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Abstract

It is speculated that the correct theory of fundamental physics includes a large landscape of states,

which can be described as a potential which is a function of N scalar fields and some number of

discrete variables. The properties of such a landscape are crucial in determining key cosmological

parameters including the dark energy density, the stability of the vacuum, the naturalness of

inflation and the properties of the resulting perturbations, and the likelihood of bubble nucleation

events. We codify an approach to landscape cosmology based on specifications of the overall form

of the landscape potential and illustrate this approach with a detailed analysis of the properties

of N -dimensional Gaussian random landscapes. We clarify the correlations between the different

matrix elements of the Hessian at the stationary points of the potential. We show that these

potentials generically contain a large number of minima. More generally, these results elucidate

how random function theory is of central importance to this approach to landscape cosmology,

yielding results that differ substantially from those obtained by treating the matrix elements of the

Hessian as independent random variables.
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I. INTRODUCTION

For over a decade, considerations motivated by flux-compactified string vacua [1–5] have

suggested that fundamental physics may be specified within a landscape, a highly complex,

multidimensional scalar potential. From this perspective the search for a unique theory of

everything yields an apparent theory of anything: a vast range of possible configurations

of “low energy” physics. An immediate corollary of this development is that if such a

landscape emerges from fundamental physics, then anthropic reasoning may be central to

understanding the observed properties of our universe.

Unfortunately, the string landscape itself appears to be so complex that quantitative

explorations of its properties are computationally intractable. However, an alternative per-

spective is to treat the landscape as a realization of an N -dimensional random function

V (φ̄) drawn from a specified distribution.1 This distribution is fixed by the hypothesized

architecture of the landscape. The critical observation underpinning this approach is that

in many scenarios the tools of random function / random matrix theory will yield the dis-

tributions of key cosmological observables within this landscape. Physically, this approach

is reasonable if we have grounds to believe that a landscape potential is a superposition of

many largely independent terms, rather than (for instance) an almost periodic function with

strong long-range correlations.

An early step in this direction was taken in Ref. [6], which posited that the ensemble

of Hessian matrices associated with the stationary points in a generic landscape could be

described by a set of symmetric matrices with elements chosen from independent iden-

tical Gaussian distributions. This ensemble is called the Gaussian Orthogonal Ensemble

(GOE). From this perspective it appears that relative to saddle points, minima are super-

exponentially rare, as they correspond to large fluctuations from the Wigner semi-circle

eigenvalue distribution [7]. Similar arguments were made about the critical points in a

general four-dimensional N = 1 supergravity [8].

Conversely, Battefeld et al. [9] gave a semi-analytic treatment of the properties of Hes-

sian matrices associated with minima of a “softly bounded” landscape, looking at Hessians

derived directly from explicitly constructed random functions, in this case finite sums of

1 This does not imply that the form of the landscape is arbitrary, but rather that it consists of a sufficient

number of largely uncorrelated terms that it can be treated probabilistically and in this scenario the most

natural choice of distribution will be Gaussian, motivated by the central limit theorem.
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Fourier terms. Stability and distribution of the vacuum energies of this theory was studied

in [10]. These potentials are naturally bounded below and while minima are outnumbered by

saddles, they are not super-exponentially rare. Treating the potential as a random function

also facilitates analyses of the vacuum stability, and the likelihood of tunneling has been

studied in polynomial [11–14] and bounded Fourier landscapes [10].

More generally, in the large-N limit, distributions of parameters associated with random

functions and random matrices are often well-defined, potentially transforming the complex-

ity of the landscape into a predictive tool. For simpler models with many non-interacting

fields this approach has led to predictions for the mass-spectrum of N-flation [15] and the

perturbation spectra of many-field scenarios [16, 17]. However, the key insight of this paper

is to elucidate how a full understanding of the properties of critical points in a generic land-

scape with nontrivial couplings between the fields will require random function theory and

not just random matrix theory, which implicitly treats the ensemble of Hessian matrices at

extrema as uncorrelated matrices with uncorrelated elements.

The primary goal of this paper is to fully develop random function theory as a tool for

understanding landscape models, extending the methods of Ref. [18] to N dimensions and

understanding the approach to the large-N limit [19]. In doing so we categorize correlations

between elements of the Hessian matrices, and elucidate the ways in which properties of

extrema are correlated with the value of the potential. These correlations can be partly un-

derstood on purely topological grounds and highlight the information discarded by analyses

which treat elements of the Hessian as independent and identically distributed variables.

As an illustrative example, perhaps the two simplest possible architectures are i) a set

of uncoupled, self-interacting fields and ii) a potential V (φ̄) which is an N -dimensional

isotropic, Gaussian random field, where φ̄ denotes the N independent scalar fields, and V is

a map from RN to R. The distribution of possible values of the cosmological constant, p(Λ),

in a specific realization of the landscape is synonymous with the distribution of values of

V (φ̄) at minima of the potential. The expected value of Λ will effectively be the convolution

of p(Λ) with a selection function whose form is only loosely defined and which will depend

on complex questions of measure and anthropic selection [20].

In this paper we focus on simple Gaussian random landscapes, and find that the rela-

tive numbers of extrema and saddles are roughly but not exactly binomial. The analysis

here is effectively an N -dimensional generalization of the approach taken in the now classic
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treatment of the theory of fluctuations in the density profile of the early universe of Bond,

Bardeen, Kaiser and Szalay [18], or BBKS. We also provide arguments that this may be due

to topological constraints and hence applicable beyond random Gaussian potentials.

