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Getting the Lorentz transformations without requiring an invariant speed
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The structure of the Lorentz transformations follows purely from the absence of privileged inertial
reference frames and the group structure (closure under composition) of the transformations—two
assumptions that are simple and physically necessary. The existence of an invariant speed is not a
necessary assumption, and in fact is a consequence of the principle of relativity (though the finite
value of this speed must, of course, be obtained from experiment). Von Ignatowsky derived this
result in 1911, but it is still not widely known and is absent from most textbooks. Here we present
a completely elementary proof of the result, suitable for use in an introductory course in special
relativity.

I. INTRODUCTION

In standard textbooks, the Lorentz transformation
equations, which connect inertial reference frames, are
deduced from the invariance of the speed of light,
which implies the invariance of the Minkowski interval.1

A different approach, however, was followed by von
Ignatowsky.2 Only six years after the formulation of spe-
cial relativity, he proved that the Lorentz transforma-
tions arise under quite general conditions, without as-
suming a priori the existence of an invariant speed. Von
Ignatowsky showed that the only admissible transforma-
tions consistent with the principle of inertia, the isotropy
of space, the absence of preferred inertial frames, and a
group structure (i.e., closure under composition), are the
Lorentz transformations, in which c can be any veloc-
ity scale, or the Galilei transformations. This surprising
result shows that the Lorentz transformations are not
directly related to the properties of electromagnetic ra-
diation. Electromagnetism is only relevant, if present
within the theory, as a way to fix the arbitrary veloc-
ity scale, which is then identified with the speed of light.
This deep and fascinating result, although well known in
the specialized literature,3–11 is not commonly found in
textbooks,12 because its usual proof is rather complicated
and uninspiring. It is the purpose of the present paper
to present a derivation of the von Ignatowsky result us-
ing elementary considerations which, in our opinion, shed
new light on the result.

II. NOTATION FOR TRANSFORMATIONS

BETWEEN FRAMES

We wish to characterize the transformations that relate
two different inertial frames. Let us consider two inertial
observers O and O′. Let r = (x, y, z) and t be space and
time coordinates for O and r

′ = (x′, y′, z′) and t′ be the
corresponding quantities for O′.
In order to simplify the argument, we will restrict our

considerations to the subgroup of transformations involv-

ing x and t only, setting y′ = y and z′ = z. This is
equivalent to choosing coordinates so that O and O′ are
in relative motion along the x and x′ direction.13
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FIG. 1. Two inertial frames in relative motion along the x-
axis.

We assume the validity of the principle of inertia: in
an inertial frame free particles undergo rectilinear motion
with constant speed. Therefore, if the trajectory of a
particle is a straight line in the frame of observer O and
its speed is constant, the trajectory is also a straight line
in the frame of observer O′ and also the speed in the new
frame is constant. This condition implies14 that the two
inertial frames are related by a linear transformation.
We can therefore write

x0′ = Ax0 +Bx, (1)

x′ = Cx0 +Dx, (2)
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where we have defined the time coordinates x0 and x0′,
measured in units of distance, as

x0 = v̄t, (3)

where v̄ is an arbitrary constant with units of speed. The
inverse transformation follows immediately:

x0 =
1

∆
(Dx0′ −Bx′), (4)

x =
1

∆
(−Cx0′ +Ax′), (5)

with

∆ ≡ AD −BC 6= 0. (6)

It is useful to rewrite the transformation in matrix no-
tation, introducing

Λ ≡

(

A B
C D

)

(7)

and its inverse

Λ−1 =
1

∆

(

D −B
−C A

)

. (8)

Then, we have

(

x0′

x′

)

= Λ

(

x0

x

)

(9)

and
(

x0

x

)

= Λ−1

(

x0′

x′

)

. (10)

III. EQUIVALENCE OF INERTIAL

REFERENCE FRAMES

The main ingredient in the proof is the requirement
that there are no privileged frames: all inertial frames are
equivalent. We wish now to express this hypothesis in a
more transparent way that allows us to put constraints
on the matrix Λ.
Let us consider two events, E1 and E2, at the same

spatial location in frame O, but separated by a time dif-
ference τ . In O′ the two events are separated by a time
lapse T ′. One natural requirement is that if we consider
two different events, E3 and E4, that are at the same spa-
tial location in frame O′, but separated by the same time
difference τ in O′, then these two events are separated
by a time lapse T = T ′ in O. Similarly, we require that
if observer O measures the length l (along the x axis) of
a rod that is at rest with respect to O′ and has length l0
in the O′ frame, the same result is obtained by O′ for an
identical rod at rest with respect to O, always along the
x axis. These requirements constrain the coefficients of
the transformation Λ.

