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Abstract

The Einstein-Hilbert theory of gravity can be rephrased by focusing on local
conformal symmetry as an exact, but spontaneously broken symmetry of na-
ture. The conformal component of the metric field is then treated as a dilaton
field with only renormalizable interactions. This imposes constraints on the
theory, which can also be viewed as demanding regularity of the action as the
dilaton field variable tends to 0. In other words, we have constraints on the
small distance behaviour. Our procedure appears to turn a black hole into a
regular, topologically trivial soliton without singularities, horizons of firewalls,
but many questions remain.
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1 Introduction

The modern representation of Karl Schwarzschild’s spherically symmetric solution of Ein-
stein’s equations reads1

ds2 = −
(
1− 2M

r

)
dt2 +

1

1− 2M/r
dr2 + r2(dθ2 + sin2 θ dϕ2) . (1.1)

As we now know very well, matter can enter the black hole through the horizon, defined
by the surface r = 2M , while in the standard, unquantised theory, nothing can emerge
out of it. The horizon is a one way door.2 In the coordinates of Eq. (1.1), the point r = 0
is a real physical singularity.

Even though the horizon appears to be a regular region of space-time, we do have
a problem with it. According to Hawking’s well-known result [2], it is due to vacuum
fluctuations that a distant observer will observe particles leaving the black hole: Hawk-
ing radiation. These particles have a thermal spectrum, independent of the black hole
formation process.

Hawking’s original conclusion was that this result must imply that a black hole as a
physical object violates the laws of quantum mechanics: even if it originates from matter
in a single quantum state, it ends up in a thermal, that is, a quantum mechanically mixed
state. How could it be that a derivation that uses quantum mechanics can yield a result
violating the laws of this theory? Hawking particles are now understood to be formed at
the horizon, not, as was originally thought, somewhere near the r = 0 singularity in its
past.

According to the present author’s understanding of quantum mechanics [3], however,
all states in which the Hawking particles fluctuate differently, are different ontological
states of the system, and they should be treated as different quantum states as well. Thus,
the vacuum state, which is a single quantum state, emerges at the horizon as a collection
(superposition) of infinitely many ontological states, and it should be treated as such.
One can then understand how particles entering a black hole, can affect these ontological
states in spite of the fact that their probabilistic distribution remains unaltered. This
effect can actually be calculated [4].

In Ref. [3], version 3, it is explained how pure states can transform into mixed states
under general coordinate transformations.

1In Schwarzschild’s original work [1], the coordinate r in Eq. (1.1) was called R , while he chose an
other radial coordinate r such that the point R = 2M corresponds to r = 0 , since it seemed to be
obvious to expect a singular mass distribution at the origin of the coordinate frame. Today, we know
that this was unnecessary, for two reasons: first, one is free to choose the most convenient coordinate
system anyway, and secondly, the surface r = 2M does not represent a physical singularity at all, but
just a coordinate singularity, much like the north pole of the Earth. It is the black hole horizon.

2On some web pages, these facts are still being disputed, which we can only attribute to ignorance.
Schwarzschild, who wrote his paper in less than two months after Einstein’s discovery, could be excused
for not immediately realising the rather subtle features of black hole horizons, which required several
years to be cleared up, but today’s experts cannot afford to make such mistakes.
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2 Local conformal symmetry

It is to be noted that the main features that went into our description of the back reaction
to Hawking radiation only requires knowledge of light-like geodesics. These depend on
all components of the metric tensor gµν(x) , except for one overall factor. This is because
the equation for light-like geodesics,

ds2 = gµνdx
µdxν = 0 , (2.1)

is unaltered by the substitution

gµν(x)→ Ω2(x) gµν(x) (2.2)

(take into consideration that this equation alone, without higher derivatives, determines
the shapes of all light cones). Theories invariant under (2.2) are said to be locally con-
formally invariant. By adding a dilaton field, as will be explained shortly, even the
Einstein-Hilbert action can be made invariant under (2.2), because the entire metric ten-
sor, including its common factor, consists of dynamical variables.