A large set of cosmological parameters is associated with the properties of the landscape

and we begin with a survey of these observables and the analogous properties of V (φ̄)

in Section II. In Section III we provide several topological hints on the relative number of

different types of stationary points and in Section IV we provide the formalism for calculating

relative number of different types of stationary points. In Section V we present the results

of our calculation for up to 100 fields and compare our results with the large-N limit results

obtained in [19]. Finally we conclude in Section VI.

II. COSMOLOGICAL PROPERTIES AND LANDSCAPE ARCHITECTURE

As is now well-established, an inflationary phase in the early universe can resolve the

initial conditions problems faced by simple models of the hot big bang [21–23]. However

there is no unique mechanism to drive the accelerated expansion associated with inflation

[24], and several hundred different models have been proposed and examined [25]. Typically

these models are specified by the effective potential of the inflaton field(s). If it is assumed

that the inflationary potential is contained somewhere in the overall landscape, the “typical”

inflationary mechanism in a landscape will be associated with the expectation values of

derivatives of the fields on candidate inflationary trajectories.

Let us begin by surveying the range of observables that may be associated with a land-

scape potential, and the properties of the potential that determine them:

• The distribution of vacuum energies, p(Λ), in the landscape (see e.g. Ref. [26]). In a

given pocket [27] this corresponds to local minima of the landscape, with the value of

the vacuum energy / dark energy density Λ = V (φ̄) at each minimum.

• The stability of the vacuum as a function of Λ [28, 29]. The local vacuum in a

landscape potential is typically metastable due to bubble nucleation via quantum

tunneling [10, 11, 13, 30–32] and will be unstable if there is a noticeable probability

of decay within cosmologically relevant time scales.

• Bubble collision [33–35]. Collision rates depend on the nucleation rate which is a
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function of V (φ̄) at local minima and the surrounding barrier heights.

• The likelihood of slow roll inflation. Slow roll inflation requires sufficiently long, flat

“plateaus” or “valleys” in V (φ̄), and that V,i and V,ij in downhill directions in the

potential are parametrically small.

• Primordial perturbation spectrum. Expectation values for the spectral index ns and

tensor to scalar ratio r (and correlations between them) are derived from the expected

values of V,ij and V,i along inflationary trajectories.

While the landscape may be almost arbitrarily complex, its overall form may be motivated

by a handful of fundamental physical principles. The heart of this proposal is to use these

principles to identify the overall architecture of the landscape. Such an architecture can lead

to specification of a detailed probability distribution from which V (φ̄), the potential energy

function of the landscape, can be drawn.

To illustrate this approach, the simplest landscape architecture we can imagine consists

of N fields, φ1, φ2, . . . , φN with self-interaction potentials Vi(φi) and no mutual interactions,

so that the landscape potential V is

V (φ) =
N∑
i=1

Vi(φi) , (1)

which each Vi is to be chosen probabilistically. Even without specifying the probability

distribution for each Vi we know that the number of maxima and minima cannot differ by

more than one, which would be negligible if the number of stationary points is large. If the

Vi(φi) are periodic, then the number of maxima and minima must match exactly. For a given

stationary point, the probability that k of the eigenvalues of the corresponding Hessian are

positive is exactly [6]

Pk = 2−N
(
N

k

)
. (2)

We thus immediately deduce that the ratio of the number of minima to stationary points is

1 : 2N for a landscape that consists purely of uncoupled, self-interacting fields. The central

limit theorem implies that, for sufficiently large N , the distribution of vacuum energies would

be a Gaussian [10].

Conversely assuming that all fields have similar mutual- and self-interactions and that the

overall landscape potential is a combination of many individual terms motivates a landscape
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architecture that consists of a Gaussian random function,

V (φ̄) = U(φ̄), (3)

where φ̄ denotes the N scalar fields and U(φ̄) is a Gaussian random function. If we stipulate

that there are no preferred directions or positions in the landscape then the correlation

function will naturally be rotationally invariant:

〈U(φ̄1)U(φ̄2)〉 = Nf

(
(φ̄1 − φ̄2)2

N

)
. (4)

Likewise, given that we aim to investigate the implications of a given landscape architecture

for the cosmological constant problem, it is natural to stipulate that the mean of U is zero.

A more sophisticated architecture arises from assuming that U(φ̄) is associated with new

physics at a very high but sub-Planckian scale M (e.g. string or GUT-scale physics) and

that Planck-scale operators induce an extra correlation at large VEVs, so that

V (φ̄) = V0 +
1

2
m2φ̄ · φ̄+ U(φ̄), (5)

where U is again a Gaussian random function and we have also added an arbitrary offset V0

for generality. If |φ̄| can approach Planckian values, then m2M2
p ∼ |U | ∼M4 at the “edge”

of the landscape, or

m = M
M

MP

. (6)

so that

〈U(φ̄)〉 = 0 , 〈U2(φ̄)〉 = O(M8) . (7)

By hypothesis, M is significantly smaller than the Planck mass and we also require the

typical correlation length of U(φ̄) to be much less than MP. In this case we will naturally

expect U to contain a large number of extrema.

In this paper, our goal is to understand the properties of the critical points in this

landscape. Any specific critical point of a function V is characterized by the Hessian

ζij =
∂2V

∂φi∂φj
. (8)

In the absence of any other information, it may be tempting to assume that the Hessian

is a symmetric random matrix [6]. Denoting the (ordered) eigenvalues of ζ(φst) by λ1 ≥

λ2 ≥ . . . ≥ λN one might naively assume that because each eigenvalue is equally likely to be
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positive or negative the likelihood that φst is a vacuum (local minimum) is (1/2)N . However,

the joint probability distribution for the λi is

P (λ1, . . . , λN) ∝
∏
i<j

(λi − λj) . (9)

and the likelihood that all the eigenvalues are positive scales as e−αN
2

[6, 7]. However, as

we will describe in detail below, the Hessians of random functions are not random matrices

with independent and identically distributed components. As we show below, the expected

fraction of minima is much closer to the binomial form 2−N than e−αN
2
.

