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1 Introduction

The relation of mathematics to physics and its influence on physics have been
a topic of much interest for some time. A sampling of the literature in this area
includes Wigner’s paper, ”The Unreasonable Effectiveness of Mathematics in
the Natural Sciences” [1] and many others [2, 3, 4, 5, 6, 7, 8, 9]. The approach
taken by this author is to work towards a comprehensive theory of physics and
mathematics together [10, 11]. Such a theory, if it exists, should treat physics
and mathematics as a coherent whole and not as two separate but closely related
entities.

In this paper an approach is taken which may represent definite steps to-
ward such a coherent theory. Two ideas form the base of this approach: The
local availability of mathematics and the freedom to choose scaling factors for
number systems. Local availability of mathematics is based on the idea that
all mathematics that an observer, Ox, at space time point, x, can, in principle,
know or be aware of, is available locally at point x. Biology comes in to the
extent that this locally available knowledge must reside in an observers brain.
Details of how this is done, biologically, are left to others to determine.

This leads to the association of a mathematical universe,
∨

x, to each point
x.

∨
x contains all the mathematics that Ox can know or be aware of. For

example,
∨

x contains the various types of numbers: the natural numbers, N̄x,
the integers, Īx, the rational numbers, Rax, the real numbers, R̄x, and the
complex numbers, C̄x. It also contains vector spaces, V̄x, such as Hilbert spaces,
H̄x, operator algebras, Opx, and many other structures.

The universes are all equivalent in that any mathematical system present in
one universe is present in another. It follows that

∨
y contains systems for the

different types of numbers as N̄y, Īy, Ray, R̄y, C̄y. It also contains H̄y, Opy, etc.
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Universe equivalence means here that for any system type, S, S̄y is the same
system in

∨
y as S̄x is in

∨
x .

For the purposes of this work, it is useful to have a specific definition of
mathematical systems. Here the mathematical logical definition of a system of
a given type as a structure [12, 13] is used. A structure consists of a base set,
a few basic operations, none or a few basic relations, and a few constants. The
structure must satisfy a set of axioms appropriate for the type of system being
considered. For example,

N̄x = {Nx,+x,×x, <x, 0x, 1x} (1)

satisfies a set of axioms for the natural numbers as the nonnegative elements of
a discrete ordered commutative ring with identity [14],

R̄x = {Rx,+x,−x,×x,÷x, <x, 0x, 1x} (2)

is a real number structure that satisfies the axioms for a complete ordered field
[15], and

C̄x = {Cx,+x,−x,×x,÷x, 0x, 1x} (3)

is a complex number structure that satisfies the axioms for an algebraically
closed field of characteristic 0 [16].

H̄x = {Hx,+x,−x, ·x, 〈−,−〉x, ψx} (4)

is a structure that satisfies the axioms for a Hilbert space [17]. Here ψx is a
state variable in H̄x. There are no constants in H̄x. The subscript, x, indicates
that these structures are contained in

∨
x .

The other idea introduced here is the use of scaling factors for structures for
the different number types. These scale structures are based on the observation
[18, 19, 20] that it is possible to define, for each number type, structures in
which number values are scaled relative to those in the structures shown above.
The scaling of number values must be compensated for by scaling of the basic
operations and constants in such a way that the scaled structure satisfies the
relevant set of axioms if and only if the original structure does.

Scaling of number structures introduces scaling into other mathematical sys-
tems that are based on numbers as scalars for the system. Hilbert spaces are
examples as they are based on the complex numbers as scalars.

The fact that number structures can be scaled allows one to introduce scaling
factors that depend on space time or space and time. If y = x+µ̂dx is a neighbor
point of x, then the real scaling factor from x to y is defined by

ry,x = e
~A(x)·µ̂dx. (5)

Here ~A is a real valued gauge field that determines the amount of scaling, and
µ̂ and dx are, respectively, a unit vector and length of the vector from x to y.
Also · denotes the scalar product. For y distant from x, ry,x is obtained by a
suitable path integral from x to y.
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Space time scaling of numbers would seem to be problematic since it appears
to imply that comparison of theoretical and experimental numbers obtained at
different space time points have to be scaled to be compared. This is not
the case. As will be seen, number scaling plays no role in such comparisons.
More generally, it plays no role in what might be called, ”the commerce of
mathematics and physics”.

