/dyµ, d/dyν] = 0 in eq. (8.2.25), we would not only have found coordinates
{yµ} for our spacetime, we would have found this spacetime is a flat one.

It is perhaps important to clarify what a coordinate system is. In 2D, for instance, if we
had [d/dy0, d/dy1] 6= 0, this means it is not possible to vary the ‘coordinate’ y0 (i.e., along the
integral curve of d/dy0) without holding the ‘coordinate’ y1 fixed; or, it is not possible to hold
y0 fixed while moving along the integral curve of d/dy1.

Problem 8.8. Example: Schutz [12] Exercise 2.1 In 2D flat space, starting from
Cartesian coordinates xi, we may convert to cylindrical coordinates

(x1, x2) = r(cosφ, sinφ). (8.2.28)

The pair of vector fields (∂r, ∂φ) do form a coordinate basis – it is possible to hold r fixed while
going along the integral curve of ∂φ and vice versa. However, show via a direct calculation that

the following commutator involving the unit vector fields r̂ and φ̂ is not zero:
[
r̂, φ̂
]
f(r, φ) 6= 0; (8.2.29)

where

r̂ ≡ cos(φ)∂x1 + sin(φ)∂x2 , (8.2.30)

φ̂ ≡ − sin(φ)∂x1 + cos(φ)∂x2 . (8.2.31)

Therefore r̂ and φ̂ do not form a coordinate basis.

Timelike, Spacelike, and Null Distances/Vectors A fundamental difference be-
tween (curved) space versus spacetime, is that the former involves strictly positive distances
while the latter – because of the η00 = +1 for orthonormal ‘time’ versus ηii = −1 for the ith
orthonormal space component – involves positive, zero, and negative distances.

With our ‘mostly minus’ sign convention (cf. eq. (8.2.1)), a vector vµ is:

• Time-like if v2 ≡ ηµνv
µ̂vν̂ > 0. We have seen in §(8.1): if v2 > 0, it is always possible

to find a Lorentz transformation Λ (cf. eq. (8.2.3)) such that Λµ
αv

α̂ = (v′0̂,~0). In flat
spacetime, if ds2 = ηµνdx

µdxν > 0 then this result indicates it is always possible to find
an inertial frame where ds2 = dt′2: hence the phrase ‘timelike’.

More generally, for a timelike trajectory zµ(λ) in curved spacetime – i.e., gµν(dz
µ/dλ)(dzν/dλ) >

0, we may identify

dτ ≡ dλ

√
gµν(z(λ))

dzµ

dλ

dzν

dλ
(8.2.32)

as the (infinitesimal) proper time, the time read by the watch of an observer whose worldline
is zµ(λ). (As a check: when gµν = ηµν and the observer is at rest, namely d~z = 0, then
dτ = dt.) Using orthonormal frame fields in eq. (8.2.18),

dτ = dλ

√

ηαβ
dzα̂

dλ

dzβ̂

dλ
,

dzα̂

dλ
≡ εα̂µ

dzµ

dλ
. (8.2.33)

187



Furthermore, since vµ̂ ≡ dzµ̂/dλ is assumed to be timelike, it must be possible to find a

local Lorentz transformation Λµ
ν(z) such that Λµ

νv
ν̂ = (v′0̂,~0); assuming dλ > 0,

dτ = dλ

√

ηµνΛ
µ
αΛν

β

dzα̂

dλ

dzβ̂

dλ
,

= dλ

√√√√
(
dz′0̂

dλ

)2

= |dz′0̂|. (8.2.34)

• Space-like if v2 ≡ ηµνv
µ̂vν̂ < 0. We have seen in §(8.1): if v2 < 0, it is always possible

to find a Lorentz transformation Λ such that Λµ
αv

α̂ = (0, v ′̂i). In flat spacetime, if ds2 =
ηµνdx

µdxν < 0 then this result indicates it is always possible to find an inertial frame
where ds2 = −d~x′2: hence the phrase ‘spacelike’.

More generally, for a spacelike trajectory zµ(λ) in curved spacetime – i.e., gµν(dz
µ/dλ)(dzν/dλ) <

0, we may identify

dℓ ≡ dλ

√∣∣∣∣gµν(z(λ))
dzµ

dλ

dzν

dλ

∣∣∣∣ (8.2.35)

as the (infinitesimal) proper length, the distance read off some measuring rod whose tra-
jectory is zµ(λ). (As a check: when gµν = ηµν and dt = 0, i.e., the rod is lying on the
constant−t surface, then dℓ = |d~x · d~x|1/2.) Using the orthonormal frame fields in eq.
(8.2.18),

dℓ = dλ

√√√√
∣∣∣∣∣ηαβ

dzα̂

dλ

dzβ̂

dλ

∣∣∣∣∣,
dzα̂

dλ
≡ εα̂µ

dzµ

dλ
. (8.2.36)

Furthermore, since vµ̂ ≡ dzµ̂/dλ is assumed to be spacelike, it must be possible to find a

local Lorentz transformation Λµ
ν(z) such that Λµ

νv
ν̂ = (0, v ′̂i); assuming dλ > 0,

dℓ = dλ

√

ηµνΛ
µ
αΛν

β

dzα̂

dλ

dzβ̂

dλ
= |d~z′| ; (8.2.37)

d~z ′̂i ≡ Λi
µε

µ̂
νdz

ν . (8.2.38)

• Null if v2 ≡ ηµνv
µ̂vν̂ = 0. We have already seen, in flat spacetime, if ds2 = ηµνdx

µdxν = 0
then |d~x|/dx0 = |d~x′|/dx′0 = 1 in all inertial frames.

It is physically important to reiterate: one of the reasons why it is important to make such a
distinction between vectors, is because it is not possible to find a Lorentz transformation that
would linearly transform one of the above three types of vectors into another different type –
for e.g., it is not possible to Lorentz transform a null vector into a time-like one (a photon has
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no ‘rest frame’); or a time-like vector into a space-like one; etc. This is because their Lorentzian
‘norm-squared’

v2 ≡ ηµνv
µ̂vν̂ = ηαβΛ

α
µΛ

β
νv

µ̂vν̂ = ηαβv
′α̂v′β̂ (8.2.39)

has to be invariant under all Lorentz transformations v′α̂ ≡ Λα
µv

µ̂. This in turn teaches us: if v2

were positive, it has to remain so; likewise, if it were zero or negative, a Lorentz transformation
cannot alter this attribute.

Problem 8.9. Orthonormal Frames in Kerr-Schild Spacetimes A special class of
geometries, known as Kerr-Schild spacetimes, take the following form.

gµν = ḡµν +Hkµkν (8.2.40)

Many of the known black hole spacetimes can be put in this form; and in such a context, ḡµν
usually refers to flat or de Sitter spacetime.66 The kµ is null with respect to ḡµν , i.e.,

ḡαβk
αkβ = 0, (8.2.41)

and we shall move its indices with ḡµν .
Verify that the inverse metric is

gµν = ḡµν −Hkµkν , (8.2.42)

where ḡµσ is the inverse of ḡµσ, namely ḡµσḡσν ≡ δµν . Then, verify that the orthonormal frame
fields are

εα̂µ = δαµ +
1

2
Hkαkµ. (8.2.43)

Can you explain why kµ is also null with respect to the full metric gµν?

Proper times and Gravitational Time Dilation Consider two observers sweeping
out their respective timelike worldlines in spacetime, yµ(λ) and zµ(λ). If we use the time coor-
dinate of the geometry to parameterize their trajectories, their proper times – i.e., the time read
by their watches – are given by

dτy ≡ dt
√
gµν(y(t))ẏµẏν, ẏµ ≡ dyµ

dt
; (8.2.44)

dτz ≡ dt
√
gµν(z(t))żµżν , żµ ≡ dzµ

dt
. (8.2.45)

In flat spacetime, clocks that are synchronized in one frame are no longer synchronized in a
different frame – chronology is not a Lorentz invariant. We see that, in curved spacetime,
the infinitesimal passage of proper time measured by observers at the same ‘coordinate time’ t
depends on their spacetime locations:

dτy
dτz

=

√
gµν(y(t))ẏµẏν

gαβ(z(t))ẏαẏβ
. (8.2.46)

66See Gibbons et al. [16] arXiv: hep-th/0404008. The special property of Kerr-Schild coordinates is that
Einstein’s equations become linear in these coordinates.
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Physically speaking, eq. (8.2.46) does not, in general, yield the ratio of proper times measured
by observers at two different locations. (Drawing a spacetime diagram here helps.) To do so,
one would have to specify the trajectories of both yµ(λ1 ≤ λ ≤ λ2) and z

µ(λ′1 ≤ λ′ ≤ λ′2), before

the integrals ∆τ1 ≡
∫ λ2

λ1
dλ
√
gµν ẏµẏν and ∆τ2 ≡

∫ λ′
2

λ′
1
dλ′
√
gµν żµżν are evaluated and compared.

Problem 8.10. Example The spacetime geometry around the Earth itself can be approx-
imated by the line element

ds2 =
(
1− rs,E

r

)
dt2 − dr2

1− rs,E/r
− r2

(
dθ2 + sin(θ)2dφ2

)
, (8.2.47)

where t is the time coordinate and (r, θ, φ) are analogs of the spherical coordinates. Whereas
rs,E is known as the Schwarzschild radius of the Earth, and depends on the Earth’s mass ME

through the expression

rs,E ≡ 2GNME. (8.2.48)

Find the 4−beins of the geometry in eq. (8.2.47). Then find the numerical value of rs,E in eq.
(8.2.48) and take the ratio rs,E/RE, where RE is the radius of the Earth. Explain why this means
we may – for practical purposes – expand the metric in eq. (8.2.48) as

ds2 =
(
1− rs,E

r

)
dt2 − dr2

(
1 +

rs,E
r

+
(rs,E
r

)2
+
(rs,E
r

)3
+ . . .

)

− r2
(
dθ2 + sin(θ)2dφ2

)
. (8.2.49)

Since we are not in flat spacetime, the (t, r, θ, φ) are no longer subject to the same interpretation.
However, use your computation of rs,E/RE to estimate the error incurred if we do continue to
interpret t and r as though they measured time and radial distances, with respect to a frame
centered at the Earth’s core.

Consider placing one clock at the base of the Taipei 101 tower and another at its tip. Denoting
the time elapsed at the base of the tower as ∆τB; that at the tip as ∆τT; and assuming for
simplicity the Earth is a perfect sphere – show that eq. (8.2.46) translates to

∆τB
∆τT

=

√
g00(RE)

g00(RE + h101)
≈ 1 +

1

2

(
rs,E

RE + h101
− rs,E
RE

)
. (8.2.50)

Here, RE is the radius of the Earth and h101 is the height of the Taipei 101 tower. Notice the
right hand side is related to the difference in the Newtonian gravitational potentials at the top
and bottom of the tower.

In actuality, both clocks are in motion, since the Earth is rotating. Can you estimate what
is the error incurred from assuming they are at rest? First arrive at eq. (8.2.50) analytically,
then plug in the relevant numbers to compute the numerical value of ∆τB/∆τT. Does the clock
at the base of Taipei 101 or that on its tip tick more slowly?

This gravitational time dilation is an effect that needs to be accounted for when setting up
a network of Global Positioning Satellites (GPS); for details, see Ashby [17].
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8.3 Connections, Curvature, Geodesics, Isometries

Connections & Christoffel Symbols The partial derivative on a scalar ϕ is a rank-1
tensor, so we shall simply define the covariant derivative acting on ϕ to be

∇αϕ = ∂αϕ. (8.3.1)

Because the partial derivative itself cannot yield a tensor once it acts on tensor, we need to
introduce a connection Γµ

αβ, i.e.,

∇σV
µ = ∂σV

µ + Γµ
σρV

ρ. (8.3.2)

Under a coordinate transformation of the partial derivatives and V µ, say going from x to x′,

∂σV
µ + Γµ

σρV
ρ =

∂x′λ

∂xσ
∂xµ

∂x′ν
∂λ′V ν′ +

(
∂x′λ

∂xσ
∂2xµ

∂x′λx′ν
+ Γµ

σρ

∂xρ

∂x′ν

)
V ν′. (8.3.3)

On the other hand, if ∇σV
µ were to transform as a tensor,

∂σV
µ + Γµ

σρV
ρ =

∂x′λ

∂xσ
∂xµ

∂x′ν
∂λ′V ν′ +

∂x′λ

∂xσ
∂xµ

∂x′τ
Γτ ′

λ′ν′V
ν′. (8.3.4)

67Since V ν′ is an arbitrary vector, we may read off its coefficient on the right hand sides of
equations (8.3.3) and (8.3.4), and deduce the connection has to transform as

∂x′λ

∂xσ
∂2xµ

∂x′λx′ν
+ Γµ

σρ(x)
∂xρ

∂x′ν
=
∂x′λ

∂xσ
∂xµ

∂x′τ
Γτ ′

λ′ν′(x
′). (8.3.5)

Moving all the Jacobians onto the connection written in the {xµ} frame,

Γτ ′
κ′ν′(x

′) =
∂x′τ

∂xµ
∂2xµ

∂x′κx′ν
+
∂x′τ

∂xµ
Γµ

σρ(x)
∂xσ

∂x′κ
∂xρ

∂x′ν
. (8.3.6)

All connections have to satisfy this non-tensorial transformation law. On the other hand, if we
found an object that transforms according to eq. (8.3.6), and if one employs it in eq. (8.3.2),
then the resulting ∇αV

µ would transform as a tensor.
Product rule For physical applications, because covariant derivatives should reduce to

partial derivatives in flat Cartesian coordinates, it is natural to require the former to obey the
usual product rule. For any two tensors T1 and T2, and suppressing all indices,

∇(T1T2) = (∇T1)T2 + T1(∇T2). (8.3.7)

Problem 8.11. Let us take the covariant derivative of a 1-form:

∇αVµ = ∂αVµ + Γ′σ
αµVσ. (8.3.8)

Can you prove that this connection is negative of the vector one in eq. (8.3.2)?

Γ′σ
αµ = −Γσ

αµ, (8.3.9)

67All un-primed indices represent tensor components in the x-system; while all primed indices those in the x′

system.
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where Γσ
αµ is the connection in eq. (8.3.2) – if we define the covariant derivative of a scalar to

be simply the partial derivative acting on the same, i.e.,

∇α (V
µWµ) = ∂α (V

µWµ)? (8.3.10)

You should assume the product rule holds, namely ∇α (V
µWµ) = (∇αV

µ)Wµ + V µ (∇αWµ).
Expand these covariant derivatives in terms of the connections and argue why this leads to eq.
(8.3.9).

Suppose we found two such connections, (1)Γ
τ
κν(x) and (2)Γ

τ
κν(x). Notice their difference

does transform as a tensor because the first term on the right hand side involving the Hessian
∂2x/∂x′∂x′ cancels out:

(1)Γ
τ ′
κ′ν′(x

′)− (2)Γ
τ ′
κ′ν′(x

′) =
∂x′τ

∂xµ
(
(1)Γ

µ
σρ(x)− (2)Γ

µ
σρ(x)

) ∂xσ
∂x′κ

∂xρ

∂x′ν
. (8.3.11)

Now, any connection can be decomposed into its symmetric and antisymmetric parts in the
following sense:

Γµ
αβ =

1

2
Γµ

{αβ} +
1

2
Γµ

[αβ]. (8.3.12)

This is, of course, mere tautology. However, let us denote

(1)Γ
µ
αβ ≡ 1

2
Γµ

αβ and (2)Γ
µ
αβ ≡ 1

2
Γµ

βα; (8.3.13)

so that

1

2
Γµ

[αβ] = (1)Γ
µ
αβ − (2)Γ

µ
αβ ≡ T µ

αβ . (8.3.14)

We then see that this anti-symmetric part of the connection is in fact a tensor. It is the symmetric
part (1/2)Γµ

{αβ} that does not transform as a tensor. For the rest of these notes, by Γµ
αβ we

shall always mean a symmetric connection. This means our covariant derivative would now read

∇αV
µ = ∂αV

µ + Γµ
αβV

β + T µ
αβV

β. (8.3.15)

As is common within the physics literature, we proceed to set to zero the torsion term: T µ
αβ → 0.

If we further impose the metric compatibility condition,

∇µgαβ = 0, (8.3.16)

then we have already seen in §(7) this implies

Γµ
αβ =

1

2
gµσ (∂αgβσ + ∂βgασ − ∂σgαβ) . (8.3.17)

Parallel Transport & Riemann Tensor Along a curve zµ(λ) such that one end is zµ(λ =
λ1) = x′µ and the other end is zµ(λ = λ2) = xµ, we may parallel transport some vector V α from
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x′ to x by exponentiating the covariant derivative along zµ(λ). If V α(x′ → x) is the result of
this parallel transport, we have

V α(x′ → x) = e(λ2−λ1)żµ(λ1)∇µV α(x′). (8.3.18)

This is the covariant derivative analog of the Taylor expansion of a scalar function – where,
translation by a constant spacetime vector aµ may be implemented as

f(xµ + aµ) = exp (aν∂ν) f(x
µ). (8.3.19)

To elucidate the definition of geometric curvature as the failure of tensors to remain invariant
under parallel transport, we may now attempt to parallel transport a vector V α around a closed
parallelogram defined by the tangent vectors A and B. We shall soon see how the Riemann
tensor itself emerges from such an analysis.

Let the 4 sides of this parallelogram have infinitesimal affine parameter length ǫ. We will
now start from one of its 4 corners, which we will denote as x. V α will be parallel transported
from x to x + ǫA; then to x + ǫA + ǫB; then to x + ǫA + ǫB − ǫA = x + ǫB; and finally back
to x + ǫB − ǫB = x. Let us first work out the parallel transport along the ‘side’ A using eq.
(8.3.18). Denoting ∇A ≡ Aµ∇µ, ∇B ≡ Bµ∇µ, etc.,

V α(x→ x+ ǫA) = exp(ǫ∇A)V
α(x),

= V α(x) + ǫ∇AV
α(x) +

ǫ2

2
∇2

AV
α(x) +O

(
ǫ3
)
. (8.3.20)

We then parallel transport this result from x+ ǫA to x+ ǫA+ ǫB.

V α(x→ x+ ǫA→ x+ ǫA+ ǫB)

= exp(ǫ∇B) exp(ǫ∇A)V
α(x),

= V α(x) + ǫ∇AV
α(x) +

ǫ2

2
∇2

AV
α(x)

+ ǫ∇BV
α(x) + ǫ2∇B∇AV

α(x)

+
ǫ2

2
∇2

BV
α(x) +O

(
ǫ3
)

= V α(x) + ǫ (∇A +∇B) V
α(x) +

ǫ2

2

(
∇2

A +∇2
B + 2∇B∇A

)
V α(x) +O

(
ǫ3
)
. (8.3.21)

Pressing on, we now parallel transport this result from x+ ǫA + ǫB to x+ ǫB.

V α(x→ x+ ǫA→ x+ ǫA + ǫB → x+ ǫB)

= exp(−ǫ∇A) exp(ǫ∇B) exp(ǫ∇A)V
α(x),

= V α(x) + ǫ (∇A +∇B) V
α(x) +

ǫ2

2

(
∇2

A +∇2
B + 2∇B∇A

)
V α(x)

− ǫ∇AV
α(x)− ǫ2

(
∇2

A +∇A∇B

)
V α(x)

+
ǫ2

2
∇2

AV
α(x) +O

(
ǫ3
)
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= V α(x) + ǫ∇BV
α(x) + ǫ2

(
1

2
∇2

B +∇B∇A −∇A∇B

)
V α(x) +O

(
ǫ3
)
. (8.3.22)

Finally, we parallel transport this back to x+ ǫB − ǫB = x.

V α(x→ x+ ǫA→ x+ ǫA + ǫB → x+ ǫB → x)

= exp(−ǫ∇B) exp(−ǫ∇A) exp(ǫ∇B) exp(ǫ∇A)V
α(x),

= V α(x) + ǫ∇BV
α(x) + ǫ2

(
1

2
∇2

B +∇B∇A −∇A∇B

)
V α(x)

− ǫ∇BV
α(x)− ǫ2∇2

BV
α(x)

+
ǫ2

2
∇2

BV
α(x) +O

(
ǫ3
)

= V α(x) + ǫ2 (∇B∇A −∇A∇B) V
α(x) +O

(
ǫ3
)
. (8.3.23)

We have arrived at the central characterization of local geometric curvature. By parallel trans-
porting a vector around an infinitesimal parallelogram, we see the parallel transported vector
differs from the original one by the commutator of covariant derivatives with respect to the two
tangent vectors defining the parallelogram. In the same vein, their difference is also proportional
to the area of this parallogram, i.e., it scales as O (ǫ2) for infinitesimal ǫ.

V α(x→ x+ ǫA→ x+ ǫA + ǫB → x+ ǫB → x)− V α(x) (8.3.24)

= ǫ2 [∇B,∇A]V
α(x) +O

(
ǫ3
)
,

[∇B,∇A] ≡ ∇B∇A −∇A∇B. (8.3.25)

We shall proceed to calculate the commutator in a coordinate basis.

[∇A,∇B]V
µ ≡ Aσ∇σ (B

ρ∇ρV
µ)− Bσ∇σ (A

ρ∇ρV
µ)

= (Aσ∇σB
ρ −Bσ∇σA

ρ)∇ρV
µ + AσBρ[∇σ,∇ρ]V

µ. (8.3.26)

Let us tackle the two groups separately. Firstly,

[A,B]ρ∇ρV
µ ≡ (Aσ∇σB

ρ − Bσ∇σA
ρ)∇ρV

µ

=
(
Aσ∂σB

ρ + Γρ
σλA

σBλ − Bσ∂σA
ρ − Γρ

σλB
σAλ

)
∇ρV

µ

= (Aσ∂σB
ρ − Bσ∂σA

ρ)∇ρV
µ. (8.3.27)

Next, we need AσBρ[∇σ,∇ρ]V
µ = AσBρ(∇σ∇ρ −∇ρ∇σ)V

µ. The first term is

AσBρ∇σ∇ρV
µ = AσBρ

(
∂σ∇ρV

µ − Γλ
σρ∇λV

µ + Γµ
σλ∇ρV

λ
)

= AσBρ
(
∂σ
(
∂ρV

µ + Γµ
ρλV

λ
)
− Γλ

σρ

(
∂λV

µ + Γµ
λωV

ω
)
+ Γµ

σλ

(
∂ρV

λ + Γλ
ρωV

ω
))

= AσBρ
{
∂σ∂ρV

µ + ∂σΓ
µ
ρλV

λ + Γµ
ρλ∂σV

λ − Γλ
σρ

(
∂λV

µ + Γµ
λωV

ω
)

+ Γµ
σλ

(
∂ρV

λ + Γλ
ρωV

ω
)}

. (8.3.28)
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Swapping (σ ↔ ρ) within the parenthesis {. . . } and subtract the two results, we gather

AσBρ[∇σ,∇ρ]V
µ = AσBρ

{
∂[σΓ

µ
ρ]λV

λ + Γµ
λ[ρ∂σ]V

λ − Γλ
[σρ]

(
∂λV

µ + Γµ
λωV

ω
)

+ Γµ
λ[σ∂ρ]V

λ + Γµ
λ[σΓ

λ
ρ]ωV

ω
}

(8.3.29)

= AσBρ
(
∂[σΓ

µ
ρ]ω + Γµ

λ[σΓ
λ
ρ]ω

)
V ω. (8.3.30)

Notice we have used the symmetry of the Christoffel symbols Γµ
αβ = Γµ

βα to arrive at this
result. Since A and B are arbitrary, let us observe that the commutator of covariant derivatives
acting on a vector field is not a different operator, but rather an algebraic operation:

[∇µ,∇ν ]V
α = Rα

βµνV
β, (8.3.31)

Rα
βµν ≡ ∂[µΓ

α
ν]β + Γα

σ[µΓ
σ
ν]β (8.3.32)

= ∂µΓ
α
νβ − ∂νΓ

α
µβ + Γα

σµΓ
σ
νβ − Γα

σνΓ
σ
µβ. (8.3.33)

Inserting the results in equations (8.3.27) and (8.3.30) into eq. (8.3.26) – we gather, for arbitrary
vector fields A and B:

(
[∇A,∇B]−∇[A,B]

)
V µ = Rµ

ναβV
νAαBβ . (8.3.34)

Moreover, we may return to eq. (8.3.24) and re-express it as

V α(x→ x+ ǫA→ x+ ǫA + ǫB → x+ ǫB → x)− V α(x) (8.3.35)

= ǫ2
(
Rα

βµν(x)V
β(x)Bµ(x)Aν(x) +∇[B,A]V

α(x)
)
+O

(
ǫ3
)
. (8.3.36)

When A = ∂µ and B = ∂ν are coordinate basis vectors themselves, [A,B] = [∂µ, ∂ν ] = 0, and eq.
(8.3.34) then coincides with eq. (8.3.31). Earlier, we have already mentioned: if [A,B] = 0, the
vector fields A and B can be integrated to form a local 2D coordinate system; while if [A,B] 6= 0,
they cannot form a good coordinate system. Hence the failure of parallel transport invariance
due to the ∇[A,B] term in eq. (8.3.35) is really a measure of the coordinate-worthiness of A and
B; whereas it is the Riemann tensor term that appears to tell us something about the intrinsic
local curvature of the geometry itself.

Problem 8.12. Symmetries of the Riemann tensor Explain why, if a tensor Σαβ is
antisymmetric in one coordinate system, it has to be anti-symmetric in any other coordinate
system. Similarly, explain why, if Σαβ is symmetric in one coordinate system, it has to be sym-
metric in any other coordinate system. Compute the Riemann tensor in a locally flat coordinate
system and show that

Rαβµν =
1

2

(
∂β∂[µgν]α − ∂α∂[µgν]β

)
. (8.3.37)

From this result, argue that Riemann has the following symmetries:

Rµναβ = Rαβµν , Rµναβ = −Rνµαβ , Rµναβ = −Rµνβα. (8.3.38)
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This indicates the components of the Riemann tensor are not all independent. Below, we shall see
there are additional differential relations (aka “Bianchi identities”) between various components
of the Riemann tensor.

Finally, use these symmetries to show that

[∇α,∇β]Vν = −Rµ
ναβVµ. (8.3.39)

Hint: Start with [∇α,∇β](gνσV
σ).

Ricci tensor and scalar Because of the symmetries of Riemann in eq. (8.3.38), we
have gαβRαβµν = −gαβRβαµν = −gβαRβαµν = 0; and likewise, R µ

αβµ = 0. In fact, the Ricci
tensor is defined as the sole distinct and non-zero contraction of Riemann:

Rµν ≡ Rσ
µσν . (8.3.40)

This is a symmetric tensor, Rµν = Rνµ, because of eq. (8.3.38); for,

Rµν = gσρRσµρν = gρσRρνσµ = Rνµ. (8.3.41)

Its contraction yields the Ricci scalar

R ≡ gµνRµν . (8.3.42)

Problem 8.13. Commutator of covariant derivatives on higher rank tensor Prove
that

[∇µ,∇ν ]T
α1...αN

β1...βM

= Rα1
σµνT

σα2...αN
β1...βM

+Rα2
σµνT

α1σα3...αN
β1...βM

+ · · ·+RαN
σµνT

α1...αN−1σ
β1...βM

− Rσ
β1µνT

α1...αN
σβ2...βM

−Rσ
β2µνT

α1...αN
β1σβ3...βM

− · · · − Rσ
βMµνT

α1...αN
β1...βM−1σ

. (8.3.43)

Also verify that

[∇α,∇β]ϕ = 0, (8.3.44)

where ϕ is a scalar.

Problem 8.14. Differential Bianchi identities I Show that

Rµ
[αβδ] = 0. (8.3.45)

Hint: Use the Riemann tensor expressed in an FNC system.

Problem 8.15. Differential Bianchi identities II If [A,B] ≡ AB − BA, can you show
that the differential operator

[∇α, [∇β,∇δ]] + [∇β, [∇δ,∇α]] + [∇δ, [∇α,∇β]] (8.3.46)

is actually zero? (Hint: Just expand out the commutators.) Why does that imply

∇[αR
µν

βδ] = 0? (8.3.47)
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Using this result, show that

∇σR
σβ

µν = ∇[µR
β
ν]. (8.3.48)

The Einstein tensor is defined as

Gµν ≡ Rµν −
1

2
gµνR. (8.3.49)

From eq. (8.3.48) can you show the divergence-less property of the Einstein tensor, i.e.,

∇µGµν = ∇µ

(
Rµν −

1

2
gµνR

)
= 0? (8.3.50)

This will be an important property when discussing Einstein’s equations for General Relativity.

Geodesics As already noted, even in flat spacetime, ds2 is not positive-definite (cf.
(8.2.1)), unlike its purely spatial counterpart. Therefore, when computing the distance along a
line in spacetime zµ(λ), with boundary values z(λ1) ≡ x′ and z(λ2) ≡ x, we need to take the
square root of its absolute value:

s =

∫ λ2

λ1

∣∣∣∣gµν (z(λ))
dzµ(λ)

dλ

dzν(λ)

dλ

∣∣∣∣
1/2

dλ. (8.3.51)

A geodesic in curved spacetime that joins two points x and x′ is a path that extremizes the
distance between them. Using an affine parameter to describe the geodesic, i.e., using a λ such
that

√
|gµν żµżν | = constant, this amounts to imposing the principle of stationary action on

Synge’s world function:

σ(x, x′) ≡ 1

2
(λ2 − λ1)

∫ λ2

λ1

gαβ (z(λ))
dzα

dλ

dzβ

dλ
dλ, (8.3.52)

zµ(λ1) = x′µ, zµ(λ2) = xµ. (8.3.53)

When evaluated on geodesics, eq. (8.3.52) is half the square of the geodesic distance between x
and x′. The curved spactime geodesic equation in affine-parameter form which follows from eq.
(8.3.52), is

D2zµ

dλ2
≡ d2zµ

dλ2
+ Γµ

αβ

dzα

dλ

dzβ

dλ
= 0. (8.3.54)

The Lagragian associated with eq. (8.3.52),

Lg ≡
1

2
gµν(z(λ))ż

µżν , żµ ≡ dzµ

dλ
, (8.3.55)

not only oftentimes provides a more efficient means of computing the Christoffel symbols, it is
a constant of motion. Unlike the curved space case, however, this Lagrangian Lg can now be
positive, zero, or negative.
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• If żµ is timelike, then by choosing the affine parameter to be proper time dλ
√
gµν żµżν = dτ ,

we see that the Lagrangian is then set to Lg = 1/2.

• If żµ is spacelike, then by choosing the affine parameter to be proper length dλ
√
|gµν żµżν | =

dℓ, we see that the Lagrangian is then set to Lg = −1/2.

• If żµ is null, then the Lagrangian is zero: Lg = 0.

Formal solution to geodesic equation We may re-write eq. (8.3.54) into an integral equation
by simply integrating both sides with respect to the affine parameter λ:

vµ(λ) = vµ(λ1)−
∫ z(λ)

z(λ1)

Γµ
αβv

αdzβ ; (8.3.56)

where vµ ≡ dzµ/dλ; the lower limit is λ = λ1; and we have left the upper limit indefinite. The
integral on the right hand side can be viewed as an integral operator acting on the tangent
vector at vα(z(λ)). By iterating this equation infinite number of times – akin to the Born series
expansion in quantum mechanics – it is possible to arrive at a formal (as opposed to explicit)
solution to the geodesic equation.

Problem 8.16. Synge’s World Function In Minkowski Verify that Synge’s world
function (cf. (8.3.52)) in Minkowski spacetime is

σ̄(x, x′) =
1

2
(x− x′)2 ≡ 1

2
ηµν(x− x′)µ(x− x′)ν , (8.3.57)

(x− x′)µ ≡ xµ − x′µ. (8.3.58)

Hint: If we denote the geodesic zµ(0 ≤ λ ≤ 1) joining x′ to x in Minkowski spacetime, verify
that the solution is

zµ(0 ≤ λ ≤ 1) = x′µ + λ(x− x′)µ. (8.3.59)

Problem 8.17. Show that eq. (8.3.54) takes the same form under re-scaling and constant shifts
of the parameter λ. That is, if

λ = aλ′ + b, (8.3.60)

for constants a and b, then eq. (8.3.54) becomes

D2zµ

dλ′2
≡ d2zµ

dλ′2
+ Γµ

αβ

dzα

dλ′
dzβ

dλ′
= 0. (8.3.61)

For the timelike and spacelike cases, this is telling us that proper time and proper length are
respectively only defined up to an overall re-scaling and an additive shift. In other words, both
the base units and its ‘zero’ may be altered at will.
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Problem 8.18. Let vµ(x) be a vector field defined throughout a given spacetime. Show that
the geodesic equation (8.3.54) follows from

vσ∇σv
µ = 0, (8.3.62)

i.e., vµ is parallel transported along itself – provided we recall the ‘velocity flow’ interpretation
of a vector field:

vµ (z(s)) =
dzµ

ds
. (8.3.63)

Parallel transport preserves norm-squared The metric compatibility condition in eq. (8.3.16)
obeyed by the covariant derivative ∇α can be thought of as the requirement that the norm-
squared v2 ≡ gµνv

µvν of a geodesic vector (vµ subject to eq. (8.3.62)) be preserved under
parallel transport. Can you explain this statement using the appropriate equations?

Non-affine form of geodesic equation Suppose instead

vσ∇σv
µ = κvµ. (8.3.64)

This is the more general form of the geodesic equation, where the parameter λ is not an affine
one. Nonetheless, by considering the quantity vσ∇σ(v

µ/(vνv
ν)p), for some real number p, show

how eq. (8.3.64) can be transformed into the form in eq. (8.3.62); that is, identify an appropriate
v′µ such that

v′σ∇σv
′µ = 0. (8.3.65)

You should comment on how this re-scaling fails when vµ is null.
Starting from the finite distance integral

s ≡
∫ λ2

λ1

dλ
√
|gµν(z(λ))żµżν |, żµ ≡ dzµ

dλ
, (8.3.66)

zµ(λ1) = x′, zµ(λ2) = x; (8.3.67)

show that demanding s be extremized leads to the non-affine geodesic equation

z̈µ + Γµ
αβ ż

αżβ = żµ
d

dλ
ln
√
gαβ żαżβ . (8.3.68)

Problem 8.19. Null Geodesics & Weyl Transformations Suppose two geometries gµν
and ḡµν are related via a Weyl transformation

gµν(x) = Ω(x)2ḡµν(x). (8.3.69)

Consider the null geodesic equation in the geometry gµν(x),

k′σ∇σk
′µ = 0, gµνk

′µk′ν = 0 (8.3.70)
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where ∇ is the covariant derivative with respect to gµν ; as well as the null geodesic equation in
ḡµν(x),

kσ∇σk
µ = 0, ḡµνk

µkν = 0; (8.3.71)

where ∇ is the covariant derivative with respect to ḡµν . Show that

kµ = Ω2 · k′µ. (8.3.72)

Hint: First show that the Christoffel symbol Γ
µ

αβ[ḡ] built solely out of ḡµν is related to Γµ
αβ[g]

built out of gµν through the relation

Γµ
αβ [g] = Γ̄µ

αβ[ḡ] + δµ{β∇α} ln Ω− ḡαβ∇
µ
lnΩ. (8.3.73)

Then remember to use the constraint gµνk
′µk′ν = 0 = ḡµνk

µkν .
A spacetime is said to be conformally flat if it takes the form

gµν(x) = Ω(x)2ηµν . (8.3.74)

Solve the null geodesic equation explicitly in such a spacetime.