III. TOPOLOGY AND MORSE THEORY

One way to approach the landscape is to assume that the Hessian matrices are random,

symmetric matrices drawn from the GOE. If we wish to apply the standard results of random

matrix theory to the Hessians derived from a given random function, it is necessary for the

individual elements of the Hessian to be drawn from independent and identical distributions.

However, the Hessians of a random function are not uncorrelated; consider two elements of

the Hessian; ζij and ζkl; given than mixed derivatives commute, working from the definition

of the Hessian it follows that

∂k∂lζij = ∂i∂jζkl . (10)

Consequently, the elements of the Hessian matrices derived from a specified function are not

independent of one another.

In the next sections we will directly compute the fraction of extremal points of an N -

dimensional Gaussian random function which are actual minima. However, we can also

gain significant insight from global, topological arguments based on Morse Theory. To start

with, consider a two-dimensional periodic landscape. Let’s Nmax, Nmin and Nsaddle denote

the number of maxima, minima and saddle points of this function. From Morse theory we

know

Nmin −Nsaddle +Nmax = χtorus = 0 , (11)

where χtorus is the Euler characteristic of the torus. This result holds for any function

on torus and it must be satisfied case by case and not an average. For random Gaussian

functions the symmetry of U → −U ensures Nmax = Nmin which combined with (11) gives

Nsaddle = 2Nmax = 2Nmin (12)
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FIG. 1. Top left and right, the contours for ∂V/∂φ1 = 0 and ∂V/∂φ2 = 0, bottom the two graphs

super-imposed. Sign of ∂2U/∂φ2
1 and ∂2U/∂φ2

2 are shown by black and red plus and minus signs.

It is clear that the stationary points of the potential which are located at the black filled squares

have alternating signs for diagonal elements of the Hessian ζ.

We calculated the same quantities using a GOE

Nsaddle = 2
(

1 +
√

2
)
Nmin ≈ 4.82Nmin . (13)

Notice that to derive (12) we used an average symmetry of U → −U which does not hold

in general. Therefore, (12) will not be valid for each realization of the potential. A counter

example is shown in Figure 2.

This result generalizes to higher numbers of dimensions. If Ni is the number of stationary

points with i negative eigenvalues in the Hessian, we get

N∑
i=0

(−1)iNi = χ(M) , (14)
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FIG. 2. One can add a maximum and a saddle point to a straight slope without creating any new

minimum illustrating that (12) is valid only statistically and not for all individual realizations of

the potential.

where χ(M) is the Euler characteristic of the manifold M. It is easy to show that the

random Gaussian matrices in even number of dimensions do not satisfy this requirement.

We can give a heuristic argument that there are important correlations between elements

of the Hessian at adjacent stationary points. This argument is illustrated in Fig.1. A sta-

tionary point of the potential is given by ∇U(φ) = 0. Let’s first look at the hyper-surfaces

∂U/∂φ1 = 0 which is shown on the top left panel. Along the straight horizontal line, the

potential is a one-dimensional function, and therefore the sign of the second derivative along

the line must change at the stationary points (blue dots). Consequently, the corresponding

Hessian element ζ11 must change sign along this line. Moreover, the sign of ζ11 must be

constant on each hypersurface. It can only change if there are horizontal lines where ζ11

vanishes at all blue dots, which is highly unlikely, or if the topology of the contours change.

Similarly for the hypersurfaces ∂U/∂φ2 = 0 shown in the top right panel must have alter-

nating signs for ζ22. The stationary points lie on the intersections of these contours which

are shown as black filled squares in the lower panel. Therefore the sign structure of the

Hessian diagonal elements ζii is very similar to the one for sum of independent potentials

presented in (1). Moreover, by a change of coordinate which mixes the diagonal and non

diagonal elements, there will be correlations between the non-diagonal elements of the ad-

jacent stationary points. This strongly suggests that the Hessian cannot be modeled with

a random Gaussian matrix and there are always important correlation between the Hessian

at different stationary points. This is only a heuristic argument and by no means a proof
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but it seems to be a generic situation and should hold statistically and our results in the

later sections suggest that this argument is plausible. Moreover, this statement applies to

any function not just random functions.

IV. COUNTING STATIONARY POINTS OF RANDOM GAUSSIAN FIELDS

Here we start from a random Gaussian potential as defined in (4). Without making

any assumption about the Hessian, we directly calculate the number of different types of

stationary points by closely following the methods of BBKS [18]. Because these potentials

are translationally invariant we end up with the number density of these stationary points.

Let’s first rewrite (4) in Fourier space and define the power spectrum P (k)

〈U(φ̄1)U(φ̄2)〉 =
1

(2π)N

∫
dNk P (k)eik̄·(φ̄1−φ̄2) . (15)

Because U is a Gaussian random field, all the odd moments of the distribution vanish. We

use the following notation for the even moments and gradient :

σ2
n =

1

(2π)N

∫
dNk(k2)nP (k) , ηi =

∂U

∂φi
. (16)

We denote the eigenvalues of the ζ, the Hessian, as λ1, . . . , λN and to specify them unam-

biguously we choose λ1 ≥ λ2 ≥ . . . ≥ λN . We use a variant of the Kac formula [36] to

compute the number of stationary points with P positive eigenvalues (P ≥ 1) in a region,

NP =

∫
dNφ δN(ηi) |det(ζij)| θH(λP ), (17)

where δN is the N -dimensional Dirac delta and θH is the Heaviside step function. The

ability of this expression to “count” extrema follows by noting that it is nonzero only at

stationary points and at those points the Jacobian is cancelled by the change of variables in δ

function, and its overall value would be ±1 depending on the number of negative eigenvalues.