Space time dependent number scaling is limited to expressions in theoreti-
cal physics that require the mathematical comparison of mathematical entities
at different space time points. Typical examples are space time derivatives or
integrals. Local availability of mathematics makes such a comparison problem-
atic. If f is a space time functional that takes values in some structure S̄, then
”mathematics is local” requires that for each point, y, f(y) is an element of
S̄y. In this case space time integrals or derivatives of f make no sense as they
require addition or subtraction of values of f in different structures. Addition
and subtraction are defined only within structures, not between structures.

This problem is solved by choosing some point x, such as an observers lo-
cation, and transforming each S̄y into a local representation of S̄y on S̄x. Two
methods are available for doing this: parallel transformations for which the lo-
cal representation of S̄y on S̄x is S̄x itself, and correspondence transformations.
These give a local, scaled representation of S̄y on S̄x in that each element of S̄y

corresponds to the same element of S̄x, multiplied by the factor ry,x.
The rest of this paper explains, in more detail, these ideas and some con-

sequences for physics. The next section describes representations of number
types that differ by scaling factors. Sections 3 and 4 describe space time fields
of complex and real number structures and the representation of ry,x in terms
of a gauge field, as in Eq. 5. This is followed by a discussion of the local
availability of mathematics and the assignment of separate mathematical uni-
verses to each space time point. Section 6 describes correspondence and parallel
transforms. It is shown that ~A plays no role in the commerce of mathematics
and physics. This involves the comparison and movement of the outcomes of
theoretical predictions and experiments and the general use of numbers.

Section 7 applies these ideas to quantum theory, both with and without the
presence of ~A. Parallel and correspondence transformations are used to describe
the wave packet representation of a quantum system. It is seen that there
is a wave packet description that closely follows what what is actually done
in measuring the position distribution and position expectation value. The
coherence is unchanged in such a description.

The next to last section uses ”mathematics is local” and the scaling of num-
bers to insert ~A into gauge theories. The discussion is brief as it has already
been covered elsewhere [18, 20]. ~A appears in the Lagrangians as a boson for
which a mass term is not forbidden. The last section concludes the paper.

The origin of this work is based on aspects of mathematical locality that
are already used in gauge theories [21, 22] and their use in the standard model
[23]. In these theories, an n dimensional vector space, V̄x, is associated with
each point, x, in space time. A matter field ψ(x) takes values in V̄x. Ordinary
derivatives are replaced by covariant derivatives, Dµ,x, because of the problem
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of comparing values of ψ(x) with ψ(y) and to introduce the freedom of choice
of bases. These derivatives use elements of the gauge group, U(n), and their
representations in terms of generators of the Lie algebra, u(n), to introduce
gauge bosons into the theories.

2 Representations of different number types

Here the mathematical logical definition [12, 13] of mathematical systems as
structures is used. A structure consists of a base set, basic operations, rela-
tions, and constants that satisfy a set of axioms relevant to the system being
considered. As each type of number is a mathematical system, this description
leads to structure representations of each number type.

The types of numbers usually considered are the natural numbers, N̄ , the
integers, Ī , the rational numbers, Ra, the real numbers, R̄, and the complex
numbers, C̄. Structures for the real and complex numbers can be defined by

R̄ = {R,+,−,×,÷, <, 0, 1}
C̄ = {C,+,−,×,÷, 0, 1}.

(6)

A letter with an over line, such as R̄, denotes a structure. A letter without an
over line, as R in the definition of R̄, denotes a base set of a structure.

The main point of this section is to show, for each type of number, the
existence of many structures that differ from one another by scale factors. To
see how this works it is useful to consider a simple case for the natural numbers,
0, 1, 2, · · · . Let N̄ be represented by

N̄ = {N,+,×, <, 0, 1} (7)

where N̄ satisfies the axioms of arithmetic [14].
The structure N̄ is a representation of the fact that 0, 1, 2 · · · with appro-

priate basic operations and relations are natural numbers. However, subsets of
0, 1, 2, · · · , along with appropriate definitions of the basic operations, relations,
and constants are also natural number structures.