Problem 8.20. Light Deflection Due To Static Mass Monopole in 4D In General
Relativity the weak field metric generated by an isolated system, of total mass M , is dominated
by its mass monopole and hence goes as 1/r (i.e., its Newtonian potential)

gµν = ηµν + 2Φδµν = ηµν −
rs
r
δµν , (8.3.75)

where we assume |Φ| = rs/r ≪ 1 and

rs ≡ 2GNM. (8.3.76)

Now, the metric of an isolated static non-rotating black hole – i.e., the Schwarzschild black hole
– in isotropic coordinates is

ds2 =

(
1− rs

4r

1 + rs
4r

)2

dt2 −
(
1 +

rs
4r

)4
d~x · d~x, r ≡

√
~x · ~x. (8.3.77)

The rs ≡ 2GNM here is the Schwarzschild radius; any object falling behind r < rs will not be
able to return to the r > rs region unless it is able to travel faster than light.

Expand this metric in eq. (8.3.77) up to first order rs/r and verify this yields eq. (8.3.75).
We may therefore identify eq. (8.3.75) as either the metric due to the monopole moment of some
static mass density ρ(~x) or the far field limit rs/r ≪ 1 of the Schwarzschild black hole.

Statement of Problem: Now consider shooting a beam of light from afar, and by solving
the appropriate null geodesic equations, figure out how much angular deflection ∆ϕ it suffers
due to the presence of a mass monopole. Express the answer in terms of the coordinate radius
of closest approach r0.
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Hints: First, write down the affine-parameter form of the Lagrangian Lg for geodesic motion
in eq. (8.3.75) in spherical coordinates

~x = r (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) . (8.3.78)

Because of the spherical symmetry of the problem, we may always assume that all geodesic
motion takes place on the equatorial plane:

θ =
π

2
. (8.3.79)

Proceed to argue one may always choose the affine parameter λ such that

ṫ = 1 +
rs
r

(
1− rs

r

)−1

; (8.3.80)

such that when rs → 0, the coordinate time t becomes proper time. Next, show that angular
momentum conservation −∂Lg/∂φ̇ ≡ ℓ (constant) yields

φ̇ =
ℓ

r2

(
1 +

rs
r

)−1

. (8.3.81)

We are primarily interested in the trajectory as a function of angle, so we may eliminate all
ṙ ≡ dr/dλ as

ṙ =
dφ

dλ
r′(φ) =

ℓ

r2

(
1 +

rs
r

)−1

r′(φ), (8.3.82)

where eq. (8.3.81) was employed in the second equality. At this point, by utilizing equations
(8.3.79), (8.3.80), (8.3.81) and (8.3.82), verify that the geodesic Lagrangian now takes the form

Lg =
1

2

(
r

r − rs
− ℓ2

r2(1 + rs/r)

(
1 +

(
r′(φ)

r

)2
))

. (8.3.83)

Remember that null geodesics render Lg = 0. If r0 is the coordinate radius of closest approach,
which we shall assume is appreciably larger than the Schwarzschild radius r0 ≫ rs, that means
r′(φ) = 0 when r = r0. Show that

ℓ = r0

√
r0 + rs
r0 − rs

. (8.3.84)

Working to first order in rs, proceed to show that

dφ

dr
=

1√
r2 − r20

(
r0
r
+

rs
r + r0

)
+O

(
r2s
)
. (8.3.85)

By integrating from infinity r = ∞ to closest approach r = r0 and then out to infinity again
r = ∞, show that the angular deflection is

∆ϕ =
2rs
r0
. (8.3.86)
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Even though r0 is the coordinate radius of closest approach, in a weakly curved spacetime
dominated by the monopole moment of the central object, estimate the error incurred if we set
r0 to be the physical radius of closest approach. What is the angular deflection due to the Sun,
if a beam of light were to just graze its surface?

Note that, if the photon were undeflected, the total change in angle (
∫ r0
r=∞

dr+
∫∞

r0
dr)(dφ/dr)

would be π. Therefore, the total deflection angle is

∆ϕ = 2

∣∣∣∣
∫ r0

r=∞

dφ

dr
dr

∣∣∣∣− π. (8.3.87)

For further help on this problem, consult §8.5 of Weinberg [13].

8.4 Equivalence Principles & Geometry-Induced Tidal Forces

Weak Equivalence Principle, “Free-Fall” & Gravity as a Non-Force The universal
nature of gravitation – how it appears to act in the same way upon all material bodies inde-
pendent of their internal composition – is known as the Weak Equivalence Principle. Within
non-relativistic physics, the acceleration of some mass M1 located at ~x1, due to the Newtonian
gravitational ‘force’ exerted by some other mass M2 at ~x2, is given by

M1
d2~x1
dt2

= −n̂GNM1M2

|~x1 − ~x2|2
, n̂ ≡ ~x1 − ~x2

|~x1 − ~x2|
. (8.4.1)

Strictly speaking the M1 on the left hand side is the ‘inertial mass’, a characterization of the
resistance – so to speak – of any material body to being accelerated by an external force. While
the M1 on the right hand side is the ‘gravitational mass’, describing the strength to which
the material body interacts with the gravitational ‘force’. Viewed from this perspective, the
equivalence principle is the assertion that the inertial and gravitational masses are the same, so
that the resulting motion does not depend on them:

d2~x1
dt2

= −n̂ GNM2

|~x1 − ~x2|2
. (8.4.2)

Similarly, the acceleration of body 2 due to the gravitational force exerted by body 1 is inde-
pendent of M2:

d2~x2
dt2

= +n̂
GNM1

|~x1 − ~x2|2
. (8.4.3)

This Weak Equivalence Principle68 is one of the primary motivations that led Einstein to recog-
nize gravitation as the manifestation of curved spacetime. The reason why inertial mass appears
to be equal to its gravitational counterpart, is because material bodies now follow (timelike)
geodesics zµ(τ) in curved spacetimes:

aµ ≡ D2zµ

dτ 2
≡ d2zµ

dτ 2
+ Γµ

αβ

dzα

dτ

dzβ

dτ
= 0; gµν (z(λ))

dzµ

dτ

dzν

dτ
> 0; (8.4.4)

68See Will [18] arXiv: 1403.7377 for a review on experimental tests of various versions of the Equivalence
Principle and other aspects of General Relativity.
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so that their motion only depends on the curved geometry itself and does not depend on their
own mass.69 From this point of view, gravity is no longer a force.

Note that, strictly speaking, this “gravity-induced-dynamics-as-geodesics” is actually an ide-
alization that applies for material bodies with no internal structure and whose proper sizes are
very small compared to the length scale(s) associated with the geometric curvature itself. In real-
ity, all physical systems have internal structure – non-trivial quadrupole moments, spin/rotation,
etc. – and may furthermore be large enough that their full dynamics require detailed analysis
to understand properly.

Newton vs. Einstein Observe that the Newtonian gravity of eq. (8.4.1) in an instan-
taneous force, in that the force on body 1 due to body 2 (or, vice versa) changes immediately
when body 2 starts changing its position ~x2 – even though it is located at a finite distance away.
However, Special Relativity tells us there ought to be an ultimate speed limit in Nature, i.e.,
no physical effect/information can travel faster than c. This apparent inconsistency between
Newtonian gravity and Einstein’s Special Relativity is of course a driving motivation that led
Einstein to General Relativity. As we shall see shortly, by postulating that the effects of gravi-
tation are in fact the result of residing in a curved spacetime, the Lorentz symmetry responsible
for Special Relativity is recovered in any local “freely-falling” frame.

Massless particles Finally, this dynamics-as-geodesics also led Einstein to realize – if
gravitation does indeed apply universally – that massless particles such as photons, i.e., elec-
tromagnetic waves, must also be influenced by the gravitational field too. This is a significant
departure from Newton’s law of gravity in eq. (8.4.1), which may lead one to suspect otherwise,
since Mphoton = 0. It is possible to justify this statement in detail, but we shall simply assert
here – to leading order in the JWKB approximation, photons in fact sweep out null geodesics
zµ(λ) in curved spacetimes:

aµ ≡ D2zµ

dλ2
= 0, gµν (z(λ))

dzµ

dλ

dzν

dλ
= 0. (8.4.5)

Locally flat coordinates, Einstein Equivalence Principle & Symmetries We now
come to one of the most important features of curved spacetimes. In the neighborhood of a
timelike geodesic yµ = (s, ~y), one may choose Fermi normal coordinates xµ ≡ (s, ~x) such that
spacetime appears flat up to distances of O(1/|maxRµναβ(y = (s, ~y))|1/2); namely, gµν = ηµν
plus corrections that begin at quadratic order in the displacement ~x− ~y:

g00(x) = 1−R0a0b(s) · (xa − ya)(xb − yb) +O
(
(x− y)3

)
, (8.4.6)

g0i(x) = −2

3
R0aib(s) · (xa − ya)(xb − yb) +O

(
(x− y)3

)
, (8.4.7)

gij(x) = ηij −
1

3
Riajb(s) · (xa − ya)(xb − yb) +O

(
(x− y)3

)
. (8.4.8)

Here x0 = s is the time coordinate, and is also the proper time of the observer with the trajectory
yµ(s) = (s, ~y). (The ~y are fixed spatial coordinates; i.e., they do not depend on s.) Suppose you
were placed inside a closed box, so you cannot tell what’s outside. Then provided the box is
small enough, you will not be able to distinguish between being in “free-fall” in a gravitational
field versus being in a completely empty Minkowski spacetime.

69If there were an external non-gravitational force fµ, then the covariant Newton’s second law for a system of
mass M would read: MD2zµ/dτ2 = fµ.
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As already alluded to in the “Newton vs. Einstein” discussion above, just as the rotation
and translation symmetries of flat Euclidean space carried over to a small enough region of
curved spaces – the FNC expansion of equations (8.4.6) through (8.4.8) indicates that, within
the spacetime neighborhood of a freely-falling observer, any curved spacetime is Lorentz and
spacetime-translation symmetric. To sum:

Physically speaking, in a freely falling frame {xµ} – i.e., centered along a timelike
geodesic at x = y – physics in a curved spacetime is the same as that in flat Minkowski
spacetime up to corrections that go at least as

ǫE ≡ Length or inverse mass scale of system

Length scale of the spacetime geometric curvature
. (8.4.9)

This is the essence of the equivalence principle that lead Einstein to recognize curved spacetime
to be the setting to formulate his General Theory of Relativity. As a simple example, the
geodesic yµ itself obeys the free-particle version of Newton’s 2nd law: d2yµ/ds2 = 0.

Problem 8.21. Verify that the coefficients in front of the Riemann tensor in equations (8.4.6),
(8.4.7) and (8.4.8) are independent of the spacetime dimension. That is, starting with

g00(x) = 1−A · R0a0b(s) · (x− y)a(x− y)b +O
(
(x− y)3

)
, (8.4.10)

g0i(x) = −B · R0aib(s) · (x− y)a(x− y)b +O
(
(x− y)3

)
, (8.4.11)

gij(x) = ηij − C · Riajb(s) · (x− y)a(x− y)b +O
(
(x− y)3

)
, (8.4.12)

where A,B,C are unknown constants, compute the Riemann tensor at x = y.

Problem 8.22. Gravitational force in a weak gravitational field Consider the fol-
lowing metric:

gµν(t, ~x) = ηµν + 2Φ(~x)δµν , (8.4.13)

where Φ(~x) is time-independent. Assume this is a weak gravitational field, in that |Φ| ≪ 1 ev-
erywhere in spacetime, and there are no non-gravitational forces. (Linearized General Relativity

reduce to the familiar Poisson equation ~∇2Φ = 4πGNρ, where ρ(~x) is the mass/energy density
of matter.) Starting from the non-affine form of the action principle

−Ms = −M
∫ t2

t1

dt
√
gµν żµżν , żµ ≡ dzµ

dt

= −M
∫ t2

t1

dt
√

1− ~v2 + 2Φ(1 + ~v2), ~v2 ≡ δij ż
iżj ; (8.4.14)

expand this action to lowest order in ~v2 and Φ and work out the geodesic equation of a ‘test
mass’ M sweeping out some worldline zµ in such a spacetime. (You should find something very
familiar from Classical Mechanics.) Show that, in this non-relativistic limit, Newton’s law of
gravitation is recovered:

d2zi

dt2
= −∂iΦ. (8.4.15)

We see that, in the weakly curved spacetime of eq. (8.4.13), Φ may indeed be identified as the
Newtonian potential.
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Geodesic Deviation & Tidal Forces We now turn to the derivation of the geodesic
deviation equation. Consider two geodesics that are infinitesimally close-by. Let both of them
be parametrized by λ, so that we may connect one geodesic to the other at the same λ via an
infinitesimal vector ξµ. We will denote the tangent vector to one of geodesics to be Uµ, such
that

Uσ∇σU
µ = 0. (8.4.16)

Furthermore, we will assume that [U, ξ] = 0, i.e., U and ξ may be integrated to form a 2D
coordinate system in the neighborhood of this pair of geodesics. Then

UαUβ∇α∇βξ
µ = ∇U∇Uξ

µ = −Rµ
ναβU

νξαUβ . (8.4.17)

As its name suggests, this equation tells us how the deviation vector ξµ joining two infinitesimally
displaced geodesics is accelerated by the presence of spacetime curvature through the Riemann
tensor. If spacetime were flat, the acceleration will be zero: two initially parallel geodesics will
remain so.

For a macroscopic system, if Uµ is a timelike vector tangent to, say, the geodesic trajectory
of its center-of-mass, the geodesic deviation equation (8.4.17) then describes tidal forces acting
on it. In other words, the relative acceleration between the ‘particles’ that comprise the system
– induced by spacetime curvature – would compete with the system’s internal forces.70

Derivation of eq. (8.4.17) Starting with the geodesic equation Uσ∇σU
µ = 0, we may take

its derivative along ξ.

ξα∇α

(
Uβ∇βU

µ
)
= 0,(

ξα∇αU
β − Uα∇αξ

β
)
∇βU

µ + Uβ∇βξ
α∇αU

µ + ξαUβ∇α∇βU
µ = 0

[ξ, U ]β∇βU
µ + Uβ∇β(ξ

α∇αU
µ)− Uβξα∇β∇αU

µ + ξαUβ∇α∇βU
µ = 0

Uβ∇β(U
α∇αξ

µ) = −ξαUβ[∇α,∇β]U
µ

Uβ∇β(U
α∇αξ

µ) = −ξαUβRµ
ναβU

ν .

We have repeatedly used [ξ, U ] = 0 to state, for example, ∇Uξ
ρ = Uσ∇σξ

ρ = ξσ∇σU
ρ = ∇ξU

ρ.
It is also possible to use a more elegant notation to arrive at eq. (8.4.17).

∇UU
µ = 0 (8.4.18)

∇ξ∇UU
µ = 0 (8.4.19)

∇U ∇ξU
µ

︸ ︷︷ ︸
=∇Uξµ

+ [∇ξ,∇U ]U
µ = 0 (8.4.20)

∇U∇Uξ
µ = −Rµ

ναβU
νξαUβ (8.4.21)

On the last line, we have exploited the assumption that [U, ξ] = 0 to say [∇ξ,∇U ]U
µ =

([∇ξ,∇U ]−∇[ξ,U ])U
µ – recall eq. (8.3.34).

70The first gravitational wave detectors were in fact based on measuring the tidal squeezing and stretching of
solid bars of aluminum. They are known as “Weber bars”, named after their inventor Joseph Weber.

205



Problem 8.23. Geodesic Deviation & FNC Argue that all the Christoffel symbols
Γα

µν evaluated along the free-falling geodesic in equations (8.4.6)-(8.4.8), namely when x = y,
vanish. Then argue that all the time derivatives of the Christoffel symbols vanish along y too:
∂n≥1
s Γα

µν = 0. Why does this imply, denoting Uµ ≡ dyµ/ds, the geodesic equation

Uν∇νU
µ =

dUµ

ds
= 0? (8.4.22)

Next, evaluate the geodesic deviation equation in these Fermi Normal Coordinates (FNC) sys-
tem. Specifically, show that

UαUβ∇α∇βξ
µ =

d2ξµ

ds2
= −Rµ

0ν0ξ
ν. (8.4.23)

Why does this imply, if the deviation vector is purely spatial at a given s = s0, specifically
ξ0(s0) = dξ0/ds0 = 0, then it remains so for all time?

Problem 8.24. Tidal forces due to mass monopole of isolated body In this problem
we will consider sprinkling test masses initially at rest on the surface of an imaginary sphere
of very small radius rǫ, whose center is located far from that of a static isolated body whose
stress tensor is dominated by its mass density ρ(~x). We will examine how these test masses will
respond to the gravitational tidal forces exerted by ρ.

Show that the vector field

Uµ(t, ~x) ≡ δµ0 (1− Φ(~x))− tδµi ∂iΦ(~x) (8.4.24)

is a timelike geodesic up to linear order in the Newtonian potential Φ. This Uµ may be viewed
as the tangent vector to the worldline of the observer who was released from rest in the (t, ~x)
coordinate system at t = 0. (To ensure this remains a valid perturbative solution we shall also

assume t/r ≪ 1.) Let ξµ = (ξ0, ~ξ) be the deviation vector whose spatial components we wish
to interpret as the small displacement vector joining the center of the imaginary sphere to its
surface. Use the above Uα to show that – up to first order in Φ – the right hand sides of its
geodesic deviation equations are

UαUβ∇α∇βξ
0 = 0, (8.4.25)

UαUβ∇α∇βξ
i = Ri0j0ξ

j; (8.4.26)

where the linearized Riemann tensor reads

Ri0j0 = −∂i∂jΦ(~x). (8.4.27)

Assuming that the monopole contribution dominates,

Φ(~x) ≈ Φ(r) = −GNM

r
= − rs

2r
, (8.4.28)

show that these tidal forces have strengths that scale as 1/r3 as opposed to the 1/r2 forces of
Newtonian gravity itself – specifically, you should find

Ri0j0 ≈ −
(
δij − r̂ir̂j

) Φ′(r)

r
− r̂ir̂jΦ′′(r), r̂i ≡ xi

r
, (8.4.29)

206



so that the result follows simply from counting the powers of 1/r from Φ′(r)/r and Φ′′(r). By

setting ~ξ to be (anti-)parallel and perpendicular to the radial direction r̂, argue that the test
masses lying on the radial line emanating from the body centered at ~x = ~0 will be stretched apart
while the test masses lying on the plane perpendicular to r̂ will be squeezed together. (Hint: You
should be able to see that δij − r̂ir̂j is the Euclidean space orthogonal to r̂.)

The shape of the Earth’s ocean tides can be analyzed in this manner by viewing the Earth
as ‘falling’ in the gravitational fields of the Moon and the Sun.

Interlude Let us pause to summarize the physics we have revealed thus far.

In a curved spacetime, the collective motion of a system of mass M sweeps out a
timelike geodesic – recall equations (8.3.54), (8.3.62), and (8.3.68) – whose dynamics
is actually independent of M as long as its internal structure can be neglected. In
the co-moving frame of an observer situated within this same system, physical laws
appear to be the same as that in Minkowski spacetime up to distances of order
1/|maxRα̂β̂µ̂ν̂ |1/2. However, once the finite size of the physical system is taken into
account, one would find tidal forces exerted upon it due to spacetime curvature itself
– this is described by the geodesic deviation eq. (8.4.23).

Killing Vectors A geometry is said to enjoy an isometry – or, symmetry – when we perform
the following infinitesimal displacement

xµ → xµ + ξµ(x) (8.4.30)

and find that the geometry is unchanged

gµν(x) → gµν(x) +O
(
ξ2
)
. (8.4.31)

Generically, under the infinitesimal transformation of eq. (8.4.30),

gµν(x) → gµν(x) +∇µξν +∇νξµ. (8.4.32)

where

∇{µξν} = ξσ∂σgµν + gσ{µ∂ν}ξ
σ. (8.4.33)

If an isometry exists along the integral curve of ξµ, it has to obey Killing’s equation

∇{µξν} = ξσ∂σgµν + ∂{µξ
σgν}σ = 0. (8.4.34)

In fact, by exponentiating the infinitesimal coordinate transformation, it is possible to show that
– if ξµ is a Killing vector (i.e., it satisfies eq. (8.4.34)), then an isometry exists along its integral
curve. In other words,

A spacetime geometry enjoys an isometry (aka symmetry) along the integral curve
of ξµ iff it obeys ∇{µξν} = ∇µξν +∇νξµ = 0.

In a d−dimensional spacetime, there are at most d(d+1)/2 Killing vectors. A spacetime that has
d(d+ 1)/2 Killing vectors is called maximally symmetric. (See Weinberg [13] for a discussion.)
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Problem 8.25. Conserved quantities along geodesics If pµ denotes the ‘momentum’
variable of a geodesic

pµ ≡ ∂Lg

∂żµ
, (8.4.35)

where Lg is defined in eq. (8.3.55), and if ξµ is a Killing vector of the same geometry ∇{αξβ} = 0,
show that

ξµ(z(λ))pµ(λ) (8.4.36)

is a constant along the geodesic zµ(λ).
The vector field version of this result goes as follows.

If the geodesic equation vσ∇σv
µ = 0 holds, and if ξµ is a Killing vector, then ξνv

ν

is conserved along the integral curve of vµ.

Can you demonstrate the validity of this statement?

Second Derivatives of Killing Vectors Now let us also consider the second derivatives of
ξµ. In particular, we will now explain why

∇α∇βξδ = Rλ
αβδξλ. (8.4.37)

Consider

0 = ∇δ∇{αξβ} (8.4.38)

= [∇δ,∇α]ξβ +∇α∇δξβ + [∇δ,∇β]ξα +∇β∇δξα (8.4.39)

= −Rλ
βδαξλ −∇α∇βξδ − Rλ

αδβξλ −∇β∇αξδ (8.4.40)

Because Bianchi says 0 = Rλ
[αβδ] ⇒ Rλ

αβδ = Rλ
βαδ +Rλ

δβα.

0 = −Rλ
βδαξλ −∇α∇βξδ +

(
Rλ

βαδ +Rλ
δβα

)
ξλ −∇β∇αξδ (8.4.41)

0 = −2Rλ
βδαξλ −∇{β∇α}ξδ − [∇β ,∇α]ξδ (8.4.42)

0 = −2Rλ
βδαξλ − 2∇β∇αξδ (8.4.43)

This proves eq. (8.4.37).
Commutators of Killing Vectors Next, we will show that

The commutator of 2 Killing vectors is also a Killing vector.

Let U and V be Killing vectors. If ξ ≡ [U, V ], we need to verify that

∇{αξβ} = ∇{α[U, V ]β} = 0. (8.4.44)

More explicitly, let us compute:

∇α(U
µ∇µVβ − V µ∇µUβ) + (α ↔ β)

= ∇αU
µ∇µVβ −∇αV

µ∇µUβ + Uµ∇α∇µVβ − V µ∇α∇µUβ + (α↔ β)
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= −∇µUα∇µVβ +∇µVα∇µUβ + Uµ∇[α∇µ]Vβ + Uµ∇µ∇αVβ − V µ∇[α∇µ]Uβ − V µ∇µ∇αUβ + (α ↔ β)

= −UµRσ
βαµVσ + V µRσ

βαµUσ + (α↔ β)

= −U [µV σ]Rσ{βα}µ = 0.

The (α ↔ β) means we are taking all the terms preceding it and swapping α ↔ β. Moreover,
we have repeatedly used the Killing equations ∇αUβ = −∇βUα and ∇αVβ = −∇βVα.

Problem 8.26. Killing Vectors in Minkowski In Minkowski spacetime gµν = ηµν , with
Cartesian coordinates {xµ}, use eq. (8.4.37) to argue that the most general Killing vector takes
the form

ξµ = ℓµ + ωµνx
ν , (8.4.45)

for constant ℓµ and ωµν . (Hint: Think about Taylor expansions.) Then use the Killing equation
(8.4.34) to infer that

ωµν = −ωνµ. (8.4.46)

The ℓµ corresponds to infinitesimal spacetime translation and the ωµν to infinitesimal Lorentz
boosts and rotations. Explain why this implies the following are the Killing vectors of flat
spacetime:

∂µ (Generators of spacetime translations) (8.4.47)

and

x[µ∂ν] (Generators of Lorentz boosts or rotations). (8.4.48)

There are d distinct ∂µ’s and (due to their antisymmetry) (1/2)(d2−d) distinct x[µ∂ν]’s. Therefore
there are a total of d(d+1)/2 Killing vectors in Minkowski – i.e., it is maximally symmetric.

It might be instructive to check our understanding of rotation and boosts against the 2D
case we have worked out earlier via different means. Up to first order in the rotation angle θ,
the 2D rotation matrix in eq. (8.1.48) reads

R̂i
j(θ) =

[
1 −θ
θ 1

]
+O

(
θ2
)
. (8.4.49)

In other words, R̂i
j(θ) = δij − θǫij , where ǫij is the Levi-Civita symbol in 2D with ǫ12 ≡ 1.

Applying a rotation of the 2D Cartesian coordinates xi upon a test (scalar) function f ,

f(xi) → f
(
R̂i

jx
j
)
= f

(
xi − θǫijx

j +O
(
θ2
))

(8.4.50)

= f(~x)− θǫijx
j∂if(~x) +O

(
θ2
)
. (8.4.51)

Since θ is arbitrary, the basic differential operator that implements an infinitesimal rotation of
the coordinate system on any Minkowski scalar is

−ǫijxj∂i = x1∂2 − x2∂1. (8.4.52)
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This is the 2D version of eq. (8.4.48) for rotations. As for 2D Lorentz boosts, eq. (8.1.47) tells
us

Λµ
ν(ξ) =

[
1 ξ
ξ 1

]
+O

(
ξ2
)
. (8.4.53)

(This ξ is known as rapidity.) Here, we have Λµ
ν = δµν + ξ · ǫµν , where ǫµν is the Levi-Civita

tensor in 2D Minkowski with ǫ01 ≡ 1. Therefore, to implement an infinitesimal Lorentz boost
on the Cartesian coordinates within a test (scalar) function f(xµ), we do

f(xµ) → f
(
Λµ

νx
ν
)
= f

(
xµ + ξǫµνx

ν +O
(
ξ2
))

(8.4.54)

= f(x)− ξǫνµx
ν∂µf(x) +O

(
ξ2
)
. (8.4.55)

Since ξ is arbitrary, to implement a Lorentz boost of the coordinate system on any Minkowski
scalar, the appropriate differential operator is

ǫµνx
µ∂ν = x0∂1 − x1∂0; (8.4.56)

which again is encoded within eq. (8.4.48).

Problem 8.27. Co-moving Observers & Rulers In Cosmology We live in a universe
that, at the very largest length scales, is described by the following spatially flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric

ds2 = dt2 − a(t)2d~x · d~x; (8.4.57)

where a(t) describes the relative size of the universe. Enumerate as many constants-of-motion
as possible of this geometry. (Hint: Focus on the spatial part of the metric and try to draw a
connection with the previous problem.)

In this cosmological context, a co-moving observer is one that does not move spatially, i.e.,
d~x = 0. Solve the geodesic swept out by such an observer.

Galaxies A and B are respectively located at ~x and ~x′ at a fixed cosmic time t. What is their
spatial distance on this constant t slice of spacetime?

Problem 8.28. Killing identities involving Ricci Prove the following results. If ξµ is
a Killing vector and Rαβ and R are the Ricci tensor and scalar respectively, then

ξα∇βRαβ = 0 and ξα∇αR = 0. (8.4.58)

Hints: First use eq. (8.4.37) to show that

�ξδ = −Rλ
δξλ, (8.4.59)

� ≡ gαβ∇α∇β = ∇α∇α. (8.4.60)

Then take the divergence on both sides. Argue why ξα∇βRαβ = ∇β(ξαRαβ). You may also need
to employ the Einstein tensor Bianchi identity ∇µGµν = 0 to infer that ξα∇αR = 0.
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Problem 8.29. In d spacetime dimensions, show that

∂[α1J
µǫ̃α2...αd]µ (8.4.61)

is proportional to∇σJ
σ. What is the proportionality factor? (This discussion provides a differen-

tial forms based language to write ddx
√

|g|∇σJ
σ.) If ∇σJ

σ = 0, what does the Poincaré lemma
tell us about eq. (8.4.61)? Find the dual of your result and argue there must an antisymmetric
tensor Σµν such that

Jµ = ∇νΣ
µν . (8.4.62)

Problem 8.30. Gauge-covariant derivative Let ψ be a vector under group transforma-
tions. By this we mean that, if ψǎ corresponds to the ath component of ψ, then given some
matrix U ǎ

b̌
, ψ transforms as

ψǎ′ = U ǎ′

b̌
ψb̌ (or, ψ′ = Uψ) . (8.4.63)

Compare eq. (8.4.63) to how a spacetime vector transforms under coordinate transformations:

V µ′
(x′) = J µ′

σV
σ(x), J µ

σ ≡ ∂x′µ

∂xσ
. (8.4.64)

Now, let us consider taking the gauge-covariant derivative Ď of ψ such that it still transforms
‘covariantly’ under group transformations, namely

Ďαψ
′ = Ďα(Uψ) = U(Ďαψ). (8.4.65)

Crucially:

We shall now demand that the gauge-covariant derivative transforms covariantly
– eq. (8.4.65) holds – even when the group transformation U(x) depends on spacetime
coordinates.

First check that, the spacetime-covariant derivative cannot be equal to the gauge-covariant
derivative in general, i.e.,

∇αψ
′ 6= Ďαψ

′, (8.4.66)

by showing that eq. (8.4.65) is not satisfied.
Just as the spacetime-covariant derivative was built from the partial derivative by adding

a Christoffel symbol, ∇ = ∂ + Γ, we may build a gauge-covariant derivative by adding to the
spacetime-covariant derivative a gauge potential:

(Ďµ)
ǎ
b̌
≡ δab∇µ + (Aµ)

ǎ
b̌
. (8.4.67)

Or, in gauge-index-free notation,

Ďµ ≡ ∇µ + Aµ. (8.4.68)
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With the definition in eq. (8.4.67), how must the gauge potential Aµ (or, equivalently, (Aµ)
ǎ
b̌
)

transform so that eq. (8.4.65) is satisfied? Compare the answer to the transformation properties
of the Christoffel symbol in eq. (8.3.6). (Since the answer can be found in most Quantum Field
Theory textbooks, make sure you verify the covariance explicitly!)

Bonus: Here, we have treated ψ as a spacetime scalar and the gauge-covariant derivative
Ďα itself as a scalar under group transformations. Can you generalize the analysis here to the
higher-rank tensor case?

8.5 Special Topic 1: Gravitational Perturbation Theory

Carrying out perturbation theory about some fixed ‘background’ geometry ḡµν has important
physical applications. As such, in this section, we will in fact proceed to set up a general and
systematic perturbation theory involving the metric:

gµν = ḡµν + hµν , (8.5.1)

where ḡµν is an arbitrary ‘background’ metric and hµν is a small deviation. I will also take
the opportunity to discuss the transformation properties of hµν under infinitesimal coordinate
transformations, i.e., the gauge transformations of gravitons.

Metric inverse, Determinant Whenever performing a perturbative analysis, we shall
agree to move all tensor indices – including that of hµν – with the ḡαβ. For example,

hαβ ≡ ḡασhσβ , and hαβ ≡ ḡασḡβρhσρ. (8.5.2)

With this convention in place, let us note that the inverse metric is a geometric series. Firstly,

gµν = ḡµσ (δ
σ
ν + hσν) ≡̇ḡ · (I+ h) . (8.5.3)

(Here, h is a matrix, whose µth row and νth column is hµν ≡ ḡµσhσν .) Remember that, for
invertible matrices A and B, we have (A · B)−1 = B−1A−1. Therefore

g−1 = (I+ h)−1 · ḡ−1. (8.5.4)

If we were dealing with numbers instead of matrices, the geometric series 1/(1+z) =
∑∞

ℓ=0(−)ℓzℓ

may come to mind. You may directly verify that this prescription, in fact, still works.

gµν =

(
δµλ +

∞∑

ℓ=1

(−)ℓhµσ1
hσ1

σ2
. . . hσℓ−2

σℓ−1
h
σℓ−1

λ

)
ḡλν (8.5.5)

= ḡµν +

∞∑

ℓ=1

(−)ℓhµσ1
hσ1

σ2
. . . hσℓ−2

σℓ−1
hσℓ−1ν (8.5.6)

= ḡµν − hµν + hµσ1
hσ1ν − hµσ1

hσ1
σ2
hσ2ν + . . . . (8.5.7)

The square root of the determinant of the metric can be computed order-by-order in perturbation
theory via the following formula. For any matrix A,

detA = exp [Tr [lnA]] , (8.5.8)
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where Tr is the matrix trace; for e.g., Tr [h] = hσσ. Taking the determinant of both sides of eq.
(8.5.3), and using the property det[A · B] = detA · detB,

det gαβ = det ḡαβ · det [I+ h] , (8.5.9)

so that eq. (8.5.8) can be employed to state

√
|g| =

√
|ḡ| · exp

[
1

2
Tr [ln[I+ h]]

]
. (8.5.10)

The first few terms read

√
|g| =

√
|ḡ|
(
1 +

1

2
h +

1

8
h2 − 1

4
hσρhσρ

+
1

48
h3 − 1

8
h · hσρhσρ +

1

6
hσρhρκh

κ
σ +O[h4]

)
(8.5.11)

h ≡ hσσ. (8.5.12)

Covariance, Covariant Derivatives, Geometric Tensors Under a coordinate transfor-
mation x ≡ x(x′), the full metric of course transforms as a tensor. The full metric gα′β′ in this
new x′ coordinate system reads

gα′β′(x′) = (ḡµν(x(x
′)) + hµν(x(x

′)))
∂xµ

∂x′α
∂xν

∂x′β
. (8.5.13)

If we define the ‘background metric’ to transform covariantly; namely

ḡα′β′(x′) ≡ ḡµν(x(x
′))
∂xµ

∂x′α
∂xν

∂x′β
; (8.5.14)

then, from eq. (8.5.13), the perturbation itself can be treated as a tensor

hα′β′(x′) = hµν(x(x
′))
∂xµ

∂x′α
∂xν

∂x′β
. (8.5.15)

These will now guide us to construct the geometric tensors – the full Riemann tensor, Ricci
tensor and Ricci scalar – using the covariant derivative ∇ with respect to the ‘background
metric’ ḡµν and its associated geometric tensors. Let’s begin by considering this background
covariant derivative acting on the full metric in eq. (8.5.1):

∇αgµν = ∇α (ḡµν + hµν) = ∇αhµν . (8.5.16)

On the other hand, the usual rules of covariant differentiation tell us

∇αgµν = ∂αgµν − Γ
σ

αµgσν − Γ
σ

ανgµσ; (8.5.17)

where the Christoffel symbols here are built out of the ‘background metric’,

Γ
σ

αµ =
1

2
ḡσλ (∂αḡµλ + ∂µḡαλ − ∂λḡµα) . (8.5.18)
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Problem 8.31. Relation between ‘background’ and ‘full’ Christoffel Show that
equations (8.5.16) and (8.5.17) can be used to deduce that the full Christoffel symbol

Γα
µν [g] =

1

2
gασ (∂µgνσ + ∂νgµσ − ∂σgµν) (8.5.19)

can be related to that of its background counterpart through the relation

Γα
µν [g] = Γ

α

µν [ḡ] + δΓα
µν . (8.5.20)

Here,

δΓα
µν ≡ 1

2
gασHσµν , (8.5.21)

Hσµν ≡ ∇µhνσ +∇νhµσ −∇σhµν . (8.5.22)

Notice the difference between the ‘full’ and ‘background’ Christoffel symbols, namely Γµ
αβ−Γ

µ

αβ ,
is a tensor.