√
−g is not invariant,

but covariant. This implies that flat space time, that is, the vacuum state, breaks the sym-
metry. Thus we say that conformal symmetry is not explicitly, but spontaneously broken
in Enstein-Hilbert gravity, just as local SU(2)× U(1) gauge symmetry is spontaneously
broken by the BEH mechanism.

We write the standard Lagrangian for gravity interacting with matter as

L = LEM + Lmatter ; LEM = 1
16πG

√
−g (R− 2Λ) , (2.3)

Lmatter = LYM(A) + Lbos(A, φ, gµν) + Lferm(A, ψ, φ, gµν) , (2.4)

where φ(x) represents the scalar matter fields, and ψ(x) the fermionic ones. A stands
for Aµ(x) , the Yang-Mills fields in the matter Lagrangian. Now define

gµν = ω2(~x, t) ĝµν ; L = L(ω, ĝµν , Aµ, ψ, φ) . (2.5)

This contains the ‘trivial’ conformal symmetry

ĝµν → Ω2(~x, t)ĝµν , ω → Ω−1ω , Aµ → Aµ ,

φ→ Ω−1φ , ψ → Ω−3/2ψ . (2.6)

We shall refer to the field ω(~x, t) as the dilaton field.

Working out the Einstein-Hilbert Lagrangian and the matter Lagrangian a bit more
explicitly gives

LEM =
√
−ĝ
(

1
16πG

(ω2 R̂ + 6ĝµν∂µω∂νω) − Λ
8πG

ω4
)

; (2.7)

Lmatter = − 1
4
FµνFµν +√
ĝ
(
−1

2
ĝµνDµφDνφ− 1

2
m2ω2φ2 − 1

12
R̂φ2 − λ

8
φ4
)

+ Lferm . (2.8)
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Here, we included the R̂ φ2 term for restoring conformal invariance of Lmatter , where R̂
is the scalar curvature associated to ĝµν .

Now, several remarks are of order:

- surprisingly perhaps, the Einstein-Hilbert action appears to be an entirely renor-
malizable Lagrangian for the dilaton field ω(x) .

- With the cosmological term acting as a quartic coupling term, the matter Lagrangian
for the scalar field φ(x) has the same form as LEM , apart from a factor −4πG/3 .

- This factor can easily be taken care of by rescaling the ω field, but its sign is
curious. Since it so happens that the Standard Model neither contains explicit mass
terms for the fermions, nor cubic couplings among the saclar fields3, we can include
a factor i in the redefinition of ω without any obvious violation of unitarity.

- Due to the necessary rescaling of ω , all physical constants (including mass terms
and the cosmological term) eventually emerge as dimensionless combinations of
Newton’s constant G and the Standard Model parameters.

Nevertheless, the theory is non renormalizable. This is because a kinetic term for the ĝµν
field is missing. Normally, theories cease to be renormalizable if a kinetic term is missing.
The theory would be ill-defined altogether, but by inspecting the way one would normally
handle the Einstein equations in perturbation expansions, one finds the following formal
prescription for solving the classical equations:

Find the total energy-momentum-stress tensor T tot
µν for the matter fields, in-

cluding the ω field. Note that the original, ω -independent Einstein-Hilbert
action disappeared, so that Einstein’s equation is to be replaced by one where
Newton’s constant is infinite. Therefore, the equations are:

T tot
µν = Tmatter

µν − Tµν(ω) = 0 = Tmatter
µν − 1

8πG
Gµν . (2.9)

We kept the minus sign in the contribution of the ω field; it disappears when the factor
i mentioned above is employed. We recognise Einstein’s original equation of course;
however, in the conformally symmetric notation, we should say that the condition that
the total energy-momentum-stress tensor vanishes is a constraint. It has exactly the
right dimension to enforce the equations for the ĝµν field (the conformal stress-energy
momentum tensor is traceless).