As an example, consider the even numbers, 0, 2, 4, · · · in N̄ Let N̄2 be a
structure for these numbers where

N̄2 = {N2,+2,×2, <2, 02, 12} (8)

Here N2 consists of the elements of N with even number values in N̄ . The
structure N̄2 shows that the elements of N that have value 2n in N̄ have value
n in N̄2. Thus the element that has value 2 in N̄ has value 1 in N̄2, etc. The
subscript 2 on the constants, basic operations, and relations in N̄2 denotes the
relation of these structure elements to those in N̄.

The definition of N̄2 floats in the sense that the specific relations of the basic
operations, relation, and constants to those in N̄ must be specified. These are
chosen so that N̄2 satisfies the axioms of arithmetic if and only if N̄ does. A
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suitable choice that satisfies this requirement is another representation of N̄2

defined by

N̄2
2 = {N2,+,

×

2
, <, 0, 2}. (9)

This structure is called the representation of N̄2 on N̄ .
N̄2

2 shows explicitly the relations between the basic operations, relations, and
number values in N̄2 and and those in N̄ . For example, 12 ↔ 2,+2 ↔ +,×2 ↔
×/2, <2↔< . These relations are such that N̄2

2 , and thereby N̄2, satisfies the
axioms of arithmetic if and only if N̄ does.

N̄2
2 also shows the presence of 2 as a scaling factor. Elements of the base

set N2 that have value n in N̄2 have value 2n in N̄. Note that, by themselves,
the elements of the base set have no intrinsic number values. The values are
determined by the axiomatic properties of the basic operations, relations, and
constants in the structure containing them.

This description of scaled representations applies to the other types of num-
bers as well. For real numbers let r be a positive real number in R̄, Eq. 6.
Let

R̄r = {R,+r,−r,×r,÷r, <r, 0r, 1r} (10)

be another real number structure. Define the representation of R̄r on R̄ by the
structure,

R̄r
r = {R,+,−,

×

r
, r÷, <, 0, r}. (11)

R̄r
r shows that number values in R̄r are related to those in R̄ by a scaling factor

r.
R̄r

r gives the definitions of the basic operations, relation, and constants in
R̄r in terms of those in R̄. These definitions must satisfy the requirement that
R̄r satisfies the real number axioms if and only if R̄r

r does if and only if R̄ does.1

Note that the base set R is the same for all three structures. Also the
elements of R do not have intrinsic number values independent of the structure
containing R. They attain number values only inside a structure where the
values depend on the structure containing R.

The relationships between number values in R̄r
r, R̄r, and R̄ can be repre-

sented by a new term, correspondence. One says that the number value ar in
R̄r corresponds to the number value ra in R̄. This is different from the notion
of sameness. In R̄, ra is different from the value a. However, a is the same

value in R̄ as ar is in R̄r as ra is in R̄r
r. The distinctions between the concepts of

correspondence and sameness does not arise in the usual treatments of numbers.
The reason is that sameness and correspondence coincide when r = 1.

For complex numbers, the structures, in addition to C̄, Eq. 6, are

C̄r = {C,+r,−r,×r,÷r, 0r, 1r}, (12)

1The relations between the structures are also valid for negative values of r, provided <

in Eq. 11 is replaced by >, and appropriate changes are made in the axioms to reflect this
replacement.
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and the representation of C̄r on C̄ as

C̄r
r = {C,+,−,

×

r
, r÷, 0, r}. (13)

Here r is a real number value in C̄. a is the same number value in C̄ as ar is in
C̄r. Otherwise the description is similar to that for the natural and real numbers.
More details on these and other number type representations are given in [19].

3 Fields of mathematical structures

As was noted in the introduction, the local availability of mathematics results in
the assignment of separate structures, S̄x, to each point, x, of space time. Here S
denotes a type of mathematical structure. The discussion is limited to the main
system types of concern. These are the real numbers, the complex numbers, and
Hilbert spaces. Hilbert spaces are included here because the freedom of choice
of scaling factors for number types affects Hilbert spaces as they are based on
complex numbers as scalars.

3.1 Complex numbers

Parallel transformations between C̄x and C̄y for two points, x, y, define the no-
tion of same number values between the structures. Let Fy,x be an isomorphism
from C̄x onto C̄y. With

C̄x = {Cx,+x,−x,×x,÷x, 0x, 1x}
C̄y = {Cy,+y,−y,×y,÷y, 0y, 1y},

(14)

and
Fy,xC̄x = C̄y, (15)

Fy,x defines the notion of same number value and same operation in C̄y as that
in C̄x. This is expressed by

ay = Fy,xax

Opy = Fy,xOpx.
(16)

Here ay is the same (or Fy,x-same) number value in C̄y as ax is in C̄x. Opy is
the same operation in C̄y as Opx is in C̄x. Op denotes any one of the operations,
+,−,×,÷.