Problem 8.32. Geometric tensors With the result in eq. (8.5.20), show that for an
arbitrary 1-form Vβ,

∇αVβ = ∇αVβ − δΓσ
αβVσ. (8.5.23)

Use this to compute [∇α,∇β]Vλ and proceed to show that the exact Riemann tensor is

Rα
βµν [g] = R̄α

βµν [ḡ] + δRα
βµν , (8.5.24)

δRα
βµν ≡ ∇[µδΓ

α
ν]β + δΓα

σ[µδΓ
σ
ν]β (8.5.25)

=
1

2
∇µ

(
gαλHλνβ

)
− 1

2
∇ν

(
gαλHλµβ

)
+

1

4
gαλgσρ (HλµσHρβν −HλνσHρβµ) , (8.5.26)

where R̄α
βµν [ḡ] is the Riemann tensor built entirely out of the background metric ḡαλ.

From eq. (8.5.24), the Ricci tensor and scalars can be written down:

Rµν [g] = Rσ
µσν and R[g] = gµνRµν . (8.5.27)

From these formulas, perturbation theory can now be carried out. The primary reason why these
geometric tensors admit an infinite series is because of the geometric series of the full inverse
metric eq. (8.5.6). I find it helpful to remember, when one multiplies two infinite series which do
not have negative powers of the expansion object hµν , the terms that contain precisely n powers
of hµν is a discrete convolution: for instance, such an nth order piece of the Ricci scalar is

δnR =

n∑

ℓ=0

δℓg
µνδn−ℓRµν , (8.5.28)

where δℓg
µν is the piece of the full inverse metric containing exactly ℓ powers of hµν and δn−ℓRµν

is that containing precisely n− ℓ powers of the same.
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Problem 8.33. Linearized geometric tensors The Riemann tensor that contains up to
one power of hµν can be obtained readily from eq. (8.5.24). The H2 terms begin at order h2, so
we may drop them; and since H is already linear in h, the g−1 contracted into it can be set to
the background metric.

Rα
βµν [g] = R̄α

βµν [ḡ] +
1

2
∇[µ

(
∇ν]h

α
β +∇|β|h

α
ν] −∇α

hν]β

)
+O(h2) (8.5.29)

= R̄α
βµν [ḡ] +

1

2

(
[∇µ,∇ν ]h

α
β +∇µ∇βh

α
ν −∇ν∇βh

α
µ −∇µ∇

α
hνβ +∇ν∇

α
hµβ

)
+O(h2).

(The |β| on the first line indicates the β is not to be antisymmetrized.) Starting from the
linearized Riemann tensor in eq. (8.5.29), let us work out the linearized Ricci tensor, Ricci
scalar, and Einstein tensor.

Specifically, show that one contraction of eq. (8.5.29) yields the linearized Ricci tensor:

Rβν = Rβν + δ1Rβν +O(h2), (8.5.30)

δ1Rβν ≡ 1

2

(
∇µ∇{βhν}µ −∇ν∇βh−∇µ∇µhβν

)
. (8.5.31)

Contracting this Ricci tensor result with the full inverse metric, verify that the linearized Ricci
scalar is

R = R+ δ1R+O(h2), (8.5.32)

δ1R ≡ −hβνR̄βν +
(
∇µ∇ν − ḡµν∇σ∇σ

)
hµν . (8.5.33)

Now, let us define the variable h̄µν through the relation

hµν ≡ h̄µν −
ḡµν
d− 2

h̄, h̄ ≡ h̄σσ. (8.5.34)

First explain why this is equivalent to

h̄µν = hµν −
ḡµν
2
h. (8.5.35)

(Hint: First calculate the trace of h̄ in terms of h.) In (3+1)D this h̄µν is often dubbed the
“trace-reversed” perturbation – can you see why? Then show that the linearized Einstein tensor
is

Gµν = Ḡµν [ḡ] + δ1Gµν +O(h
2
), (8.5.36)

where

δ1Gµν ≡ −1

2

(
�h̄µν + ḡµν∇σ∇ρh̄

σρ −∇{µ∇
σ
h̄ν}σ

)

+
1

2

(
ḡµνh̄

ρσR̄ρσ + h̄
σ

{µ R̄ν}σ − h̄µνR̄ − 2h̄ρσR̄µρνσ

)
. (8.5.37)

Cosmology, Kerr/Schwarzschild black holes, and Minkowski spacetimes are three physically im-
portant geometries. This result may be used to study linear perturbations about them.
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Second order Ricci For later purposes, we collect the second order Ricci tensor – see, for
e.g., equation 35.58b of [14]:71

δ2Rµν =
1

2

{
1

2
∇µhαβ∇νh

αβ + hαβ
(
∇ν∇µhαβ +∇β∇αhµν −∇β∇νhµα −∇β∇µhνα

)
(8.5.38)

+∇β
hαν

(
∇βhµα −∇αhµβ

)
−∇β

(
hαβ − 1

2
ḡαβh

)(
∇{νhµ}α −∇αhµν

)
}
.

Gauge transformations: Infinitesimal Coordinate Transformations In the above
discussion, we regarded the ‘background metric’ as a tensor. As a consequence, the metric
perturbation hµν was also a tensor. However, since it is the full metric that enters any generally
covariant calculation, it really is the combination ḡµν + hµν that transforms as a tensor. As we
will now explore, when the coordinate transformation

xµ = x′µ + ξµ(x′) (8.5.39)

is infinitesimal, in that ξµ is small in the same sense that hµν is small, we may instead attribute
all the ensuing coordinate transformations to a transformation of hµν alone. This will allow us
to view ‘small’ coordinate transformations as gauge transformations, and will also be important
for the discussion of the linearized Einstein’s equations.

In what follows, we shall view the x and x′ in eq. (8.5.39) as referring to the same spacetime
point, but expressed within infinitesimally different coordinate systems. Now, transforming from
x to x′,

ds2 = gµν(x)dx
µdxν (8.5.40)

= (ḡµν(x
′ + ξ) + hµν(x

′ + ξ)) (dx′µ + ∂α′ξµdx′α)
(
dx′ν + ∂β′ξνdx′β

)

=
(
ḡµν(x

′) + ξσ∂σ′ ḡµν(x
′) + hµν(x

′) +O
(
ξ2, ξ∂h

))
(dx′µ + ∂α′ξµdx′α)

(
dx′ν + ∂β′ξνdx′β

)

=
(
ḡµν(x

′) + ξσ(x′)∂σ′ ḡµν(x
′) + ḡσ{µ(x

′)∂ν′}ξ
σ(x′) + hµν(x

′) +O
(
ξ2, ξ∂h

))
dx′µdx′ν .

This teaches us that, the infinitesimal coordinate transformation of eq. (8.5.39) amounts to
keeping the background metric fixed, but shifting

hµν(x) → hµν(x) + ξσ(x)∂σḡµν(x) + ḡσ{µ(x)∂ν}ξ
σ(x), (8.5.41)

followed by replacing

xµ → x′µ and ∂µ ≡ ∂

∂xµ
→ ∂

∂x′µ
≡ ∂µ′ . (8.5.42)

However, since x and x′ refer to the same point in spacetime,72 it is customary within the con-
temporary physics literature to drop the primes and simply phrase the coordinate transformation

71I have checked that eq. (8.5.38) is consistent with the output from xAct [22].
72We had, earlier, encountered very similar mathematical manipulations while considering the geometric sym-

metries that left the metric in the same form upon an active coordinate transformation – an actual displacement
from one point to another infinitesimally close by. Here, we are doing a passive coordinate transformation, where
x and x′ describe the same point in spacetime, but using infinitesimally different coordinate systems.
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as replacement rules:

xµ → xµ + ξµ(x), (8.5.43)

ḡµν(x) → ḡµν(x), (8.5.44)

hµν(x) → hµν(x) +∇{µξν}(x); (8.5.45)

where we have recognized

ξσ∂σ ḡµν + ḡσ{µ∂ν}ξ
σ = ∇{µξν}. (8.5.46)

Problem 8.34. Gauge transformations of a tensor Consider perturbing a spacetime
tensor

T µ1...µN
ν1...νM

≡ T
µ1...µN

ν1...νM
+ δT µ1...µN

ν1...νM
, (8.5.47)

where δT µ1...µN
ν1...νM

is small in the same sense that ξα and hµν are small. Perform the infinites-
imal coordinate transformation in eq. (8.5.39) on the tensor in eq. (8.5.47) and attribute all
the transformations to the δT µ1...µN

ν1...νM
. Write down the ensuing gauge transformation, in di-

rect analogy to eq. (8.5.45). Can you write it in a generally covariant form? Then justify the
statement:

“If the background tensor is zero, the perturbed tensor is gauge-invariant at first
order in coordinate transformations.”

8.6 Special Topic 2: Conformal/Weyl Transformations

In this section, we collect for the reader’s reference, the conformal transformation properties
of various geometric objects. We shall define a conformal transformation on a metric to be a
change of the geometry by an overall spacetime dependent scale. That is,

gµν(x) ≡ Ω2(x)ḡµν(x). (8.6.1)

The inverse metric is

gµν(x) = Ω(x)−2ḡµν(x), ḡµσḡσν ≡ δµν . (8.6.2)

We shall now enumerate how the geometric objects/operations built out of gµν is related to that
built out of ḡµν . In what follows, all indices on barred tensors are raised and lowered with ḡµν

and ḡµν while all indices on un-barred tensors are raised/lowered with gµν and gµν ; the covariant
derivative ∇ is with respect to gµν while the ∇ is with respect to ḡµν .

Metric Determinant Since

det gµν = det
(
Ω2ḡµν

)
= Ω2d det ḡµν , (8.6.3)

we must also have

|g|1/2 = Ωd|ḡ|1/2. (8.6.4)
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Scalar Gradients The scalar gradient with a lower index is just a partial derivative.
Therefore

∇µϕ = ∇µϕ = ∂µϕ. (8.6.5)

while ∇µϕ = gµν∇νϕ = Ω−2ḡµν∇νϕ, so

∇µϕ = Ω−2∇µ
ϕ. (8.6.6)

Scalar Wave Operator The wave operator � in the geometry gµν is defined as

� ≡ gµν∇µ∇ν = ∇µ∇µ. (8.6.7)

By a direct calculation, the wave operator � with respect to gµν acting on a scalar ψ is

�ϕ =
1

Ω2

(
d− 2

Ω
∇µΩ · ∇µ

ϕ+�ϕ

)
, (8.6.8)

where � is the wave operator with respect to ḡµν . We also have

� (Ωsψ) =
1

Ω2

{(
sΩs−1�Ω+ s (d+ s− 3)Ωs−2∇µΩ∇

µ
Ω
)
ψ

+ (2s+ d− 2)Ωs−1∇µΩ∇
µ
ψ + Ωs�ψ

}
. (8.6.9)

Scalar Field Action In d dimensional spacetime, the following action involving the scalar
ϕ and Ricci scalar R[g],

S[ϕ] ≡
∫

ddx
√

|g|1
2

(
gαβ∇αϕ∇βϕ+

d− 2

4(d− 1)
Rϕ2

)
, (8.6.10)

is invariant – up to surface terms – under the simultaneous replacements

gαβ → Ω2gαβ, gαβ → Ω−2gαβ,
√
|g| → Ωd

√
|g|, (8.6.11)

ϕ→ Ω1− d
2ϕ. (8.6.12)

The jargon here is that ϕ transforms covariantly under conformal transformations, with weight
s = 1 − (d/2). We see in two dimensions, d = 2, a minimally coupled massless scalar theory
automatically enjoys conformal/Weyl symmetry.
Christoffel Symbols A direct calculation shows:

Γµ
αβ[g] = Γ

µ

αβ[ḡ] +
(
∂{α ln Ω

)
δµβ} − ḡαβ ḡ

µν (∂ν lnΩ) (8.6.13)

= Γ
µ

αβ[ḡ] +
(
∇{α ln Ω

)
δµβ} − ḡαβ∇

µ
ln Ω. (8.6.14)

Riemann Tensor By viewing the difference between gµν and ḡµν as a ‘perturbation’,

gµν − ḡµν =
(
Ω2 − 1

)
ḡµν ≡ hµν , (8.6.15)
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we may employ the results in §(8.5). In particular, eq. (8.5.24) may be used to infer that the
Riemann tensor is

Rα
βµν [g] = R̄α

βµν [ḡ] +∇β∇[µ ln Ωδ
α
ν] − ḡβ[ν∇µ]∇

α
ln Ω

+ δα[µ∇ν] ln Ω∇β ln Ω +∇α
ln Ω∇[µ ln Ωḡν]β +

(
∇ ln Ω

)2
ḡβ[µδ

α
ν]. (8.6.16)

Ricci Tensor In turn, the Ricci tensor is

Rβν [g] = R̄βν [ḡ] + (2− d)∇β∇ν ln Ω− ḡβν� ln Ω (8.6.17)

+ (d− 2)
(
∇β ln Ω∇ν ln Ω− ḡβν

(
∇ ln Ω

)2)
. (8.6.18)

Ricci Scalar Contracting the Ricci tensor with gβν = Ω−2ḡβν, we conclude

R[g] = Ω−2
(
R[ḡ] + 2(1− d)� ln Ω + (d− 2)(1− d)

(
∇ ln Ω

)2)
(8.6.19)

Weyl Tensor The Weyl tensor, for spacetime dimensions greater than two (d > 2), is
defined to be the completely trace-free portion of the Riemann tensor:

Cµναβ ≡ Rµναβ − 1

d− 2

(
Rα[µgν]β − Rβ[µgν]α

)
+

gµ[αgβ]ν
(d− 2)(d− 1)

R[g]. (8.6.20)

By a direct calculation, one may verify Cµναβ has the same index-symmetries as Rµναβ and
is indeed completely traceless: gµαCµναβ = 0. Using equations (8.6.1), (8.6.16), (8.6.17), and
(8.6.19), one may then deduce the Weyl tensor with one upper index is invariant under conformal
transformations:

Cµ
ναβ [g] = Cµ

ναβ[ḡ]. (8.6.21)

If we lower the index µ on both sides,

Cµναβ [g] = Ω2Cµναβ [ḡ]. (8.6.22)

Einstein Tensor From equations (8.6.1), (8.6.17) and (8.6.19), we may also compute the
transformation of the Einstein tensor Gβν ≡ Rβν − (gβν/2)R.

Gβν [g] = Gβν [ḡ] + (2− d)
(
∇β∇ν ln Ω− ḡβν� ln Ω

)

+ (d− 2)

(
∇β ln Ω∇ν ln Ω− ḡβν

3− d

2

(
∇ ln Ω

)2
)

(8.6.23)

Notice the Einstein tensor is invariant under constant conformal transformations: Gβν [g] =
Gβν [ḡ] whenever ∂µΩ = 0.

To reiterate: on the right-hand-sides of these expressions for the Riemann tensor, Ricci tensor
and scalar, all indices are raised and lowered with ḡ; for example, (∇A)2 ≡ ḡστ∇σA∇τA and
∇α

A ≡ ḡαλ∇λA. The Rα
βµν [g] is built out of the metric gαβ but the R̄α

βµν [ḡ] is built entirely
out of ḡµν , etc.
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9 Linear Partial Differential Equations (PDEs)

A partial differential equation (PDE) is a differential equation involving more than one variable.
Much of fundamental physics – electromagnetism, quantum mechanics, gravitation and more
– involves PDEs. We will first examine Poisson’s equation, and introduce the concept of the
Green’s function, in order to solve it. Because the Laplacian ~∇2 will feature a central role in our
study of PDEs, we will study its eigenfunctions/values in various contexts. Then we will use
their spectra to tackle the heat/diffusion equation via an initial value formulation. In the final
sections we will study the wave equation in flat spacetime, and study various routes to obtain
its solutions, both in position/real spacetime and in Fourier space.

9.1 Laplacians and Poisson’s Equation

9.1.1 Poisson’s equation, uniqueness of solutions

Poisson’s equation in D-space is defined to be

−~∇2ψ(~x) = J(~x), (9.1.1)

where J is to be interpreted as some given mass/charge density that sources the Newtonian/electric
potential ψ. The most physically relevant case is in 3D; if we use Cartesian coordinates, Poisson’s
equation reads

−~∇2ψ(~x) = −
(

∂2ψ

∂(x1)2
+

∂2ψ

∂(x2)2
+

∂2ψ

∂(x3)2

)
= J(~x). (9.1.2)

We will soon see how to solve eq. (9.1.1) by first solving for the inverse of the negative Laplacian
(≡ Green’s function).
Uniqueness of solution We begin by showing that the solution of Poisson’s equation (eq.
(9.1.1)) in some domain D is unique once ψ is specified on the boundary of the domain ∂D. As
we shall see, this theorem holds even in curved spaces. If it is the normal derivative ni∇iψ that
is specified on the boundary ∂D, then ψ is unique up to an additive constant.

The proof goes by contradiction. Suppose there were two distinct solutions, ψ1 and ψ2. Let
us start with the integral

I ≡
∫

D

dD~x
√

|g|∇iΨ
†∇iΨ ≥ 0. (9.1.3)

That this is greater or equal to zero, even in curved spaces, can be seen by writing the gradients

in an orthonormal frame (cf. eq. (7.2.47)), where gij = ε i
â ε

j

b̂
δab.73 The

√
|g| is always positive,

since it describes volume, whereas ∇iΨ∇iΨ is really a sum of squares.

√
|g|δab∇âΨ

†∇b̂Ψ =
√

|g|
∑

a

|∇âΨ|2 ≥ 0. (9.1.4)

73Expressing the gradients in an orthonormal frame is, in fact, the primary additional ingredient to this proof,
when compared to the flat space case. Moreover, notice this proof relies on the Euclidean (positive definite)
nature of the metric.
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We may now integrate-by-parts eq. (9.1.3) and use the curved space Gauss’ theorem in eq.
(7.4.35).

I =

∫

∂D

dD−1Σi ·Ψ†∇iΨ−
∫

D

dD~x
√
|g| ·Ψ†∇i∇iΨ. (9.1.5)

Remember from eq. (7.4.26) that dD−1Σi∇iΨ = dD−1~ξ

√
|H(~ξ)|ni∇iΨ, where ni is the unit

(outward) normal to the boundary ∂D. If either ψ(∂D) or ni∂iψ(∂D) is specified, therefore, the
first term on the right hand side of eq. (9.1.5) is zero – since Ψ(∂D) = ψ1(∂D) − ψ2(∂D) and
ni∂iΨ(∂D) = ni∂iψ1(∂D)− ni∂iψ2(∂D). The seccond term is zero too, since

−∇i∇iΨ = −∇i∇i(ψ1 − ψ2) = J − J = 0. (9.1.6)

But we have just witnessed how I is itself the integral, over the domain, of the sum of squares
of |∇âΨ|. The only way summing squares of something is zero is that something is identically
zero.

∇âΨ = ε i
â ∂iΨ = 0, (everywhere in D). (9.1.7)

Viewing the ε i
â as a vector field, so ∇âΨ is the derivative of Ψ in the ath direction, this translates

to the conclusion that Ψ = ψ1−ψ2 is constant in every direction, all the way up to the boundary;
i.e., ψ1 and ψ2 can at most differ by an additive constant. If the normal derivative ni∇iψ(∂D)
were specified, so that ni∇iΨ = 0 there, then ψ1(~x)−ψ2(~x) = non-zero constant can still yield the
same normal derivative. However, if instead ψ(∂D) were specified on the boundary, Ψ(∂D) = 0
there, and must therefore be zero everywhere in D. In other words ψ1 = ψ2, and there cannot
be more than 1 distinct solution. This completes the proof.

9.1.2 (Negative) Laplacian as a Hermitian operator

We will now demonstrate that the negative Laplacian in some domain D can be viewed as a
Hermitian operator, if its eigenfunctions obey

{ψλ(∂D) = 0} (Dirichlet) (9.1.8)

or

{ni∇iψλ(∂D) = 0} (Neumann), (9.1.9)

or if there are no boundaries.74 The steps we will take here are very similar to those in the unique-
ness proof above. Firstly, by Hermitian we mean the negative Laplacian enjoys the property
that

I ≡
∫

D

dD~x
√

|g(~x)|ψ†
1(~x)

(
−~∇2

~xψ2(~x)
)
=

∫

D

dD~x
√

|g(~x)|
(
−~∇2

~xψ
†
1(~x)

)
ψ2(~x), (9.1.10)

74In this chapter on PDEs we will focus mainly on Dirichlet (and occasionally, Neumann) boundary conditions.
There are plenty of other possible boundary conditions, of course.
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for any functions ψ1,2(~x) spanned by the eigenfunctions of −~∇2, and therefore satisfy the same
boundary conditions. We begin on the left hand side and again employ the curved space Gauss’
theorem in eq. (7.4.35).

I =

∫

∂D

dD−1Σiψ
†
1

(
−∇iψ2

)
+

∫

D

dD~x
√

|g|∇iψ
†
1∇iψ2,

=

∫

∂D

dD−1Σi

{
ψ†
1

(
−∇iψ2

)
+
(
∇iψ†

1

)
ψ2

}
+

∫

D

dD~x
√

|g|
(
−∇i∇iψ

†
1

)
ψ2, (9.1.11)

We see that, if either ψ1,2(∂D) = 0, or ni∇iψ1,2(∂D) = 0, the surface integrals vanish, and the
Hermitian nature of the Laplacian is established.
Non-negative eigenvalues Let us understand the bounds on the spectrum of the negative
Laplacian subject to the Dirichlet (eq. (9.1.8)) or Neumann boundary (eq. (9.1.9)) conditions,
or when there are no boundaries. Let ψλ be an eigenfunction obeying

−~∇2ψλ = λψλ. (9.1.12)

We have previously argued that

I ′ =

∫

D

dD~x
√

|g|∇iψ
†
λ∇iψλ (9.1.13)

is strictly non-negative. If we integrate-by-parts,

I ′ =

∫

∂D

dD−1Σiψ
†
λ∇iψλ +

∫

D

dD~x
√

|g|ψ†
λ

(
−∇i∇iψλ

)
≥ 0. (9.1.14)

If there are no boundaries – for example, if D is a (n ≥ 2)-sphere (usually denoted as Sn) – there
will be no surface terms; if there are boundaries but the eigenfunctions obey either Dirichlet
conditions in eq. (9.1.8) or Neumann conditions in eq. (9.1.9), the surface terms will vanish.
In all three cases, we see that the corresponding eigenvalues {λ} are strictly non-negative, since∫
D
dD~x

√
|g||ψλ|2 ≥ 0:

I ′ = λ

∫

D

dD~x
√
|g||ψλ|2 ≥ 0. (9.1.15)

Problem 9.1. Instead of Dirichlet or Neumann boundary conditions, let us allow for mixed
(aka Robin) boundary conditions, namely

α · ψ + β · ni∇iψ = 0 (9.1.16)

on the boundary ∂D. Show that the negative Laplacian is Hermitian if we impose

α

α∗
=

β

β∗
. (9.1.17)

In particular, if α and β are both real, imposing eq. (9.1.16) automatically yields a Hermitian
Laplacian.
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9.1.3 Inverse of the negative Laplacian: Green’s function and reciprocity

Given the Dirichlet boundary condition in eq. (9.1.8), i.e., {ψλ(∂D) = 0}, we will now under-
stand how to solve Poisson’s equation, through the inverse of the negative Laplacian. Roughly
speaking,

−~∇2ψ = J ⇒ ψ =
(
−~∇2

)−1

J. (9.1.18)

(The actual formula, in a finite domain, will be a tad more complicated, but here we are merely
motivating the reason for defining G.) Since, given any Hermitian operator

H =
∑

λ

λ |λ〉 〈λ| , {λ ∈ R}, (9.1.19)

its inverse is

H−1 =
∑

λ

|λ〉 〈λ|
λ

, {λ ∈ R}; (9.1.20)

we see that the inverse of the negative Laplacian in the position space representation is the
following mode expansion involving its eigenfunctions {ψλ}.

G(~x, ~x′) =

〈
~x

∣∣∣∣
1

−~∇2

∣∣∣∣ ~x′
〉

=
∑

λ

ψλ(~x)ψλ(~x
′)†

λ
, (9.1.21)

−~∇2ψλ = λψλ, ψλ(~x) ≡ 〈~x| λ〉 . (9.1.22)

(The summation sign is schematic; it can involve either (or both) a discrete sum or/and an
integral over a continuum.) Since the mode functions are subject to {ψλ(∂D) = 0}, the Green’s
function itself also obeys Dirichlet boundary conditions:

G(~x ∈ D, ~x′) = G(~x, ~x′ ∈ D) = 0. (9.1.23)

The Green’s function G satisfies the PDE

−~∇2
~xG(~x, ~x

′) = −~∇2
~x′G(~x, ~x′) =

δ(D)(~x− ~x′)
4
√

|g(~x)g(~x′))|
, (9.1.24)

because the negative Laplacian is Hermitian and thus its eigenfunctions obey the following
completeness relation (cf. (4.3.18))

∑

λ

ψλ(~x)
†ψλ(~x

′) =
δ(D)(~x− ~x′)
4
√
|g(~x)g(~x′))|

. (9.1.25)

Eq. (9.1.24) follows from −~∇2ψλ = λψλ and

−~∇2
~xG(~x, ~x

′) =
∑

λ

−~∇2
~xψλ(~x)ψλ(~x

′)†

λ
=
∑

λ

ψλ(~x)ψλ(~x
′)†, (9.1.26)

−~∇2
~x′G(~x, ~x′) =

∑

λ

ψλ(~x)(−~∇2
~x′ψλ(~x

′)†)

λ
=
∑

λ

ψλ(~x)ψλ(~x
′)†. (9.1.27)

223



Because the δ(D)-functions on the right hand side of eq. (9.1.24) is the (position representation)
of the identity operator, the Green’s function itself is really the inverse of the negative Laplacian.

Physically speaking these δ-functions also lend eq. (9.1.24) to the interpretation that the
Green’s function is the field at ~x produced by a point source at ~x′. Therefore, the Green’s
function of the negative Laplacian is the gravitational/electric potential produced by a unit
strength point charge/mass.

Isolated zero eigenvalue implies non-existence of inverse Within a finite domain
D, we see that the Neumann boundary conditions {ni∇iψλ(∂D) = 0} imply there must be a
zero eigenvalue; for, the ψ0 = constant is the corresponding eigenvector, whose normal derivative
on the boundary is zero:

−~∇2ψ0 = −
∂i

(√
|g|gij∂jψ0

)

√
|g|

= 0 · ψ0. (9.1.28)

As long as this is an isolated zero – i.e., there are no eigenvalues continuously connected to λ = 0
– this mode will contribute a discrete term in the mode sum of eq. (9.1.21) that yields a 1/0
infinity. That is, the inverse of the Laplacian does not make sense if there is an isolated zero
mode.75

Discontinuous first derivatives Because it may not be apparent from the mode ex-
pansion in eq. (9.1.21), it is worth highlighting that the Green’s function must contain discon-
tinuous first derivatives as ~x → ~x′ in order to yield, from a second order Laplacian, δ-functions
on the right hand side of eq. (9.1.24). For Green’s functions in a finite domain D, there are
potentially additional discontinuities when both ~x and ~x′ are near the boundary of the domain
∂D.

Flat RD and Method of Images An example is provided by the eigenfunctions of the
negative Laplacian in infinite D-space.

ψ~k(~x) =
ei
~k·~x

(2π)D/2
, −~∇2

~xψ~k(~x) =
~k2ψ~k(~x). (9.1.29)

Because we know the integral representation of the δ-function, eq. (9.1.25) now reads

∫

RD

dD~k

(2π)D
ei
~k·(~x−~x′) = δ(D)(~x− ~x′). (9.1.30)

Through eq. (9.1.21), we may write down the integral representation of the inverse of the
negative Laplacian in Euclidean D-space.

G(~x, ~x′) =

∫

RD

dD~k

(2π)D
ei
~k·(~x−~x′)

~k2
=

Γ
(
D
2
− 1
)

4πD/2|~x− ~x′|D−2
. (9.1.31)

Now, one way to think about the Green’s function GD(D) of the negative Laplacian in a finite
domain D of flat space is to view it as the sum of its counterpart in infinite RD plus a term

75In the infinite flat RD case below, we will see the {exp(i~k · ~x)} are the eigenfunctions and hence there is also

a zero mode, gotten by setting ~k → ~0. However the inverse does exist because the mode sum of eq. (9.1.21) is

really an integral, and the integration measure dD~k ensures convergence of the integral.
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that is a homogeneous solution HD(D) in the finite domain D, such that the desired boundary
conditions are achieved on ∂D. Namely,

GD(~x, ~x
′;D) =

Γ
(
D
2
− 1
)

4πD/2|~x− ~x′|D−2
+H(~x, ~x′;D),

−~∇2
~xGD(~x, ~x

′;D) = −~∇2
~x′GD(~x, ~x

′;D) = δ(D) (~x− ~x′) , (Cartesian coordinates)

−~∇2
~xHD(~x, ~x

′;D) = −~∇2
~x′HD(~x, ~x

′;D) = 0, ~x, ~x′ ∈ D. (9.1.32)

If Dirichlet boundary conditions are desired, we would demand

Γ
(
D
2
− 1
)

4πD/2|~x− ~x′|D−2
+H(~x, ~x′;D) = 0 (9.1.33)

whenever ~x ∈ ∂D or ~x′ ∈ ∂D.
The method of images, which you will likely learn about in an electromagnetism course, is a

special case of such a strategy of solving the Green’s function. We will illustrate it through the
following example. Suppose we wish to solve the Green’s function in a half-infinite space, i.e.,
for xD ≥ 0 only, but let the rest of the {x1, . . . , xD−1} run over the real line. We further want
the boundary condition

GD(x
D = 0) = GD(x

′D = 0) = 0. (9.1.34)

The strategy is to notice that the infinite plane that is equidistant between one positive and
one negative point mass/charge has zero potential, so if we wish to solve the Green’s function
(the potential of the positive unit mass) on the half plane, we place a negative unit mass on the
opposite side of the boundary at xD = 0. Since the solution to Poisson’s equation is unique, the
solution for xD ≥ 0 is therefore

GD(~x, ~x
′;D) =

Γ
(
D
2
− 1
)

4πD/2|~x− ~x′|D−2
− Γ

(
D
2
− 1
)

4πD/2|~ξ|D−2
, (9.1.35)

|~ξ| ≡

√√√√
D−1∑

j=1

(xj − x′j)2 + (xD + x′D)2, xD, x′D ≥ 0.

Mathematically speaking, when the negative Laplacian is applied to the second term in eq.
(9.1.35), it yields

∏D−1
j=1 δ(x

j − x′j)δ(xD + x′D), but since xD, x′D ≥ 0, the very last δ-function
can be set to zero. Hence, the second term is a homogeneous solution when attention is restricted
to xD ≥ 0.

Reciprocity We will also now show that the Green’s function itself is a Hermitian
object, in that

G(~x, ~x′)† = G(~x′, ~x) = G(~x, ~x′). (9.1.36)

The first equality follows from the real positive nature of the eigenvalues, as well as the mode
expansion in eq. (9.1.21)

G(~x, ~x′)∗ =
∑

λ

ψλ(~x
′)ψλ(~x)

†

λ
= G(~x′, ~x). (9.1.37)
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The second requires considering the sort of integrals we have been examining in this section.

I(x, x′) ≡
∫

D

dD~x′′
√

|g(~x′′)|
{
G (~x, ~x′′) (−~∇2

~x′′)G (~x′, ~x′′)−G (~x′, ~x′′) (−~∇2
~x′′)G (~x, ~x′′)

}
.

(9.1.38)

Using the PDE obeyed by G,

I(x, x′) = G(~x, ~x′)−G(~x′, ~x). (9.1.39)

We may integrate-by-parts too.

I(x, x′) =

∫

∂D

dD−1Σi′′

{
G(~x, ~x′′)(−∇i′′)G(~x′, ~x′′)−G(~x′, ~x′′)(−∇i′′)G(~x, ~x′′)

}

+

∫
dD~x′′

√
|g(~x′′)|

{
∇i′′G(~x, ~x

′′)∇i′′G(~x′, ~x′′)−∇i′′G(~x
′, ~x′′)∇i′′G(~x, ~x′′)

}
. (9.1.40)

The terms in the last line cancel. Moreover, for precisely the same boundary conditions that
make the negative Laplacian Hermitian, we see the surface terms have to vanish too. Therefore
I(x, x′) = 0 = G(~x, ~x′)−G(~x′, ~x), and we have established the reciprocity of the Green’s function.

9.1.4 Kirchhoff integral theorem and Dirichlet boundary conditions

Within a finite domain D we will now understand why the choice of boundary conditions that
makes the negative Laplacian a Hermitian operator, is intimately tied to the type of boundary
conditions imposed in solving Poisson’s equation eq. (9.1.1).

Suppose we have specified the field on the boundary ψ(∂D). To solve Poisson’s equation

−~∇2ψ = J , we will start by imposing Dirichlet boundary conditions on the eigenfunctions of
the Laplacian, i.e., {ψλ(∂D) = 0}, so that the resulting Green’s function obey eq. (9.1.23). The
solution to Poisson’s equation within the domain D can now be solved in terms of G, the source
J , and its boundary values ψ(∂D) through the following Kirchhoff integral representation:

ψ(~x) =

∫

D

dD~x′
√

|g(~x′)|G(~x, ~x′)J(~x′)−
∫

∂D

dD−1Σi′∇i′G(~x, ~x′)ψ(~x′). (9.1.41)

If there are no boundaries, then the boundary integral terms in eq. (9.1.41) are zero. Similarly, if
the boundaries are infinitely far away, the same boundary terms can usually be assumed to vanish,
provided the fields involved decay sufficiently quickly at large distances. Physically, the first term
can be interpreted to be the ψ directly due to J the source (the particular solution). Whereas
the surface integral terms are independent of J and therefore the homogeneous solutions.

Derivation of eq. (9.1.41) Let us now consider the following integral

I(~x ∈ D) ≡
∫

D

dD~x′
√
|g(~x′)|

{
G(~x, ~x′)

(
−~∇2

~x′ψ(~x′)
)
−
(
−~∇2

~x′G(~x, ~x′)
)
ψ(~x′)

}
(9.1.42)

If we use the equations (9.1.1) and (9.1.24) obeyed by ψ and G respectively, we obtain immedi-
ately

I(~x) =

∫

D

dD~x′
√

|g(~x′)|G(~x, ~x′)J(~x′)− ψ(~x). (9.1.43)
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On the other hand, we may integrate-by-parts,

I(~x) =

∫

∂D

dD−1Σi′

{
G(~x, ~x′)

(
−∇i′ψ(~x′)

)
−
(
−∇i′G(~x, ~x′)

)
ψ(~x′)

}

+

∫

D

dD~x′
√

|g(~x′)|
{
∇i′G(~x, ~x

′)∇i′ψ(~x′)−∇i′G(~x, ~x′)∇i′ψ(~x
′)
}
. (9.1.44)

The second line cancels. Combining equations (9.1.43) and (9.1.44) then hands us the following
Kirchhoff representation:

ψ(~x ∈ D) =

∫

∂D

dD−1Σi′

{
G(~x, ~x′)

(
∇i′ψ(~x′)

)
−
(
∇i′G(~x, ~x′)

)
ψ(~x′)

}

+

∫

D

dD~x′
√
|g(~x′)|G(~x, ~x′)J(~x′). (9.1.45)

76If we recall the Dirichlet boundary conditions obeyed by the Green’s function G(~x, ~x′) (eq.
(9.1.23)), the first term on the right hand side of the first line drops out and we obtain eq.
(9.1.41).

