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Abstract

We consider two concepts often discussed as significant features of general relativity (particularly when
contrasted with the other forces of the Standard Model): background independence and diffeomorphism
invariance. We remind the reader of the role of backgrounds both as calculational tools and as part of the
formulation of theories. Examining familiar gauge theory constructions, we are able to pinpoint when
in the formulation of these theories they become background independent. We then discuss extending
the gauge formulation to gravity. In doing so we are able to identify what makes general relativity
a background independent theory. We also discuss/dispel suggestions that ”active” diffeomorphism
invariance is a feature unique to general relativity and we go on to argue against the claim that this
symmetry is the origin of background independence of the theory.

1 Introduction

We seek to clarify what is a surprisingly divisive is-
sue on the role of diffeomorphism invariance in gen-
eral relativity and in particular how it is related to
the background independence of the theory. A cur-
sory survey of both published literature and popular
information sources reveals a lack of consensus. The
viewpoint of this paper is that by constructing theo-
ries based on gauging global symmetries, one can dis-
tinguish between the steps of symmetrization and the
removal of background independence. This approach
is obviously of relevance to the strong and electroweak
forces and there is mounting evidence that it ap-
plies equally to the gravitational interactions. We
approach the discussion at several levels, hoping to
make the main points clear to physicists with varying
backgrounds (no pun intended). As such, we begin by
refamiliarizing the reader with backgrounds used for
calculational convenience in the familiar example of
Maxwell’s electrodynamics using the field equations
and in its Lagrangian formulation. The latter allows
us to make certain useful definitions. We then turn
to the formulation of electrodynamics as a gauge the-
ory where we can most clearly see the separate steps
of symmetrization and removal of background inde-
pendence, and also work in a paradigm immediately
applicable to the remaining fundamental forces. Our
attention then turns to the more subtle case of gravity
where we give a brief review of the history and present

status of attempts to formulate GR as a gauge theory.
This allows us to address claims that diffeomorphism
invariance is the source of background independence
in the theory.

2 Backgrounds as calculational

tools

Physicists are perhaps most readily familiar with the
notion of backgrounds from calculations in elemen-
tary electrodynamics. In that setting a typical calcu-
lation involves determining the behavior of a test par-
ticle in response to a fixed set of sources. To be more
precise, one often posits a (possibly time-dependent)
charge distribution to act as a source. This source is
used in Maxwell’s equations to solve for the relevant
field configurations. With the field configurations in
hand, the motion of the test charge can be deduced
using the Lorentz force law in conjunction with New-
ton’s laws of motion (for nonrelativistic test parti-
cles). In such an analysis the backreaction of the
sources due to the presence of the test charge is ig-
nored (justified by its having a small mass compared
to the sources). In this scheme the source or its in-
duced field configuration serves as a background for
the dynamics of the test particle. One can improve
the analysis by taking the backreaction into account.

From an action viewpoint this analysis plays out
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as follows: An action defined with fixed source terms
coupled to the undetermined electric and magnetic
fields is extremized to obtain equations of motion
(Maxwell’s) for the fields, which are then solved.
These field configurations are then fed into an ac-
tion for the test particle as fixed background fields,
i.e. this action is not extremized with respect to
these fields. Extremizing this action with respect to
the test particle degrees of freedom then gives equa-
tions of motion which (with additional boundary con-
ditions) can be solved to determine the motion of
the test particle. Clearly one could forgo the speci-
fication of sources and instead specify a set of fixed
fields to be used in the test particle action. In either
case, the arbitrary assignment of some fixed terms in
the test particle action which influence its behavior
constitute what can be referred to as a background.
This leads us to a working definition of a background:
Any degree of freedom appearing in an action with
respect to which the action is not extremized con-
stitutes a background. Two comments are in order.
First the notion of background here is relevant to the
particular action being used. Additionally, this use of
the term ”background” is synonomous with the term
”nondynamical” often encountered in the literature.
In this context, taking into account backreaction can
be achieved by including all degrees of freedom as dy-
namical components of a single action. Of course one
would still have to stipulate boundary conditions and
as such these constitute a sort of background which
is only absent in cosmological scenarios [1].

3 Backgrounds in the formula-

tion of theories

In the preceding discussion, the split of the action
into a background and test particle was a matter of
calculational convenience. Our primary concern in
this paper is with the presence (and elimination) of
backgrounds in the formulation of theories. To keep
the discussion more straightforward we will work in
the framework of field theory wherein all degrees of
freedom are encoded in fields. This approach is also
more aligned with our best understanding to date of
the electroweak and strong interactions.