Note that Fy,x is independent of paths between x and y. This follows from
the requirement that for a path P from x to y and a path Q from y to z,

FQ∗P
z,x = FQ

z,yF
P
y,x. (17)

Here Q ∗P is the concatenation of Q to P . If z = x then the path is cyclic and
the final structure is identical to the initial one. This gives the result that

FQ∗P
x,x = 1. (18)
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This shows that FP
y,x is path independent so that a path label is not needed.

Note that
Fy,x = F−1

x,y . (19)

The subscript order in Fy,x gives the path direction, from x to y.
At this point the freedom to choose complex number structures at each space

time point is introduced. This is an extension, to number structures, of the
freedom to choose basis sets in vector spaces as is used in gauge theories [22, 21]
This can be accounted for by factoring Fy,x into a product of two isomorphisms
as in

Fy,x =W y
r W

r
x . (20)

Here y = x+ ν̂dx is taken to be a neighbor point of x.
The action of W y

r and W r
y is given by

C̄y =W y
r C̄

r
x =W y

rW
r
x C̄x = Fy,xC̄x. (21)

Here ry,x is a real number in C̄x that is associated with the link from x to y.
As was the case for Fy,x the order of the subscripts determines the direction
of the link. Thus rx,y is a number in C̄y for the same link but in the opposite
direction and

(rx,y)xry,x = 1. (22)

Here (rx,y)x is the same number value in C̄x as rx,y is in C̄y. In the following,
the subscripts y, x are often suppressed on ry,x to simplify the notation.

The structure C̄r
x is defined to be the representation of C̄y on C̄x. As is the

case for C̄r
r , Eq. 13, the number values and operations in C̄r

x are defined in
terms of the corresponding number values and operations in C̄x:

C̄r
x = {Cx,+x,−x,

×x

r
, r÷x, 0x, r}. (23)

The multiplication and division by r, shown in ×x/r, r÷x, are operations in C̄x.
Note that the number value r in C̄x is the multiplicative identity in C̄r

x. Also
C̄r

x has the same base set, Cx, as does C̄x.
The corresponding definition of W r

x is given by

W r
x (ax) = rax, W r

x (±x) = ±x

W r
x (×x) =

×x

r
W r

x (÷x) = r ÷x .
(24)

W r
x is an isomorphism in that

W r
x (axOxbx) =W r

x (ax)W
r
x (Ox)W

r
x (bx). (25)

Here ax and bx are number values in C̄x and Ox denotes the basic operations
in C̄x.

W y
r has a similar definition as it is an isomorphism from C̄r

x to C̄y . Since the
definition is similar it will not be given here.
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C̄r
x can also be represented in a form similar to that of Eq. 12 as

C̄r,x = {Cx,±r,x,×r,x,÷r,x, 0r,x, 1r,x}. (26)

This structure can be described as the representation of C̄y at x. The relation
between the number values and operations in C̄r,x and those in C̄x is provided
by C̄r

x which defines the number values and operations of C̄r,x in terms of those
in C̄x. In this sense both C̄r,x and C̄r

x are different representations of the same
structure. From now on C̄r,x and C̄r

x will be referred to as the representation of
C̄y at x and on C̄x respectively.

The relations between the basic operations and constants of C̄r
x and those of

C̄x lead to an interesting property. Let f r
x(a

r
x) be any analytic function on C̄r

x.
It follows that

f r
x(a

r
x) = brx ⇔ rfx(ax) = rbx ⇔ fx(ax) = bx. (27)

Here fx is the same function on C̄x as f r
x is on C̄r

x. Also ax and bx are the same
number values in C̄x as arx and brx are in C̄r

x.
This result follows from the observation that any term (arx)

n/(brx)
m in C̄r

x

satisfies the relation
(arx)

n

(brx)
m

r
x = r

(ax)
n

(bx)m
x. (28)

The n factors and n-1 multiplications in the numerator contribute a factor of
r. This is canceled by a factor of r in the denominator. The one r factor arises
from the relation of division in C̄r

x to that in C̄x.
Eq. 27 follows from the fact that Eq. 28 holds for each term in any conver-

gent power series. As a result it holds for the power series itself.