Problem 9.2. Dirichlet B.C. Variation Principle In a finite domain (where
∫
D
dD~x

√
|g| <

∞), let all fields vanish on the boundary ∂D and denote the smallest non-zero eigenvalue of

the negative Laplacian −~∇2 as λ0. Let ψ be an arbitrary function obeying the same boundary
conditions as the eigenfunctions of −~∇2. For this problem, assume that the spectrum of the
negative Laplacian is discrete. Prove that

∫
D
dD~x

√
|g|∇iψ

†∇iψ∫
D
dD~x

√
|g||ψ|2

≥ λ0. (9.1.46)

Just like in quantum mechanics, we have a variational principle for the spectrum of the negative
Laplacian in a finite volume curved space: you can exploit any trial complex function ψ that
vanishes on D to derive an upper bound for the lowest eigenvalue of the negative Laplacian.

Hint: Expand ψ as a superposition of the eigenfunctions of −~∇2. Then integrate-by-parts
one of the ∇i in the integrand.

Example Suppose, within a finite 1D box, x ∈ [0, L] we are provided a real field ψ obeying

ψ(x = 0) = α, ψ(x = L) = β (9.1.47)

without any external sources. You can probably solve this 1D Poisson’s equation (−∂2xψ = 0)
right away; it is a straight line:

ψ(0 ≤ x ≤ L) = α +
β − α

L
x. (9.1.48)

But let us try to solve it using the methods developed here. First, we recall the orthonormal
eigenfunctions of the negative Laplacian with Dirichlet boundary conditions,

〈x|n〉 =
√

2

L
sin
(nπ
L
x
)
, n ∈ {1, 2, 3, . . . },

∞∑

n=1

〈x|n〉 〈n| x′〉 = δ(x− x′),

−∂2x 〈x|n〉 =
(nπ
L

)2
〈x|n〉 . (9.1.49)

76I have put a prime on the index in ∇i′ to indicate the covariant derivative is with respect to ~x′.
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The mode sum expansion of the Green’s function in eq. (9.1.21) is

G(x, x′) =
2

L

∞∑

n=1

(nπ
L

)−2

sin
(nπ
L
x
)
sin
(nπ
L
x′
)
. (9.1.50)

The J term in eq. (9.1.41) is zero, while the surface integrals really only involve evaluation at
x = 0, L. Do be careful that the normal derivative refers to the outward normal.

ψ(~x) = ∂x′G(x, x′ = 0)ψ(x′ = 0)− ∂x′G(x, x′ = L)ψ(x′ = L)

= − 2

L

∞∑

n=1

L

nπ
sin
(nπ
L
x
) [

cos
(nπ
L
x′
)
ψ(x′)

]x′=L

x′=0

= −
∞∑

n=1

2

nπ
sin
(nπ
L
x
)
((−)n · β − α) (9.1.51)

We may check this answer in the following way. Because the solution in eq. (9.1.51) is odd under
x→ −x, let us we extend the solution in the following way:

ψ∞(−L ≤ x ≤ L) = α +
β − α

L
x, 0 ≤ x ≤ L,

= −
(
α +

β − α

L
x

)
, −L ≤ x < 0. (9.1.52)

We will then extend the definition of ψ∞ by imposing periodic boundary conditions, ψ∞(x+2L) =
ψ∞(x). This yields the Fourier series

ψ∞(x) =
+∞∑

ℓ=−∞

Cℓe
i 2πℓ
2L

x. (9.1.53)

Multiplying both sides by exp(−i(πn/L)x) and integrating over x ∈ [−L, L].

Cn =

∫ L

−L

ψ∞(x)e−iπn
L

x dx

2L
=

∫ L

−L

ψ∞(x)
(
cos
(πn
L
x
)
− i sin

(πn
L
x
)) dx

2L

= −i
∫ L

0

(
α +

β − α

L
x

)
sin
(πn
L
x
) dx

L

=
i

πn
((−)nβ − α) . (9.1.54)

Putting this back to into the Fourier series,

ψ∞(x) = i

+∞∑

n=1

1

πn

{
((−)nβ − α) ei

πn
L

x −
(
(−)−nβ − α

)
e−iπn

L
x
}

= −
+∞∑

n=1

2

πn
((−)nβ − α) sin

(πn
L
x
)
. (9.1.55)

Is it not silly to obtain a complicated infinite sum for a solution, when it is really a straight line?
The answer is that, while the Green’s function/mode sum method here does appear unnecessarily
complicated, this mode expansion method is very general and is oftentimes the only known means
of solving the problem analytically.
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Problem 9.3. Solve the 2D flat space Poisson equation −(∂2x+∂
2
y)ψ(0 ≤ x ≤ L1, 0 ≤ y ≤ L2) =

0, up to quadrature, with the following boundary conditions

ψ(0, y) = ϕ1(y), ψ(L1, y) = ϕ2(y), ψ(x, 0) = ρ1(x), ψ(x, L2) = ρ2(x). (9.1.56)

Write the solution as a mode sum, using the eigenfunctions

ψm,n(x, y) ≡ 〈x, y|m,n〉 = 2√
L1L2

sin

(
πm

L1
x

)
sin

(
πn

L2
y

)
. (9.1.57)

Hint: your answer will involve 1D integrals on the 4 boundaries of the rectangle.

9.2 Laplacians and their spectra

Let us recall our discussions from both linear algebra and differential geometry. Given a (Eu-
clidean signature) metric

dℓ2 = gij(~x)dx
idxj , (9.2.1)

the Laplacian acting on a scalar ψ can be written as

~∇2ψ ≡ ∇i∇iψ =
∂i

(√
|g|gij∂jψ

)

√
|g|

, (9.2.2)

where
√
|g| is the square root of the determinant of the metric.

Spectra Now we turn to the primary goal of this section, to study the eigenvector/value
problem

−~∇2ψλ(~x) = −~∇2 〈~x|λ〉 = λ 〈~x|λ〉 . (9.2.3)

9.2.1 Infinite RD in Cartesian coordinates

In infinite flat Euclidean D-space RD, we have already seen that the plane waves {exp(i~k · ~x)}
are the eigenvectors of −~∇2 with eigenvalues {k2|−∞ < k <∞}. This is a coordinate invariant
statement, since the ψ and Laplacian in eq. (9.2.3) are coordinate scalars. Also notice that the
eigenvalue/vector equation (9.2.3) is a “local” PDE in that it is possible to solve it only in the
finite neighborhood of ~x; it therefore requires appropriate boundary conditions to pin down the
correct eigen-solutions.

In Cartesian coordinates, moreover,

ψ~k(~x) = ei
~k·~x =

D∏

j=1

eikjx
j

, ~k2 = δijkikj =
D∑

i=1

(ki)
2 ≡ ~k2, (9.2.4)

with completeness relations (cf. (4.3.18)) given by
∫

RD

dD~x
〈
~k
∣∣∣ ~x
〉〈

~x
∣∣∣~k′
〉
= (2π)Dδ(D)

(
~k − ~k′

)
, (9.2.5)

∫

RD

dD~k

(2π)D

〈
~x
∣∣∣~k
〉 〈

~k
∣∣∣ ~x′
〉
= δ(D) (~x− ~x′) . (9.2.6)

229



Translation symmetry and degeneracy For a fixed 1 ≤ i ≤ D, notice the translation operator
in the ith Cartesian direction, namely −i∂j ≡ −i∂/∂xj commutes with −~∇2. The translation
operators commute amongst themselves too. This is why one can simultaneously diagonalize
the Laplacian, and all the D translation operators.

−i∂j 〈~x| k2
〉
= kj 〈~x| k2

〉
(9.2.7)

In fact, we see that the eigenvector of the Laplacian |k2〉 can be viewed as a tensor product of
the eigenstates of Pj .

∣∣∣k2 = ~k2
〉
= |k1〉 ⊗ |k2〉 ⊗ · · · ⊗ |kD〉 (9.2.8)

〈~x| k2
〉
=
(〈
x1
∣∣⊗ · · · ⊗

〈
xD
∣∣) (|k1〉 ⊗ · · · ⊗ |kD〉)

=
〈
x1
∣∣ k1
〉 〈
x2
∣∣ k2
〉
. . .
〈
xD
∣∣ kD

〉
=

D∏

j=1

eikjx
j

. (9.2.9)

As we have already highlighted in the linear algebra of continuous spaces section, the spectrum
of the negative Laplacian admits an infinite fold degeneracy here. Physically speaking we may
associate it with the translation symmetry of RD.

9.2.2 1 Dimension

Infinite Flat Space In one dimension, the metric77 is

dℓ2 = dz2, (9.2.10)

for z ∈ R, and eq. (9.2.4) reduces to

−~∇2
1ψk(z) = −∂2zψk(z) = k2ψk(z), 〈z| k〉 ≡ ψk(z) = eikz; (9.2.11)

and their completeness relation (cf. eq. (4.3.18)) is

∫ ∞

−∞

dk

2π
〈z| k〉 〈k| z′〉 =

∫ ∞

−∞

dk

2π
eik(z−z′) = δ(z − z′). (9.2.12)

Periodic infinite space If the 1D space obeys periodic boundary conditions, with period
L, we have instead

−~∇2
1ψm(z) = −∂2zψm(z) =

(
2πm

L

)2

ψm(z),

〈z|m〉 ≡ ψm(z) = L−1/2ei
2πm
L

z, m = 0,±1,±2, . . . . (9.2.13)

The orthonormal eigenvectors obey

∫ L

0

dz 〈m| z〉 〈z|m′〉 = δmm′ , 〈z|m〉 = L−1/2ei
2πm
L

z; (9.2.14)

77One dimensional space(time)s are always flat – the Riemann tensor is identically zero.
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while their completeness relation reads, for 0 ≤ z, z′ ≤ L,

∞∑

m=−∞

〈z|m〉 〈m| z′〉 = 1

L

∞∑

m=−∞

e
2πm
L

i(z−z′) = δ(z − z′). (9.2.15)

Unit Circle A periodic infinite space can be thought of as a circle, and vice versa. Simply
identify L ≡ 2πr, where r is the radius of the circle as embedded in 2D space. For concreteness
we will consider a circle of radius 1. Then we may write the metric as

dℓ2 = (dφ)2, φ ∈ [0, 2π). (9.2.16)

We may then bring over the results from the previous discussion.

−~∇2
S1ψm(φ) = −∂2φψm(φ) = m2ψm(φ),

〈φ|m〉 ≡ ψm(φ) = (2π)−1/2eimφ, m = 0,±1,±2, . . . . (9.2.17)

The orthonormal eigenvectors obey

∫ 2π

0

dφ 〈m| φ〉 〈φ|m′〉 = δmm′ , 〈φ|m〉 = (2π)−1/2eimφ. (9.2.18)

while their completeness relation reads, for 0 ≤ z, z′ ≤ L,

∞∑

m=−∞

〈φ|m〉 〈m| φ′〉 = 1

2π

∞∑

m=−∞

eim(φ−φ′) = δ(φ− φ′). (9.2.19)

Fourier series re-visited. Note that −i∂φ can be thought of as the “momentum opera-
tor” on the unit circle (in the position representation) with eigenvalues {m} and corresponding
eigenvectors {〈φ|m〉}. Namely, if we define

〈φ |Pφ|ψ〉 = −i∂φ 〈φ|ψ〉 (9.2.20)

for any state |ψ〉, we shall see it is Hermitian. Given arbitrary states |ψ1,2〉,

〈ψ1 |Pφ|ψ2〉 =
∫ 2π

0

dφ 〈ψ1| φ〉 (−i∂φ 〈φ|ψ2〉) (9.2.21)

= [−i 〈ψ1|φ〉 〈φ|ψ2〉]φ=2π
φ=0 +

∫ 2π

0

dφ (i∂φ 〈ψ1|φ〉) 〈φ|ψ2〉 .

As long as we are dealing with the space of continuous functions ψ1,2(φ) on a circle, the boundary
terms must vanish because φ = 0 and φ = 2π really refer to the same point. Therefore,

〈ψ1 |Pφ|ψ2〉 =
∫ 2π

0

dφ (−i∂φ 〈φ|ψ1〉)∗ 〈φ|ψ2〉 =
∫ 2π

0

dφ〈φ |Pφ|ψ1〉 〈φ|ψ2〉

=

∫ 2π

0

dφ
〈
ψ1

∣∣∣P †
φ

∣∣∣φ
〉
〈φ|ψ2〉 =

〈
ψ1

∣∣∣P †
φ

∣∣∣ψ2

〉
. (9.2.22)
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We must therefore have

〈
φ
∣∣e−iθPφ

∣∣ψ
〉
= e−iθ(−i∂φ) 〈φ|ψ〉 = e−θ∂φ 〈φ|ψ〉 = 〈φ− θ|ψ〉 . (9.2.23)

Any function on a circle can be expanded in the eigenstates of Pφ, which in turn can be expressed
through its position representation.

|ψ〉 =
+∞∑

ℓ=−∞

|m〉 〈m|ψ〉 =
+∞∑

ℓ=−∞

∫ 2π

0

dφ |φ〉 〈φ|m〉 〈m|ψ〉 =
+∞∑

ℓ=−∞

∫ 2π

0

dφ√
2π

|φ〉 〈m|ψ〉 eimφ,

〈m|ψ〉 =
∫ 2π

0

dφ′ 〈m| φ′〉 〈φ′|ψ〉 =
∫ 2π

0

dφ′

√
2π
e−imφ′

ψ(φ′). (9.2.24)

This is nothing but the Fourier series expansion of ψ(φ).

9.2.3 2 Dimensions

Flat Space, Cylindrical Coordinates The 2D flat metric in cylindrical coordinates reads

dℓ2 = dr2 + r2dφ2, r ≥ 0, φ ∈ [0, 2π),
√
|g| = r. (9.2.25)

The negative Laplacian is therefore

−~∇2
2ϕk(r, φ) = −1

r

(
∂r (r∂rϕk) +

1

r
∂2φϕk

)
(9.2.26)

= −
{
1

r
∂r (r∂rϕk) +

1

r2
∂2φϕk

}
. (9.2.27)

Our goal here is to diagonalize the negative Laplacian in cylindrical coordinates, and re-write
the plane wave using its eigenstates. In this case we will in fact tackle the latter and use the
results to do the former. To begin, note that the plane wave in 2D cylindrical coordinates is

〈~x|~k〉 = exp(i~k · ~x) = exp(ikr cos(φ− φk)), k ≡ |~k|, r ≡ |~x|; (9.2.28)

because the Cartesian components of ~k and ~x are

ki = k (cosφk, sinφk) xi = r (cos φ, sinφ) . (9.2.29)

We observe that this is a periodic function of the angle ∆φ ≡ φ− φk with period L = 2π, which
means it must admit a Fourier series expansion. Referring to equations (4.5.114) and (4.5.115),

〈~x|~k〉 =
+∞∑

m=−∞

χm(kr)
eim(φ−φk)

√
2π

. (9.2.30)

and

χm(kr) =

∫ 2π

0

dφ′′

√
2π
eikr cosφ

′′
e−imφ′′

(9.2.31)
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=
√
2π

∫ φ′′=2π

φ′′=0

d(φ′′ + π/2)

2π
eikr cos(φ

′′+π/2−π/2)e−im(φ′′+π/2−π/2)

=
√
2π

∫ 5π/2

π/2

dφ′

2π
eikr sinφ′

e−imφ′
im = im

√
2π

∫ +π

−π

dφ′

2π
eikr sinφ′

e−imφ′

(In the last line, we have used the fact that the integrand is itself a periodic function of φ′ with
period 2π to change the limits of integration.) As it turns out, the Bessel function Jm admits
an integral representation (cf. eq. (10.9.2) of the NIST page here.)

Jm(z) =

∫ π

−π

dφ′

2π
eiz sinφ′−imφ′

, m ∈ {0,±1,±2, . . . }, (9.2.32)

J−m(z) = (−)mJm(z). (9.2.33)

As an aside, Jν(z) also has a series representation

Jν(z) =
(z
2

)ν ∞∑

k=0

(−)k(z/2)2k

k!Γ(ν + k + 1)
; (9.2.34)

and the large argument asymptotic expansion

J±ν(z ≫ ν) ∼
√

2

πz
cos
(
z ∓ π

2
ν − π

4

)
. (9.2.35)

We have arrived at the result

〈~x|~k〉 = exp(i~k · ~x) = exp(ikr cos(φ− φk)), k ≡ |~k|, r ≡ |~x|

=
∞∑

ℓ=−∞

iℓJℓ(kr)e
im(φ−φk). (9.2.36)

Because the {eimφ} are basis vectors on the circle of fixed radius r, every term in the infinite sum

is a linearly independent eigenvector of −~∇2
2. That is, we can now read off the basis eigenvectors

of the negative Laplacian in 2D cylindrical coordinates. To obtain orthonormal ones, however, let
us calculate their normalization using the following orthogonality relation, written in cylindrical
coordinates,

(2π)2
δ(k − k′)δ(φk − φk′)√

kk′
=

∫

R2

d2x exp(i(~k − ~k′) · ~x) (9.2.37)

=

+∞∑

m,m′=−∞

∫ ∞

0

dr · r
∫ 2π

0

dφ · im(−i)m′
Jm(kr)Jm′(k′r)eim(φ−φk)e−im′(φ−φk′ )

= (2π)

+∞∑

m=−∞

∫ ∞

0

dr · rJm(kr)Jm(k′r)eim(φk′−φk).

We now replace the δ(φ−φk) on the left hand side with the completeness relation in eq. (9.2.15),
where now z = φk, z

′ = φk′ and the period is L = 2π. Equating the result to the last line then

233

http://dlmf.nist.gov/10.9


brings us to

+∞∑

m=−∞

δ(k − k′)√
kk′

eim(φk−φk′) =
+∞∑

m=−∞

∫ ∞

0

dr · rJm(kr)Jm(k′r)eim(φk′−φk). (9.2.38)

The coefficients of each (linearly independent) vector eim(φk−φk′ ) on both sides should be the
same. This yields the completeness relation of the radial mode functions:

∫ ∞

0

dr · rJm(kr)Jm(k′r) =
δ(k − k′)√

kk′
, (9.2.39)

∫ ∞

0

dk · kJm(kr)Jm(kr′) =
δ(r − r′)√

rr′
. (9.2.40)

To summarize, we have found, in 2D infinite flat space, that the eigenvectors/values of the
negative Laplacian in cylindrical coordinates (r ≥ 0, 0 ≤ φ < 2π) are

−~∇2
2 〈r, φ| k,m〉 = k2 〈r, φ| k,m〉 , 〈r, φ| k,m〉 ≡ Jm(kr)

exp (imφ)√
2π

,

m = 0,±1,±2,±3, . . . . (9.2.41)

The eigenvectors are normalized as
∫ ∞

0

dr · r
∫ 2π

0

dφ 〈k,m| r, φ〉 〈r, φ| k′, m′〉 = δmm′
δ(k − k′)√

kk′
. (9.2.42)

Rotational symmetry and degeneracy Note that −i∂φ is the translation operator in the
azimuthal direction (≡ rotation operator), with eigenvalue m. The spectrum here is discretely
and infinitely degenerate, which can be physically interpreted to be due to the presence of
rotational symmetry.

Bessel’s equation As a check of our analysis here, we may now directly evaluate the
2D negative Laplacian acting on the its eigenvector 〈r, φ| k,m〉, and see that we are lead to
Bessel’s equation. Starting from the eigenvector/value equation in (9.2.41), followed by using
the explicit expression in eq. (9.2.26) and the angular eigenvalue/vector equation ∂2φ exp(imφ) =
−m2 exp(imφ), this hands us

k2Jm(kr) = −
{
1

r
∂r (r∂rJm(kr))−

m2

r2
Jm(kr)

}
. (9.2.43)

Let us then re-scale ρ ≡ kr, where k ≡ |~k|, so that ∂r = k∂ρ.

ρ2 · J ′′(ρ) + ρ · J ′(ρ) + (ρ2 −m2)J(ρ) = 0 (9.2.44)

Equation 10.2.1 of the NIST page here tells us we have indeed arrived at Bessel’s equation. Two
linearly independent solutions are Jm(kr) and Ym(kr). However, eq. (10.2.2) of the NIST page
here and eq. (10.8.1) of the NIST page here tell us, for small argument, Ym(z → 0) has at least
a log singularity of the form ln(z/2) and for m 6= 0 has also a power law singularity that goes
as 1/z|m|. Whereas, Jm(z) is (z/2)

|m| times a power series in the variable (z/2)2, and is not only
smooth for small z, the power series in fact has an infinite radius of convergence. It makes sense
that our plane wave expansion only contains Jm and not Ym because it is smooth for all r.
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Problem 9.4. Explain how you would modify the analysis here, if we were not dealing
with an infinite 2D space, but only a wedge of 2D space – namely, r ≥ 0 but 0 ≤ φ ≤ φ0 < 2π.
How would you modify the analysis here, if φ ∈ [0, 2π), but now 0 ≤ r ≤ r0 < ∞? You do not
need to carry out the calculations in full, but try to be as detailed as you can. Assume Dirichlet
boundary conditions.

2-sphere S2, Separation-Of-Variables, and the Spherical Harmonics78 The 2-sphere
of radius R can be viewed as a curved surface embedded in 3D flat space parametrized as

~x(~ξ = (θ, φ)) = R (sin θ cosφ, sin θ sin φ, cos θ) , ~x2 = R2. (9.2.45)

For concreteness we will consider the case where R = 1. Its metric is therefore given by HIJ =
∂Ix

i∂Jx
jdξIdξJ,

HIJdξ
IdξJ = dθ2 + (sin θ)2dφ2,

√
|H| = sin θ. (9.2.46)

(Or, simply take the 3D flat space metric in spherical coordinates, and set dr → 0 and r → 1.)
We wish to diagonalize the negative Laplacian on this unit radius 2−sphere. The relevant

eigenvector/value equation is

−~∇2
S2Y (θ, φ) = ν(ν + 1)Y (θ, φ), (9.2.47)

where ν for now is some arbitrary positive number.
To do so, we now turn to the separation of variables technique, which is a method to reduce a

PDE into a bunch of ODEs – and hence more manageable. The main idea is, for highly symmetric
problems such as the Laplacian in flat space(time)s or on the D-sphere, one postulates that a
multi-variable eigenfunction factorizes into a product of functions, each depending only on one
variable. If solutions can be found, then we are assured that such an ansatz works.

In the unit radius 2−sphere case we postulate

Y (θ, φ) = Λ(θ)Φ(φ). (9.2.48)

First work out the Laplacian explicitly, with s ≡ sin θ,

−
{
1

s
∂θ (s∂θY ) +

1

s2
∂2φY

}
= −

{
1

s
∂θ (s∂θY ) +

1

s2
~∇2

S1Y

}
= ν(ν + 1)Y (θ, φ). (9.2.49)

We have identified ~∇2
S1

= ∂2φ to be the Laplacian on the circle, from eq. (9.2.17). This suggests

we should choose Φ to be the eigenvector of ~∇2
S1
.

Φ(φ) ∝ exp(imφ), m = 0,±1,±2, . . . (9.2.50)

Moreover, it will turn out to be very useful to change variables to c ≡ cos θ, which runs from −1
to +1 over the range 0 ≤ θ ≤ π. Since s ≡ sin θ is strictly positive there, we have the positive
root sθ = (1− c2)1/2 and ∂θ = (∂c/∂θ)∂c = − sin θ∂c = −(1− c2)1/2∂c.

−
{
−∂c

(
−(1− c2)∂cΛ · Φ

)
+

1

1− c2
Λ · ∂2φΦ

}
= ν(ν + 1)Λ · Φ

78In these notes we focus solely on the spherical harmonics on S2; for spherical harmonics in arbitrary dimen-
sions, see arXiv:1205.3548.

235

http://arxiv.org/abs/1205.3548
https://arxiv.org/abs/1205.3548


∂c
(
(1− c2)∂cΛ · Φ

)
+

(
ν(ν + 1)− m2

1− c2

)
Λ · Φ = 0

Canceling the Φ from the equation, we now obtain an ODE for the Λ.

∂c
(
(1− c2)∂cΛ

)
+

(
ν(ν + 1)− m2

1− c2

)
Λ = 0 (9.2.51)

This is solved – see eq. 14.2.2 of the NIST page here – by the two associated Legendre functions
Pm
ν (c) and Qm

ν (c). It turns out, to obtain a solution that does not blow up over the entire range
−1 ≤ c ≤ +1, we need to choose Pm

ν (c), set ν ≡ ℓ to be 0 or a positive integer, and have m run
from −ℓ to ℓ.

Λ ∝ Pm
ℓ (cos θ), ℓ ∈ {0, 1, 2, 3, . . .}, m ∈ {−ℓ,−ℓ+ 1, . . . .ℓ− 1, ℓ}. (9.2.52)

Note that

P 0
ℓ (x) = Pℓ(x), (9.2.53)

where Pℓ(x) is the ℓth Legendre polynomial. A common phase convention that yields an or-
thonormal basis set of functions on the 2−sphere is the following definition for the spherical
harmonics

−~∇2
S2Y

m
ℓ (θ, φ) = ℓ(ℓ+ 1)Y m

ℓ (θ, φ),

〈θ, φ| ℓ,m〉 = Y m
ℓ (θ, φ) =

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)eimφ,

ℓ ∈ {0, 1, 2, 3, . . .}, m ∈ {−ℓ,−ℓ+ 1, . . . .ℓ− 1, ℓ}. (9.2.54)

Spherical harmonics should be viewed as “waves” on the 2−sphere, with larger ℓmodes describing
the higher frequency/shorter wavelength/finer features of the state/function on the sphere. Let
us examine the spherical harmonics from ℓ = 0, 1, 2, 3. The ℓ = 0 spherical harmonic is a
constant.

Y 0
0 =

1√
4π

(9.2.55)

The ℓ = 1 spherical harmonics are:

Y −1
1 =

1

2

√
3

2π
e−iφ sin(θ), Y 0

1 =
1

2

√
3

π
cos(θ), Y 1

1 = −1

2

√
3

2π
eiφ sin(θ). (9.2.56)

The ℓ = 2 spherical harmonics are:

Y −2
2 =

1

4

√
15

2π
e−2iφ sin2(θ), Y −1

2 =
1

2

√
15

2π
e−iφ sin(θ) cos(θ), Y 0

2 =
1

4

√
5

π

(
3 cos2(θ)− 1

)
,

Y 1
2 = −1

2

√
15

2π
eiφ sin(θ) cos(θ), Y 2

2 =
1

4

√
15

2π
e2iφ sin2(θ). (9.2.57)
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The ℓ = 3 spherical harmonics are:

Y −3
3 =

1

8

√
35

π
e−3iφ sin3(θ), Y −2

3 =
1

4

√
105

2π
e−2iφ sin2(θ) cos(θ),

Y −1
3 =

1

8

√
21

π
e−iφ sin(θ)

(
5 cos2(θ)− 1

)
, Y 0

3 =
1

4

√
7

π

(
5 cos3(θ)− 3 cos(θ)

)
,

Y 1
3 = −1

8

√
21

π
eiφ sin(θ)

(
5 cos2(θ)− 1

)
, Y 2

3 =
1

4

√
105

2π
e2iφ sin2(θ) cos(θ),

Y 3
3 = −1

8

√
35

π
e3iφ sin3(θ). (9.2.58)

For later purposes, note that the m = 0 case removes any dependence on the azimuthal angle
φ, and in fact returns the Legendre polynomial.

〈θ, φ| ℓ,m = 0〉 = Y 0
ℓ (θ, φ) =

√
2ℓ+ 1

4π
Pℓ(cos θ). (9.2.59)

Orthonormality and completeness of the spherical harmonics read, respectively,

〈ℓ′, m′| ℓ,m〉 =
∫

S2
d2~ξ
√

|H| Y m′
ℓ′ (θ, φ)Y m

ℓ (θ, φ)

=

∫ +1

−1

d(cos θ)

∫ 2π

0

dφY m′
ℓ′ (θ, φ)Y m

ℓ (θ, φ) = δℓ
′
ℓ δ

m′
m , (9.2.60)

and

〈θ′, φ′| θ, φ〉 = δ(θ′ − θ)δ(φ− φ′)√
sin(θ) sin(θ′)

= δ (cos(θ′)− cos(θ)) δ(φ− φ′)

=

∞∑

ℓ=0

ℓ∑

m=−ℓ

Y m
ℓ (θ′, φ′)Y m

ℓ (θ, φ). (9.2.61)

In 3D flat space, let us write the Cartesian components of the momentum vector ~k and the
position vector ~x in spherical coordinates.

ki = k (sin θk · cosφk, sin θk · sinφk, cos θk) ≡ kk̂ (9.2.62)

xi = r (sin θ · cosφ, sin θ · sinφ, cos θ) ≡ rx̂ (9.2.63)

Addition formula In terms of these variables we may write down a useful identity involving
the spherical harmonics and the Legendre polynomial, usually known as the addition formula.

Pℓ

(
k̂ · x̂

)
=

4π

2ℓ+ 1

+ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θk, φk) =
4π

2ℓ+ 1

+ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θk, φk), (9.2.64)

where k̂ ≡ ~k/k and x̂ ≡ ~x/r. The second equality follows from the first because the Legendre
polynomial is real.
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For a fixed direction k̂, note that Pℓ(k̂ · x̂) in eq. (9.2.64) is an eigenvector of the negative

Laplacian on the 2−sphere. For, as we have already noted, the eigenvalue equation −~∇2ψ = λψ
is a coordinate scalar. In particular, we may choose coordinates such that k̂ is pointing ‘North’,
so that k̂ · x̂ = cos θ, where θ is the usual altitude angle. By recalling eq. (9.2.59), we see
therefore,

−~∇2
~x,S2Pℓ

(
k̂ · x̂

)
= ℓ(ℓ+ 1)Pℓ

(
k̂ · x̂

)
. (9.2.65)

Since Pℓ(k̂ ·x̂) is symmetric under the swap k ↔ x, it must also be an eigenvector of the Laplacian

with respect to ~k,

−~∇2
~k,S2

Pℓ

(
k̂ · x̂

)
= ℓ(ℓ+ 1)Pℓ

(
k̂ · x̂

)
. (9.2.66)

Complex conjugation Under complex conjugation, the spherical harmonics obey

Y m
ℓ (θ, φ) = (−)mY −m

ℓ (θ, φ). (9.2.67)

Parity Under a parity flip, meaning if you compare Y m
ℓ evaluated at the point (θ, φ) to the

point on the opposite side of the sphere (π − θ, φ+ π), we have the relation

Y m
ℓ (π − θ, φ+ π) = (−)ℓY m

ℓ (θ, φ). (9.2.68)

The odd ℓ spherical harmonics are thus odd under parity; whereas the even ℓ ones are invariant
(i.e., even) under parity.
Poisson Equation on the 2-sphere Having acquired some familiarity of the spherical har-
monics, we can now tackle Poisson’s equation

−~∇2
S2ψ(θ, φ) = J(θ, φ) (9.2.69)

on the 2−sphere. Because the spherical harmonics are complete on the sphere, we may expand
both ψ and J in terms of them.

ψ =
∑

ℓ,m

Am
ℓ Y

m
ℓ , J =

∑

ℓ,m

Bm
ℓ Y

m
ℓ . (9.2.70)

(This means, if J is a given function, then we may calculate Bm
ℓ =

∫
S2
d2ΩY m

ℓ (θ, φ)J(θ, φ).)

Inserting these expansions into eq. (9.2.69), and recalling the eigenvalue equation −~∇2
S2
Y m
ℓ =

ℓ(ℓ+ 1)Y m
ℓ ,

∑

ℓ 6=0,m

ℓ(ℓ+ 1)Am
ℓ Y

m
ℓ =

∑

ℓ,m

Bm
ℓ Y

m
ℓ . (9.2.71)

On the left hand side, because the eigenvalue of Y 0
0 is zero, there is no longer any ℓ = 0 term.

Therefore, we see that for there to be a consistent solution, J itself cannot contain a ℓ = 0 term.
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(This is intimately related to the fact that the sphere has no boundaries.79) At this point, we
may then equate the ℓ > 0 coefficients of the spherical harmonics on both sides, and deduce

Am
ℓ =

Bm
ℓ

ℓ(ℓ+ 1)
, ℓ > 0. (9.2.72)

To summarize, given a J(θ, φ) that has no “zero mode,” such that it can be decomposed as

J(θ, φ) =
∞∑

ℓ=1

ℓ∑

m=−ℓ

Bm
ℓ Y

m
ℓ (θ, φ) ⇔ Bm

ℓ =

∫ +1

−1

d(cos θ)

∫ 2π

0

dφY m
ℓ (θ, φ)J(θ, φ), (9.2.73)

the solution to (9.2.69) is

ψ(θ, φ) =

∞∑

ℓ=1

+ℓ∑

m=−ℓ

Bm
ℓ

ℓ(ℓ+ 1)
Y m
ℓ (θ, φ). (9.2.74)

9.2.4 3 Dimensions

Infinite Flat Space, Cylindrical Coordinates We now turn to 3D flat space, written
in cylindrical coordinates,

dℓ2 = dr2 + r2dφ2 + dz2, r ≥ 0, φ ∈ [0, 2π), z ∈ R,
√

|g| = r. (9.2.75)

Because the negative Laplacian on a scalar is the sum of the 1D and the 2D cylindrical case,

−~∇2
3ψ = −~∇2

2ψ − ∂2zψ, (9.2.76)

we may try the separation-of-variables ansatz involving the product of the eigenvectors of the
respective Laplacians.

ψ(r, φ, z) = ψ2(r, φ)ψ1(z), ψ2(r, φ) ≡ Jm(kr)
eimφ

√
2π
, ψ1(z) ≡ eikzz. (9.2.77)

This yields

−~∇2ψ = −ψ1
~∇2

2ψ2 − ψ2∂
2
zψ1 = (k2 + (kz)

2)ψ, (9.2.78)

To sum, the orthonormal eigenfunctions are

〈r, φ, z| k,m, kz〉 = Jm(kr)
eimφ

√
2π
eikzz (9.2.79)

∫ 2π

0

dφ

∫ ∞

0

drr

∫ +∞

−∞

dz 〈k′, m′, k′z| r, φ, z〉 〈r, φ, z| k,m, kz〉 = δm
′

m

δ(k − k′)√
kk′

· (2π)δ(k′z − kz).