Similarly, the number of maxima is given by

N0 =

∫
dNx δN(U,i)det(U,ij)θH(−λ1). (18)
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The functions U , ηi and ζij are Gaussian variables with zero mean and all we need is their

standard deviation. It is now easy to show that the only nonzero two-point functions are

〈U(φ̄)U(φ̄)〉 = σ2
0 ,

〈ηi(φ̄)ηj(φ̄)〉 =
1

N
δijσ

2
1 ,

〈U(φ̄)ζij(φ̄)〉 = − 1

N
δijσ

2
1 ,

〈ζij(φ̄)ζkl(φ̄)〉 =
σ2

2 (δijδkl + δilδjk + δikδjl)

N(N + 2)
. (19)

To calculate the total number of stationary points of a specific type from (23) we define the

following vector

αi = {U, η1, η2, . . . , ηN , ζ11, ζ22, . . . , ζNN , ζN−1,N , ζN−2,N ,

. . . , ζ1N , ζN−2,N−1, . . . , ζ1,N−1, . . . , ζ12} . (20)

This vector has 1
2
N(N + 3) + 1 elements and we define

Mij ≡ 〈αiαj〉 , and Kij ≡M−1 . (21)

Because αi have normal distribution, their joint probability distribution is given by

p(αi) =

√
detK

(2π)N(N+3)/4
e−Q where Q =

1

2
αKα . (22)

It is easy to check that (22) gives the correlation functions given in (19). In order to get the

total number of a given type of stationary point we evaluate the integral given in (23) and

(18) using this probability distribution. For example, for P > 0, we get

NP =

∫
dNx

1+N(N+3)/2∏
i=1

dαi δ
N(ηi)det(ζij)θH(λP )p(αi). (23)

The most general real symmetric matrix ζij can be written as

ζ = RT


λ1 . . . 0
...

. . .
...

0 . . . λN

R , (24)

where R is a rotation matrix that diagonalizes it. One way to evaluate these integrals is to

parametrize the Hessian as in (24) and write the matrix R in terms of N(N − 1)/2 Euler

angles. Adding the N eigenvalues, we recover the N(N+1)/2 independent parameters which

11
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FIG. 3. Ratio of saddles to minima for a 3-d function with spherical cutoff; clearly centered around

3.05.

specify a symmetric matrix. This approach is tractable for N = 2 and 3 and we present

explicit results in Appendices A and B. In particular, for N = 2 the ratio of Hessians with

zero, one and two positive eigenvalues is 1 : 2 : 1 while for N = 3 the analogous ratio is

1 : 3.05 : 3.05 : 1, showing that the number of relative number of minima and saddles is

close to (and exact, for N = 2) the result for uncoupled potentials.

For comparison, we computed the expectations for the eigenvalue distribution for matrices

drawn from the GOE, by integrating over the relevant measure. For N = 3 we get these

ratios

nrel =

{
1, 1 +

8√
2π − 4

, 1 +
8√

2π − 4
, 1

}
= {1, 19.06, 19.06, 1} . (25)

Separately, we directly generated numerical realizations of random functions, by generat-

ing realizations of band-limited Fourier sums. We looked at two cases, a spherical cutoff

including all modes with |k̄| less than a fixed cutoff and a Gaussian, scale invariant power

spectrum.2 Averaging over multiple realizations we find:

nrel = {1., 3.056, 3.057, 1.0008} , Spherical ,

nrel = {1., 3.055, 3.055, 1.0003} , Gaussian . (26)

The distribution of the relative number of the saddle points to minima and maxima for an

scale invariant power spectrum for the N = 3 case is shown in Figure 3.

2 We also analyzed a “Cartesian” landscape in which k1, k2 and k3 are summed over, up to a fixed cutoff.

This function is anisotropic in k and does satisfy the criteria that define the random functions analyzed

here. The corresponding ratios were 1 : 3 : 3 : 1, which is to be expected since there is more high-frequency

power in directions where |k1| ∼ |k2| ∼ |k3| as the Hessian matrices in a diagonal basis are dominated by

the diagonal terms.
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V. DENSITY OF STATIONARY POINTS FOR GENERAL N

For N > 3 it turns out to be more convenient to use the techniques of BBKS [18],

generalized to N dimensions. We will need the integration measure which is the Jacobian

of the transformation from the Hessian ζij to the Euler angles and eigenvalues. We obtain

this by noting that if we have a metric (inner product) on this space, the square root of its

determinant gives the integration measure. Following the overall approach of BBKS, we use

the following inner product on the space of symmetric N ×N matrices

S1 · S2 = Tr(S1S2) . (27)

It is obvious that Tr [S1(S2 + αS3)] = Tr(S1)+αTr(S2), Tr(S1S2) = Tr(S2S2) and Tr(S1S1) =∑
λ2

i ≥ 0 and hence this is a valid metric. If a matrix S can be diagonalized by an

orthogonal matrix R, the matrix S + dS will be diagonalized by R + dR and if R†SR =

diag(λ1, λ2, . . . , λN), the eigenvalues would change by dλ. Using R†R = I

R†dR + dR†R = 0 , (28)

which translates to dR† = −R†dRR†. Therefore3

dS = R†dλR +R†λdR + dR†λR = R†dλR +R†λdR−R†dRR†λR

= R†
(
dλ+ [λ, dRR†]