3.2 Real numbers

Since the treatment for real numbers is similar to that for complex numbers, it
will be summarized here. The representations of R̄y at x and on R̄x are given
by Eqs. 10 and 11 as

R̄r,x = {Rx,±r,x×r,x,÷r,x, <r,x 0r,x, 1r,x}
R̄r

x = {Rx,±x,
×x

r
, r÷x, <x, 0x, rx}.

(29)

Here r = rx,y is a positive real number.
The definition of parallel transforms for complex number structures applies

here also. Let Fy,x transform R̄x to R̄y. Fy,x defines the notion of same real
number in that ay = Fy,x(ax) is the same real umber in R̄y as ax is in R̄x. As
was shown in Eqs. 20 and 21, Fy,x can be factored into two operators as in
Fy,x =W y

r W
r
x where

R̄y =W y
r R̄

r
x =W y

r W
r
x R̄x = Fy,xR̄x. (30)

W r
x defines the scaled representation of R̄y on R̄x. It is given explicitly by Eq.

24. W y
r maps the scaled representation onto R̄y. Eqs. 27 and 28 also hold for the

relations between any real valued analytic function on R̄r
x and its correspondent

on R̄x in that f r
x(a

r
x) = rfx(ax).
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3.3 Hilbert spaces

As noted in the introduction, Hilbert space structures have the form shown in
Eq. 4 as

H̄x = {Hx,+x,−x, ·x, 〈−,−〉x, ψx}. (31)

Complex numbers are included implicitly in that Hilbert spaces are closed under
multiplication of vectors by complex numbers. Also scalar products are bilinear
maps with complex values.

As was the case for numbers, parallel transformation of H̄y to x maps H̄y

onto H̄x. If scaling of the numbers is included, then the local representation of
H̄y, C̄y on H̄x, C̄x is given by H̄r

x, C̄
r
x. The structure, C̄r

x, is shown in Eq. 23.
H̄r

x is given by

H̄r
x = {Hx,±x,

·x
r
,
〈−,−〉x

r
, rψx} (32)

This equation gives explicitly the relations of operations and vectors of the local
representation of H̄y to those in H̄x. The relations are defined by the requirement
that H̄r

x satisfy the Hilbert space axioms [17] if and only if H̄x does.2 Here rψx

is the same vector in H̄r
x as ψx is in H̄x.

The description of H̄r
x given here is suitable for use in section 7 where wave

packets for quantum systems are discussed. For gauge theories, the Hilbert
spaces contain vectors for the internal variables of matter fields. In this case
one has to include a gauge field to account for the freedom to choose bases
[22, 21]. The local representation of H̄y on H̄x is then given by [18, 20]

H̄r,V
x = {Hx,±x,

·x
r
,
〈−,−〉x

r
, rV ψx}. (33)

If the H̄x are n dimensional, then V is an element of the gauge group, U(n).

4 Gauge fields

As was noted in the introduction, for y = x + ν̂dx, ry,x can be represented as
the exponential of a vector field:

ry,x = e
~A(x)·ν̂dx = eAν(x)dx

ν

(34)

2Support for the inclusion of r as a vector multiplier, as in H̄r
x, Eq. 32, is based on the

equivalence between finite dimensional vector spaces and products of complex number fields
[17]. If H̄y and H̄x are n dimensional spaces, then H̄y ≃ C̄n

y and H̄x ≃ C̄n
x .

These equivalences extend to the local representation of H̄y on H̄x. As the local repre-
sentation of C̄y on C̄x, C̄r

x is the scalar field base for the local Hilbert space representation.
It follows that H̄r

x is equivalent to (C̄r
x)

n. A vector in (C̄r
x)

n corresponds to an n-tuple,
{arx,j : j = 1, · · · , n} of number values in C̄r

x. Use of the fact that the value arx,j in C̄r
x,

corresponds to the number value raj,x in C̄x shows that the n-tuple in (C̄r
x)

n corresponds to
the n-tuple, r{aj,x : j = 1, · · · , n} in C̄n

x . These equivalences should extend to the case where
H̄y and H̄x are separable, which is the case here.
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(sum over repeated indices implied). ~A(x) is also referred to as a gauge field as it
gives the relations between neighboring complex number structures at different
space time points. To first order in small quantities,

ry,x = 1 + ~A(x) · ν̂dx. (35)

The use of ry,x makes clear the fact that the setup described here is a gener-

alization of the usual one. To see this, set ~A(x) = 0 everywhere. Then ry,x = 1
for all y, x and the local representations of C̄y and R̄y on C̄x and R̄x are C̄x and
R̄x. Since the C̄x and R̄x are then independent of x, one can replace C̄x and R̄x

with just one complex and real number structure, C̄ and R̄.