(9.2.80)

79For, suppose there is a solution to −~∇2ψ = χ/(4π), where χ is a constant. Let us now integrate both sides
over the sphere’s surface, and apply the Gauss/Stokes’ theorem. On the left hand side we get zero because the
sphere has no boundaries. On the right hand side we have χ. This inconsistency means no such solution exist.
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Since we already figured out the 2D plane wave expansion in cylindrical coordinates in eq.
(9.2.36), and since the 3D plane wave is simply the 2D one multiplied by the plane wave in the z

direction, i.e., exp(i~k ·~x) = exp(ikr cos(φ−φk)) exp(ikzz), we may write down the 3D expansion
immediately

〈~x|~k〉 = exp(i~k · ~x) =
∞∑

ℓ=−∞

iℓJℓ(kr)e
im(φ−φk)eikzz, (9.2.81)

where

ki = (k cosφk, k sinφk, kz) , xi = (r cos φ, r sin φ, z) . (9.2.82)

Infinite Flat Space, Spherical Coordinates We now turn to 3D flat space written in
spherical coordinates,

dℓ2 = dr2 + r2dΩ2
S2 , dΩ2

S2 ≡ dθ2 + (sin θ)2dφ2,

r ≥ 0, φ ∈ [0, 2π), θ ∈ [0, π],
√

|g| = r2 sin θ. (9.2.83)

The Laplacian on a scalar is

~∇2ψ =
1

r2
∂r
(
r2∂rψ

)
+

1

r2
~∇2

S2ψ. (9.2.84)

where ~∇2
S2

is the Laplacian on a 2−sphere.
Plane wave With

ki = k (sin(θk) cos(φk), sin(θk) sin(φk), cos(θk)) ≡ kk̂, (9.2.85)

xi = r (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) ≡ rx̂, (9.2.86)

we have

〈~x|~k〉 = exp(i~k · ~x) = exp
(
ikrk̂ · x̂

)
. (9.2.87)

If we view k̂ as the 3−direction, this means the plane wave has no dependence on the azimuthal
angle describing rotation about the 3−direction. This in turn indicates we should be able to
expand 〈~x|~k〉 using Pℓ(k̂ · ~x).

exp
(
ikrk̂ · x̂

)
=

∞∑

ℓ=0

χℓ(kr)

√
2ℓ+ 1

4π
Pℓ

(
k̂ · x̂

)
. (9.2.88)

For convenience we have used the Y 0
ℓ in eq. (9.2.59)) as our basis. Exploiting the orthonormality

of the spherical harmonics to solve for the expansion coefficients:

χℓ(kr) = 2π

∫ +1

−1

dceikrcY 0
ℓ (θ, φ) =

√
(4π)(2ℓ+ 1)

1

2

∫ +1

−1

dceikrcPℓ(c). (9.2.89)
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(Even though the integral is over the entire solid angle, the azimuthal integral is trivial and
yields 2π immediately.) At this point we may refer to eq. (10.54.2) of the NIST page here for
the following integral representation of the spherical Bessel function of integer order,

iℓjℓ(z) =
1

2

∫ +1

−1

dceizcPℓ(c), ℓ = 0, 1, 2, . . . . (9.2.90)

(The spherical Bessel function jℓ(z) is real when z is positive.) We have arrived at

〈~x|~k〉 = exp(i~k · ~x) =
∞∑

ℓ=0

(2ℓ+ 1)iℓjℓ(kr)Pℓ

(
k̂ · x̂

)
, k ≡ |~k| (9.2.91)

= 4π

∞∑

ℓ=0

iℓjℓ(kr)

+ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θk, φk), (9.2.92)

where, for the second equality, we have employed the additional formula in eq. (9.2.64).
Spectrum Just as we did for the 2D plane wave, we may now read off the eigenfunctions of
the 3D flat Laplacian in spherical coordinates. First we compute the normalization.

∫

R3

d3~x exp(i(~k − ~k′) · ~x) = (2π)3
δ(k − k′)

kk′
δ (cos(θk′)− cos(θk)) δ (φk − φk′) (9.2.93)

Switching to spherical coordinates within the integral on the left-hand-side,

(4π)2
∫

S2
d2Ω

∫ ∞

0

drr2
∞∑

ℓ,ℓ′=0

iℓ(−i)ℓ′jℓ(kr)jℓ′(k′r)

×
+ℓ∑

m=−ℓ

+ℓ′∑

m′=−ℓ′

Y m
ℓ (θ, φ)Y m

ℓ (θk, φk)Y
m′
ℓ′ (θk, φk)Y m′

ℓ′ (θ, φ)

= (4π)2
∫ ∞

0

drr2
∞∑

ℓ=0

jℓ(kr)jℓ(k
′r)

+ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θ, φ). (9.2.94)

Comparing the right hand sides of the two preceding equations, and utilizing the completeness
relation obeyed by the spherical harmonics,

4(2π)2
∫ ∞

0

drr2
∞∑

ℓ=0

jℓ(kr)jℓ(k
′r)

+ℓ∑

m=−ℓ

Y m
ℓ (θk, φk)Y m

ℓ (θk, φk)

= (2π)3
δ(k − k′)

kk′

∞∑

ℓ=0

+ℓ∑

m=−ℓ

Y m
ℓ (θk, φk)Y

m
ℓ (θk, φk). (9.2.95)

Therefore it must be that
∫ ∞

0

drr2jℓ(kr)jℓ(k
′r) =

π

2

δ(k − k′)

kk′
. (9.2.96)
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Referring to eq. (10.47.3) of the NIST page here,

jℓ(z) =

√
π

2z
Jℓ+ 1

2
(z) (9.2.97)

we see this is in fact the same result as in eq. (9.2.39).
To sum, we have diagonalized the 3D flat space negative Laplacian in spherical coordinates

as follows.

−~∇2 〈r, θ, φ| k, ℓ,m〉 = k2 〈r, θ, φ| k, ℓ,m〉 ,

〈r, θ, φ| k, ℓ,m〉 =
√

2

π
jℓ(kr)Y

m
ℓ (θ, φ), (9.2.98)

〈k′, ℓ′, m′| k, ℓ,m〉 =
∫

S2
d2Ω

∫ ∞

0

drr2 〈k′, ℓ′, m′| r, θ, φ〉 〈r, θ, φ| k, ℓ,m〉 ,

=
δ(k − k′)

kk′
δℓ

′
ℓ δ

m′
m .

Problem 9.5. Prolate Ellipsoidal Coordinates in 3D Flat Space 3D Euclidean space
can be foliated by prolate ellipsoids in the following way. Let ~x ≡ (x1, x2, x3) be Cartesian
coordinates; ρ be the size of a given prolate ellipsoid; and the angular coordinates (0 ≤ θ ≤
π, 0 ≤ φ < 2π) specify a point on its 2D surface. Then,

~x =
(√

ρ2 −R2 sin θ cos φ,
√
ρ2 −R2 sin θ sinφ, ρ cos θ

)
; (9.2.99)

ρ ≥ R, (θ, φ) ∈ S2. (9.2.100)

Explain the geometric meaning of the constant R. Work out the 3D flat metric in prolate
ellipsoidal coordinates (ρ, θ, φ) and proceed to diagonalize the associated scalar Laplacian ~∇2 ≡
gij∇i∇j. Hint: The spherical harmonics {Y m

ℓ (θ, φ)} will turn out to still be very useful here.

9.3 Heat/Diffusion Equation

9.3.1 Definition, uniqueness of solutions

We will define the heat or diffusion equation to be the PDE

∂tψ (t, ~x) = σ~∇2
~xψ (t, ~x) =

σ√
|g|
∂i

(√
|g|gij∂jψ

)
, σ > 0, (9.3.1)

where ~∇2
~x is the Laplacian with respect to some metric gij(~x), which we will assume does not

depend on the time t. We will also assume the ψ(t, ~x) is specified on the boundary of the domain
described by gij(~x), i.e., it obeys Dirichlet boundary conditions.

The diffusion constant σ has dimensions of length if ~∇2 is of dimensions 1/[Length2]. We
may set σ = 1 and thereby describe all other lengths in the problem in units of σ. As the heat
equation, this PDE describes the temperature distribution as a function of space and time. As
the diffusion equation in flat space, it describes the probability density of finding a point particle
undergoing (random) Brownian motion. As we shall witness, the solution of eq. (9.3.1) is aided
by the knowledge of the eigenfunctions/values of the Laplacian in question.
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Uniqueness of solution Suppose the following initial conditions are given

ψ(t = t0, ~x) = ϕ0(~x), (9.3.2)

and suppose the field ψ or its normal derivative is specified on the boundaries ∂D,

ψ(t, ~x ∈ ∂D) = ϕ3(∂D), (Dirichlet), (9.3.3)

or ni∇iψ(t, ~x ∈ ∂D) = ϕ4(∂D), (Neumann), (9.3.4)

where ni(∂D) is the unit outward normal vector. Then, the solution to the heat/diffusion
equation in eq. (9.3.1) is unique.

Proof Without loss of generality, since our heat/diffusion equation is linear, we may assume
the field is real. We then suppose there are two such solutions ψ1 and ψ2; the proof is established
if we can show, in fact, that ψ1 has to be equal to ψ2. Note that the difference Ψ ≡ ψ1 − ψ2 is
subject to the initial conditions

Ψ(t = t0, ~x) = 0, (9.3.5)

and the spatial boundary conditions

Ψ(t, ~x ∈ ∂D) = 0 or ni∇iΨ(t, ~x ∈ ∂D) = 0. (9.3.6)

Let us then consider the following (non-negative) integral

ρ(t) ≡ 1

2

∫

D

dD~x
√

|g(~x)|Ψ(t, ~x)2 ≥ 0, (9.3.7)

as well as its time derivative

∂tρ(t) =

∫

D

dD~x
√

|g(~x)|ΨΨ̇. (9.3.8)

We may use the heat/diffusion equation on the Ψ̇ term, and integrate-by-parts one of the gra-
dients on the second term,

∂tρ(t) =

∫

D

dD~x
√
|g(~x)|Ψ~∇2Ψ

=

∫

∂D

dD−1~ξ

√
|H(~ξ)|Ψni∇iΨ−

∫

D

dD~x
√

|g(~x)|∇iΨ∇iΨ. (9.3.9)

By assumption either Ψ or ni∇iΨ is zero on the spatial boundary; therefore the first term on
the second line is zero. We have previously argued that the integrand in the second term on the
second line is strictly non-negative

∇iΨ∇iΨ =
∑

i

(∇îΨ)2 ≥ 0. (9.3.10)

This implies

∂tρ(t) = −
∫

D

dD~x
√

|g(~x)|∇iΨ∇iΨ ≤ 0. (9.3.11)

However, the initial conditions Ψ(t = t0, ~x) = 0 indicate ρ(t = t0) = 0 (cf. eq. (9.3.7)).
Moreover, since ρ(t ≥ t0) has to be non-negative from its very definition and since we have just
shown its time derivative is non-positive, ρ(t ≥ t0) therefore has to remain zero for all subsequent
time t ≥ t0; i.e., it cannot decrease below zero. And because ρ(t) is the integral of the square of
Ψ, the only way it can be zero is Ψ = 0 ⇒ ψ1 = ψ2. This establishes the theorem.
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9.3.2 Heat Kernel, Solutions with ψ(∂D) = 0

In this section we introduce the propagator, otherwise known as the heat kernel, which will prove
to be key to solving the heat/diffusion equation. It is the matrix element

K(~x, ~x′; s ≥ 0) ≡
〈
~x
∣∣∣es~∇2

∣∣∣ ~x′
〉
. (9.3.12)

It obeys the heat/diffusion equation

∂sK(~x, ~x′; s) =
〈
~x
∣∣∣~∇2es

~∇2
∣∣∣ ~x′
〉
=
〈
~x
∣∣∣es~∇2 ~∇2

∣∣∣ ~x′
〉

= ~∇2
~xK(~x, ~x′; s) = ~∇2

~x′K(~x, ~x′; s), (9.3.13)

where we have assumed ~∇2 is Hermitian. K also obeys the initial condition

K(~x, ~x′; s = 0) = 〈~x| ~x′〉 = δ(D)(~x− ~x′)
4
√
g(~x)g(~x′)

. (9.3.14)

If we demand the eigenfunctions of ~∇2 obey Dirichlet boundary conditions,
{
ψλ(∂D) = 0

∣∣∣−~∇2ψλ = λψλ

}
, (9.3.15)

then the heat kernel obeys the same boundary conditions.

K(~x ∈ ∂D, ~x′; s) = K(~x, ~x′ ∈ ∂D; s) = 0. (9.3.16)

To see this we need to perform a mode expansion. By inserting in eq. (9.3.14) a complete set of

the eigenstates of ~∇2, the heat kernel has an explicit solution

K(~x, ~x′; s ≥ 0) =
〈
~x
∣∣∣es~∇2

∣∣∣ ~x′
〉
=
∑

λ

e−sλ 〈~x|λ〉 〈λ|~x′〉 , (9.3.17)

where the sum is schematic: depending on the setup at hand, it can consist of either a sum over
discrete eigenvalues and/or an integral over a continuum. In this form, it is manifest the heat
kernel vanishes when either ~x or ~x′ lies on the boundary ∂D.

Initial value problem In this section we will focus on solving the initial value problem
when the field is itself is zero on the boundary ∂D for all relevant times. This will in fact be
the case for infinite domains; for example, flat RD, whose heat kernel we will work out explicitly
below. The setup is thus as follows:

ψ(t = t′, ~x) ≡ 〈~x|ψ(t′)〉 (given), ψ(t ≥ t′, ~x ∈ D) = 0. (9.3.18)

Then ψ(t, ~x) at any later time t > t′ is given by

ψ(t ≥ t′, ~x) =
〈
~x
∣∣∣e(t−t′)~∇2

∣∣∣ψ(t′)
〉
=

∫
dD~x′

√
|g(~x′)|

〈
~x
∣∣∣e(t−t′)~∇2

∣∣∣ ~x′
〉
〈~x′|ψ(t′)〉

=

∫
dD~x′

√
|g(~x′)|K(~x, ~x′; t− t′)ψ(t′, ~x′). (9.3.19)
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That this is the correct solution is because the right hand side obeys the heat/diffusion equation
through eq. (9.3.13). As t → t′, we also see from eq. (9.3.14) that the initial condition is
recovered.

ψ(t = t′, ~x) = 〈~x|ψ(t′)〉 =
∫

dD~x′
√

|g(~x′)| δ
(D)(~x− ~x′)

4
√
|g(~x′)g(~x)|

ψ(t′, ~x′) = ψ(t′, ~x). (9.3.20)

Moreover, since the heat kernel obeys eq. (9.3.16), the solution automatically maintains the
ψ(t ≥ t′, ~x ∈ D) = 0 boundary condition.
Decay times, Asymptotics Suppose we begin with some temperature distribution T (t′, ~x).
By expanding it in the eigenfunctions of the Laplacian, let us observe that it is the component
along the eigenfunction with the small eigenvalue that dominates the late time temperature
distribution. From eq. (9.3.19) and (9.3.17),

T (t ≥ t′, ~x) =
∑

λ

∫
dD~x′

√
|g(~x′)|

〈
~x
∣∣∣e(t−t′)~∇2

∣∣∣λ
〉
〈λ| ~x′〉 〈~x′|T (t′)〉

=
∑

λ

e−(t−t′)λ 〈~x|λ〉
∫

dD~x′
√
|g(~x′)| 〈λ|~x′〉 〈~x′|T (t′)〉

=
∑

λ

e−(t−t′)λ 〈~x|λ〉 〈λ|T (t′)〉 . (9.3.21)

Remember we have proven that the eigenvalues of the Laplacian are strictly non-positive. That
means, as (t− t′) → ∞, the dominant temperature distribution is

T (t− t′ → ∞, ~x) ≈ e−(t−t′)λmin 〈~x|λmin〉
∫

dD~x′
√

|g(~x′)| 〈λmin| ~x′〉 〈~x′|T (t′)〉 , (9.3.22)

because all the λ > λmin become exponentially suppressed (relative to the λmin state) due to the
presence of e−(t−t′)λ. As long as the minimum eigenvalue λmin is strictly positive, we see the final
temperature is zero.

T (t− t′ → ∞, ~x) = 0, if λmin > 0. (9.3.23)

When the minimum eigenvalue is zero, we have

T (t− t′ → ∞, ~x) → 〈~x| λ = 0〉
∫

dD~x′
√

|g(~x′)| 〈λ = 0| ~x′〉 〈~x′|T (t′)〉 , if λmin = 0.

(9.3.24)

The exception to the dominant behavior in eq. (9.3.22) is when there is zero overlap between
the initial distribution and that eigenfunction with the smallest eigenvalue, i.e., if

∫
dD~x′

√
|g(~x′)| 〈λmin| ~x′〉 〈~x′|T (t′)〉 = 0. (9.3.25)

Generically, we may say that, with the passage of time, the component of the initial distribution
along the eigenfunction corresponding to the eigenvalue λ decays as 1/λ; i.e., when t− t′ = 1/λ,
its amplitude falls by 1/e.
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Static limit Another way of phrasing the (t − t′) → ∞ behavior is that – since every
term in the sum-over-eigenvalues that depends on time decays exponentially, it must be that the
late time asymptotic limit is simply the static limit, when the time derivative on the left hand
side of eq. (9.3.1) is zero and we obtain Laplace’s equation

0 = ~∇2ψ(t→ ∞, ~x). (9.3.26)

Probability interpretation in flat infinite space In the context of the diffusion equation
in flat space, because of the δ-functions on the right hand side of eq. (9.3.14), the propagator
K(~x, ~x′; t − t′) itself can be viewed as the probability density (≡ probability per volume) of
finding the Brownian particle – which was infinitely localized at ~x′ at the initial time t′ – at a
given location ~x some later time t > t′. To support this probability interpretation it has to be
that ∫

RD

dD~xK(~x, ~x′; t− t′) = 1. (9.3.27)

The integral on the left hand side corresponds to summing the probability of finding the Brownian
particle over all space – that has to be unity, since the particle has to be somewhere. We can
verify this directly, by inserting a complete set of states.

∫

RD

dD~x
〈
~x
∣∣∣e(t−t′)~∇2

∣∣∣ ~x′
〉
=

∫

RD

dD~k

∫

RD

dD~x
〈
~x
∣∣∣e(t−t′)~∇2

∣∣∣~k
〉 〈

~k
∣∣∣ ~x′
〉

=

∫

RD

dD~k

∫

RD

dD~xe−(t−t′)~k2〈~x|~k〉
〈
~k
∣∣∣ ~x′
〉

=

∫

RD

dD~k

∫

RD

dD~xe−(t−t′)~k2 e
i~k·(~x−~x′)

(2π)D

=

∫

RD

dD~ke−(t−t′)~k2e−i~k·~x′
δ(D)(~k) = 1. (9.3.28)

Heat Kernel in flat space In fact, the same technique allow us to obtain the heat kernel
in flat RD.

〈
~x
∣∣∣e(t−t′)~∇2

∣∣∣ ~x′
〉
=

∫

RD

dD~k
〈
~x
∣∣∣e(t−t′)~∇2

∣∣∣~k
〉 〈

~k
∣∣∣ ~x′
〉

(9.3.29)

=

∫

RD

dD~k

(2π)D
e−(t−t′)~k2ei

~k·(~x−~x′) =

D∏

j=1

∫ +∞

−∞

dkj
2π

e−(t−t′)(kj)2eikj(x
j−x′j).

We may “complete the square” in the exponent by considering

−(t− t′)

(
kj − i

xj − x′j

2(t− t′)

)2

= −(t− t′)

(
(kj)

2 − ikj
xj − x′j

t− t′
−
(
xj − x′j

2(t− t′)

)2
)
. (9.3.30)

The heat kernel in flat RD is therefore
〈
~x
∣∣∣e(t−t′)σ~∇2

∣∣∣ ~x′
〉
= (4πσ(t− t′))

−D/2
exp

(
− (~x− ~x′)2

4σ(t− t′)

)
, t > t′, (9.3.31)

where we have put back the diffusion constant σ. If you have taken quantum mechanics, you
may recognize this result to be very similar to the path integral H 〈~x, t|~x′, t′〉H of a free particle.
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9.3.3 Green’s functions and initial value formulation in a finite domain

Green’s function from Heat Kernel Given the heat kernel defined with Dirichlet bound-
ary conditions, the associated Green’s function is defined as

G(t− t′; ~x, ~x′) ≡ Θ(t− t′)K(~x, ~x′; t− t′), (9.3.32)

where we define Θ(s) = 1 for s ≥ 0 and Θ(s) = 0 for s < 0. This Green’s function G obeys

(
∂t − ~∇2

~x

)
G(t− t′; ~x, ~x′) =

(
∂t − ~∇2

~x′

)
G(t− t′; ~x, ~x′) = δ(t− t′)

δ(D)(~x− ~x′)
4
√
g(~x)g(~x′)

, (9.3.33)

the boundary condition

G(τ ; ~x ∈ ∂D, ~x′) = G(τ ; ~x, ~x′ ∈ ∂D) = 0, (9.3.34)

as well as the causality condition

G(τ ; ~x, ~x′) = 0 when τ < 0. (9.3.35)

The boundary condition in eq. (9.3.34) follows directly from eq. (9.3.16); whereas eq. (9.3.33)
follow from a direct calculation

(
∂t − ~∇2

)
G(t− t′; ~x, ~x′) = δ(t− t′)K(~x, ~x′; t− t′) + Θ(t− t′)

(
∂t − ~∇2

)
K(~x, ~x′; t− t′)

= δ(t− t′)
δ(D)(~x− ~x′)
4
√
g(~x)g(~x′)

. (9.3.36)

Initial value problem Within a spatial domain D, suppose the initial field
configuration ψ(t′, ~x ∈ D) is given and suppose its value on the spatial boundary ∂D
is also provided (i.e., Dirichlet B.C.’s ψ(t ≥ t′, ~x ∈ ∂D) are specified). The unique
solution ψ(t ≥ t′, ~x ∈ D) to the heat/diffusion equation (9.3.1) is

ψ(t ≥ t′, ~x) =

∫

D

dD~x′
√

|g(~x′)|G(t− t′; ~x, ~x′)ψ(t′, ~x′) (9.3.37)

−
∫ t

t′
dt′′
∫

∂D

dD−1~ξ

√
|H(~ξ)|ni′∇i′G

(
t− t′′; ~x, ~x′(~ξ)

)
ψ
(
t′′, ~x′(~ξ)

)
,

where the Green’s function G obeys the PDE in eq. (9.3.33) and the boundary
conditions in equations (9.3.34) and (9.3.35).

Derivation of eq. (9.3.37) We begin by multiplying both sides of eq. (9.3.33) by ψ(t′′, ~x′)
and integrating over both space and time (from t′ to infinity).

ψ(t ≥ t′, ~x) =

∫ ∞

t′
dt′′
∫

D

dD~x′
√

|g(~x′)|
(
∂t − ~∇2

~x′

)
G(t− t′′; ~x, ~x′)ψ(t′′, ~x′) (9.3.38)

=

∫ ∞

t′
dt′′
∫

D

dD~x′
√

|g(~x′)|
(
−∂t′′Gψ +∇i′G∇i′ψ

)
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−
∫ ∞

t′
dt′′
∫

∂D

dD−1~ξ

√
|H(~ξ)|ni′∇i′Gψ

=

∫

D

dD~x′
√

|g(~x′)|
{
[−Gψ]t′′=∞

t′′=t′ +

∫ ∞

t′
dt′′G

(
∂t′′ − ~∇2

~x′′

)
ψ

}

+

∫ ∞

t′
dt′′
∫

∂D

dD−1~ξ

√
|H(~ξ)|

(
G · ni′∇i′ψ − ni′∇i′G · ψ

)
.

If we impose the boundary condition in eq. (9.3.35), we see that [−Gψ]t′′=∞
t′′=t′ = G(t − t′)ψ(t′)

because the upper limit contains G(t − ∞) ≡ limt′→−∞Θ(t − t′)K(~x, ~x′; t − t′) = 0. The
heat/diffusion eq. (9.3.1) removes the time-integral term on the first line of the last equality. If
Dirichlet boundary conditions were chosen, we may choose G(t − t′′; ~x, ~x′ ∈ ∂D) = 0 (i.e., eq.
(9.3.34)) and obtain eq. (9.3.37). Note that the upper limit of integration in the last line is
really t, because eq. (9.3.35) tells us the Green’s function vanishes for t′′ > t.

9.3.4 Problems

Problem 9.6. In infinite flat RD, suppose we have some initial probability distribution of
finding a Brownian particle, expressed in Cartesian coordinates as

ψ(t = t0, ~x) =
(ω
π

)D/2

exp
(
−ω(~x− ~x0)

2
)
, ω > 0. (9.3.39)

Solve the diffusion equation for t ≥ t0.

Problem 9.7. Suppose we have some initial temperature distribution T (t = t0, θ, φ) ≡
T0(θ, φ) on a thin spherical shell. This distribution admits some multipole expansion:

T0(θ, φ) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

amℓ Y
m
ℓ (θ, φ), amℓ ∈ C. (9.3.40)

The temperature as a function of time obeys the heat/diffusion equation

∂tT (t, θ, φ) = σ~∇2T (t, θ, φ), σ > 0, (9.3.41)

where ~∇2 is now the Laplacian on the 2−sphere. Since ~∇2 is dimensionless here, σ has units of
1/[Time].

1. Solve the propagator K for the heat/diffusion equation on the 2−sphere, in terms of a
spherical harmonic {Y m

ℓ (θ, φ)} expansion.

2. Find the solution for T (t > t0, θ, φ).

3. What is the decay rate of the ℓth multipole, i.e., how much time does the ℓth term in the
multipole sum take to decay in amplitude by 1/e? Does it depend on both ℓ and m? And,
what is the final equilibrium temperature distribution?
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Problem 9.8. Inverse of Laplacian from Heat Kernel In this problem we want to point out
how the Green’s function of the Laplacian is related to the heat/diffusion equation. To re-cap,
the Green’s function itself obeys the D-dimensional PDE:

−~∇2G(~x, ~x′) =
δ(D)(~x− ~x′)
4
√
g(~x)g(~x′)

. (9.3.42)

As already suggested by our previous discussions, the Green’s function G(~x, ~x′) can be viewed

the matrix element of the operator Ĝ ≡ 1/(−~∇2), namely80

G(~x, ~x′) =
〈
~x
∣∣∣Ĝ
∣∣∣ ~x′
〉
≡
〈
~x

∣∣∣∣
1

−~∇2

∣∣∣∣ ~x′
〉
. (9.3.43)

The ~∇2 is now an abstract operator acting on the Hilbert space spanned by the position eigenkets
{|~x〉}. Because it is Hermitian, we have

−~∇2
~x

〈
~x

∣∣∣∣
1

−~∇2

∣∣∣∣ ~x′
〉

=

〈
~x

∣∣∣∣∣
−~∇2

−~∇2

∣∣∣∣∣ ~x
′

〉
= 〈~x| ~x′〉 = δ(D)(~x− ~x′). (9.3.44)

Now use the Gamma function identity, for Re(z), Re(b) > 0,

1

bz
=

1

Γ(z)

∫ ∞

0

tz−1e−btdt, (9.3.45)

where Γ(z) is the Gamma function – to justify

G(~x, ~x′) =

∫ ∞

0

dtKG (~x, ~x′; t) , (9.3.46)

KG (~x, ~x′; t) ≡
〈
~x
∣∣∣et~∇2

∣∣∣ ~x′
〉
.

Notice how the integrand itself is the propagator (eq. (9.3.12)) of the heat/diffusion equation.

We will borrow from our previous linear algebra discussion that −~∇2 = ~P 2, as can be seen
from its position space representation. Now proceed to re-write this integral by inserting to both
the left and to the right of the operator et

~∇2
the completeness relation in momentum space. Use

the fact that ~P 2 = −~∇2 and eq. to deduce

G(~x, ~x′) =

∫ ∞

0

dt

∫
dD~k

(2π)D
e−t~k2ei

~k·(~x−~x′). (9.3.47)

(Going to momentum space allows you to also justify in what sense the restriction Re(b) > 0
of the formula in eq. (9.3.45) was satisfied.) By appropriately “completing the square” in the
exponent, followed by an application of eq. (9.3.45), evaluate this integral to arrive at the
Green’s function of the Laplacian in D spatial dimensions:

G(~x, ~x′) =

〈
~x

∣∣∣∣
1

−~∇2

∣∣∣∣ ~x′
〉

=
Γ
(
D
2
− 1
)

4πD/2|~x− ~x′|D−2
, (9.3.48)

80The perspective that the Green’s function be viewed as an operator acting on some Hilbert space was
advocated by theoretical physicist Julian Schwinger.
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where |~x− ~x′| is the Euclidean distance between ~x and ~x′.
Next, can you use eq. 18.12.4 of the NIST page here to perform an expansion of the Green’s

function of the negative Laplacian in terms of r> ≡ max(r, r′), r< ≡ min(r, r′) and n̂ · n̂′, where
r ≡ |~x|, r′ ≡ |~x′|, n̂ ≡ ~x/r, and n̂′ ≡ ~x′/r′? The D = 3 case reads

1

4π|~x− ~x′| = (4πr>)
−1

∞∑

ℓ=0

Pℓ (n̂ · n̂′)

(
r<
r>

)ℓ

=
1

r>

∞∑

ℓ=0

ℓ∑

m=−ℓ

Y m
ℓ (n̂)Y m

ℓ (n̂′)

2ℓ+ 1

(
r<
r>

)ℓ

, (9.3.49)

where the Pℓ are Legendre polynomials and in the second line the addition formula of eq. (9.2.64)
was invoked.

Note that while it is not easy to verify by direct differentiation that eq. (9.3.48) is indeed

the Green’s function 1/(−~∇2), one can do so by performing the integral over t in eq. (9.3.47),
to obtain

G(~x, ~x′) =

∫
dDk

(2π)D
ei
~k·(~x−~x′)

~k2
. (9.3.50)

We have already seen this in eq. (9.1.31).
Finally, can you use the relationship between the heat kernel and the Green’s function of the

Laplacian in eq. (9.3.46), to show how in a finite domain, eq. (9.3.37) leads to eq. (9.1.41) in
the late time t→ ∞ limit? (You may assume the smallest eigenvalue of the negative Laplacian
is strictly positive; recall eq. (9.1.46).)

Problem 9.9. Is it possible to solve for the Green’s function of the Laplacian on the 2-
sphere? Use the methods of the last two problems, or simply try to write down the mode sum
expansion in eq. (9.1.21), to show that you would obtain a 1/0 infinity. What is the reason for
this apparent pathology? Suppose we could solve

−~∇2G(~x, ~x′) =
δ(2)(~x− ~x′)
4
√
g(~x)g(~x′)

. (9.3.51)

Perform a volume integral of both sides over the 2−sphere – explain the contradiction you get.
(Recall the discussion in the differential geometry section.) Hint: Apply the curved space Gauss’
law in eq. (7.4.35) and remember the 2-sphere is a closed surface.

9.4 Massless Scalar Wave Equation (Mostly) In Flat Spacetime RD,1

9.4.1 Spacetime metric, uniqueness of Minkowski wave solutions

Spacetime Metric In Cartesian coordinates (t, ~x), it is possible associate a metric to flat
spacetime as follows

ds2 = c2dt2 − d~x · d~x ≡ ηµνdx
µdxν , xµ ≡ (ct, xi), (9.4.1)
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where c is the speed of light in vacuum; µ ∈ {0, 1, 2, . . . , D}; and D is still the dimension of
space.81 We also have defined the flat (Minkowski) spacetime metric

ηµν ≡ diag (1,−1,−1, . . . ,−1) . (9.4.2)

The generalization of eq. (9.4.1) to curved spacetime is

ds2 = gµν(t, ~x)dx
µdxν , xµ = (ct, xi). (9.4.3)

It is common to use the symbol �, especially in curved spacetime, to denote the spacetime-
Laplacian:

�ψ ≡ ∇µ∇µψ =
1√
|g|
∂µ

(√
|g|gµν∂νψ

)
, (9.4.4)

where
√

|g| is now the square root of the absolute value of the determinant of the metric gµν .

In Minkowski spacetime of eq. (9.4.1), we have
√
|g| = 1, ηµν = ηµν , and

�ψ = ηµν∂µ∂νψ ≡ ∂2ψ =
(
c−2∂2t − δij∂i∂j

)
ψ; (9.4.5)

where δij∂i∂j = ~∇2 is the spatial Laplacian in flat Euclidean space. The Minkowski “dot
product” between vectors u and v in Cartesian coordinates is now

u · v ≡ ηµνu
µvν = u0v0 − ~u · ~v, u2 ≡ (u0)2 − ~u2, etc. (9.4.6)

From here on, x, x′ and k, etc. – without an arrow over them – denotes collectively the D + 1
coordinates of spacetime. Indices of spacetime tensors are moved with gµν and gµν . For instance,

uµ = gµνuν , uµ = gµνu
ν . (9.4.7)

In the flat spacetime geometry of eq. (9.4.1), written in Cartesian coordinates,

u0 = u0, ui = −ui. (9.4.8)

Indefinite signature The subtlety with the metric of spacetime, as opposed to that of space
only, is that the “time” part of the distance in eq. (9.4.1) comes with a different sign from
the “space” part of the metric. In curved or flat space, if ~x and ~x′ have zero geodesic distance
between them, they are really the same point. In curved or flat spacetime, however, x and x′

may have zero geodesic distance between them, but they could either refer to the same spacetime
point (aka “event”) – or they could simply be lying on each other’s light cone:

0 = (x− x′)2 = ηµν(x
µ − x′µ)(xν − x′ν) ⇒ (t− t′)2 = (~x− ~x′)2. (9.4.9)

To understand this statement more systematically, let us work out the geodesic distance between
any pair of spacetime points in flat spacetime.

81In this section it is important to distinguish Greek {µ, ν, . . . } and Latin/English alphabets {a, b, i, j, . . .}.
The former run over 0 through D, where the 0th index refers to time and the 1st through Dth to space. The latter
run from 1 through D, and are thus strictly “spatial” indices. Also, be aware that the opposite sign convention,
ds2 = −dt2 +d~x · d~x, is commonly used too. For most physical applications both sign conventions are valid; see,
however, [15].
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Problem 9.10. In Minkowski spacetime expressed in Cartesian coordinates, the Christoffel
symbols are zero. Therefore the geodesic equation in (7.3.31) returns the following “acceleration-
is-zero” ODE:

0 =
d2Zµ(λ)

dλ2
. (9.4.10)

Show that the geodesic joining the initial spacetime point Zµ(λ = 0) = x′µ to the final location
Zµ(λ = 1) = xµ is the straight line

Zµ(0 ≤ λ ≤ 1) = x′µ + λ (xµ − x′µ). (9.4.11)

Use eq. (7.1.22) to show that half the square of the geodesic distance between x′ and x is

σ̄(x, x′) =
1

2
(x− x′)2. (9.4.12)

σ̄ is commonly called Synge’s world function in the gravitation literature.

Some jargon needs to be introduced here. (Drawing a spacetime diagram would help.)

• When σ̄ > 0, we say x and x′ are timelike separated. If you sit at rest in some inertial
frame, then the tangent vector to your world line is uµ = (1,~0), and u = ∂t is a measure
of how fast the time on your watch is running. Or, simply think about setting d~x = 0 in
the Minkowski metric: ds2 → dt2 > 0.

• When σ̄ < 0, we say x and x′ are spacelike separated. If you and your friend sit at rest in
the same inertial frame, then at a fixed time dt = 0, the (square of the) spatial distance
between the both of you is now given by integrating ds2 → −d~x2 < 0 between your two
locations.

• When σ̄ = 0, we say x and x′ are null (or light-like) separated. As already alluded to, in
4 dimensional flat spacetime, light travels strictly on null geodesics ds2 = 0. Consider a
coordinate system for spacetime centered at x′; then we would say x lies on the light cone
of x′ (and vice versa).

As we will soon discover, the indefinite metric of spacetimes – as opposed to the positive definite
one of space itself – is what allows for wave solutions, for packets of energy/momentum to travel
over space and time. In Minkowski spacetime, we will show below, by solving explicitly the
Green’s function GD+1 of the wave operator, that these waves ψ, subject to eq. (9.4.16), will
obey causality: they travel strictly on and/or within the light cone, independent of what the
source J is.