If our aim were to restore renormalizability, all we had to do now would be to collect
all divergent diagrams and determine their general form. This should provide us with
terms to be added to the original bare Lagrangian of the theory, as is usually done. In
this case, we find that all divergent expressions unaccounted for, contain external lines for

3Such terms would come with a factor iω , and hence appear to violate unitarity.
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ĝµν and factors k4 because they are quartically divergent. Since all calculations should be
performed while respecting local conformal invariance, and all diagrams are polynomials
in the fields, one expects that the only terms that should be added in the Lagrangian are
locally conformally invariant expressions with four derivatives in the metric fields ĝµν .
There exists only one such term that is invariant under local conformal transformations,
the Weyl action:

Lkin = −λW

2
Cµναβ Cµναβ → −λW

4
(∂2ĝtransverse

µν )2 . (2.10)

With this term added, the theory indeed becomes renormalizable, as is well-known, but
there appear to be two complications: first, the Weyl term would generate propagators for
ĝµν that are quartic in the momenta. This is not in accordance with standard prescriptions
in renormalization theory. Propagators ought to be quadratic in the momenta, in a
carefully prescribed way, in order to comply with unitarity, causality, and positivity of
the energy. Does this mean that our theory is not unitary, or is its energy not bounded
from below? Note that the energy momentum tensor is required to obey Eq. (2.9), so that
the total energy vanishes strictly, but that was before we added the Weyl action. What
is the unitarity/energy condition in the case of conformal invariance?

Secondly, there is an other mystery. When the required renormalization counter term
is computed without keeping track of conformal symmetry, one finds [5] that it does not
take the form (2.10), since also

√
−g R2 terms appear. Now, if we do use the conformal

notation, this would generate ∂µω/ω and ∂µω
2/ω2 terms, which of course cannot come

from symmetric diagrams. The exact cause of this discrepancy is not yet quite understood,
but may have to be interpreted as an anomaly.

Indeed, when inspecting the scaling behaviour of this theory, one finds all those anoma-
lies that generate the renormalization group β coefficients. In gauge theories, we are ac-
customed to imposing the requirement that anomalies that destroy gauge invariance must
be arranged to cancel out. We expect the same in this theory: all conformal anomalies
must be demanded to cancel out. This means that all renormalization group β coef-
ficients must be demanded to vanish. Consequently, all coupling parameters must be
adjusted such that they are at a zero of their β functions. This generates at least as
many constraints as there are coupling parameters of the theory. We are lead to an ex-
citing speculation: In gravity theories with conformal invariance, all physical constants,
including the masses and even the cosmological constant, are constrained to values that
in principle must be computable.

In short, we propose that conformal symmetry is not just an accident that vaguely
applies to some branches of physics, but that it may play a very important role as an
absolutely exact transformation rule. It will then be an essential instrument that might
lead us towards calculating parameters that otherwise would have been freely adjustable,
and a crucial ingredient of the description of black holes, as we will see.
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3 Black holes

In a nut shell, the black hole information problem is the question how information con-
cerning the state of matter entering the hole, can be seen to be present in the particles
coming out, as was mentioned in the Introduction. One way of phrasing this difficulty
is the question how to avoid that the information entering the hole disappears into the
central singularity. A related difficulty arises if one considers the entanglement of par-
ticles entering the hole and others that emerge. The contradictions appear to be strong
enough to make some researchers [6] believe that a firewall should emerge at the horizon,
prohibiting particles to enter.

Conformal symmetry will be of help here: the central singularity disappears4, and the
horizon will become “fuzzy”. Consider the mass M of the black hole. An observer A
falling in passes the horizon, experiencing the metric gµν associated to the mass M . An
outside observer B , however, may observe the Hawking radiation that causes the mass
to shrink. While the ingoing observer still hovers over the horizon, seeing a fixed mass
M , the outside observer sees the mass shrink to zero. Who is right?