While the gauge symmetry of electromagnetic po-
tentials in relation to electric and magnetic fields is a
familiar result (often treated as not much more than
a technical detail), its significance in the fundamen-
tal structure of electromagnetic interactions is often
understated. When one wants to understand elec-
tromagnetic interactions and their similarity to the
strong and weak interactions of the Standard Model,

gauge field theory is the indispensable common set-
ting. Gauge field theory also has the aesthetic advan-
tage of ascribing interactions to the presence of sym-
metries. Qualitatively the construction of a gauge
field theory proceeds as follows: First one specifies a
non-interacting field theory which possesses a global
(space-time independent) symmetry. The global sym-
metry is then made local (space-time dependent) typ-
ically by modification of the derivative operator to a
covariant form with the introduction of a compen-
sating gauge field. The covariant derivative implies
a coupling between the original fields and the new
gauge field, i.e. an interaction. However at this point
the gauge field itself is nondynamical in the sense de-
scribed above since it has no meaningful variational
role in action. To render the gauge field dynamical
the action must be augmented to include a gauge ki-
netic term. With the inclusion of this term, variation
of the action with respect to the gauge field becomes
a meaningful operation.

For a specific example, consider the Lagrangian
for a free complex scalar field

L =
1

2
∂µφ

∗∂µφ, (1)

which enjoys a global phase invariance

φ → eiqαφ, φ∗
→ e−iqαφ∗. (2)

Here q is a constant which will eventually play the
role of the interaction coupling (or charge) and α

is the transformation parameter (like the angle in a
rotation). This transformation is only a symmetry
of the Lagrangian if the parameter α is independent
of spacetime, i.e. if the transformation is ”global”.
Otherwise the derivative generates an additional term
due to the change in the parameter, e.g.

∂µφ → eiqα∂µφ+ iq∂µαe
iqαφ. (3)

We can promote this global symmetry to a local form
with parameters depending on spacetime position by
suitably modifying the derivative to a covariant form,
i.e.

∇µφ
′ = eiqα∇µφ (4)

with the addition of a compensating gauge field

∂µ → ∇µ = ∂µ + iqAµ. (5)

Invariance under local transformations of φ is now
guaranteed so long as the gauge field suitably trans-
forms, i.e.

Aµ → A′

µ = Aµ + iq∂µα. (6)

It is important to take account of the theory to this
point. We have a locally invariant Lagrangian which
now includes an interaction between the scalar field
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and the gauge field due to the product of the scalar
and gauge fields from the new term in the covariant
derivative

∇µφ
∗
∇

µφ =∂µφ
∗∂µφ+ iq(φ∂µφ

∗
− φ∗∂µφ)A

µ

+ q2AµA
µφ∗φ. (7)

There is however no kinetic (derivative) term for the
gauge field, so varying the action with respect to this
degree of freedom is meaningless. The gauge field at
this point constitutes a background as defined above.
To use this action we would have to specify some
(arbitrary) gauge field configuration. It is interest-
ing to note that a subset of the choices for the gauge
field include those that are gauge equivalent to zero.
Such choices may seem to indicate a nontrivial inter-
action, but actually result from a poor choice of gauge
since they are physically indistinguishable from a free
scalar field. However these particular choices are also
the only ones consistent with the next step in the de-
velopment of the theory. To proceed, we now provide
the gauge field with a locally invariant kinetic term

L0 = −
1

4
FµνFµν , Fµν = ∂µAν − ∂νAµ. (8)

It is now meaningful to vary the action with respect
to the gauge field and hence it ceases to be a back-
ground for the theory. Referring to the form of the
Lagrangian with vanishing kinetic term (7), we can
now see that this is a special case of the background
independent version, i.e. those instances where the
compensating field is gauge equivalent to zero. In
some sense this picks out the subset of pure gauge
backgrounds as consistent with the fuller formulation
of the theory. To this end, it makes sense to start
with free Lagrangians in the construction of gauge
theories in this manner. This discussion has been
purely in terms of the action functional. This story
can be given a more geometric underpinning by start-
ing with the bundle construction which identifies the
objects from which we build the action as pullbacks
of principle gauge and associated vector bundles by
local sections.