)
R . (29)

From here we get

ds2 = Tr(dS2) = Tr
(
dλ2 + [λ, dRR†]2 + 2dλ[λ, dRR†]

)
. (30)

Because dλ and λ are both diagonal they commute and the last term vanishes, leaving

ds2 = Tr(dS2) = Tr
(
dλ2 + [λ, dRR†]2

)
. (31)

Noticing that (28) shows that R†dR is an antisymmetric matrix the trace in (31) is given by

ds2 =
∑

(dλi)
2 +

∑
i 6=j

(λi − λj)2ω2
ij (32)

3 We have corrected a typo in Appendix B of BBKS.

13



where ωij = (dRR†)ij depends only on elements of the rotation group which are given by

Euler angles. There are N + N(N − 1)/2 = N(N + 1)/2 orthogonal vectors in (32) and

hence these form the orthonormal set we were looking for. Therefore the volume element is

dVol =
∏
i≤j

dζij =
N∏
i=1

dλi
∏
i 6=j

(λi − λj)Ω(αk)

1
2
N(N−1)∏
k=1

dαk = F (αi)
N∏
i=1

dλi
∏
i 6=j

(λi − λj) .(33)

Because of spherical symmetry, the only dependence on the Euler angles αi would be through

a normalization factor which is irrelevant for the calculation of the relative number of dif-

ferent types of stationary points. To evaluate Q in (22) we find the inverse of the M in (21)

and we later evaluate Q on the surface ηi = 0. The nonzero elements of K are

KUU =
σ2

2

σ2
0σ

2
2 − σ4

1

,

Kηiηj =
N

σ2
1

,

KU,ζij =
σ2

1

σ2
0σ

2
2 − σ4

1

,

Kζijζkl =
σ2

1

σ2
0σ

2
2 − σ4

1

δijδkl +
N(N + 2)

2σ2
2

(2δikδjl − δilδjk) . (34)

We evaluate Q on the surface ηi = 0

Q =
1

σ2
0σ

2
2 − σ4

1

(
1

2
σ2

2U
2 + σ2

1UTrζ +
(N + 2)σ4

1 − Nσ2
0σ

2
2

4σ2
2

(Trζ)2

)
+
N(N + 2)

4σ2
2

Trζ2 .(35)

From here we can easily show that at a constant U

〈ζij〉U = − σ2
1

Nσ2
0

Uδij ,

〈ζijζkl〉U =

(
− σ4

1

N2σ2
0

+
σ4

1U
2

N2σ4
0

)
δijδkl +

σ2
2

N(N + 2)
(δijδkl + δikδjl + δilδjk) . (36)

Similar results for a very specific power spectrum was obtained in [37] which looked at the

distribution of minima for a power spectrum given by

〈U(φ̄1)U(φ̄2)〉 ∝ e−|φ1−φ2|
2/Λ2

h , (37)

where Λh is the correlation length. It is easy to check that in this special case the term which

has ((N + 2)σ4
1 −Nσ2

0σ
2
2) Trζ2 in (35) vanishes and then the Hessian can be thought as the

sum of a GOE plus a coefficient times the identity matrix. However, as it is clear from (35)

this is not true in general. To see it more clearly, if one could write ζ = W + p(U)I where

W is chosen form a GOE, then the term proportional to (Trζ)2 in (35) would not appear.
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Therefore, except for very special cases, the Hessian is not the sum of a matrix from GOE

and a matrix proportional to identity. Interestingly, the second equation in (36) shows that

even when the potential is zero the elements of the Hessian are not generically drawn from

a random orthogonal matrix. Because in this paper we are only interested in the number of

stationary points and not their energy we integrate over the potential to get the distribution

of ζ. The probability distribution of the Hessians is give by

P (ζ) ∝ e−Q̃ (38)

where

Q̃ =
N

4σ2
2

[
(N + 2)

∑
Trζ2 − (Trζ)2

]
. (39)

The last ingredient we would need for an explicit calculation of the number of stationary

points of a given kind is detM which is given by

detM =
2N−1

(N + 2)

(
σ2

1

N

)N (
σ2

2

N(N + 2)

)N(N+1)/2

= G(N)σ2N
1 σ

N(N+1)
2 . (40)

The density of stationary points of a given type (using the appropriate θ function) is given

by

ni =
1

(2π)N(N+3)/2
√

detM

∫ ∏
dλi
∏

λi
∏
i>j

(λi − λj)e−Q̃θH
∫ ∏

dαiF (αi)

=
FN

(2π)N(N+3)/2
√

detM

∫ ∏
dλi
∏

λi
∏
i>j

(λi − λj)e−Q̃θH , (41)

where F (N) is the normalization factor we get by integrating over all Euler angles which

we can ignore in what follows. The number of stationary points depends on a geometrical

factor from Euler angles and the only dependence on the power spectrum is through

ni ∝
σN2
σN1

. (42)

This dependence does not change the relative number of stationary points. It is fascinating

to notice that the relative number of stationary points is independent of the power spectrum

and depends only on the ratios of integrals over the λi. We cannot evaluate this integral

analytically for arbitrary N , but we can make substantial numerical progress. For N ≤ 9

we used the implementation of VEGAS [38], an adaptive Monte Carlo method, in the GNU

Scientific Library (GSL) [39] with sample sizes of 107 to 109 points to get percent-level

precision. However, for N ≥ 10, the GSL implementation failed with underflow errors but

15



N 4 5 6 7 8 9

n0σ
N
1 /(FNσ

N
2 ) 3.2× 10−11 1.5× 10−15 2.1× 10−20 1.1× 10−25 2.3× 10−31 2.0× 10−37

TABLE I. Numerical values for the density of minima for N = 4, . . . , 9 .