The answer may be Black hole complementarity [7]: both observers are right, but they
should use the metric ĝµν , and its conformal factor depends on who is looking. Both
observers may describe their metric as

dŝ2 = M2(t̃)

(
−dt2(1− 2

r
) +

dr2

1− 2/r
+ r2(dθ2 + sin2 θdϕ2)

)
. (3.1)

Here, M(t̃) may depend on the retarded time t̃ , and be different for the different ob-
servers. For the observer A entering the hole, M(t̃) = M is constant, but for the outside
observer B , it goes to zero. It may also depend on the advanced time. Since the black
hole has a finite life time, there is, strictly speaking, no horizon.5

With ‘black hole complementarity’, the distant observer B sees matter going in and
matter going out, The observer A , going in, sees the locally clear horizon, while she cannot
detect the Hawking particles. Observer B sees that the mass M vanishes during the
final explosion. For this observer, the horizon produces matter, as if the imploding matter
contained some sort of dynamite, causing an explosion at exactly the right moment. This
observer sees an almost singular concentration of Ricci scalar curvature6 at the horizon,
see Fig. 2. The curvature is strong where the future event horizon meets the past horizon.
One could call this a ‘firewall’, but the firewall is invisible for the ingoing observer A . The

4This happens as follows: near the singularity, we can stretch the coordinates so much, that the
curvature-squared will no longer be singular, but instead, the singularity moves to the infinite future. In
a sense, that is where it belongs anyway. A good exercise is to multiply the metric with an overall factor
such as 1/r4 , to see how this makes the singularity move towards the infinite future, where space-time
becomes locally flat.

5But keep in mind that, for most of all practical purposes, there still is a horizon, as its ‘fuzziness’ is
almost imperceptible. Only for black holes close to the Planck size, this fussiness becomes important.

6Note that we now use the metric ĝµν throughout; the dilaton ω is just an ‘ordinary’ renormalizable
field, that happens to hover around its vacuum value.
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Figure 1: a ) Standard view of space-time of a black hole formed by imploding matter; b )
Conformal distortion of a , such that time reversal symmetry is restored. c ) Penrose diagram
of symmetric black hole showing entangled states of Hawking radiation.

observers use different ways to fix the ‘conformal gauge’. Hence, they also have different
perceptions of the energy-momentum tensor of the matter present. They do both agree
what the vacuum expectation value of the ω field should be, but they do not agree about
what the vacuum state is. Note that, this disagreement about the vacuum state has
always been a standard concept in the derivation of Hawking radiation [2][4].

The outside observer B sees Hawking particles emerge from a highly concentrated
‘curtain’ along the past event horizon. If he computes the corresponding metric, he will
disagree with observer A , by finding an extra conformal factor. The Hawking particles
cause a sharp jump in the gradients of this conformal factor. Consequently, observers A
and B disagree about this conformal factor when discussing the interior region of the
black hole, see Fig. 3.

The comparison between our spontaneously broken local conformal symmetry and
the Brout-Englert-Higgs mechanism gives striking similarities. For one, this mechanism
improves considerably the convergence features of the theory in the far ultra-violet. If the
Weyl term (2.10) would really be allowed then we would indeed have a renormalizable
theory of gravity, as is well known. The other similarity concerns the topologically non
trivial soliton solutions: before invoking the BEH mechanism, Maxwell’s theory cannot
allow for a singularity-free description of magnetic monopoles, while in some versions of the
BEH models one can have regular monopoles; similarly, with local conformal symmetry,
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Figure 2: The black hole metric as seen by a distant observer B , see text.

black holes can be made singularity free.