4.1 Scale factors for distant points

The description of ry,x can be extended to points y distant from x. Let P be a
path from x to y parameterized by a real number, s, such that P (0) = x and
P (1) = y. Let rPy,x be the scale factor associated with the path P . If ay is a

number value in C̄y, then ay corresponds to the number value, rPy,xax, in C̄x

where ax = Fx,yay is the same number value in C̄x as ay is in C̄y.
One would like to express rPy,x as an exponential of a line integral along P

of the field ~A(x). However this is problematic because the integral corresponds
to a sum over s of complex number values in C̄P (s). Such a sum is not defined
because addition is defined only within a number structure. It is not defined
between different structures.

This can be remedied by referring all terms in the sum to one number struc-
ture such as C̄x. To see how this works, consider a two step path from x to
y = x+ ν̂1∆x and from y to z = y+ ν̂2∆y. ∆y is the same number in C̄y as ∆x

is in C̄x.
Let az be a number value in C̄z. az corresponds to the number value rz,y×yay

in C̄y. Here ay = Fy,zaz is the same number value in C̄y as az is in C̄z . In C̄x,
rz,y ×y ay corresponds to the number value given by

ry,x ×x (rz,y)x(
×x

ry,x
)(ry,x ×x ax) = (rz,y)xry,xax. (36)

Here (rz,y)x = Fx,y(rz,y) is the same number in C̄x as rz,y is in C̄y and ×x/ry,x
is the representation of ×y on C̄x. The C̄x multiplications are implied in the
righthand term and ax = Fx,yay.

The factor (rz,y)xry,x can be expressed in terms of the field ~A. It is

(rz,y)xry,x = e(
~A(y))x·ν̂2∆x+ ~A(x)·ν̂1∆x . (37)

∆y is replaced here by its same value ∆x in C̄x.
Let P be an n step path where P (0) = x0 = x, P (j) = xj , P (n−1) = xn−1 =

y and xj+1 = xj + ν̂j∆xj
. Then rPy,xax is given by

rPy,x =

n−1∏
j=0

(rxj+1,xj
)x = exp(

n−1∑
j=0

[( ~A(xj)) · ν̂j∆xj
]x). (38)
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The subscript x denotes the fact that all terms in the product and in the ex-
ponential, are values in C̄x. For example (rxj+1,xj

)x = Fx,xj
rxj+1,xj

is the same
value in C̄x as rxj+1,xj

is in C̄xj
. An ordering of terms in the product of Eq, 38

is not needed because the different r factors commute with one another.
This can be extended to a line integral along P . The result is [20]

rPy,x = exp{

∫ 1

0

( ~A(P (s)))x · (
dP (s)

ds
)xds} = exp{

∫
P

( ~A(~z))xd~z}. (39)

The subscript x on the factors in the integral mean that the terms are all
evaluated in C̄x.

It is unknown if the field ~A and thereby rPy,x is or is not independent of the

path P from x to y. If ~A is not integrable, then the path dependence introduces
complications. In particular it means that for y distant from x, there is no path
independent way to describe the local representation of C̄y on C̄x. The local

representation would have to include a path variable as in C̄
rPy,x
x .

In this work, this complication will be avoided by assuming that ~A is inte-
grable. Then rpy,z = ry,x, independent of P .

Let P be a path from x to y and Q be another path from y to x. Then
integrability gives

rQ∗P
x,x = (rQx,y)xr

P
y,x = 1x (40)

Here Q ∗ P is the concatenation of Q to P . This result gives

(rQx,y)x = (rPy,x)
−1. (41)

5 Local availability of mathematics

The local availability of mathematics means that for an observer, Ox, at point
x, the mathematics that Ox can use, or is aware of, is locally available at
x. Since mathematical systems are represented by structures, [12, 13], one
can use

∨
x to denote the collection of all these structures.