N β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

4 1 4.04 6.08 4.04 1.00

5 1 5.36 11.08 11.08 5.36 1.00

6 1 6.62 17.45 23.68 17.45 6.614 1.00

7 1 8.09 26.2 45.3 45.3 26.2 8.1 1.02

8 1 9.28 36.0 76. 96.6 76. 36. 9.28 1.00

9 1 10.9 49.1 123. 192. 192. 123. 49.3 10.9 1.00

TABLE II. Numerical results of βi for N > 3. We see this is very close to the ratios we get for

independent potentials described in (1). These numbers are accurate within one percent error.

a purpose-written implementation of Metropolis-Hastings [40, 41] algorithm allowed us to

reliably evaluate these integrals for up to N = 100. Detailed results for N = 50 are presented

in Appendix C.4 Finally, we verified this approach for N ≤ 50 using the PolyChord [42] – this

package is designed to calculate Bayesian evidence which (for a suitable choice of likelihood

function) is mathematically equivalent to the problem faced here.

We express our densities relative to n0, the density of minima for each value of N , and

write ni = n0βi. We show the results of n0 for N ≤ 10 in Table I and the corresponding βi’s

in Table II. The values computed and presented in Table I contain an overall geometric factor

that scales as the relative volume of theN -sphere which accounts for the very small numerical

values, and this term cancels from the ratios found in Table I. The βi’s are relatively close to

a binomial distribution, which is the exact result for landscape that is a sum of independent

potentials in (1). For contrast, the βi that would be expected if the distribution of extrema

was controlled by the relatives numbers of same-sign eigenvalues in matrices drawn from the

GOE are shown Table.III. These numbers are dramatically different from both the explicit

results we obtained for a Gaussian random function and the pure binomial distribution.

The properties of stationary points of random Gaussian fields in the large-N limit have

4 This code was implemented in Power-BASIC and run on several desktop machines.
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N β0 β1 β2 β3 β4 β5

2 1 4.83 1

3 1 19.0 19.0 1

4 1 72.0 261.1 72.0 1

5 1 268.7 3299. 3299. 268.7 1

TABLE III. The values of βi’s for a GOE. We see that this is not a good model for the distribution

of stationary points of the landscape and for even number of dimensions it also does not satisfy

the criteria from Morse theory.

been extensively studied, see for example Ref. [19] and the references within. For landscape

potentials N is typically assumed to beO(100) and our next goal is to check the rate at which

results for finite N approach the large-N limit. Adopting the notation Ref. [19], the Hessian

of each stationary point of the potential can have between 0 to N negative eigenvalues.

Denote the number of stationary points whose Hessian has Nα negative eigenvalues by

N (α). By definition, α is in the range [0, 1] and we express N (α) in terms of “complexity”

Σ(α) via

N (α) = eNΣ(α) , (43)

The complexity was calculated in [19] to be

Σ(α) = − λ̄2

4f ′′(0)
+ normalization constant, (44)

where λ̄ is defined by
2

π

∫ 1

λ̄/2
√
f ′′(0)

dy
√

1− y2 = α . (45)

Here f is the correlation function defined in (4). We plotted the Σ(α) in Fig.4. The center

of Σ(α) fits well with a quadratic. We can calculate its width for α close to 1/2 (small λ̄).

λ̄2 = π2f ′′(0)

(
α− 1

2

)2

, (46)

The complexity near the center is

Σ(α) = −π
2

4

(
α− 1

2

)2

. (47)

If one assumes a binomial distribution, this coefficient would be 2 instead of π2/4. This

shows that the binomial distribution for large-N values is not a good approximation. Our
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results at the center of the distribution are consistent with [19] but the discrepancy grows

for small value of α, corresponding to local minima. In Fig.4 we compare the complexity

obtained from our exact results with the large-N limit results of [19] and the binomial

distribution for N = 10, 50 and 100. The binomial approximation overestimates the density

of minima relative to saddles, while the large-N results of [19] underestimates these values

for finite N . However, in all cases the likelihood of a given extremum being a minimum

decreases exponentially with N , rather than super-exponentially as would be the case if

the Hessians were drawn from the Gaussian Orthogonal ensemble of random, symmetric

matrices. This result is also consistent with the observations of Ref. [10]. Finally, we plot

the ratio of minima to stationary points computed from our evaluations of the (41) in Fig.5

and it seems that it fits well by a line on a log scale.

VI. DISCUSSION AND CONCLUSIONS

We have taken steps towards quantifying expectations for the properties of landscape

potentials embedded in theories of high energy physics, including string theory. Our overall

approach is to begin with the architecture of the landscape, specifying expectations for

its global properties. This paper focuses on an apparently simple question; the relative

numbers of minima and saddle points in generic landscapes. For N = 2 we obtained strong

results from Morse theory for general functions. At larger values of N we begin from the

default assumption that the landscape can be modeled as a Gaussian random function and

generalize methods used by Bardeen, Bond, Kaiser and Szalay to analyze primordial density

fluctuations [18] to treat this problem in N dimensions.