Our demand that all conformal anomalies cancel is a severe constraint on the theory,
but this may actually be a welcome feature; it may imply that constants that are not
normally computable may now be found to obey (interesting) equations. A difficulty
here is that all couplings may emerge as being large, in which case we cannot perform
perturbative calculations. By carefully choosing the algebra, depending on a large integer
N , one sometimes can search for solutions with couplings proportional to 1/N or 1/N2 ,
allowing us to do 1/N expansions. A very preliminary search was only partially successful,
as it did allow for 1/N expansions, but it did not lead to physically interesting solutions.

vacuum with atom vacuum with
scaled atom

matter

Figure 3: Observer B experiences a firewall, formed by Hawking particles, while A sees
no such thing. Therefore, they disagree about sizes of things inside the black hole, see
text.

4 Features and limitations

We do observe that spontaneously broken local conformal symmetry holds the promise
that the unknown parameters of the matter Lagrangian, today described by the Standard
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Model, are not freely adjustable but can be computed. The numbers, however, will depend
on the algebra of the matter theory. For sure, the algebra of the Standard Model will need
considerable extensions in order for it to be applicable all the way to the Planck scale.

The most fundamental obstacle was found to be the hierarchy problem: ratios of
physical constants in the real world contain very large or small numbers such as 10−122

for the cosmological constant, whereas in principle our models should turn up numbers
of order 1 in Planck units. Our universe owes its complexity to the existence of exotic
large numbers. One might bring this forward as an objection to our theory but it has
to be remembered that the hierarchy problem is the source of headaches for many other
theories as well. Barring the “anthropic principle”, no theory is known that can account
for the complexity of our universe.

An other mystery is the apparent lack of unitarity. This feature was further investi-
gated. If one chooses the coefficient λW in the Weyl term (2.10) large, the theory allows
for a perturbative analysis. If we add this extra term to the original Einstein Hilbert
action (in the old, non conformal notation), one finds that λW has the dimensionality of
an inverse mass squared,

λW ≡ 1/M2 , (4.1)

where M locates poles in the complex momentum plane, and it is small compared to
the Planck mass (in a renormalizable theory, a Planck mass large compared to the mass
scale M of the theory indicates small gravitational couplings, hence the usefulness of
perturbative expansions).

We then look at plane waves of the theory, finding that the wave equations indeed
contain new poles. Identifying the quantum numbers of these poles, we found:

- one massless pole, describing the familiar graviton. This was to be expected because
the far infrared region should not be affected by the Weyl term, as it contains extra
derivatives. The graviton has spin 2, but, being massless, has only two physical
helicities, as in the usual theory;

- poles of the form 1/(k2 + M2 − iε) . They all turned out to be at the same mass
value M . One pole has helicities ±2 , one has helicities ±1 and one pole has
helicity 0. We recognise this as the five helicities of a single, massive spin 2 particle.
The problem with these poles is that they all have the wrong overall sign in the
propagator. The fact that this wrong sign is inevitable can easily be seen from
the far ultraviolet limit. There, only the Weyl term contributes to the graviton
propagator. It was inevitable that we have there:

1/(k2 + λWk4) = 1/k2 − 1/(k2 +M2) . (4.2)

- The scalar pole that might be generated by the conformal factor, as usual in per-
turbative gravity, is a ghost, so that it can be ignored, it is not a physical particle,
while the others seem to be real.
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Thus we have a single, negative metric, spin 2 companion of the graviton, with 5 possible
helicity states. We propose the name “gravitello” for that, the mysterious companion of
the graviton. Having such a particle seems to be inevitable.

We do not know how to accommodate for it in a unitary theory, but one could consider
the following notions.

Our fields have oscillation modes with opposite signs. The energies can be written as

H = |~k|(p2
1 + x2

1)−
√
~k2 +m2 (p2

2 + x2
2) , (4.3)

where ~k is the spacelike momentum of the wave, while xi are the fields and pi are the
canonical momenta of these fields, at wave number ~k . They obey the usual commutation
rules

[xi, xj] = [pi, pj] = 0 , [xi, pj] = i δij . (4.4)

We can write Eq. (4.3) as

H = Aa†a−B b†b+ C , (4.5)

where a and a† are the annihilation and creation operators of the graviton, and b, b†

those of the gravitello, both having momentum ~k .