Poincaré symmetry Analogous to how rotations {Ri
a|δijRi

aR
j
b = δab} and spatial

translations {ai} leave the flat Euclidean metric δij invariant,

xi → Ri
jx

j + ai ⇒ δijdx
idxj → δijdx

idxj . (9.4.13)

(The Ri
j and a

i are constants.) Lorentz transformations {Λα
µ|ηαβΛα

µΛ
β
ν = ηµν} and spacetime

translations {aµ} are ones that leave the flat Minkowski metric ηµν invariant.

xα → Λα
µx

µ + aα ⇒ ηµνdx
µdxν → ηµνdx

µdxν . (9.4.14)
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(The Λα
µ and aα are constants.) This in turn leaves the light cone condition ds2 = 0 invariant

– the speed of light is unity, |d~x|/dt = 1, in all inertial frames related via eq. (9.4.14).
Wave Equation In Curved Spacetime The wave equation (for a minimally coupled
massless scalar) in some spacetime geometry gµνdx

µdxν is a 2nd order in time PDE that takes
the following form:

∇µ∇µψ =
1√
|g|
∂µ

(√
|g|gµν∂νψ

)
= J(x), (9.4.15)

where J is some specified external source of ψ.
Minkowski We will mainly deal with the case of infinite flat (aka “Minkowski”) spacetime

in eq. (9.4.1), where in Cartesian coordinates xµ = (ct, ~x). This leads us to the wave equation

(
∂2t − c2~∇2

~x

)
ψ(t, ~x) = c2J(t, ~x), ~∇2

~x ≡ δij∂i∂j . (9.4.16)

Here, c will turn out to be the speed of propagation of the waves themselves. Because it will be
the most important speed in this chapter, I will set it to unity, c = 1.82 We will work mainly
in flat infinite spacetime, which means the ~∇2 is the Laplacian in flat space. This equation
describes a diverse range of phenomenon, from the vibrations of strings to that of spacetime
itself.

2D Minkowski We begin the study of the homogeneous wave equation in 2 dimensions.
In Cartesian coordinates (t, z),

(
∂2t − ∂2z

)
ψ(t, z) = 0. (9.4.17)

We see that the solutions are a superposition of either left-moving ψ(z+t) or right-moving waves
ψ(z − t), where ψ can be any arbitrary function,

(
∂2t − ∂2z

)
ψ(z ± t) = (±)2ψ′′(z ± t)− ψ′′(z ± t) = 0. (9.4.18)

Remark It is worth highlighting the difference between the nature of the general solutions
to 2nd order linear homogeneous ODEs versus those of PDEs such as the wave equation here. In
the former, they span a 2 dimensional vector space, whereas the wave equation admits arbitrary
functions as general solutions. This is why the study of PDEs involve infinite dimensional
(oftentimes continuous) Hilbert spaces.

Let us put back the speed c – by dimensional analysis we know [c]=[Length/Time], so x± ct
would yield the correct dimensions.

ψ(t, x) = ψL(x+ ct) + ψR(x− ct). (9.4.19)

These waves move strictly at speed c.

82This is always a good labor-saving strategy when you solve problems. Understand all the distinct dimensionful
quantities in your setup – pick the most relevant/important length, time, and mass, etc. Then set them to one, so
you don’t have to carry their symbols around in your calculations. Every other length, time, mass, etc. will now
be respectively, expressed as multiples of them. For instance, now that c = 1, the speed(s) {vi} of the various
constituents of the source J measured in some center of mass frame, would be measured in multiples of c – for
instance, “v2 = 0.76” really means (v/c)2 = 0.76.
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Problem 9.11. Let us define light cone coordinates as x± ≡ t ± z. Write down the
Minkowski metric in eq. (9.4.1)

ds2 = dt2 − dz2 (9.4.20)

in terms of x± and show by direct integration of eq. (9.4.17) that the most general homogeneous
wave solution in 2D is the superposition of left- and right-moving (otherwise arbitrary) profiles.

Uniqueness of Minkowski solutions Suppose the following initial conditions
are given

ψ(t = t0, ~x) = ϕ0(~x), ∂tψ(t = t0, ~x) = ϕ1(~x); (9.4.21)

and suppose the scalar field ψ or its normal derivative is specified on the spatial
boundaries ∂D,

ψ(t, ~x ∈ ∂D) = ϕ3(∂D), (Dirichlet), (9.4.22)

or ni∇iψ(t, ~x ∈ ∂D) = ϕ4(∂D), (Neumann), (9.4.23)

where ni(∂D) is the unit outward normal vector. Then, the solution to the wave
equation in eq. (9.4.16) is unique.

Proof Without loss of generality, since our wave equation is linear, we may assume the scalar
field is real. We then suppose there are two such solutions ψ1 and ψ2 obeying the same initial
and boundary conditions. The proof is established if we can show, in fact, that ψ1 has to be
equal to ψ2. Note that the difference Ψ ≡ ψ1 −ψ2 is subject to the homogeneous wave equation

∂2Ψ = Ψ̈− ~∇2Ψ = 0 (9.4.24)

since the J cancels out when we subtract the wave equations of ψ1,2. For similar reasons the Ψ
obeys the initial conditions

Ψ(t = t0, ~x) = 0 and ∂tΨ(t = t0, ~x) = 0, (9.4.25)

and the spatial boundary conditions

Ψ(t, ~x ∈ ∂D) = 0 or ni∇iΨ(t, ~x ∈ ∂D) = 0. (9.4.26)

Let us then consider the following integral

T 00(t) ≡ 1

2

∫

D

dD~x
(
Ψ̇2(t, ~x) + ~∇Ψ(t, ~x) · ~∇Ψ(t, ~x)

)
(9.4.27)

83as well as its time derivative

∂tT
00(t) =

∫

D

dD~x
(
Ψ̇Ψ̈ + ~∇Ψ̇ · ~∇Ψ

)
. (9.4.28)

83The integrand, for Ψ obyeing the homogeneous wave equation, is in fact its energy density. Therefore T 00(t)
is the total energy stored in Ψ at a given time t.
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We may use the homogeneous wave equation on the Ψ̈ term, and integrate-by-parts one of the
gradients on the second term,

∂tT
00(t) =

∫

∂D

dD−1~ξ

√
|H(~ξ)|Ψ̇ni∇iΨ+

∫

D

dD~x
(
Ψ̇~∇2Ψ− Ψ̇~∇2Ψ

)
. (9.4.29)

By assumption either Ψ or ni∇iΨ is zero on the spatial boundary; if it were the former, then
Ψ̇(∂D) = 0 too. Either way, the surface integral is zero. Therefore the right hand side vanishes
and we conclude that T 00 is actually a constant in time. Together with the initial conditions
Ψ̇(t = t0, ~x)

2 = 0 and Ψ(t = t0, ~x) = 0 (which implies (~∇Ψ(t = t0, ~x))
2 = 0), we see that

T 00(t = t0) = 0, and therefore has to remain zero for all subsequent time t ≥ t0. Moreover, since
T 00(t ≥ t0) = 0 is the integral of the sum of (D + 1) positive terms {Ψ̇2, (∂iΨ)2}, each term
must individually vanish, which in turn implies Ψ must be a constant in both space and time.
But, since it is zero at the initial time t = t0, it must be in fact zero for t ≥ t0. That means
ψ1 = ψ2.
Remark Armed with the knowledge that the “initial value problem” for the Minkowski
spacetime wave equation has a unique solution, we will see how to actually solve it first in
Fourier space and then with the retarded Green’s function.

9.4.2 Waves, Initial value problem, Green’s Functions

Dispersion relations, Homogeneous solutions You may guess that any function f(t, ~x)
in flat (Minkowski) spacetime can be Fourier transformed.

f(t, ~x) =

∫

RD+1

dD+1k

(2π)D+1
f̃(ω,~k)e−iωtei

~k·~x (Not quite . . . ), (9.4.30)

where

kµ ≡ (ω, ki). (9.4.31)

Remember the first component is now the 0th one; so

exp(−ikµxµ) = exp(−iηµνkµxµ) = exp(−iωt) exp(i~k · ~x). (9.4.32)

Furthermore, these plane waves in eq. (9.4.32) obey

∂2 exp(−ikµxµ) = −k2 exp(−ikµxµ), k2 ≡ kµk
µ. (9.4.33)

This comes from a direct calculation; note that ∂µ(ikαx
α) = ikαδ

α
µ = ikµ and similarly ∂µ(ikαx

α) =
ikµ.

∂2 exp(−ikµxµ) = ∂µ∂
µ exp(−ikµxµ) = (ikµ)(ik

µ) exp(−ikµxµ). (9.4.34)

Therefore, a particular mode ψ̃e−ikαxα
satisfies the homogeneous scalar wave equation in eq.

(9.4.16) with J = 0 – provided that

0 = ∂2
(
ψ̃e−ikαxα

)
= −k2ψ̃e−ikαxα ⇒ k2 = 0 ⇒ ω2 = ~k2. (9.4.35)

255



This relationship between the zeroth component of the momentum and its spatial ones, is often
known as the dispersion relation. Moreover, the positive root

ω = |~k| (9.4.36)

can be interpreted as saying the energy ω of the photon – or, the massless particle associated
with ψ obeying eq. (9.4.16) – is equal to the magnitude of its momentum ~k.

Therefore, if ψ satisfies the homogeneous wave equation, the Fourier expansion is actually
D-dimensional not (D + 1) dimensional:

ψ(t, ~x) =

∫

RD

dD~k

(2π)D

(
Ã(~k)e−i|~k|t + B̃(~k)ei|

~k|t
)
ei
~k·~x. (9.4.37)

There are two terms in the parenthesis, one for the positive solution ω = +|~k| and one for the

negative ω = −|~k|. For a real scalar field ψ, the Ã and B̃ are related.

ψ(t, ~x)∗ = ψ(t, ~x) =

∫

RD

dD~k

(2π)D

(
Ã(~k)∗ei|

~k|t + B̃(~k)∗e−i|~k|t
)
e−i~k·~x

=

∫

RD

dD~k

(2π)D

(
B̃(−~k)∗e−i|~k|t + Ã(−~k)∗ei|~k|t

)
ei
~k·~x. (9.4.38)

Comparing equations (9.4.37) and (9.4.38) indicate Ã(−~k)∗ = B̃(~k) ⇔ Ã(~k) = B̃(−~k)∗. There-
fore,

ψ(t, ~x) =

∫

RD

dD~k

(2π)D

(
Ã(~k)e−i|~k|t + Ã(−~k)∗ei|~k|t

)
ei
~k·~x. (9.4.39)

Note that Ã(~k) itself, for a fixed ~k, has two independent parts – its real and imaginary portions.84

Contrast this homogeneous wave solution against the infinite Euclidean (flat) space case,

where −~∇2ψ = 0 does not admit any solutions that are regular everywhere (≡ does not blow
up anywhere), except the ψ = constant solution.
Initial value formulation through mode expansion Unlike the heat/diffusion equation,
the wave equation is second order in time. We therefore expect that, to obtain a unique solution
to the latter, we have to supply both the initial field configuration and its first time derivative
(conjugate momentum). It is possible to see it explicitly through the mode expansion in eq.

(9.4.39) – the need for two independent coefficients Ã and Ã∗ to describe the homogeneous
solution is intimately tied to the need for two independent initial conditions.

Suppose

ψ(t = 0, ~x) = ψ0(~x) and ∂tψ(t = 0, ~x) = ψ̇0(~x), (9.4.40)

where the right hand sides are given functions of space. Then, from eq. (9.4.39),

ψ0(~x) =

∫

RD

dDk

(2π)D
ψ̃0(~k)e

i~k·~x =

∫

RD

dDk

(2π)D

(
Ã(~k) + Ã(−~k)∗

)
ei
~k·~x

ψ̇0(~x) =

∫

RD

dDk

(2π)D
˜̇ψ0(

~k)ei
~k·~x =

∫

RD

dDk

(2π)D
(−i|~k|)

(
Ã(~k)− Ã(−~k)∗

)
ei
~k·~x. (9.4.41)

84In quantum field theory, the coefficients Ã(~k) and Ã(~k)∗ of the Fourier expansion in (9.4.39) will become
operators obeying appropriate commutation relations.
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We have also assumed that the initial field and its time derivative admits a Fourier expansion.
By equating the coefficients of the plane waves,

ψ̃0(~k) = Ã(~k) + Ã(−~k)∗,
i

|~k|
˜̇
ψ0(

~k) = Ã(~k)− Ã(−~k)∗. (9.4.42)

Inverting this relationship tells us the Ã(~k) and Ã(~k)∗ are indeed determined by (the Fourier
transforms) of the initial conditions:

Ã(~k) =
1

2

(
ψ̃0(~k) +

i

|~k|
˜̇ψ0(

~k)

)

Ã(−~k)∗ = 1

2

(
ψ̃0(~k)−

i

|~k|
ψ̇0(~k)

)
(9.4.43)

In other words, given the initial conditions ψ(t = 0, ~x) = ψ0(~x) and ∂tψ(t = 0, ~x) = ψ̇0(~x),
we can evolve the homogeneous wave solution forward/backward in time through their Fourier
transforms:

ψ(t, ~x) =
1

2

∫

RD

dD~k

(2π)D

{(
ψ̃0(~k) +

i

|~k|
˜̇ψ0(

~k)

)
e−i|~k|t +

(
ψ̃0(~k)−

i

|~k|
˜̇ψ0(

~k)

)
ei|

~k|t

}
ei
~k·~x

=

∫

RD

dD~k

(2π)D

(
ψ̃0(~k) cos(|~k|t) + ˜̇ψ0(

~k)
sin(|~k|t)

|~k|

)
ei
~k·~x. (9.4.44)

We see that the initial profile contributes to the part of the field even under time reversal t→ −t;
whereas its initial time derivative contributes to the portion odd under time reversal.

Suppose the initial field configuration and its time derivative were specified at some other
time t0 (instead of 0),

ψ(t = t0, ~x) = ψ0(~x), ∂tψ(t = t0, ~x) = ψ̇0(~x). (9.4.45)

Because of time-translation symmetry, eq. (9.4.44) becomes

ψ(t, ~x) =

∫

RD

dD~k

(2π)D


ψ̃0(~k) cos

(
|~k|(t− t0)

)
+
˜̇
ψ0(

~k)
sin
(
|~k|(t− t0)

)

|~k|


 ei

~k·~x. (9.4.46)

Problem 9.12. Let’s consider an initial Gaussian wave profile with zero time derivative,

ψ(t = 0, ~x) = exp(−(~x/σ)2), ∂tψ(t = 0, ~x) = 0. (9.4.47)

If ψ satisfies the homogeneous wave equation, what is ψ(t > 0, ~x)? Express the answer as a
Fourier integral; the integral itself may be very difficult to evaluate.
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Inhomogeneous solution in Fourier space If there is a non-zero source J , we could try
the strategy we employed with the 1D damped driven simple harmonic oscillator: first go to
Fourier space and then inverse-transform it back to position spacetime. That is, starting with,

∂2xψ(x) = J(x), (9.4.48)

∂2x

∫

RD,1

dD+1k

(2π)D+1
ψ̃(k)e−ikµxµ

=

∫

RD,1

dD+1k

(2π)D+1
J̃(k)e−ikµxµ

(9.4.49)

∫

RD,1

dD+1k

(2π)D+1
(−k2)ψ̃(k)e−ikµxµ

=

∫

RD,1

dD+1k

(2π)D+1
J̃(k)e−ikµxµ

, k2 ≡ kµk
µ. (9.4.50)

Because the plane waves {exp(−ikµxµ)} are basis vectors, their coefficients on both sides of the
equation must be equal.

ψ̃(k) = − J̃(k)
k2

. (9.4.51)

The advantage of solving the wave equation in Fourier space is, we see that this is the par-
ticular solution for ψ – the portion that is sourced by J . Turn off J and you’d turn off (the
inhomogeneous part of) ψ.
Inhomogeneous solution via Green’s function We next proceed to transform eq.
(9.4.51) back to spacetime.

ψ(x) = −
∫

RD,1

dD+1k

(2π)D+1

J̃(k)

k2
e−ik·x = −

∫

RD,1

dD+1k

(2π)D+1

∫

RD,1

dD+1x′′
J(x′)eik·x

′′

k2
e−ik·x

=

∫

RD,1

dD+1x′′
(∫

RD,1

dD+1k

(2π)D+1

e−ik·(x−x′′)

−k2
)
J(x′′) (9.4.52)

That is, if we define the Green’s function of the wave operator as

GD+1(x− x′) =

∫

RD+1

dD+1k

(2π)D+1

e−ikµ(x−x′)µ

−k2

= −
∫

dω

2π

∫
dD~k

(2π)D
e−iω(t−t′)ei

~k·(~x−~x′)

ω2 − ~k2
, (9.4.53)

eq. (9.4.52) translates to

ψ(x) =

∫

RD+1

dD+1x′′GD+1(x− x′′)J(x′′). (9.4.54)

The Green’s function GD+1(x, x
′) itself satisfies the following PDE:

∂2xGD+1(x, x
′) = ∂2x′GD+1(x, x

′) = δ(D+1)(x− x′) = δ(t− t′)δ(D) (~x− ~x′) . (9.4.55)

This is why we call it the Green’s function. Like its counterpart for the Poisson equation,
we can view GD+1 as the inverse of the wave operator. A short calculation using the Fourier
representation in eq. (9.4.53) will verify eq. (9.4.55). If ∂2 denotes the wave operator with
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respect to either x or x′, and if we recall the eigenvalue equation (9.4.33) as well as the integral
representation of the δ-function,

∂2GD+1(x− x′) =

∫

RD+1

dD+1k

(2π)D+1

∂2e−ikµ(x−x′)µ

−k2

=

∫

RD+1

dD+1k

(2π)D+1

−k2e−ikµ(x−x′)µ

−k2 = δ(D+1)(x− x′). (9.4.56)

Observer and Source, GD+1 as a field by a point source If we compare δ(D+1)(x −
x′) in the wave equation obeyed by the Green’s function itself (eq. (9.4.55)) with that of an
external source J in the wave equation for ψ (eq. (9.4.48)), we see GD+1(x, x

′) itself admits the
interpretation that it is the field observed at the spacetime location x produced by a spacetime
point source at x′. According to eq. (9.4.54), the ψ(t, ~x) is then the superposition of the fields
due to all such spacetime points, weighted by the physical source J . (For a localized J , it sweeps
out a world tube in spacetime – try drawing a spacetime diagram to show how its segments
contribute to the signal at a given x.)

Contour prescriptions and causality From your experience with the mode sum
expansion you may already have guessed that the Green’s function for the wave operator ∂2,
obeying eq. (9.4.55), admits the mode sum expansion in eq. (9.4.53). However, you will soon
run into a stumbling block if you begin with the k0 = ω integral, because the denominator of
the second line of eq. (9.4.53) gives rise to two singularities on the real line at ω = ±|~k|. To
ensure the mode expansion in eq. (9.4.53) is well defined, we would need to append to it an
appropriate contour prescription for the ω-integral. It will turn out that, each distinct contour
prescription will give rise to a Green’s function with distinct causal properties.

On the complex ω-plane, we can choose to avoid the singularities at ω = ±|~k| by

1. Making a tiny semi-circular clockwise contour around each of them. This will yield the
retarded Green’s function G+

D+1, where signals from the source propagate forward in time;
observers will see signals only from the past.

2. Making a tiny semi-circular counterclockwise contour around each of them. This will yield
the advanced Green’s function G−

D+1, where signals from the source propagate backward in
time; observers will see signals only from the future.

3. Making a tiny semi-circular counterclockwise contour around ω = −|~k| and a clockwise

one at ω = +|~k|. This will yield the Feynman Green’s function GD+1,F , named after
the theoretical physicist Richard P. Feynman. The Feynman Green’s function is used
heavily in Minkowski spacetime perturbative Quantum Field Theory. Unlike its retarded
and advanced cousins – which are purely real – the Feynman Green’s function is complex.
The real part is equal to half the advanced plus half the retarded Green’s functions. The
imaginary part, in the quantum field theory context, describes particle creation by an
external source.

These are just 3 of the most commonly used contour prescriptions – there are an infinity of
others, of course. You may also wonder if there is a heat kernel representation of the Green’s
function of the Minkowski spacetime wave operator, i.e., the generalization of eq. (9.3.46) to
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“spacetime Laplacians”. The subtlety here is that the eigenvalues of ∂2, the {−k2}, are not
positive definite; to ensure convergence of the proper time t-integral in eq. (9.3.46) one would
in fact be lead to the Feynman Green’s function.

For classical physics, we will focus mainly on the retarded Green’s function G+
D+1 because it

obeys causality – the cause (the source J) precedes the effect (the field it generates). We will
see this explicitly once we work out the G+

D+1 below, for all D ≥ 1.
To put the issue of contours on concrete terms, let us tackle the 2 dimensional case. Because

the Green’s function enjoys the spacetime translation symmetry of the Minkowski spacetime it
resides in – namely, under the simultaneous replacements xµ → xµ + aµ and x′µ → x′µ + aµ, the
Green’s function remains the same object – without loss of generality we may set x′ = 0 in eq.
(9.4.53).

G2 (x
µ = (t, z)) = −

∫
dω

2π

∫
dk

2π

e−iωteikz

ω2 − k2
(9.4.57)

If we make the retarded contour choice, which we will denote as G+
2 , then if t < 0 we would close

it in the upper half plane (recall e−i(i∞)(−|t|) = 0). Because there are no poles for Im(ω) > 0,
we’d get zero. If t > 0, on the other hand, we will form the closed (clockwise) contour C via
the lower half plane, and pick up the resides at both poles. We begin with a partial fractions
decomposition of 1/k2, followed by applying the residue theorem:

G+
2 (t, z) = −iΘ(t)

∮

C

dω

2πi

∫
dk

2π
e−iωt e

ikz

2k

(
1

ω − k
− 1

ω + k

)
(9.4.58)

= +iΘ(t)

∫
dk

2π

eikz

2k

(
e−ikt − eikt

)

= −iΘ(t)

∫
dk

2π

eikz

2k
· 2i sin(kt) = Θ(t)

∫
dk

2π

eikz

k
sin(kt) (9.4.59)

At this point, let us note that, if we replace z → −z,

G+
2 (t,−z) = Θ(t)

∫
dk

2π

e−ikz

k
· sin(kt) = G2 (t, z)

∗ (9.4.60)

= Θ(t)

∫
dk

2π

ei(−k)z

(−k) · sin((−k)t) = G2(t, z). (9.4.61)

Therefore not only is G2(t, z) real, we can also put an absolute value around the z – the answer for
G2 has to be the same whether z is positive or negative anyway. Using the identity cos(a) sin(b) =
(1/2)(sin(a+ b)− sin(a− b)),

G+
2 (t, z) = Θ(t)

∫
dk

2π

cos(kz)

k
· sin(kt) (G2 is real) (9.4.62)

=
1

2
Θ(t)I(t, z), (9.4.63)

where

I(t, z) ≡
∫

dk

2π

sin(k(t+ |z|)) + sin(k(t− |z|))
k

. (9.4.64)
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We differentiate once with respect to time and obtain the differential equation

∂tI(t, z) =

∫
dk

2π
(cos(k(t+ |z|)) + cos(k(t− |z|)))

= δ(t+ |z|) + δ(t− |z|). (9.4.65)

Note that, because sine is an odd function, the integral representation of the δ-function really
only involves cosine.

∫
dk

2π
eikz =

∫
dk

2π
cos(kz) = δ(z) (9.4.66)

We use the distributional identity

δ(f(z)) =
∑

zi∈{zeroes of f(z)}

δ(z − zi)

|f ′(zi)|
(9.4.67)

to re-express the δ-functions in eq. (9.4.65) as

δ(σ̄) =
δ(t− |z|)

|t| +
δ(t+ |z|)

|t| =
δ(t− |z|) + δ(t+ |z|)

|z| , σ̄ ≡ t2 − z2

2
,

δ(σ̄) · |t| = δ(t− |z|) + δ(t+ |z|). (9.4.68)

Moreover, because ∂tsgn(t) = ∂t(Θ(t)−Θ(−t)) = 2δ(t),

∂t {sgn(t)Θ(σ̄)} = δ(σ̄) · |t|+ 2δ(t)Θ(σ̄)

= δ(t− |z|) + δ(t+ |z|) + 2δ(t)Θ(σ̄). (9.4.69)

In the first equality, the first term contains |t| because sgn(t) · t = t = |t| when t > 0; and t < 0,
sgn(t) · t = −t = |t|. The second term δ(t)Θ(σ̄) = δ(t)Θ(−z2/2) is zero because we will never
set (t, z) = (0, 0). The solution to the first order differential equation in eq. (9.4.65) is thus

I(t, z) = sgn(t)Θ(σ̄) + C(z), (9.4.70)

where C(z) is a time independent but possibly z-dependent function. But the following boundary
condition says

I(t = 0, z) =

∫
dk

2π

sin(k|z|)− sin(k|z|)
k

= 0. (9.4.71)

Therefore C(z) = 0 and we have obtained the solution to G2.

G+
2 (x− x′) =

1

2
Θ(t− t′)Θ(σ̄), σ̄ ≡ (t− t′)2 − (z − z′)2

2
=

1

2
(x− x′)2. (9.4.72)

(The Θ(t) sets sgn(t) = 1; and we have restored x → x − x′.) While the Θ(σ̄) allows the
signal due to the spacetime point source at x′ to propagate both forward and backward in time
– actually, throughout the interior of the light cone of x′ – the Θ(t − t′) implements retarded
boundary conditions: the observer time t always comes after the emission time t′. If you carry
out a similar analysis for G2 but for the advanced contour, you would find

G−
2 (x− x′) =

1

2
Θ(t′ − t)Θ(σ̄). (9.4.73)
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Problem 9.13. From its Fourier representation , calculate G±
3 (x − x′), the retarded and

advanced Green’s function of the wave operator in 3 dimensional Minkowski spacetime. You
should find

G±
3 (x− x′) =

Θ(±(t− t′))√
2(2π)

Θ(σ̄)√
σ̄
. (9.4.74)

Bonus problem: Can you perform the Fourier integral in eq. (9.4.53) for all GD+1?

Green’s Functions From Recursion Relations With the 2 and 3 dimensional
Green’s function under our belt, I will now show how we can generate the Green’s function
of the Minkowski wave operator in all dimensions, just by differentiating G2,3. The primary
observation that allow us to do so, is that a line source in (D+2) spacetime is a point source in
(D+1) dimensions; and a plane source in (D+2) spacetime is a point source in D dimensions.85

For this purpose let’s set the notation. In (D+1) dimensional flat spacetime, let the spatial
coordinates be denoted as xi = (~x⊥, w

1, w2); and in (D−1) dimensions let the spatial coordinates
be the ~x⊥. Then |~x−~x′| is a D dimensional Euclidean distance between the observer and source
in the former, whereas |~x⊥ − ~x′⊥| is the D − 1 counterpart in the latter.

Starting from the integral representation for GD+1 in eq. (9.4.53), we may integrate with
respect to the Dth spatial coordinate w2:

∫ +∞

−∞

dw′2GD+1(t− t′, ~x⊥ − ~x′⊥, ~w − ~w′)

=

∫ +∞

−∞

dw′2

∫

RD+1

dωdD−2k⊥d
2k‖

(2π)D+1

e−iω(t−t′)ei
~k⊥·(~x⊥−~x′

⊥)eik‖·(~w−~w′)

−ω2 + ~k2⊥ + ~k2‖

=

∫

RD+1

dωdD−2k⊥d
2k‖

(2π)D+1
(2π)δ(k2‖)

e−iω(t−t′)ei
~k⊥·(~x⊥−~x′

⊥)eik
1
‖(w

1−w′1)eik
2
‖w

2

−ω2 + ~k2⊥ + ~k2‖

=

∫

RD

dωdD−2k⊥dk
1
‖

(2π)D
e−iω(t−t′)ei

~k⊥·(~x⊥−~x′
⊥)eik

1
‖(w

1−w′1)

−ω2 + ~k2⊥ + (k1‖)
2

= GD(t− t′, ~x⊥ − ~x′⊥, w
1 − w′1). (9.4.75)

The notation is cumbersome, but the math can be summarized as follows. Integrating GD+1

over the Dth spatial coordinate amounts to discarding the momentum integral with respect to its
D component and setting its value to zero everywhere in the integrand. But that is nothing but
the integral representation of GD. Moreover, because of translational invariance, we could have
integrated with respect to either w′2 or w2. If we compare our integral here with eq. (9.4.54),
we may identify J(x′′) = δ(t′′ − t′)δ(D−2)(~x′⊥ − ~x′′⊥)δ(w

1 − w′′1), an instantaneous line source of
unit strength lying parallel to the Dth axis, piercing the (D − 1) space at (~x′⊥, w

′1).
We may iterate this integral recursion relation once more,

∫

R2

d2wGD+1 (t− t′, ~x⊥ − ~x′⊥, ~w − ~w′) = GD−1 (t− t′, ~x⊥ − ~x′⊥) . (9.4.76)

85I will make this statement precise very soon, by you are encouraged to read H. Soodak and M. S. Tiersten,
Wakes and waves in N dimensions, Am. J. Phys. 61 (395), May 1993, for a pedagogical treatment.
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This is saying GD−1 is sourced by a 2D plane of unit strength, lying in (D + 1) spacetime. On
the left hand side, we may employ cylindrical coordinates to perform the integral

2π

∫ ∞

0

dρρGD+1

(
t− t′,

√
(~x⊥ − ~x′⊥)

2 + ρ2
)

= GD−1 (t− t′, |~x⊥ − ~x′⊥|) , (9.4.77)

where we are now highlighting the fact that, the Green’s function really has only two arguments:
one, the time elapsed t−t′ between observation t and emission t′; and two, the Euclidean distance
between observer and source. (We will see this explicitly very shortly.) For GD+1 the relevant
Euclidean distance is

|~x− ~x′| =
√
(~x⊥ − ~x′⊥)

2 + (~w − ~w′)2. (9.4.78)

A further change of variables

R′ ≡
√
(~x⊥ − ~x′⊥)

2 + ρ2 ⇒ dR′ =
ρdρ

R′
. (9.4.79)

This brings us to

2π

∫ ∞

R

dR′R′GD+1(t− t′, R′) = GD−1(t− t′, R). (9.4.80)

At this point we may differentiate both sides with respect to R (see Leibniz’s rule for differen-
tiation), to obtain the Green’s function in (D + 1) dimensions from its counterpart in (D − 1)
dimensions.

GD+1(t− t′, R) = − 1

2πR

∂

∂R
GD−1(t− t′, R). (9.4.81)

The meaning of R on the left hand side is the D-space length |~x− ~x′|; on the right hand side it
is the (D − 2)-space length |~x⊥ − ~x′⊥|.

Green’s Function From Extra Dimensional Line Source There is an alternate
means of obtaining the integral relation in eq. (9.4.75), which was key to deriving eq. (9.4.81).
In particular, it does not require explicit use of the Fourier integral representation. Let us
postulate that GD is sourced by a “line charge” J(w2) extending in the extra spatial dimension
of RD,1.

GD(t− t′, ~x⊥ − ~x′⊥, w
1 − w′1)

?
=

∫ +∞

−∞

dw′2GD+1(t− t′, ~x⊥ − ~x′⊥, ~w − ~w′)J(w′2) (9.4.82)

Applying the wave operator in the ((D − 1) + 1)-space on the right hand side, and suppressing
arguments of the Green’s function whenever convenient,

∂2D

∫ +∞

−∞

dw′2GD+1 · J
(
where ∂2D ≡ ∂2t′ −

D−1∑

i=1

∂2i′

)

=

∫ +∞

−∞

dw′2J(w′2)

(
∂2D −

(
∂

∂w′2

)2

+

(
∂

∂w′2

)2
)
GD+1(w

2 − w′2)
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=

∫ +∞

−∞

dw′2J(w′2)

(
∂2D+1 +

(
∂

∂w′2

)2
)
GD+1(w

2 − w′2)

=

∫ +∞

−∞

dw′2J(w′2)

(
δ(t− t′)δ(D−2)(~x⊥ − ~x′⊥)δ

(2)(~w − ~w′) +

(
∂

∂w′2

)2

GD+1(w
2 − w′2)

)

= δ(D−1)(x− x′)δ(w1 − w′1)J(w2)

+

[
J(w′2)

∂GD+1(w
2 − w′2)

∂w′2

]w′2=+∞

w′2=−∞

−
[
∂J(w′2)

∂w′2
GD+1(w

2 − w′2)

]w′2=+∞

w′2=−∞

+

∫ +∞

−∞

dw′2J ′′(w′2)GD+1(w
2 − w′2). (9.4.83)

That is, we would have verified the ((D−1)+1) flat space wave equation is satisfied if only the
first term in the final equality survives. Moreover, that it needs to yield the proper δ-function
measure, namely δ(D−1)(x− x′)δ(w1 − w′1), translates to the boundary condition on J :

J(w2) = 1. (9.4.84)

That the second and third terms of the final equality of eq. (9.4.83) are zero, requires knowing
causal properties of the Green’s function: in particular, because the w′2 = ±∞ limits correspond
to sources infinitely far away from the observer at (~x⊥, w

1, w2), they must lie outside the ob-
server’s light cone, where the Green’s function is identically zero. The final term of eq. (9.4.83)
is zero if the source obeys the ODE

0 = J ′′(w′2). (9.4.85)

The solutions of eq. (9.4.85), subject to eq. (9.4.84), are

J(w′2) = 1 or J(w′2) =
w′2

w2
. (9.4.86)

We have deduced the Green’s function in D + 1 dimensions GD+1 may be sourced by a line
source of two distinct charge densities extending in the extra spatial dimension of RD+1,1.

GD(t− t′, ~x⊥ − ~x′⊥, w
1 − w′1) =

∫ +∞

−∞

dw′2GD+1(t− t′, ~x⊥ − ~x′⊥, ~w − ~w′) (9.4.87)

=

∫ +∞

−∞

dw′2w
′2

w2
GD+1(t− t′, ~x⊥ − ~x′⊥, ~w − ~w′) (9.4.88)

As a reminder, ~x⊥ and ~x′⊥ are D− 1 dimensional spatial coordinates; whereas ~w and ~w′ are two
dimensional ones.

G±
D+1 in all dimensions, Causal structure of physical signals At this point we

may gather G±
2,3 in equations (9.4.72), (9.4.73), and (9.4.74) and apply to them the recursion

relation in eq. (9.4.81) to record the explicit expressions of the retarded G+
D+1 and advanced

G−
D+1 Green’s functions in all (D ≥ 2) dimensions.86

86When eq. (9.4.81) applied toG±
2,3 in equations (9.4.72), (9.4.73), and (9.4.74), note that the (2πR)−1∂R passes

through the Θ(±(t−t′)) and because the rest of the G±
2,3 depends solely on σ̄, it becomes (2πR)−1∂R = (2π)−1∂σ̄.
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• In even dimensional spacetimes, D + 1 = 2 + 2n and n = 0, 1, 2, 3, 4, . . . ,

G±
2+2n(x− x′) = Θ (±(t− t′))

(
1

2π

∂

∂σ̄

)n
Θ(σ̄)

2
. (9.4.89)

• In odd dimensional spacetime, D + 1 = 3 + 2n and n = 0, 1, 2, 3, 4, . . . ,

G±
3+2n(x− x′) = Θ (±(t− t′))

(
1

2π

∂

∂σ̄

)n(
Θ(σ̄)

2π
√
2σ̄

)
. (9.4.90)

Recall that σ̄(x, x′) is half the square of the geodesic distance between the observer at x and
point source at x′,

σ̄ ≡ 1

2
(x− x′)2. (9.4.91)

Hence, Θ(σ̄) is unity inside the light cone and zero outside; whereas δ(σ̄) and its derivatives are
non-zero strictly on the light cone. Note that the inside-the-light-cone portion of a signal – for
e.g., the Θ(σ̄) term of the Green’s function – is known as the tail. Notice too, the Θ(±(t− t′))
multiplies an expression that is symmetric under interchange of observer and source (x ↔ x′).
For a fixed source at x′, we may interpret these coefficients of Θ(±(t − t′)) as the symmetric
Green’s function: the field due to the source at x′ travels both backwards and forward in time.
The retarded Θ(t − t′) (observer time is later than emission time) selects the future light cone
portion of this symmetric signal; while the advanced Θ(−(t − t′)) (observer time earlier than
emission time) selects the backward light cone part of it.