Our results demonstrate that for Gaussian random fields, saddles outnumber minima by a

factor of roughly 2N . This is in contrast to analyses that treat the Hessians associated with

extrema as random matrices, which suggest that the ratio is closer to exp(−αN2) where

α is a positive constant of order unity. The discrepancy arises because Hessian matrices

associated with a random function are not composed of independent and identically dis-

tributed elements. Consequently, while the present work shares the fundamental philosophy

of Ref. [6] that a sufficiently complex landscape can be modelled as a random distribution,

the analysis must focus on the underlying function, and not the individual Hessians. Note

also that for the Gaussian random functions the relative number of stationary points is
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FIG. 4. Graphs of Σ(α) defined in (43) obtained from a binomial distribution in black (top curve),

our exact calculation in blue (the middle curve) and the large-N calculation of Bray-Dean in

red (the bottom curve) for N = 10, 50 and 100. We see that for small N the binomial is a good

approximation and while the N = 100 case is close to the large N limit [19] there is still a significant

mismatch, when α is close to 0 or 1.
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FIG. 5. Probability of finding a minimum among different stationary points as a function of N the

number of fields. It is very well approximated by lnP = 1.32− 0.87N or P ∝ 2.39−N .

independent of the power spectrum and depends only the ratios of integrals over the λi.

The analysis in this paper has established generic expectations for the relative numbers

of different types of extrema in Gaussian random function in many dimensions. A Gaussian

random function with zero mean is arguably one of simplest possible specifications of the

landscape architecture, and the distribution of potential cosmological constants p(Λ) can be

obtained in the large-N limit [19]. We have shown that the total number of minima is only

exponentially suppressed by increasing N , but p(Λ|Λ ≈ 0) will also depend strongly on the

values of σ1 and σ2.5 We will save the full analysis of this scenario for future work.

Beyond a pure Gaussian random function, a more physically realistic landscape architec-

ture might include both a random function and an overall potential arising from Planck-scale

operators which is dominant at large values of φ̄. In this case, p(Λ|Λ ≈ 0) will depend on the

overall position in the landscape. Conversely, the layering phenomenon described in Ref [43]

implies that the minima of V will all be low-lying for many possible landscape architec-

tures in which case p(Λ|Λ ≈ 0) will be super-exponentially small and the putative landscape

cannot supply a single minimum in which Λ is consistent with observations or even our

5 We may be able to extend our numerical methods to evaluate p(Λ), but the integrand will contain σ1 and

σ2 as well as Λ so these computations will be less trivial than those performed here.
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existence. Interestingly, in this situation the specific multiverse associated with the assumed

form V (φ̄) would generate a strong prediction for Λ, and underlying hypothesis could be re-

jected with confidence. As a consequence, considerations of landscape architectures will – at

the very least – provide a sandbox for exploring circumstances in which we can draw reliable

inferences about multiverse scenarios, even in the presence of anthropic selection. From this

starting point we can then consider landscape architectures which are physically reasonable

while preserving, so far as possible, the overall brevity of the underlying specification.
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Appendix A: Random Gaussian ensemble of two fields

In this case the vector α has a simple form αi = {η1, η2, ζ11, ζ22, ζ12} and we have

M =



σ2
1

2
0 0 0 0

0
σ2
1

2
0 0 0

0 0
3σ2

2

8

σ2
2

8
0

0 0
σ2
2

8

3σ2
2

8
0

0 0 0 0
σ2
2

8


, K =



2
σ2
1

0 0 0 0

0 2
σ2
1

0 0 0

0 0 3
σ2
2
− 1
σ2
2

0

0 0 − 1
σ2
2

3
σ2
2

0

0 0 0 0 8
σ2
2


. (A1)

We can write the Hessian matrix in terms of two eigenvalues and a single Euler angle

{ζ11, ζ12, ζ22} =
{
λ2 sin2 θ + λ1 cos2 θ, (λ1 − λ2) sin θ cos θ, λ1 sin2 θ + λ2 cos2 θ

}
. (A2)

Jacobian of this transformation is given by

J =

∣∣∣∣∂{ζ11, ζ12, ζ22}
∂{λ1, λ2, θ}

∣∣∣∣ = (λ1 − λ2) . (A3)

Because Q̃ in (22) is rotationally invariant, we evaluate it at θ = 0.

Q̃ =
6 (η2

1 + η2
2)σ2

2 + (9λ2
1 − 6λ2λ1 + 9λ2

2)σ2
1

6σ2
1σ

2
2

. (A4)
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The δ functions in (23) sets η1 = η2 = 0 which leads to

Q̃ =
3λ2

1 − 2λ2λ1 + 3λ2
2

2σ2
2

. (A5)

The probability density of αi simplifies immensely

p(αi) =
1

(2π)5/2

16

σ2
1σ

3
2

√
3

exp

(
−3λ2

1 − 2λ2λ1 + 3λ2
2

2σ2
2

)
. (A6)

Now we can calculate the number of minima, maxima and saddle points (keeping in mind

λ1 ≥ λ2 and det(ζij) = λ1λ2 and a factor of 1
2

for the double counting in rotation group).

ni =
1

2

∫ 2π

0

dθ

∫ ∞
−∞

dλ1

∫ λ1

−∞
dλ2λ1λ2(λ1 − λ2)