Let us consider the two events E1 and E2 at the same
spatial location in frame O, separated in time by τ . From
Eq. (1), observer O′ measures a time lapse T ′ given by

T ′ = Aτ. (11)

Consider now the complementary situation in which an
identical clock, at rest with respect to O′, measures the
same time interval τ between two events E3 and E4 that
are at the same location in O′. Correspondingly, from
Eq. (4), the observer O measures a time lapse T given by

T =
D

∆
τ. (12)

As stated above, if neither O nor O′ is in some way privi-
leged, the two time intervals T and T ′ should be identical,
i.e., T ′ = T , which implies

A =
D

∆
. (13)

A similar argument applies in the case of a rod of rest
length l0, oriented along the x axis. If the rod is at
rest with respect to O′, Eq. (2) implies that the length l
measured by observer O satisfies

l0 = Dl. (14)

Analogously, for a rod at rest in O, we have, from Eq. (5),
that the length l′ measured by O′ satisfies

l0 =
A

∆
l′. (15)

Again, the absence of privileged reference frames requires
that l = l′ and therefore

A

∆
= D. (16)

Combining Eqs. (13) and (16), we have

A

∆2
= A. (17)

The solution A = 0 is not acceptable on physical grounds,

because it would lead to the meaningless result x0′ = Bx,
so we are forced to choose

|∆| = 1. (18)

If we restrict ourselves to proper transformations, we
have simply

∆ = 1, (19)

so that

A = D. (20)

These conditions imply that the transformation relating
two different inertial frames is of the form

Λ =

(

A B
C A

)

, (21)

with

A2 −BC = 1, (22)

the latter condition being a consequence of Eq. (19).
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IV. GROUP STRUCTURE

To further constrain the structure of the matrix Λ, we
now add the natural requirement that the transforma-
tions connecting two inertial frames constitute a group,
i.e., that the combination of two such transformations
yields a third transformation of the same form.
We consider two transformations,

Λ1 ≡

(

A1 B1

C1 A1

)

, Λ2 ≡

(

A2 B2

C2 A2

)

, (23)

and their product,

Λ3 = Λ1Λ2 =

(

A1 B1

C1 A1

)(

A2 B2

C2 A2

)

=

(

A1A2 +B1C2 A1B2 +B1A2

C1A2 +A1C2 A1A2 + C1B2

)

. (24)

The matrix Λ3 is an element of the set of admissible ma-
trices only if its diagonal elements are equal [see Eq. (21)],
that is, if

B1C2 = C1B2. (25)

In order to satisfy Eq. (25) for all transformations of
the form (23), we have three different possibilities:

(i) B = αC, where α is a nonzero constant;

(ii) B = 0 and A = 1, where the second equation fol-
lows from Eq. (22); or

(iii) C = 0 and A = 1.

Case (iii) is easily recognized to be physically uninter-
esting.
Case (ii) corresponds to the Galilean transformations:

x0′ = x0, (26)

x′ = Cx0 + x, (27)

the parameter C being the relative velocity of the two
frames in units of v̄.
In case (i) we change the definition of x0 in Eq. (3)

introducing

x̃0 = c̄t =
c̄

v̄
x0 (28)

with

c̄ =
v̄

√

|α|
. (29)

Then we obtain

(

x̃0′

x′

)

=

(

A
α

|α|
C′

C′ A

)

(

x̃0

x

)

, (30)

where

C′ = C
√

|α|. (31)
Eq. (22) becomes now

A2 −
α

|α|
C′2 = 1. (32)

If α is negative, then Λ is an orthogonal rotation matrix.
In this case, there are transformations Λ such that Λn is
close to the identity for some value of n, and this is clearly
unphysical. Therefore, we can exclude this possibility
and we are left with transformations of the form

Λ =

(

A C′

C′ A

)

, (33)

where A2 − C′2 = 1. In this case the observer O′ moves
with speed w with respect to observer O, where w is
determined by

C′/A = w/c̄. (34)

The condition A2 − C′2 = 1, implies

A = γ =
1

√

1− w2/c̄2
(35)

C′ = γw/c̄ (36)

so that Λ is a generic Lorentz transformation, with the
speed of light identified with c̄.

V. CONCLUSIONS

Lorentz and Galilei transformations are the only struc-
tures compatible with the principles of inertia and rel-
ativity, i.e., the nonexistence of privileged reference
frames. This result, which is easily stated, is usually
obtained by means of rather complicated proofs. In this
paper we have presented an elementary derivation, suit-
able for presentation in undergraduate courses in special
relativity.
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