An important takeaway from the preceding dis-
cussion is the distinction between making a theory
locally invariant and rendering it background inde-
pendent. From the gauge construction this is almost
obvious, and indeed this discussion applies point for
point to the strong and weak forces in the Standard
Model. Nonetheless this has been a source of dis-
agreement when applied to more complicated con-
texts such as gravitation, to which we now turn.

4 The case of gravity

While we can strip away the background dependence
of the strong, electromagnetic and weak interactions
in the Standard Model, we should be careful to under-
stand the degree to which the results are background
independent. After the full gauge construction, the
newly introduced compensating fields are removed as
backgrounds by rendering them dynamical. However
there still occur in the resulting actions degrees of
freedom which are pre-selected but not determined by
the dynamics of the theory. These include the pre-
viously mentioned boundary conditions (which can
be addressed by considering ”cosmological” theories),
but also the geometry of the underlying spacetime as
well as its topology and dimension. Every physicist
is familiar with the idea that the geometric sector of
the remaining backgrounds will be addressed at some
level by Einstein’s theory of general relativity (GR).
But is there any sense in which this part of the story
plays out along the familiar lines of gauge theory?
Surprisingly, despite a long history and an enormous
amount of work, there still remains no complete con-
sensus on how GR is realized as a gauge theory. One
aspect of GR that complicates the discussion is that
the symmetries expected to be part of the gauge pro-
cedure are external, i.e. they act on spacetime, in-
stead of acting on internal degrees of freedom. While
there exists reasonably well developed approaches in
terms of the action, there are some complications in-
cluding the unavoidable presence of torsion and the
lack of a geometric underpinning in terms of some-
thing like a bundle construction. In a forthcoming
paper we will address gauge approaches to gravita-
tion (beyond field theory) and what they have to say
about the uniqueness of gravitation in contrast to the
other Standard Model forces as well as making con-
nections to theories of extended objects. For our ar-
guments here it is sufficient to work at the level of
the action in terms of fields.

The history of gauge field theory approaches to
gravity actually began shortly after the birth of mod-
ern gauge theory, circa the work of Yang-Mills [2].
Utiyama first tried to obtain GR by gauging the
Lorentz group [3]. In his analysis he had to make sev-
eral unjustified assumptions, but eventually arrived
at a theory akin to GR, however energy-momentum
was not conserved. Later Sciama gauged the Lorentz
group in a theory already containing GR to isolate
the role of torsion as reflecting the geometric effects
of sources with intrinsic spin [4]. Kibble was the first
to fashion the more complete picture by starting in
flat spacetime and gauging instead the full Poincare
group [5] including not just the Lorentz transforma-
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tions but spacetime translations as well. His formu-
lation led to the presence of torsion, but also ac-
counted for the more standard elements of GR. All of
these approaches led not to pure GR, but rather to
its generalization Einstein-Cartan theory. A decade
after Kibble’s contribution, Cho fashioned a gauge
theory of the translational group R

4 [6]. The re-
sulting theory formulated by Cho is known as the
local teleparallel equivalent of general relativity [7].
The success of Kibble’s approach has been elaborated
upon and generalized in the exhaustive work of Hehl
et al([8],[9]). It is interesting to note the duration
of development and understanding of external gauge
symmetries. Unlike their internal counterparts the
merits of external gauge symmetries have been dis-
puted for nearly 50 years.

At a glance, when one is faced with obtaining
GR as a gauge theory, the obvious starting point is
flat (non-gravitationally interacting) spacetime and
the relevant global symmetry transformations are the
Poincare group (the semi-direct product of Lorentz
transformations and translations SO(1, 3)⋉R

4) act-
ing on the spacetime coordinates as well as the
Lorentz group acting on the tensor indices of fields.
If one tries to mimic too carefully the typical gauge
constructions à la Yang-Mills then one might focus on
those transformations that act at a point (linearly),
i.e. the Lorentz group. This approach also lends
itself more readily to an underlying bundle struc-
ture. This was the theme of Utiyama’s work. How-
ever it was soon pointed out that since the source
term in the standard formulation of GR is the con-
served energy-momentum tensor, it would be nec-
essary to include the group of translations in the
gauge construction. Indeed this argument also re-
veals why spacetime torsion becomes a necessary in-
gredient of the final theory anytime the Lorentz group
is gauged, since torsion is sourced by spin angular
momentum. Technical complications in these gauge
constructions include accounting for the action on
both tensor indices as well as the coordinates upon
which the field configurations depend. This requires
working in the tetrad formalism with a local Lorentz
frame defined at each point in spacetime. Addition-
ally, since the action itself is integrated over space-
time, its invariance under the local transformations
requires not just a modification of the derivative op-
erator, but the promotion of the Lagrangian to a
Lagrangian density. In any case, once invariance is
achieved, the newly introduced compensating fields
are rendered dynamical by adding to the Lagrangian
appropriate gauge kinetic terms, e.g. the standard
Einstein-Hilbert action. The final technical hurdle
of giving the entire program a geometric underpin-