1

(2π)5/2

16

σ2
1σ

3
2

√
3

exp

(
−3λ2

1 − 2λ2λ1 + 3λ2
2

2σ2
2

)
θH

=
1

(2π)3/2

8σ2
2

σ2
1

√
3

∫ ∞
−∞

dλ1

∫ λ1

−∞
dλ2λ1λ2(λ1 − λ2) exp

(
−3λ2

1 − 2λ2λ1 + 3λ2
2

2

)
θH (A7)

where θH is the appropriate θ function. It is easy to check that this integral vanishes without

a θ function as expected form the Morse theory. We get

{nmin, nsaddle, nmax} =
σ2

2

24πσ2
1

{1, 2, 1} , (A8)

This is coincidently a binomial distribution for the relative number of maxima, minima and

saddle points. The relative numbers from a random Gaussian ensemble is

{nmin, nsaddle, nmax} ∝ {1, 2(1 +
√

2), 1} . (A9)

Appendix B: N=3

In this case we define the following vector

α = {η1, η2, η3, ζ11, ζ22, ζ33, ζ23, ζ13, ζ12} . (B1)
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In this basis the matrices M and K are given by

M =



σ2
1

3
0 0 0 0 0 0 0 0

0
σ2
1

3
0 0 0 0 0 0 0

0 0
σ2
1

3
0 0 0 0 0 0

0 0 0
σ2
2

5

σ2
2

15

σ2
2

15
0 0 0

0 0 0
σ2
2

15

σ2
2

5

σ2
2

15
0 0 0

0 0 0
σ2
2

15

σ2
2

15

σ2
2

5
0 0 0

0 0 0 0 0 0
σ2
2

15
0 0

0 0 0 0 0 0 0
σ2
2

15
0

0 0 0 0 0 0 0 0
σ2
2

15



, K =



3
σ2
1

0 0 0 0 0 0 0 0

0 3
σ2
1

0 0 0 0 0 0 0

0 0 3
σ2
1

0 0 0 0 0 0

0 0 0 6
σ2
2
− 3

2σ2
2
− 3

2σ2
2

0 0 0

0 0 0 − 3
2σ2

2

6
σ2
2
− 3

2σ2
2

0 0 0

0 0 0 − 3
2σ2

2
− 3

2σ2
2

6
σ2
2

0 0 0

0 0 0 0 0 0 15
σ2
2

0 0

0 0 0 0 0 0 0 15
σ2
2

0

0 0 0 0 0 0 0 0 15
σ2
2



.

(B2)

The most general rotation in three dimension is given in terms of the Euler angles ξ, β and

γ, where 0 ≤ ξ, γ < 2π and 0 ≤ β < π . The rotation is given by

REuler =


cos ξ cos β − cos β sin ξ sin γ cos γ sin ξ + cos ξ cos β sin γ sin β sin γ

− cos β cos γ sin ξ − cos ξ sin γ cos ξ cos β cos γ − sin ξ sin γ cos γ sin β

sin ξ sin β − cos ξ sin β cos β

 (B3)

Again we rewrite the matrix of second derivatives in terms of the eigenvalues and rotation

angles 
ξ11 ξ12 ξ13

ξ12 ξ22 ξ23

ξ13 ξ23 ξ33

 = REuler


λ1 0 0

0 λ2 0

0 0 λ3

RT
Euler . (B4)

We can easily calculate the Jacobian using Mathematica to get

J =

∣∣∣∣∂{ζ11, ζ22, ζ33, ζ23, ζ13, ζ23}
∂{λ1, λ2, λ3, ξ, β, γ}

∣∣∣∣ = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3) sin β . (B5)

To get the distribution of αi vectors, we again calculate Q̃

Q̃ =
3(2ζ2

11 − (ζ22 + ζ33)ζ11 + 2ζ2
22 + 2ζ2

33 + 5(ζ2
12 + ζ2

13 + ζ2
23)− ζ22ζ33)

2σ2
2

+
3(η2

1 + η2
2 + η2

3)

2σ2
1

(B6)

We evaluate this at η1 = η2 = η3 = 0 because of the delta functions and we use the spherical

symmetry to set ξ = β = γ = 0 which makes ζ12 = ζ13 = ζ23 = 0 and ζ11 = λ1, ζ22 = λ2 and

ζ33 = λ3. This gives

Q̃ =
3

4σ2
2

(
5
∑

λ2
i − (

∑
λi)

2
)
. (B7)
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From here the density of different type of minima is given by

Ni =
55/239/2

2σ3
1σ

6
2(2π)9/2

∫ 2π

0

dα

∫ 2π

0

dγ

∫ π

0

dβ sin β

∫
dη1dη2dη3δ(η1)δ(η2)δ(η3)∫

dλ1dλ2dλ3e
−Q̃(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)λ1λ2λ3θH

= 9

(
15

2π

)5/2
σ3

2

σ3
1

∫
Π(λidλi)(λ1 − λ2)(λ1 − λ3)(λ2 − λ3) exp

[
−3

4

(
5
∑

λ2
i − (

∑
λi)

2
)]

θH .

(B8)

Again θH determines the type of stationary point we want to calculate. Again we can show

that without the θ function this integral vanishes as expected from Morse theory. Now we

evaluate the density of different type of stationary points.

n0 = n3 =
29
√

15− 18
√

10

450π2

σ3
2

σ3
1

,

n1 = n2 =
29
√

15 + 18
√

10

450π2

σ3
2

σ3
1

. (B9)

The ratio n1/n0 is approximately 3.05 which is close to but still distinct from the value of 3

that we would expect from binomial distribution.

Appendix C: Distribution of different types of stationary points for N = 50

In this section we present the data for the chance of finding a stationary point with n

negative eigenvalues from a set of stationary points. Because we expect P (i) = P (50 − i)

from the symmetry U → −U we only show the data for n up to 25 in Table IV.
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