One approach is the following. We could impose a lower bound to the energies of the
modes with the wrong sign, by putting a limit on the occupation numbers of the b, b†

operators. This requires the interchange b ↔ b† , which is possible if we can rearrange
and renormalise the quantum states reached by these operators. Effectively, this switches
the sign of the commutator of b and b† . The associated replacement in the operators x2

and p2 implies that they commute as purely imaginary fields would:

x2 → ix2 , p→ ip , (4.6)

that is, the field of the gravitello should be chosen to be purely imaginary. This is the
same operation as was required in the quantisation of ordinary gravitation; there also,
the overall conformal factor, which would contribute with the wrong sign to the Einstein
Hilbert action, must be replaced by a purely imaginary Lagrange multiplier field.

The procedure described here is related to the author’s proposals for the interpretation
of quantum mechanics [3]. All harmonic oscillators that we encounter in the physical
world, should be associated with processes in an ontological underlying world that are
periodic in time. When harmonic oscillators interact, they cease to be exactly periodic,
and this means that, also in the ontological underlying world, the associated processes
are no longer exactly periodic.

To identify the quantum states of the oscillator with the classical states of the ontolog-
ical world [3], we have to discretise them. This is achieved in ‘cogwheel models’, which are
periodic but have only a finite number of states. The annihilation and creation operators
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a and a† are then replaced by the operators L− and L+ in a large ` representation of
the SU(2) rotation algebra of angular momenta. These decrease or increase the quantum
number m = L3 , which has both a lower and an uper bound: |m| ≤ ` .

Regarding the gravitello, we should hasten to add that this approach has not yet been
elaborated in a satisfactory way, since the gravitello would couple with an imaginary
coupling constant to gravitational sources, and we have not succeeded in showing how
this can be squared with unitarity.

5 Conclusion

Local conformal symmetry shines a new light on problems where gravity couples to matter,
both in the domain of the Standard Model and in our understanding of black holes. It
is always our intention to make the smallest possible modifications in our models of
physics, because pure Einstein-Hilbert gravity, coupling just with the Standard Model
particles, appears to agree with observations extremely well, and lessons learned from
past experiences suggest that one should not abandon known facts in the natural world
too easily.

It so happens that exact local conformal invariance does play a role already in Einstein-
Hilbert gravity itself, by isolating the dilaton component of the metric, so the only ‘new’
thing we add to this is the demand that this symmetry should be exact, rather than
having it as an accidental, approximate feature.

It may be noted that our approach is related to the theory of ‘asymptotic safety’ [8]. In
this theory, the UV limit of gravity theory tends to a fixed point. At this fixed point, such
models should also enjoy scale invariance, ergo local conformal invariance. There, however,
one is confronted with strong interactions (since the fixed point values of the coupling
parameters are not close to zero). In our models, we offer perturbative accessability by
adding explicit interactions (the Weyl term). This could be an advantage, but it would
also introduce wrong metric states that we have to handle, somehow. In fact, whether
asymptotically safe models contain states with the wrong sigm of the metric and/or the
energy, is not known.

Our procedure appears to suggest that all freely adjustable parameters, being both
the masses and the coupling parameters of the Standard Model, including eventually the
cosmological constant, must be computable. Our point is that, with the dilaton field ω
added, the matter component of our particle system should be completely conformally
invariant, so that the physical parameters, all starting out as being dimensionless, must
be exactly at the fixed point, that is, the point where all β coefficients vanish.

The inclusion of the Weyl interaction, which on the one hand seems to be inevitable,
does generate severe problems of negative metric states, or equivalently, negative energy
states. This may simply mean that we have not yet fully understood what local conformal
symmetry really is [9].
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