ning in terms of some bundle-like structure is com-
plicated by the translations. Work on this is still on-
going [10],[11],[12],[13],[14],[15],[16],[17] with several
interesting avenues to be discussed more critically
in a forthcoming paper (Extended Objects and the
Bundle Structure of general relativity; manuscript in
preparation).

What all of these formulations have in common is
the gauge field theory approach wherein some global
symmetry in a non-interacting theory is gauged re-
sulting in an interacting theory. They also exhibit the
key observation above that symmetrizing the theory
and making it background independent are two dis-
tinct steps. In summary, one can conclude (as many
have pointed out already) that the background inde-
pendence of GR arises from the background geome-
try being promoted from a fixed input to a true dy-
namical component of the action. One should keep
in mind as mentioned before that the resulting the-
ory still has some residual background dependence in
the form of spacetime topology, dimension and any
boundary conditions imposed.

5 Remarks on the relevance of

diffeomorphism invariance

Rovelli and others have claimed that what makes GR
a background independent theory is its invariance un-
der active diffeomorphisms. Here we pose two objec-
tions to this conclusion. First, as has been pointed
out by numerous authors, the distinction between
active and passive diffeomorphisms is ill-conceived.
Once one accepts this conclusion, the formulation of
gravity as a gauge theory becomes more akin to the
standard case. It then follows, from the gauge theory
perspective discussed above, that invariance does not
itself alleviate backgrounds, but rather making the
compensating degrees of freedom dynamical does.

Defining diffeomorphisms as a differentiable maps
from one manifold to another (or itself) implies a
smooth reassignment of the locations of points in the
manifold. The notion of shuffling about the points
in spacetime is what some authors call active diffeo-
morphisms. This is to be (alledgedly) distinguished
from starting with one coordinate system and then
simply reassigning the coordinates. Rovelli has made
a case for the distinction by imagining a sphere (like
the surface of Earth) with distinct points labeled by
cities. He then imagines a wind map which moves
the air over the surface of the Earth to new locations
over a period of time. He posits that the wind map is
like an active diffeomorphism. From day one to day
two the wind could move the gloomy weather from

4



Paris to Denver and the sunny weather from Denver
to Paris. On the other hand he then considers co-
ordinatizing the sphere, and in particular assigning
Paris and Denver coordinate values, e.g. (P1, P2) and
(D1, D2). At this point he may instead refer to the
weather at (P1, P2) and (D1, D2) without reference
to the cities. Now he claims that by choosing new
coordinates that swap (P1, P2) ⇔ (D1, D2) he has
made a change in the weather assignment at these
coordinate values, but he clearly has not moved the
weather from Paris to Denver and vice versa. This
is is Rovelli’s basis for distinguishing between active
and passive diffeomorphisms.

The problem with this distinction is the necessity
of some underlying unchanging demarcation of points
(cities) before the wind map or coordinates are con-
sidered. Rovelli himself points out that these cities
constitute a background which once removed renders

the distinction between active and passive diffeomor-
phisms needless. The rebuttal to this claim from
the perspective of gauge theory is that backgrounds
are not unchanging absolutes, but rather nondynam-
ical. To be clear, if we have made an action locally
symmetric but not yet given the compensating field
a kinetic term, performing a gauge transformation
has a nontrivial effect on the compensating field (6).
The field is not absolute, despite being nondynami-
cal! To soften the blow, one may conclude that there
are certainly some theories wherein Rovelli’s distinc-
tion is meaningful, but such scenarios are not part of
the any standard gauge theory. To the degree that
it seems GR (and indeed the rest of the Standard
Model) can be formulated in terms of gauge theory,
the need to distinguish between active and passive
diffemorphisms is absent.
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