As already advertised earlier, because the Green’s function of the scalar wave operator in
Minkowski is the field generated by a unit strength point source in spacetime – the field ψ
generated by an arbitrary source J(t, ~x) obeys causality. By choosing the retarded Green’s
function, the field generated by the source propagates on and possibly within the forward light
cone of J . Specifically, ψ travels strictly on the light cone for even dimensions greater or equal
to 4, because GD+1=2n involves only δ(σ̄) and its derivatives. In 2 dimensions, the Green’s
function is pure tail, and is in fact a constant 1/2 inside the light cone. In 3 dimensions, the
Green’s function is also pure tail, going as σ̄−1/2 inside the light cone. For odd dimensions
greater than 3, the Green’s function has non-zero contributions from both on and inside the
light cone. However, the ∂σ̄s occurring within eq. (9.4.90) can be converted into ∂t′s and – at
least for material/timelike J – integrated-by-parts within the integral in eq. (9.4.54) to act on
the J . The result is that, in all odd dimensional Minkowski spacetimes (d ≥ 3), physical signals
propagate strictly inside the null cone, despite the massless nature of the associated particles.87

Comparison to heat equation The causal structure of the solutions to the wave
equation here can be contrasted against those of the infinite flat space heat equation. Referring
to the heat kernel in eq. (9.3.31), we witness how at initial time t′, the field K is infinitely sharply
localized at ~x = ~x′. However, immediately afterwards, it becomes spread out over all space, with
a Gaussian profile peaked at ~x = ~x′ – thereby violating causality. In other words, the “waves”
in the heat/diffusion equation of eq. (9.3.1) propagates with infinite speed. Physically speaking,

87Explicit formulas for the electromagnetic and linear gravitational case can be found in appendices A and B
of arXiv: 1611.00018 [19].
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we may attribute this property to the fact that time and space are treated asymmetrically both
in the heat/diffusion eq. (9.3.1) itself – one time derivative versus two derivatives per spatial
coordinate – as well as in the heat kernel solution of eq. (9.3.31). On the other hand, the
symmetric portion of the spacetime Green’s functions in equations (9.4.89) and (9.4.90) depend
on spacetime solely through 2σ̄ ≡ (t− t′)2 − (~x− ~x′)2, which is invariant under global Poincaré
transformations (cf. eq. (9.4.14)).

4 dimensions: Massless Scalar Field We highlight the 4 dimensional retarded case,
because it is most relevant to the real world. Using eq. (9.4.68) after we recognize Θ′(σ̄) = δ(σ̄),

G+
4 (x− x′) =

δ (t− t′ − |~x− ~x′|)
4π|~x− ~x′| . (9.4.92)

The G4 says the point source at (t
′, ~x′) produces a spherical wave that propagates strictly on the

light cone t− t′ = |~x− ~x′|, with amplitude that falls off as 1/(observer-source spatial distance)
= 1/|~x − ~x′|. There is another term involving δ (t− t′ + |~x− ~x′|), but for this to be non-zero
t− t′ = −|~x− ~x′| < 0; this is not allowed by the Θ(t− t′).

The solution to ψ from eq. (9.4.54) is now

ψ(t, ~x) =

∫ +∞

−∞

dt′
∫

R3

d3~x′G+
4 (t− t′, ~x− ~x′)J(t′, ~x′)

=

∫ +∞

−∞

dt′
∫

R3

d3~x′
δ (t− t′ − |~x− ~x′|)J(t′, ~x′)

4π|~x− ~x′|

=

∫

R3

d3~x′
J(tr, ~x

′)

4π|~x− ~x′| , tr ≡ t− |~x− ~x′|. (9.4.93)

The tr is called retarded time. With c = 1, the time it takes for a signal traveling at unit speed
to travel from ~x′ to ~x is |~x−~x′|, and so at time t, what the observer detects at (t, ~x) is what the
source produced at time t− |~x− ~x′|.

Far Zone & Non-Relativistic Source Let us center the coordinate system so that ~x =
~x′ = ~0 lies within the body of the source J itself. When the observer is located at very large
distances from the source compared to the latter’s characteristic size, we may approximate

|~x− ~x′| = e−x′j∂j |~x|

= |~x| − ~x′ · x̂+ |~x|O
(( |~x′|

|~x|

)2
)
, x̂ ≡ xi

|~x| (9.4.94)

= |~x| − ~x′ · x̂+ |~x′|O
( |~x′|
|~x|

)
(9.4.95)

This leads us from eq. (9.4.93) to the following far zone scalar solution

ψ(t, ~x) =
1

4π|~x|

∫

R3

d3~x′

{
1 +

~x′

|~x| · x̂+O
(( |~x′|

|~x|

)2
)}

(9.4.96)

×
{
J (t− |~x|, ~x′)−

{
(~x′ · x̂) + |~x′|O

( |~x′|
|~x|

)}
∂tJ (t− |~x|, ~x′) +O

(
(~x′ · x̂)2

)
J̈ + . . .

}
.
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We see that the corrections to the leading order term scales as either (characteristic size of
source)/(observer-source spatial distance) or (characteristic size of source)/(timescale of source);
where the former is from eq. (9.4.94) and the latter from the (~x′ ·~x)J̇ in eq. (9.4.96). Therefore,
in the far zone but without assuming the source is non-relativistic,

ψ(t, ~x) ≈ 1

4π|~x|

∫

R3

d3~x′J (t− |~x|+ ~x′ · x̂, ~x′) . (9.4.97)

But if the source is non-relativistic – namely (characteristic size of source)/(timescale of source)
≪ 1 –

ψ(t, ~x) ≈ A(t− |~x|)
4π|~x| , (9.4.98)

A(t− |~x|) ≡
∫

R3

d3~x′J(t− |~x|, ~x′). (9.4.99)

In the far zone and with a non-relativistic source: the amplitude of the wave falls off with
increasing distance as 1/(observer-source spatial distance); and the time-dependent portion of
the wave A(t− |~x|) is consistent with that of an outgoing wave, one emanating from the source
J .

4D photons In 4 dimensional flat spacetime, the vector potential of electromagnetism,
in the Lorenz gauge

∂µA
µ = 0 (Cartesian coordinates), (9.4.100)

obeys the wave equation

∂2Aµ = Jµ. (9.4.101)

Here, ∂2 is the scalar wave operator, and Jµ is a conserved electromagnetic current describing
the motion of some charge density

∂µJ
µ = ∂tJ

t + ∂iJ
i = 0. (9.4.102)

The electromagnetic fields are the “curl” of the vector potential

Fµν = ∂µAν − ∂νAµ. (9.4.103)

In particular, for a given inertial frame, the electric E and magnetic B fields are, with i, j, k ∈
{1, 2, 3},

Ei = ∂iA0 − ∂0Ai = −∂iA0 + ∂0Ai = −Fi0, (9.4.104)

Bk = −ǫijk∂iAj = −1

2
ǫijkFij, ǫ123 ≡ 1. (9.4.105)

4D gravitational waves In a 4D weakly curved spacetime, the metric can be written as
one deviating slightly from Minkowski,

gµν = ηµν + hµν (Cartesian coordinates), (9.4.106)
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where the dimensionless components of hµν are assumed to be much smaller than unity.
The (trace-reversed) graviton

h̄µν ≡ hµν −
1

2
ηµνη

αβhαβ , (9.4.107)

in the de Donder gauge

∂µh̄µν = ∂th̄tν − δij∂ih̄jν = 0, (9.4.108)

obeys the wave equation88

∂2h̄µν = −16πGNTµν (Cartesian coordinates). (9.4.109)

(The GN is the same Newton’s constant you see in Newtonian gravity ∼ GNM1M2/r
2; both h̄µν

and Tµν are symmetric.) The Tµν is a 4×4 matrix describing the energy-momentum-shear-stress
of matter, and has zero divergence (i.e., it is conserved)

∂µT
µν = ∂tT

tν + ∂iT
iν = 0. (9.4.110)

Problem 9.14. Electromagnetic radiation zone Using G+
4 in eq. (9.4.92), write down the

solution of Aµ in terms of Jµ. Like the scalar case, take the far zone limit. In this problem we
wish to study some basic properties of Aµ in this limit. Throughout this analysis, assume that
J i is sufficiently localized that it vanishes at spatial infinity; and assume J i is a non-relativistic
source.

1. Using ∂tJ
t = −∂iJ i, the conservation of the current, show that A0 is independent of time

in the far zone limit.

2. Now define the dipole moment as

I i(t) ≡
∫

R3

d3~x′x′iJ0(t, ~x′). (9.4.111)

Can you show its first time derivative is

İ i(t) ≡ dI i(t)

dt
=

∫

R3

d3~x′J i(t, ~x′)? (9.4.112)

3. From this, we shall infer it is Ai that contains radiative effects. Remember the Poynting
vector, which describes the direction and rate of flow of energy/momentum carried by

electromagnetic waves, is proportional to ~E × ~B. The energy density E is proportional to
~E2 + ~B2. Let’s focus on the electric field Ei; it has to be non-zero for the Poynting vector
to carry energy to infinity.

Ei = ∂iA0 − ∂0Ai. (9.4.113)

Show that in the far zone, it is the −∂0Ai term that dominates, and in particular

Ei → − 1

4π|~x|
d2I i(t− |~x|)

dt2
. (9.4.114)

88The following equation is only approximate; it comes from linearizing Einstein’s equations about a flat
spacetime background, i.e., where all terms quadratic and higher in hµν are discarded.
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4. Bonus problem: Can you work out the far zone Poynting vector?

Therefore the electric field energy on a dr thick spherical shell centered at the source, is a
constant as r → ∞. Moreover it depends on the acceleration of the dipole moment evaluated at
retarded time:

dE(electric)
dr

∝ 1

4π

(
d2~I(t− |~x|)

dt2

)2

. (9.4.115)

The non-zero acceleration of the dipole moment responsible for electromagnetic radiation indi-
cates work needs to be done pushing around electric charges, i.e., forces are needed to give rise
to acceleration.

Problem 9.15. Gravitational radiation zone Can you carry out a similar analysis for grav-
itational radiation? Using G+

4 in eq. (9.4.92), write down the solution of h̄µν in terms of T µν .
Then take the far zone limit. Throughout this analysis, assume that T µν is sufficiently localized
that it vanishes at spatial infinity; and assume T µν is a non-relativistic source.

1. Using ∂tT
tν = −∂iT iν , the conservation of the stress-tensor, show that h̄ν0 = h̄0ν is inde-

pendent of time in the far zone limit.

2. Now define the quadrupole moment as

I ij(t) ≡
∫

R3

d3~x′x′ix′jT 00(t, ~x′). (9.4.116)

Can you show its second time derivative is

Ï ij(t) ≡ d2I ij(t)

dt2
= 2

∫

R3

d3~x′T ij(t, ~x′)? (9.4.117)

and from it infer that the (trace-reversed) gravitational wave form in the far zone is pro-
portional to the acceleration of the quadrupole moment evaluated at retarded time:

h̄ij(t, ~x) → −2GN

|~x|
d2I ij(t− |~x|)

dt2
. (9.4.118)

Note that the (trace-reversed) gravitational wave h̄ij(t, ~x) can be detected by how it
squeezes and stretches arms of a laser interferometer such as aLIGO and VIRGO. More-
over, the non-zero acceleration of the quadrupole moment responsible for gravitational
radiation indicates work needs to be done pushing around matter, i.e., forces are needed
to give rise to acceleration.

Problem 9.16. Waves Around Schwarzschild Black Hole. The geometry of a non-rotating
black hole is described by

ds2 =
(
1− rs

r

)
dt2 − dr2

1− rs
r

− r2
(
dθ2 + sin(θ)2dφ2

)
, (9.4.119)
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where xµ = (t ∈ R, r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ < 2π), and rs (proportional to the mass of the black
hole itself) is known as the Schwarzschild radius – nothing can fall inside the black hole (r < rs)
and still get out.

Consider the (massless scalar) homogeneous wave equation in this black hole spacetime,
namely

�ψ(t, r, θ, φ) = ∇µ∇µψ = 0. (9.4.120)

Consider the following separation-of-variables ansatz

ψ(t, r, θ, φ) =

∫ +∞

−∞

dω

2π
e−iωt

+∞∑

ℓ=0

+ℓ∑

m=−ℓ

Rℓ(ωr∗)

r
Y m
ℓ (θ, φ), (9.4.121)

where {Y m
ℓ } are the spherical harmonics on the 2-sphere and the “tortoise coordinate” is

r∗ ≡ r + rs ln

(
r

rs
− 1

)
. (9.4.122)

Show that the wave equation is reduced to an ordinary differential equation for the ℓth radial
mode function

R′′
ℓ (ξ∗) +

(
ξ2s
ξ4

+
(ℓ(ℓ+ 1)− 1) ξs

ξ3
− ℓ(ℓ+ 1)

ξ2
+ 1

)
Rℓ(ξ∗) = 0, (9.4.123)

where ξ ≡ ωr, ξs ≡ ωrs and ξ∗ ≡ ωr∗.
An alternative route is to first perform the change-of-variables

x ≡ 1− ξ

ξs
, (9.4.124)

and the change of radial mode function

Rℓ(ξ∗)

r
≡ Zℓ(x)√

x(1− x)
. (9.4.125)

Show that this returns the ODE

Z ′′
ℓ (x) +

(
1

4(x− 1)2
+

1 + 4ξ2s
4x2

+ ξ2s +
2ℓ(ℓ+ 1) + 1− 4ξ2s

2x
− 2ℓ(ℓ+ 1) + 1

2(x− 1)

)
Zℓ(x) = 0.

(9.4.126)

You may useMathematica or similar software to help you with the tedious algebra/differentiation;
but make sure you explain the intermediate steps clearly.

The solutions to eq. (9.4.126) are related to the confluent Heun function. For a recent
discussion, see for e.g., §I of arXiv: 1510.06655. The properties of Heun functions are not as
well studied as, say, the Bessel functions you have encountered earlier. This is why it is still a
subject of active research – see, for instance, the Heun Project.
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9.4.3 4D frequency space, Static limit, Discontinuous first derivatives

Wave Equation in Frequency Space We begin with eq. (9.4.52), and translate it to
frequency space.

ψ(t, ~x) =

∫ +∞

−∞

dω

2π
ψ̃(ω, ~x)e−iωt

=

∫ +∞

−∞

dt′′
∫

RD

dD~x′′GD+1(t− t′′, ~x− ~x′′)

∫ +∞

−∞

dω

2π
J̃(ω, ~x′′)e−iωt′′

=

∫ +∞

−∞

dω

2π

∫ +∞

−∞

d(t− t′′)eiω(t−t′′)e−iωt

∫

RD

dD~x′′GD+1(t− t′′, ~x− ~x′′)J̃(ω, ~x′′)

=

∫ +∞

−∞

dω

2π
e−iωt

∫

RD

dD~x′′G̃+
D+1(ω, ~x− ~x′′)J̃(ω, ~x′′). (9.4.127)

Equating the coefficients of e−iωt on both sides,

ψ̃(ω, ~x) =

∫

RD

dD~x′′G̃+
D+1(ω, ~x− ~x′′)J̃(ω, ~x′′); (9.4.128)

G̃+
D+1(ω, ~x− ~x′′) ≡

∫ +∞

−∞

dτeiωτGD+1(τ, ~x− ~x′′). (9.4.129)

Equation (9.4.128) tells us that the ω-mode of the source is directly responsible for that of the

field ψ̃(ω, ~x). This is reminiscent of the driven harmonic oscillator system, except now we have
one oscillator per point in space ~x′ – hence the integral over all of them.

4D Retarded Green’s Function in Frequency Space Next, we focus on the (D +
1) = (3+1) case, and re-visit the 4D retarded Green’s function result in eq. (9.4.92), but replace

the δ-function with its integral representation. This leads us to G̃+
4 (ω, ~x − ~x′), the frequency

space representation of the retarded Green’s function of the wave operator.

G+
4 (x− x′) =

∫ +∞

−∞

dω

2π

exp (−iω(t− t′ − |~x− ~x′|))
4π|~x− ~x′|

≡
∫ +∞

−∞

dω

2π
e−iω(t−t′)G̃+

4 (ω, ~x− ~x′), (9.4.130)

where

G̃+
4 (ω, ~x− ~x′) ≡ exp (iω|~x− ~x′|)

4π|~x− ~x′| . (9.4.131)

As we will see, ω can be interpreted as the frequency of the source of the waves. In this section
we will develop a multipole expansion of the field in frequency space by performing one for the
source as well. This will allow us to readily take the non-relativistic/static limit, where the
motion of the sources (in some center of mass frame) is much slower than 1.

Because the (3 + 1)-dimensional case of eq. (9.4.55) in frequency space reads
(
∂20 − ~∇2

)∫ +∞

−∞

dω

2π

exp (−iω(t− t′ − |~x− ~x′|))
4π|~x− ~x′| = δ(t− t′)δ(3) (~x− ~x′) , (9.4.132)

∫ +∞

−∞

dω

2π
e−iω(t−t′)

(
−ω2 − ~∇2

) exp (iω|~x− ~x′|)
4π|~x− ~x′| =

∫ +∞

−∞

dω

2π
e−iω(t−t′)δ(3) (~x− ~x′) , (9.4.133)

271



– where ∂20 can be either ∂2t or ∂2t′ ;
~∇2 can be either ~∇~x or ~∇~x′ ; and we have replaced δ(t − t′)

with its integral representation – we can equate the coefficients of the (linearly independent)
functions {exp(−iω(t− t′))} on both sides to conclude, for fixed ω, the frequency space Green’s
function of eq. (9.4.131) obeys the PDE

(
−ω2 − ~∇2

)
G̃+

4 (ω, ~x− ~x′) = δ(3) (~x− ~x′) . (9.4.134)

Static Limit Equals Zero Frequency Limit In any (curved) spacetime that enjoys time
translation symmetry – which, in particular, means there is some coordinate system where the
metric gµν(~x) depends only on space ~x and not on time t – we expect the Green’s function of
the wave operator to reflect the symmetry and take the form G+(t− t′; ~x, ~x′). Furthermore, the
wave operator only involves time through derivatives, i.e., eq. (9.4.15) now reads

∇µ∇µG = gtt∂t∂tG+ gti∂t∂iG+
∂i

(√
|g|gti∂tG

)

√
|g|

+
1√
|g|
∂i

(√
|g|gij∂jG

)

=
δ(t− t′)δ(D) (~x− ~x′)

4
√
g(~x)g(~x′)

; (9.4.135)

since
√

|g| and gµν are time-independent. In such a time-translation-symmetric situation, we
may perform a frequency transform

G̃+(ω; ~x, ~x′) =

∫ +∞

−∞

dτeiωτG+ (τ ; ~x, ~x′) , (9.4.136)

and note that solving the static equation

∇µ∇µG(static) (~x, ~x′) =
∂i

(√
|g(~x)|gij(~x)∂jG(static) (~x, ~x′)

)

√
|g(~x)|

=
∂i′
(√

|g(~x′)|gij(~x′)∂j′G(static) (~x, ~x′)
)

√
|g(~x′)|

=
δ(D)(~x− ~x′)
4
√
g(~x)g(~x′)

, (9.4.137)

amounts to taking the zero frequency limit of the frequency space retarded Green’s function.
Note that the static equation still depends on the full (D + 1) dimensional metric, but the
δ-functions on the right hand side is D-dimensional.

The reason is the frequency transform of eq. (9.4.135) replaces ∂t → −iω and the δ(t − t′)
on the right hand side with unity.

gtt(−iω)2G̃+ gti(−iω)∂iG̃+
∂i

(√
|g|gti(−iω)G

)

√
|g|

+
1√
|g|
∂i

(√
|g|gij∂jG̃

)
=
δ(D) (~x− ~x′)
4
√
g(~x)g(~x′)

(9.4.138)
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In the zero frequency limit (ω → 0) we obtain eq. (9.4.137). And since the static limit is the
zero frequency limit,

G(static)(~x, ~x′) = lim
ω→0

∫ +∞

−∞

dτeiωτG+ (τ ; ~x, ~x′) , (9.4.139)

=

∫ +∞

−∞

dτG+ (τ ; ~x, ~x′) =

∫ +∞

−∞

dτ

∫
dD~x′′

√
|g(~x′′)|G+ (τ ; ~x, ~x′′)

δ(D)(~x′ − ~x′′)√
|g(~x′)g(~x′′)|

.

This second line has the following interpretation: not only is the static Green’s function the zero
frequency limit of its frequency space retarded counterpart, it can also be viewed as the field
generated by a point “charge/mass” held still at ~x′ from past infinity to future infinity.89

4D Minkowski Example We may illustrate our discussion here by examining the 4D
Minkowski case. The field generated by a charge/mass held still at ~x′ is nothing but the
Coulomb/Newtonian potential 1/(4π|~x − ~x′|). Since we also know the 4D Minkowski retarded
Green’s function in eq. (9.4.92), we may apply the infinite time integral in eq. (9.4.139).

G(static)(~x, ~x′) =

∫ +∞

−∞

dτ
δ(τ − |~x− ~x′|)
4π|~x− ~x′| =

1

4π|~x− ~x′| , (9.4.140)

−δij∂i∂jG(static)(~x, ~x′) = −~∇2G(static)(~x, ~x′) = δ(3)(~x− ~x′). (9.4.141)

On the other hand, we may also take the zero frequency limit of eq. (9.4.131) to arrive at the
same answer.

lim
ω→0

exp (iω|~x− ~x′|)
4π|~x− ~x′| =

1

4π|~x− ~x′| . (9.4.142)

Problem 9.17. Discontinuous first derivatives of the radial Green’s function In this prob-
lem we will understand the discontinuity in the radial Green’s function of the frequency space
retarded Green’s function in 4D Minkowski spacetime. We begin by switching to spherical
coordinates and utilizing the following ansatz

G̃+
4 (ω, ~x− ~x′) =

∞∑

ℓ=0

g̃ℓ(r, r
′)

ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θ′, φ′)∗,

~x = r(sin θ cosφ, sin θ sinφ, cos θ), ~x′ = r′(sin θ′ cosφ′, sin θ′ sin φ′, cos θ′). (9.4.143)

Show that this leads to the following ODE(s) for the ℓth radial Green’s function g̃ℓ:

1

r2
∂r
(
r2∂r g̃ℓ

)
+

(
ω2 − ℓ(ℓ+ 1)

r2

)
g̃ℓ = −δ(r − r′)

rr′
, (9.4.144)

1

r′2
∂r′
(
r′2∂r′ g̃ℓ

)
+

(
ω2 − ℓ(ℓ+ 1)

r′2

)
g̃ℓ = −δ(r − r′)

rr′
. (9.4.145)

89Note, however, that in curved spacetimes, holding still a charge/mass – ensuring it stays put at ~x′ – requires
external forces. For example, holding a mass still in a spherically symmetric gravitational field of a star requires
an outward external force, for otherwise the mass will move towards the center of the star.
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Because G̃+
4 (ω, ~x − ~x′) = G̃+

4 (ω, ~x
′ − ~x), i.e., it is symmetric under the exchange of the spatial

coordinates of source and observer, it is reasonable to expect that the radial Green’s function is
symmetric too: g̃(r, r′) = g̃(r′, r). That means the results in §(9.6) may be applied here. Show
that

g̃ℓ(r, r
′) = iωjℓ(ωr<)h

(1)
ℓ (ωr>), (9.4.146)

where jℓ(z) is the spherical Bessel function and h
(1)
ℓ (z) is the Hankel function of the first kind.

Then check that the static limit in eq. (9.6.52) is recovered, by taking the limits ωr, ωr′ → 0.
Some useful formulas include

jℓ(x) = (−x)ℓ
(
1

x

d

dx

)ℓ
sin x

x
, h

(1)
ℓ (x) = −i(−x)ℓ

(
1

x

d

dx

)ℓ
exp(ix)

x
, (9.4.147)

their small argument limits

jℓ(x≪ 1) → xℓ

(2ℓ+ 1)!!

(
1 +O(x2)

)
, h

(1)
ℓ (x≪ 1) → −i(2ℓ− 1)!!

xℓ+1
(1 +O(x)) , (9.4.148)

as well as their large argument limits

jℓ(x≫ 1) → 1

x
sin

(
x− πℓ

2

)
, h

(1)
ℓ (x≫ 1) → (−i)ℓ+1 e

ix

x
. (9.4.149)

Their Wronskian is

Wrz

(
jℓ(z), h

(1)
ℓ (z)

)
=

i

z2
. (9.4.150)

Hints: First explain why

g̃ℓ(r, r
′) = A1

ℓjℓ(ωr)jℓ(ωr
′) + A2

ℓh
(1)
ℓ (ωr)h

(1)
ℓ (ωr′) + Gℓ(r, r

′), (9.4.151)

Gℓ(r, r
′) ≡ F

{
(χℓ − 1)jℓ(ωr>)h

(1)
ℓ (ωr<) + χℓ · jℓ(ωr<)h(1)ℓ (ωr>)

}
, (9.4.152)

where A1,2
ℓ , F and χℓ are constants. Fix F by ensuring the “jump” in the first r-derivative at

r = r′ yields the correct δ-function measure. Then consider the limits r → 0 and r ≫ r′. For
the latter, note that

|~x− ~x′| = e−~x′·~∇~x|~x| = |~x|
(
1− (r′/r)n̂ · n̂′ +O((r′/r)2)

)
, (9.4.153)

where n̂ ≡ ~x/r and n̂′ ≡ ~x′/r′.

We will now proceed to understand the utility of obtaining such a mode expansion of the
frequency space Green’s function.
Localized source(s): Static Multipole Expansion In infinite flatR3, Poisson’s equation

−~∇2ψ(~x) = J(~x) (9.4.154)

is solved via the static limit of the 4D retarded Green’s function we have been discussing. This
static limit is given in eq. (9.6.52) in spherical coordinates, which we will now exploit to display
its usefulness. In particular, assuming the source J is localized in space, we may now ask:
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What is the field generated by J and how does it depend on the details of its
interior?

Let the origin of our coordinate system lie at the center of mass of the source J , and let R be
its maximum radius, i.e., J(r > R) = 0. Therefore we may replace r< → r′ and r> → r in eq.
(9.6.52), and the exact solution to ψ now reads

ψ(~x; r > R) =

∫

R3

d3~x′G(~x− ~x′)J(~x′) =
∞∑

ℓ=0

+ℓ∑

m=−ℓ

ρmℓ
2ℓ+ 1

Y m
ℓ (θ, φ)

rℓ+1
, (9.4.155)

where the multipole moments {ρmℓ } are defined

ρmℓ ≡
∫

S2
d(cos θ′)dφ′

∫ ∞

0

dr′r′ℓ+2 Y m
ℓ (θ′, φ′)J(r′, θ′, φ′). (9.4.156)

It is worthwhile to highlight the following.

• The spherical harmonics can be roughly thought of as waves on the 2−sphere. Therefore,
the multipole moments ρmℓ in eq. (9.4.156) with larger ℓ and m values, describe the shorter
wavelength/finer features of the interior structure of J . (Recall the analogous discussion
for Fourier transforms.)

• Moreover, since there is a Y m
ℓ (θ, φ)/rℓ+1 multiplying the (ℓ,m)-moment of J , we see that

the finer features of the field detected by the observer at ~x is not only directly sourced
by finer features of J , it falls off more rapidly with increasing distance from J . As the
observer moves towards infinity, the dominant part of the field ψ is the monopole which
goes as 1/r times the total mass/charge of J .

• We see why separation-of-variables is not only a useful mathematical technique to reduce
the solution of Green’s functions from a PDE to a bunch of ODE’s, it was the form of eq.
(9.6.52) that allowed us to cleanly separate the contribution from the source (the multipoles
{ρmℓ }) from the form of the field they would generate, at least on a mode-by-mode basis.

Localized source(s): General Multipole Expansions, Far Zone Let us generalize the
static case to the fully time dependent one, but in frequency space and in the far zone. By the
far zone, we mean the observer is located very far away from the source J , at distances (from

the center of mass) much further than the typical inverse frequency of J̃ , i.e., mathematically,
ωr ≫ 1. We begin with eq. (9.4.146) inserted into eq. (9.4.143).

G̃+
4 (ω, ~x− ~x′) =

exp (iω|~x− ~x′|)
4π|~x− ~x′| (9.4.157)

= iω
∞∑

ℓ=0

jℓ(ωr<)h
(1)
ℓ (ωr>)

ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θ′, φ′)∗ (9.4.158)

Our far zone assumptions means we may replace the Hankel function in eq. (9.4.146) with its
large argument limit in eq. (9.4.149).

G̃+
4 (ωr ≫ 1) =

eiωr

r

(
1 +O

(
r−1
)) ∞∑

ℓ=0

(−i)ℓjℓ(ωr′)
ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θ′, φ′)∗. (9.4.159)
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Applying this limit to the general wave solution in eq. (9.4.128),

ψ̃(ω, ~x) =

∫

R3

d3~x′′G̃+
4 (ω, ~x− ~x′′)J̃(ω, ~x′′), (9.4.160)

ψ̃(ωr ≫ 1) ≈ eiωr

r

∞∑

ℓ=0

ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)

2ℓ+ 1
Ωm

ℓ (ω), (9.4.161)

where now the frequency dependent multipole moments are defined as

Ωm
ℓ (ω) ≡ (2ℓ+ 1)(−i)ℓ

∫

S2

d(cos θ′)dφ′

∫ ∞

0

dr′r′2jℓ(ωr
′)Y m

ℓ (θ′, φ′)J̃(ω, r′, θ′, φ′). (9.4.162)

Low frequency limit equals slow motion limit How are the multipole moments {ρmℓ } in eq.
(9.4.156) (which are pure numbers) related to the frequency dependent ones {Ωm

ℓ (ω)} in eq.
(9.4.162)? The answer is that the low frequency limit is the slow-motion/non-relativistic limit.
To see this in more detail, we take the ωr′ ≪ 1 limit, which amounts to the physical assumption
that the object described by J is localized so that its maximum radius R (from its center of
mass) is much smaller than the inverse frequency. In other words, in units where the speed of
light is unity, the characteristic size R of the source J is much smaller than the time scale of its
typical time variation. Mathematically, this ωr′ ≪ 1 limit is achieved by replacing jℓ(ωr

′) with
its small argument limit in eq. (9.4.148).

Ωm
ℓ (ωR≪ 1) ≈ (−iω)ℓ

(2ℓ− 1)!!

(
1 +O(ω2)

) ∫

S2
d(cos θ′)dφ′

∫ ∞

0

dr′r′2+ℓY m
ℓ (θ′, φ′)J̃(ω, r′, θ′, φ′)

(9.4.163)

Another way to see this “small ω equals slow motion limit” is to ask: what is the real time
representation of these {Ωm

ℓ (ωR≪ 1)}? By recognizing every −iω as a t-derivative,

Ωm
ℓ (t) ≈

∂ℓt
(2ℓ− 1)!!

∫ +∞

−∞

dω

2π
e−iωt

∫

S2
d(cos θ′)dφ′

∫ ∞

0

dr′r′2+ℓY m
ℓ (θ′, φ′)J̃(ω, r′, θ′, φ′),

≡ ∂ℓtρ
m
ℓ (t)

(2ℓ− 1)!!
. (9.4.164)

We see that the ωR≪ 1 is the slow motion/non-relativistic limit because it is in this limit that
time derivatives vanish. This is also why the only 1/r piece of the static field in eq. (9.4.155)
comes from the monopole.

Spherical waves in small ω limit In this same limit, we may re-construct the real time
scalar field, and witness how it is a superposition of spherical waves exp(iω(r − t))/r. The
observer detects a field that depends on the time derivatives of the multipole moments evaluated
at retarded time t− r.

ψ(t, ~x) =

∫ +∞

−∞

dω

2π
e−iωtψ̃(ω, ~x)

≈
∫ +∞

−∞

dω

2π

eiω(r−t)

r

∞∑

ℓ=0

ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)

2ℓ+ 1
Ωm

ℓ (ω), (Far zone spherical wave expansion)
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≈ 1

r

∞∑

ℓ=0

ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)

(2ℓ+ 1)!!

dℓρmℓ (t− r)

dtℓ
, (Slow motion limit). (9.4.165)

Problem 9.18. Far zone in position/real space Starting from the exact wave solution in
eq. (9.4.93), show that the leading 1/r portion of the solution – i.e., the far zone limit – reads

ψ(t, ~x) ≈ 1

4πr

∫

R3

d3~x′
∞∑

ℓ=0

(~x′ · r̂)ℓ
ℓ!

∂ℓtJ (t− r, ~x′) , r ≡ |~x|; r̂ ≡ ~x

r
, (9.4.166)

=
1

4πr

∫

R3

d3~x′J (t− r + ~x′ · r̂, ~x′) , (9.4.167)

where we have placed the origin ~x = ~x′ = ~0 within the source J . In terms of the characteristic
time scale τs of the source J and its characteristic spatial extent rs, explain what physical
situations would allow only the first few terms of the series in eq. (9.4.166) to be retained.
Comment on the relationship between equations (9.4.165) and (9.4.166).

9.4.4 Initial value problem via Kirchhoff representation

Massless scalar fields Previously we showed how, if we specified the initial conditions for
the scalar field ψ – then via their Fourier transforms – eq. (9.4.44) tells us how they will evolve
forward in time. Now we will derive an analogous expression that is valid in curved spacetime,
using the retarded Green’s function G+

D+1. To begin, the appropriate generalization of equations
(9.4.16) and (9.4.55) are

�xψ(x) = J(x),

�G+
D+1(x, x

′) =
δ(D+1)(x− x′)
4
√

|g(x)g(x′)|
. (9.4.168)

The derivation is actually very similar in spirit to the one starting in eq. (9.1.42). Let us
consider some “cylindrical” domain of spacetime D with spatial boundaries ∂Ds that can be
assumed to be infinitely far away, and “constant time” hypersurfaces ∂D(t>) (final time t>) and
∂D(t0) (initial time t0). (These constant time hypersurfaces need not correspond to the same
time coordinate used in the integration.) We will consider an observer residing (at x) within
this domain D.

I(x ∈ D) ≡
∫

D

dD+1x′
√

|g(x′)| {GD+1(x, x
′)�x′ψ(x′)−�x′GD+1(x, x

′) · ψ(x′)}

=

∫

∂D

dDΣα′

{
GD+1(x, x

′)∇α′
ψ(x′)−∇α′

GD+1(x, x
′) · ψ(x′)

}
(9.4.169)

−
∫

D

dD+1x′
√

|g(x′)|
{
∇α′GD+1(x, x

′)∇α′
ψ(x′)−∇α′GD+1(x, x

′)∇α′
ψ(x′)

}
.

The terms in the very last line cancel. What remains in the second equality is the surface
integrals over the spatial boundaries ∂Ds, and constant time hypersurfaces ∂D(t>) and ∂D(t0)
– where we have used the Gauss’ theorem in eq. (7.4.35). Here is where there is a significant
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difference between the curved space setup and the curved spacetime one at hand. By causality,
since we have G+

D+1 in the integrand, the constant time hypersurface ∂D(t>) cannot contribute
to the integral because it lies to the future of x. Also, if we assume that G+

D+1(x, x
′), like its

Minkowski counterpart, vanishes outside the past light cone of x, then the spatial boundaries at
infinity also cannot contribute.90 (Drawing a spacetime diagram here helps.) If we now proceed
to invoke the equations obeyed by ψ and GD+1 in eq. (9.4.168), what remains is

− ψ(x) +

∫

D

dD+1x′
√
|g(x′)|GD+1(x, x

′)J(x′) (9.4.170)

= −
∫

∂D(t0)

dD~ξ

√
|H(~ξ)|

{
GD+1

(
x, x′(~ξ)

)
nα′∇α′ψ

(
x′(~ξ)

)
− nα′∇α′GD+1

(
x, x′(~ξ)

)
· ψ
(
x′(~ξ)

)}
.

Here, we have assumed there are D coordinates ~ξ such that x′µ(~ξ) parametrizes our initial time
hypersurface ∂D(t0). The

√
|H| is the square root of the determinant of its induced metric. Also,

remember in Gauss’ theorem (eq. (7.4.35)), the unit normal vector dotted into the gradient ∇α′

is the outward one (see equations (7.4.26) and (7.4.27)), which in our case is therefore pointing
backward in time: this is our −nα′

, we have inserted a negative sign in front so that nα′
itself is

the unit timelike vector pointing towards the future. With all these clarifications in mind, we
gather

ψ(x; x0 > t0) =

∫

D

dD+1x′
√
|g(x′)|GD+1(x, x

′)J(x′) (9.4.171)

+

∫

∂D(t0)

dD~ξ

√
|H(~ξ)|

{
GD+1

(
x, x′(~ξ)

)
nα′∇α′ψ

(
x′(~ξ)

)
− nα′∇α′GD+1

(
x, x′(~ξ)

)
· ψ
(
x′(~ξ)

)}
.

In Minkowski spacetime, we may choose t0 to be the constant t surface of ds2 = dt2−d~x2. Then,
expressed in these Cartesian coordinates,

ψ(t > t0, ~x) =

∫

t′≥t0

dt′
∫

RD

dD~x′GD+1 (t− t′, ~x− ~x′)J(t′, ~x′) (9.4.172)

+

∫

RD

dD~x′ {GD+1(t− t0, ~x− ~x′)∂t0ψ(t0, ~x
′)− ∂t0GD+1(t− t0, ~x− ~x′) · ψ(t0, ~x′)} .

We see in both equations (9.4.171) and (9.4.172), that the time evolution of the field ψ(x) can
be solved once the retarded Green’s function G+

D+1, as well as ψ’s initial profile and first time
derivative is known at t0. Generically, the field at the observer location x is the integral of
the contribution from its initial profile and first time derivative on the t = t0 surface from
both on and within the past light cone of x. (Even in flat spacetime, while in 4 and higher
even dimensional flat spacetime, the field propagates only on the light cone – in 2 and all odd
dimensions, we have seen that scalar waves develop tails.)

Let us also observe that the wave solution in eq. (9.4.54) is in fact a special case of eq.
(9.4.172): the initial time surface is the infinite past t0 → −∞, upon which it is further assumed
the initial field and its time derivatives are trivial – the signal detected at x can therefore be
entirely attributed to J .

90In curved spacetimes where any pair of points x and x′ can be linked by a unique geodesic, this causal
structure of G+

D+1 can be readily proved for the 4 dimensional case.
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Problem 9.19. In 4 dimensional infinite flat spacetime, let the initial conditions for the
scalar field be given by

ψ(t = 0, ~x) = ei
~k·~x, ∂tψ(t = 0, ~x) = −i|~k|ei~k·~x. (9.4.173)

Use the Kirchhoff representation in eq. (9.4.172) to find ψ(t > 0, ~x). You can probably guess
the final answer, but this is a simple example to show you the Kirchhoff representation really
works.

9.5 Variational Principle in Field Theory

You may be familiar with the variational principle – or, the principle of stationary action – from
classical mechanics. Here, we will write down one for the classical field theories leading to the
Poisson and wave equations.

Poisson equation Consider the following action for the real field ψ sourced by some
externally prescribed J(~x).

SPoisson[ψ] ≡
∫

D

dD~x
√

|g(~x)|
(
1

2
∇iψ(~x)∇iψ(~x)− ψ(~x)J(~x)

)
(9.5.1)

We claim that the action SPoisson is extremized iff ψ is a solution to Poisson’s equation (eq.
(9.1.1)), provided the field at the boundary ∂D of the domain is specified and fixed.

Given a some field ψ̄, not necessarily a solution, let us consider some deviation from it;
namely,

ψ = ψ̄ + δψ. (9.5.2)

(δψ is one field; the δ is pre-pended as a reminder this is a deviation from ψ̄.) A direct calculation
yields

SPoisson[ψ̄ + δψ] =

∫

D

dD~x
√

|g(~x)|
(
1

2
∇iψ̄∇iψ̄ − ψ̄J

)

+

∫

D

dD~x
√

|g(~x)|
(
∇iψ̄∇iδψ − Jδψ

)

+

∫

D

dD~x
√

|g(~x)|
(
1

2
∇iδψ∇iδψ

)
. (9.5.3)

We may integrate-by-parts, in the second line, the gradient acting on δψ.

SPoisson[ψ̄ + δψ] =

∫

D

dD~x
√

|g(~x)|
(
1

2
∇iψ̄∇iψ̄ − ψ̄J +

1

2
∇iδψ∇iδψ + δψ

{
−~∇2ψ̄ − J

})

+

∫

∂D

dD−1~ξ

√
|H(~ξ)|δψni∇iψ̄ (9.5.4)

Provided Dirichlet boundary conditions are specified and not varied, i.e., ψ(∂D) is given, then by
definition δψ(∂D) = 0 and the surface term on the second line is zero. Now, suppose Poisson’s

equation is satisfied by ψ̄, then −~∇2ψ̄ − J = 0 and because the remaining quadratic-in-δψ is
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strictly positive (as argued earlier) we see that any deviation increases the value of SPoisson and
therefore the solution ψ̄ yields a minimal action.

Conversely, just as we say a (real) function f(x) is extremized at x = x0 when f ′(x0) = 0,
we would say SPoisson is extremized by ψ̄ if the first-order-in-δψ term

∫

D

dD~x
√

|g(~x)|δψ
{
−~∇2ψ̄ − J

}
(9.5.5)

vanishes for any deviation δψ. But if this were to vanish for any deviation δψ(~x), the terms in
the curly brackets must be zero, and Poisson’s equation is satisfied.

Wave equation in infinite space Assuming the fields fall off sufficiently quickly at
spatial infinity and suppose the initial ψ(ti, ~x) and final ψ(tf, ~x) configurations are specified and
fixed, we now discuss why the action

SWave ≡
∫ tf

ti

dt′′
∫

RD

dD~x
√
|g(x)|

{
1

2
∇µψ(t

′′, ~x)∇µψ(t′′, ~x) + J(t′′, ~x)ψ(t′′, ~x)

}
(9.5.6)

(where x ≡ (t′′, ~x)) is extremized iff the wave equation in eq. (9.4.15) is satisfied.
Just as we did for SPoisson, let us consider adding to some given field ψ̄, a deviation δψ. That

is, we will consider

ψ = ψ̄ + δψ, (9.5.7)

without first assuming ψ̄ solves the wave equation. A direct calculation yields

SWave[ψ̄ + δψ] =

∫ tf

ti

dt′′
∫

RD

dD~x
√

|g(x)|
(
1

2
∇µψ̄∇µψ̄ + ψ̄J

)

+

∫ tf

ti

dt′′
∫

RD

dD~x
√

|g(x)|
(
∇µψ̄∇µδψ + Jδψ

)

+

∫ tf

ti

dt′′
∫

RD

dD~x
√

|g(x)|
(
1

2
∇µδψ∇µδψ

)
. (9.5.8)

We may integrate-by-parts, in the second line, the gradient acting on δψ. By assuming that the
fields fall off sufficiency quickly at spatial infinity, the remaining surface terms involve the fields
at the initial and final time hypersurfaces.

SWave[ψ̄ + δψ] =

∫ tf

ti

dt′′
∫

RD

dD~x
√

|g(x)|
(
1

2
∇µψ̄∇µψ̄ + ψ̄J +

1

2
∇µδψ∇µδψ + δψ

{
−∇µ∇µψ̄ + J

})

+

∫

RD

dD~x
√

|g(x)|δψ(t = tf, ~x)g
0µ∂µψ̄(t = tf , ~x)

−
∫

RD

dD~x
√

|g(x)|δψ(t = ti, ~x)g
0µ∂µψ̄(t = ti, ~x). (9.5.9)

The last two lines come from the time derivative part of
∫ tf

ti

dt′′
∫

RD

dD~x
√
g(x)∇µ

(
δψ∇µψ̄

)
=

∫ t

t′
dt′′
∫

RD

dD~x∂µ

(√
g(x)δψgµν∇νψ̄

)

=

[∫

RD

dD~x
√
g(x)δψg0ν∂νψ̄

]t′′=tf

t′′=ti

+ . . . (9.5.10)
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Provided the initial and final field values are specified and not varied, then δψ(t′′ = ti,f) = 0 and
the surface terms are zero. In eq. (9.5.9), we see that the action is extremized, i.e., when the
term

∫ tf

ti

dt′′
∫

RD

dD~x
√
|g(x)|

(
δψ
{
−∇µ∇µψ̄ + J

})
(9.5.11)

is zero for all deviations δψ, iff the terms in the curly brackets vanish, and the wave equation
eq. (9.4.15) is satisfied. Note that, unlike the case for SPoisson, because ∇µψ∇µψ may not be
positive definite, it is not possible to conclude from this analysis whether all solutions minimize,
maximize, or merely extremizes the action SWave.

Why? Why bother coming up with an action to describe dynamics, especially if we
already have the PDEs governing the fields themselves? Apart from the intellectual inter-
est/curiosity in formulating the same physics in different ways, having an action to describe
dynamics usually allows the symmetries of the system to be made more transparent. For in-
stance, all of the currently known fundamental forces and fields in Nature – the Standard Model
(SM) of particle physics and gravitation – can be phrased as an action principle, and the math-
ematical symmetries they exhibit played key roles in humanity’s attempts to understand them.
Furthermore, having an action for a given theory allows it to be quantized readily, through the
path integral formulation of quantum field theory due to Richard P. Feynman. In fact, our
discussion of the heat kernel in, for e.g. eq. (9.3.17), is in fact an example of Norbert Wiener’s
version of the path integral, which was the precursor of Feynman’s.

9.6 Appendix to linear PDEs discourse:
Symmetric Green’s Function of a real 2nd Order ODE

Setup In this section we wish to write down the symmetric Green’s function of the most
general 2nd order real linear ordinary differential operator D, in terms of its homogeneous
solutions. We define such as differential operator as

Dzf(z) ≡ p2(z)
d2f(z)

dz2
+ p1(z)

df(z)

dz
+ p0(z)f(z), a ≤ z ≤ b, (9.6.1)

where p0,1,2 are assumed to be smooth real functions and we are assuming the setup at hand is
defined within the domain z ∈ [a, b]. By homogeneous solutions f1,2(z), we mean they both obey

Dzf1,2(z) = 0. (9.6.2)

Because this is a 2nd order ODE, we expect two linearly independent solutions f1,2(z). What
we wish to solve here is the symmetric Green’s function G(z, z′) = G(z′, z) equation

DzG(z, z
′) = λ(z)δ(z − z′), and Dz′G(z, z

′) = λ(z′)δ(z − z′), (9.6.3)

where δ(z − z′) is the Dirac δ-function and λ is a function to be determined. With the Green’s
function G(z, z′) at hand we may proceed to solve the particular solution fp(z) to the inhomo-
geneous equation, with some prescribed external source J ,

Dzfp(z) = J(z) ⇒ fp(z) =

∫ b

a

dz′

λ(z′)
G(z, z′)J(z′). (9.6.4)
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Of course, for a given problem, one needs to further impose appropriate boundary conditions to
obtain a unique solution. Here, we will simply ask: what’s the most general ansatz that would
solve eq. (9.6.3) in terms of f1,2?
Wronskian The Wronskian of the two linearly independent solutions, defined to be

Wrz(f1, f2) ≡ f1(z)f
′
2(z)− f ′

1(z)f2(z), a ≤ z ≤ b, (9.6.5)

will be an important object in what is to follow. We record the following facts.

• If Wrz(f1, f2) 6= 0, then f1,2(z) are linearly independent.

• The Wronskian itself obeys the 1st order ODE

d

dz
Wrz(f1, f2) = −p1(z)

p2(z)
Wrz(f1, f2), (9.6.6)

91which immediately implies the Wronskian can be determined, up to an overall multi-
plicative constant, without the need to know explicitly the pair of homogeneous solutions
f1,2,

Wrz(f1, f2) =W0 exp

(
−
∫ z

b

p1(z
′′)

p2(z′′)
dz′′
)
, W0 = constant. (9.6.7)

• If we “rotate” from one pair of linearly independent solutions (f1, f2) to another (g1, g2)
via a constant invertible matrix M J

I ,

fI(z) =M J
I gJ(z), I, J ∈ {1, 2}, detM J

I 6= 0; (9.6.8)

then

Wrz(f1, f2) =
(
detM J

I

)
Wrz(g1, g2). (9.6.9)

Discontinuous first derivative at z = z′ The key observation to solving the symmetric
Green’s function is that, as long as z 6= z′ then the δ(z−z′) = 0 in eq. (9.6.3). Therefore G(z, z′)
has to obey the homogeneous equation

DzG(z, z
′) = Dz′G(z, z

′) = 0, z 6= z′. (9.6.10)

For z > z′, if we solve DzG = 0 first,

G(z, z′) = αI(z′)fI(z), (9.6.11)

i.e., it must be a superposition of the linearly independent solutions {fI(z)} (in the variable z).
Because G(z, z′) is a function of both z and z′, the coefficients of the superposition must depend
on z′. If we then solve

Dz′G(z, z
′) = Dz′α

I(z′)fI(z) = 0, (9.6.12)

91This can be readily proven using eq. (9.6.2).

282



(for z 6= z′), we see that the {αI(z′)} must in turn each be a superposition of the linearly
independent solutions in the variable z′.

αI(z′) = AIJ
>fJ(z

′). (9.6.13)

(The {AIJ
>} are now constants, because αI(z′) has to depend only on z′ and not on z.) What we

have deduced is that G(z > z′) is a sum of 4 independent terms:

G(z > z′) = AIJ
>fI(z)fJ(z

′), AIJ
> = constant. (9.6.14)

Similar arguments will tell us,

G(z < z′) = AIJ
<fI(z)fJ(z

′), AIJ
< = constant. (9.6.15)

This may be summarized as

G(z, z′) = Θ(z − z′)AIJ
>fI(z)fJ(z

′) + Θ(z′ − z)AIJ
<fI(z)fJ(z

′). (9.6.16)

Now we examine the behavior of G(z, z′) near z = z′. Suppose G(z, z′) is discontinuous at
z = z′. Then its first derivative there will contain δ(z− z′) and its second derivative will contain
δ′(z − z′), and G itself will thus not satisfy the right hand side of eq. (9.6.3). Therefore we may
impose the continuity conditions

AIJ
<fI(z)fJ(z) = AIJ

>fI(z)fJ(z), (9.6.17)

A11
< f1(z)

2 + A22
< f2(z)

2 + (A12
< + A21

< )f1(z)f2(z) = A11
> f1(z)

2 + A22
> f2(z)

2 + (A12
> + A21

> )f1(z)f2(z).

Since this must hold for all a ≤ z ≤ b, the coefficients of f1(z)
2, f2(z)

2 and f1(z)f2(z) on both
sides must be equal,

A11
< = A11

> ≡ A1, A22
< = A22

> ≡ A2, A12
< + A21

< = A12
> + A21

> . (9.6.18)

Now let us integrate DzG(z, z
′) = λ(z)δ(z − z′) around the neighborhood of z ≈ z′; i.e., for

0 < ǫ≪ 1, and a prime denoting ∂z,

∫ z′+ǫ

z′−ǫ

dzλ(z)δ(z − z′) =

∫ z′+ǫ

z′−ǫ

dz {p2G′′ + p1G
′ + p0G}

λ(z′) = [p2G
′ + p1G]

z′+ǫ
z′−ǫ +

∫ z′+ǫ

z′−ǫ

dz {−p′2G′ − p′1G + p0G}

= [(p1(z)− ∂zp2(z))G(z, z
′) + p2(z)∂zG(z, z

′)]z=z′+ǫ
z=z′−ǫ (9.6.19)

+

∫ z′+ǫ

z′−ǫ

dz {p′′2(z)G(z, z′)− p′1(z)G(z, z
′) + p0(z)G(z, z

′)} .

Because p0,1,2(z) are smooth and because G is continuous at z = z′, as we set ǫ → 0, only the
G′ remains on the right hand side.

lim
ǫ→0

{
p2(z

′ + ǫ)
∂G(z = z′ + ǫ, z′)

∂z
− p2(z

′ − ǫ)
∂G(z = z′ − ǫ, z′)

∂z

}
= λ(z′) (9.6.20)
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We can set z′ ± ǫ → z′ in the p2 because it is smooth; the error incurred would go as O(ǫ). We
have thus arrived at the following “jump” condition: the first derivative of the Green’s function
on either side of z = z′ has to be discontinuous and their difference multiplied by p2(z

′) is equal
to the function λ(z′), the measure multiplying the δ(z − z′) in eq. (9.6.3).

p2(z
′)

{
∂G(z = z′+, z′)

∂z
− ∂G(z = z′−, z′)

∂z

}
= λ(z′) (9.6.21)

This translates to

p2(z
′)
(
AIJ

>f
′
I(z

′)fJ(z
′)−AIJ

<f
′
I(z

′)fJ(z
′)
)
= λ(z′). (9.6.22)

By taking into account eq. (9.6.18),

p2(z
′)
(
(A12

> − A12
< )f ′

1(z
′)f2(z

′) + (A21
> − A21

< )f ′
2(z

′)f1(z
′)
)
= λ(z′), (9.6.23)

Since A12
< + A21

< = A12
> + A21

> ⇔ A12
> − A12

< = −(A21
> −A21

< ),

p2(z
′)(A21

> −A21
< )Wrz′(f1, f2) = λ(z′),

p2(z
′)(A21

> −A21
< )W0 exp

(
−
∫ z′

b

p1(z
′′)

p2(z′′)
dz′′

)
= λ(z′), (9.6.24)

where eq. (9.6.7) was employed in the second line. We see that, given a differential operator D
of the form in eq. (9.6.1), this amounts to solving for the measure λ(z′): it is fixed, up to an
overall multiplicative constant (A21

> − A21
< )W0, by the p1,2. (Remember the Wronskian itself is

fixed up to an overall constant by p1,2; cf. eq. (9.6.7).) Furthermore, note that A21
> − A21

< can
be absorbed into the functions f1,2, since the latter’s normalization has remained arbitrary till
now. Thus, we may choose A21

> −A21
< = 1 = −(A12

> −A12
< ). At this point,

G(z, z′) = A1f1(z)f1(z
′) + A2f2(z)f2(z

′)

+ Θ(z − z′)((A12
< − 1)f1(z)f2(z

′) + A21
> f2(z)f1(z

′))

+ Θ(z′ − z)(A12
< f1(z)f2(z

′) + (A21
> − 1)f2(z)f1(z

′)). (9.6.25)

Because we are seeking a symmetric Green’s function, let us also consider

G(z′, z) = A1f1(z
′)f1(z) + A2f2(z

′)f2(z)

+ Θ(z′ − z)((A12
< − 1)f1(z

′)f2(z) + A21
> f2(z

′)f1(z))

+ Θ(z − z′)(A12
< f1(z

′)f2(z) + (A21
> − 1)f2(z

′)f1(z)). (9.6.26)

Comparing the first lines of equations (9.6.25) and (9.6.26) tells us the A1,2 terms are automat-
ically symmetric; whereas the second line of eq. (9.6.25) versus the third line of eq. (9.6.26),
together with the third line of eq. (9.6.25) versus second line of eq. (9.6.26), says the terms
involving A12

≶ are symmetric iff A12
< = A12

> ≡ χ. We gather, therefore,

G(z, z′) = A1f1(z)f1(z
′) + A2f2(z)f2(z

′) + G(z, z′;χ), (9.6.27)

G(z, z′;χ) ≡ (χ− 1) {Θ(z − z′)f1(z)f2(z
′) + Θ(z′ − z)f1(z

′)f2(z)}
+ χ {Θ(z − z′)f2(z)f1(z

′) + Θ(z − z′)f2(z
′)f1(z)} . (9.6.28)
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The terms in the curly brackets can be written as (χ− 1)f1(z>)f2(z<) + χ · f1(z<)f2(z>), where
z> is the larger and z< the smaller of the pair (z, z′). Moreover, we see it is these terms that
contributes to the ‘jump’ in the first derivative across z = z′. The terms involving A1 and A2

are smooth across z = z′ provided, of course, the functions f1,2 themselves are smooth; they are
also homogeneous solutions with respect to both z and z′.
Summary Given any pair of linearly independent solutions to

Dzf1,2(z) ≡ p2(z)
d2f1,2(z)

dz2
+ p1(z)

df1,2(z)

dz
+ p0(z)f1,2(z) = 0, a ≤ z ≤ b, (9.6.29)

we may solve the symmetric Green’s function equation(s)

DzG(z, z
′) = p2(z)W0 exp

(
−
∫ z

b

p1(z
′′)

p2(z′′)
dz′′
)
δ(z − z′), (9.6.30)

Dz′G(z, z
′) = p2(z

′)W0 exp

(
−
∫ z′

b

p1(z
′′)

p2(z′′)
dz′′

)
δ(z − z′), (9.6.31)

G(z, z′) = G(z′, z), (9.6.32)

by using the general ansatz

G(z, z′) = G(z′, z) = A1f1(z)f1(z
′) + A2f2(z)f2(z

′) + G(z, z′;χ), (9.6.33)

G(z, z′;χ) ≡ (χ− 1)f1(z>)f2(z<) + χ f2(z>)f1(z<), (9.6.34)

z> ≡ max(z, z′), z< ≡ min(z, z′). (9.6.35)

Here W0, A
1,2, and χ are arbitrary constants. However, once W0 is chosen, the f1,2 needs to be

normalized properly to ensure the constant W0 is recovered. Specifically,

Wrz(f1, f2) = f1(z)f
′
2(z)− f ′

1(z)f2(z) =
∂G(z = z′+, z′)

∂z
− ∂G(z = z′−, z′)

∂z

= W0 exp

(
−
∫ z

b

p1(z
′′)

p2(z′′)
dz′′
)
. (9.6.36)

We also reiterate, up to the overall multiplicative constantW0, the right hand side of eq. (9.6.30)
is fixed once the differential operator D (in eq. (9.6.29)) is specified; in particular, one may not
always be able to set the right hand side of eq. (9.6.30) to δ(z − z′).
3D Green’s Function of Laplacian As an example of the methods described here, let us
work out the radial Green’s function of the Laplacian in 3D Euclidean space. That is, we shall
employ spherical coordinates

xi = r(sθcφ, sθsφ, cθ), (9.6.37)

x′i = r′(sθ′cφ′, sθ′sφ′ , cθ′); (9.6.38)

and try to solve

−~∇2
~xG(~x− ~x′) = −~∇2

~x′G(~x− ~x′) =
δ(r − r′)

rr′
δ(cθ − cθ′)δ(φ− φ′). (9.6.39)
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Because of the rotation symmetry of the problem – we know, in fact,

G (~x− ~x′) =
1

4π|~x− ~x′| = (4π)−1
(
r2 + r′2 − 2rr′ cos γ

)−1/2
(9.6.40)

depends on the angular coordinates through the dot product cos γ ≡ ~x · ~x′/(rr′) = x̂ · x̂′. This
allows us to postulate the ansatz

G(~x− ~x′) =

∞∑

ℓ=0

g̃ℓ(r, r
′)

2ℓ+ 1

ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θ′, φ′). (9.6.41)

By applying the Laplacian in spherical coordinates (cf. eq. (9.2.84)) and using the completeness
relation for spherical harmonics in eq. (9.2.61), eq. (9.6.39) becomes

∞∑

ℓ=0

g̃′′ℓ + (2/r)g̃′ℓ − ℓ(ℓ+ 1)r−2g̃ℓ
2ℓ+ 1

ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θ′, φ′)

= −δ(r − r′)

rr′

∞∑

ℓ=0

ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θ′, φ′), (9.6.42)

with each prime representing ∂r. Equating the (ℓ,m) term on each side,

Drg̃ℓ ≡ g̃′′ℓ +
2

r
g̃′ℓ −

ℓ(ℓ+ 1)

r2
g̃ℓ = −(2ℓ + 1)

δ(r − r′)

rr′
. (9.6.43)

We already have the δ-function measure – it is −(2ℓ + 1)/r2 – but it is instructive to check its
consistency with the right hand side of (9.6.30); here, p1(r) = 2/r and p2(r) = 1, and

W0 exp

(
−2

∫ r

dr′′/r′′
)

=W0e
−2 ln r = W0r

−2. (9.6.44)

Now, the two linearly independent solutions to Drf1,2(r) = 0 are

f1(r) =
F1

rℓ+1
, f2(r) = F2r

ℓ, F1,2 = constant. (9.6.45)

The radial Green’s function must, according to eq. (9.6.33), take the form

g̃ℓ(r, r
′) =

A1
ℓ

(rr′)ℓ+1
+ A2

ℓ(rr
′)ℓ + Gℓ(r, r

′), (9.6.46)

Gℓ(r, r
′) ≡ F

{
χℓ − 1

r>

(
r<
r>

)ℓ

+
χℓ

r<

(
r>
r<

)ℓ
}
, (9.6.47)

r> ≡ max(r, r′), r< ≡ min(r, r′), (9.6.48)

where A1,2
ℓ , F , and χℓ are constants. (What happened to F1,2? Strictly speaking F1F2 should

multiply A1,2
ℓ but since the latter is arbitrary their product(s) may be assimilated into one
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constant(s); similarly, in Gℓ(r, r
′), F = F1F2 but since F1,2 occurs as a product, we may as well

call it a single constant.) To fix F , we employ eq. (9.6.36).

−2ℓ + 1

r2
= F Wrr

(
r−ℓ−1, rℓ

)
=
∂G(r = r′+)

∂r
− ∂G(r = r′−)

∂r
. (9.6.49)

Carrying out the derivatives explicitly,

−2ℓ+ 1

r2
= F

{
∂

∂r

(
1

r′

( r
r′

)ℓ)

r=r′−
− ∂

∂r

(
1

r

(
r′

r

)ℓ
)

r=r′+

}

= F

{
ℓ · rℓ−1

rℓ+1
+

(ℓ+ 1)rℓ

rℓ+2

}
= F

2ℓ+ 1

r2
. (9.6.50)

Thus, F = −1. We may take the limit r → 0 or r′ → 0 and see that the terms involving A1
ℓ

and (χℓ/r<)(r>/r<)
ℓ in eq. (9.6.46) will blow up for any ℓ; while 1/(4π|~x− ~x′|) → 1/(4πr′) or

→ 1/(4πr) does not. This implies A1
ℓ = 0 and χℓ = 0. Next, by considering the limits r → ∞

or r′ → ∞, we see that the A2
ℓ term will blow up for ℓ > 0, whereas, in fact, 1/(4π|~x− ~x′|) → 0.

Hence A2
ℓ>0 = 0. Moreover, the ℓ = 0 term involving A2

0 is a constant in space because Y m
ℓ=0 =

1/
√
4π and does not decay to zero for r, r′ → ∞; therefore, A2

0 = 0 too. Equation (9.6.46) now
stands as

g̃ℓ(r, r
′) =

1

r>

(
r<
r>

)ℓ

, (9.6.51)

which in turn means eq. (9.6.41) is

G(~x− ~x′) =
1

4π|~x− ~x′| =
1

r>

∞∑

ℓ=0

1

2ℓ+ 1

(
r<
r>

)ℓ ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θ′, φ′). (9.6.52)

If we use the addition formula in eq. (9.2.64), we then recover eq. (9.3.49).

Problem 9.20. Can you perform a similar “jump condition” analysis for the 2D Green’s
function of the negative Laplacian? Your answer should be proportional to eq. (2.0.39). You
may assume there are no homogeneous contributions to the answer, i.e., set A1 = A2 = 0 in eq.
(9.6.33). Hint: Start by justifying the ansatz

G2(~x− ~x′) =

+∞∑

ℓ=−∞

g̃ℓ(r, r
′)eiℓ(φ−φ′), (9.6.53)

where ~x ≡ r(cosφ, sinφ) and ~x′ ≡ r′(cosφ′, sinφ′). Carry out the jump condition analysis,
assuming the radial Green’s function g̃ℓ is a symmetric one.

A Copyleft

You should feel free to re-distribute these notes, as long as they remain freely available. Please
do not post on-line solutions to the problems I have written here! I do have solutions to some
of the problems. If you are using these notes for self-study, write to me and I will e-mail them
to you.
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B Conventions

Function argument There is a notational ambiguity whenever we write “f is a function of
the variable x” as f(x). If you did not know f were meant to be a function, what is f(x+sin(θ))?
Is it some number f times x+ sin θ? For this reason, in my personal notes and research papers
I reserve square brackets exclusively to denote the argument of functions – I would always write
f [x + sin[θ]], for instance. (This is a notation I borrowed from the software Mathematica.)
However, in these lecture notes I will stick to the usual convention of using parenthesis; but I
wish to raise awareness of this imprecision in our mathematical notation.

Einstein summation and index notation Repeated indices are always summed over,
unless otherwise stated:

ξipi ≡
∑

i

ξipi. (B.0.1)

Often I will remain agnostic about the range of summation, unless absolutely necessary.
In such contexts when the Einstein summation is in force – unless otherwise stated – both

the superscript and subscript are enumeration labels. ξi is the ith component of (ξ1, ξ2, ξ3, . . . ),
not some variable ξ raised to the ith power. The position of the index, whether it is super- or
sub-script, usually represents how it transforms under the change of basis or coordinate system
used. For instance, instead of calling the 3D Cartesian coordinates (x, y, z), we may now denote
them collectively as xi, where i = 1, 2, 3. When you rotate your coordinate system xi → Ri

jy
j,

the derivative transforms as ∂i ≡ ∂/∂xi → (R−1)ji∂j .
Dimensions Unless stated explicitly, the number of space dimensions is D; it is an arbi-

trary positive integer greater or equal to one. Unless stated explicitly, the number of spacetime
dimensions is d = D + 1; it is an arbitrary positive integer greater or equal to 2.

Spatial vs. spacetime indices I will employ the common notation that spatial indices
are denoted with Latin/English alphabets whereas spacetime ones with Greek letters. Spacetime
indices begin with 0; the 0th index is in fact time. Spatial indices start at 1. I will also use
the “mostly minus” convention for the metric; for e.g., the flat spacetime geometry in Cartesian
coordinates reads

ηµν = diag [1,−1, . . . ,−1] , (B.0.2)

where “diag[a1, . . . , aN ]” refers to the diagonal matrix, whose diagonal elements (from the top
left to the bottom right) are respectively a1, a2, . . . , aN . Spatial derivatives are ∂i ≡ ∂/∂xi;
and spacetime ones are ∂µ ≡ ∂/∂xµ. The scalar wave operator in flat spacetime, in Cartesian
coordinates, read

∂2 = � = ηµν∂µ∂ν . (B.0.3)

The Laplacian in flat space, in Cartesian coordinates, read instead

~∇2 = δij∂i∂i, (B.0.4)

where δij is the Kronecker delta, the unit D ×D matrix I:

δij = 1, i = j

= 0, i 6= j. (B.0.5)
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C Physical Constants and Dimensional Analysis

In much of these notes we will set Planck’s reduced constant and the speed of light to unity:
~ = c = 1. (In the General Relativity literature, Newton’s gravitational constant GN is also
often set to one.) What this means is, we are using ~ as our base unit for angular momentum;
and c for speed.

Since [c] is Length/Time, setting it to unity means

[Length] = [Time] .

In particular, since in SI units c = 299, 792, 458 meters/second, we have

1 second = 299, 792, 458 meters, (c = 1). (C.0.1)

Einstein’s E = mc2, once c = 1, becomes the statement that

[Energy] = [Mass]

Because [~] is Energy × Time, setting it to unity means

[Energy] = [1/Time] .

In SI units, ~ ≈ 1.0545718× 10−34 Joules second – hence,

1 second ≈ 1/(1.0545718× 10−34 Joules) (~ = 1). (C.0.2)

Altogether, with ~ = c = 1, we may state

[Mass] = [Energy] = [1/Time] = [1/Length] .

Physically speaking, the energy-mass and time-length equivalence can be attributed to relativ-
ity (c); whereas the (energy/mass)-(time/length)−1 equivalence can be attributed to quantum
mechanics (~).

High energy physicists prefer to work with eV (or its multiples, such as MeV or GeV); and so
it is useful to know the relation ~c ≈ 197.326, 98 MeV fm. (fm = femtometer = 10−15 meters.)

10−15 meters ≈ 1/(197.326, 98 MeV), (~c = 1). (C.0.3)

Using these ‘natural units’ ~ = c = 1 is a very common practice throughout the physics literature.
One key motivation behind setting to unity physical constants occurring frequently in your

physics analysis, is that it allows you to focus on the quantities that are more specific (and hence
more important) to the problem at hand. Carrying these physical constants around clutter your
calculation, and increases the risk of mistakes due to this additional burden. For instance, in
the Bose-Einstein or Fermi-Dirac statistical distribution 1/(exp(E/(kBT )) ± 1) – where E, kB
and T are respectively the energy of the particle(s), kB is the Boltzmann constant, and T is
the temperature of the system – what’s physically important is the ratio of the energy scales,
E versus kBT . The Boltzmann constant kB is really a distraction, and ought to be set to
one, so that temperature is now measured in units of energy: the cleaner expression now reads
1/(exp(E/T )± 1).
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Another reason why one may want to set a physical constant to unity is because, it could
be such an important benchmark in the problem at hand that it should be employed as a base
unit.

Most down-to-Earth engineering problems may not benefit from using the speed of light c
as their basic unit for speed. In non-relativistic astrophysical systems bound by their mutual
gravity, however, it turns out that General Relativistic corrections to the Newtonian law of
gravity will be akin to a series in v/c, where v is the typical speed of the bodies that comprise
the system. The expansion parameter then becomes 0 ≤ v < 1 if we set c = 1 – i.e., if we measure
all speeds relative to c – which in turn means this ‘post-Newtonian’ expansion is a series in the
gravitational potential GNM/r through the virial theorem (kinetic energy ∼ potential energy)
v ∼

√
GNM/r.

Newton’s gravitational constant takes the form

GN ≈ 6.7086× 10−39~c(GeV/c2)−2. (C.0.4)

Just from this dimensional analysis alone, when ~ = c = 1, one may form a mass-energy scale
(‘Planck mass’)

Mpl ≡
1√

32πGN

. (C.0.5)

(The 32π is for technical convenience.) We will provide further justification below, but this
suggests – since Mpl appears to involve relativity (c), quantum mechanics (~) and gravitation
(GN) – that the energy scale required to probe quantum aspects of gravity is roughly Mpl.
Therefore, it may be useful to set Mpl = 1 in quantum gravity calculations, so that all other
energy scales in a given problem, say the quantum amplitude of scattering gravitons, are now
measured relative to it.

I recommend the following resource for physical and astrophysical constants, particle physics
data, etc.:

Particle Data Group: http://pdg.lbl.gov .

Problem C.1. Let ~ = c = 1.

• If angular momentum is 3.34, convert it to SI units.

• What is the mass of the Sun in MeV? What is its mass in parsec?

• If Pluto is orbiting roughly 40 astronomical units from the Sun, how many seconds is this
orbital distance?

• Work out the Planck mass in eq. (C.0.5) in seconds, meters, and GeV.
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