∨
x includes real

and complex number and Hilbert space structures R̄x, C̄x, H̄x, structures for
operator algebras as well as many other structure types. All the mathematics
that Ox uses to make physical predictions and physical theories use the systems
in

∨
x . Similarly, all the mathematics available to an observer Oy at point y is

contained in
∨

y .
An important requirement is that the mathematics available, in principle at

least, to an observer must be independent of the observers location. This means
that

∨
y must be equivalent to

∨
x. For each system structure in

∨
y, there must

be a corresponding structure in
∨

x . Conversely, for each system structure in
∨

x

there must be a corresponding structure in
∨

y . Furthermore the corresponding
structures in

∨
y and

∨
x must be related by parallel transforms that map one

structure to another. These parallel transforms define what is meant by the
same structure and the same structure elements and operations in

∨
x as in

∨
y,

and conversely.
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This use of parallel transforms is an extension to other types of mathematical
systems, of the definitions and use of parallel transforms, Section 3, to relate
complex and real number structures at different space time points. It is based
on the description of each type of mathematical system as structures, each
consisting of a base set, basic operations, relations and constants, that satisfy a
set of axioms relevant to the system type.[12, 13].

The association of an observer to a point, as in Ox, is an idealization, mainly
because observers, e.g. humans, have a finite size. Because of this, an observer’s
location is a region and not a point. This is the case if one notes that the ob-
server’s brain is the seat of all mathematical knowledge and limits consideration
to the brain. In addition, quantum mechanics introduces an inherent uncer-
tainty to the location of any system. In spite of these caveats, the association
of an observer to a point will be used here.

An important aspect of
∨

x is that Ox must be able to use the systems
in

∨
x to describe the systems in

∨
y . This can be done by means of parallel

transform maps or correspondence maps from systems in
∨

y to those in
∨

x .

Parallel transforms map elements and operations of system structures S̄y to the
same elements and operations of S̄x. In this case Ox can use the mathematics
of S̄x as a stand in for the mathematics of S̄y.

Correspondence maps take account of scaling of real and complex numbers
in relating systems at y to those at x. In this case Ox describes the mathematics
of S̄y in terms of the local representation, S̄r

x, of S̄y on S̄x. If S = R or S = C
then Ox would describe the properties of R̄y or C̄y in terms of the local scaled
systems R̄r

x and C̄r
x.

The existence of correspondence maps means that for each system type, S,∨
x contains all the scaled systems, S̄r

x, for each point y, in addition to S̄x.
(Recall r = ry,x.) They include scaled real numbers, R̄r

x, complex numbers, C̄r
x,

and scaled Hilbert spaces, H̄r
x, as well as many other system types.

All these scaled systems are available to an observer, Ox at x. Since they are
locally available, Ox takes account of scaling by using them to make theoretical
calculations that require inclusion of numbers or vectors at different space or
space time points. If Ox does not use these correspondence maps and restricts
use to parallel transform maps only, then the setup becomes simpler in that
each S̄r

x is identical to S̄x.
This raises the question of when correspondence maps can be used instead

of parallel transform maps. This will be discussed in the next sections. Here
the use of correspondence maps follows from the inclusion into physics of the
freedom to choose number systems at different space time points. In this sense
it extends the freedom to choose bases in vector spaces in gauge field theory
[21, 22] to the underlying scalars.
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6 Correspondence maps and parallel transform

maps

It is proposed here that correspondence maps be used in any theoretical physics
expression that requires the mathematical comparison of mathematical entities
at different space time points. Typical examples are space and time derivatives
or integrals of functions or functionals as maps from space time (or space and
time) to elements of mathematical systems that are based on the real or complex
numbers as scalars. An example is an n component complex scalar field.

At this point it is not completely clear if there are other cases in which cor-
respondence maps should be used instead of parallel transform maps. However
it is clear that there are many situations where these maps should not be used.
These involve what is referred to here as the commerce of mathematics and
physics.3

To see this suppose Ox wants to compare the numerical output of either an
experiment or a theoretical computation, done at x, with the numerical output
of either an experiment or computation done at y. Let bx and dy be the real
valued numerical outcomes obtained. Use of the correspondence maps means
that Ox would compare bx with the local representation of dy at x, that is, with
the number ry,xdx. Here dx is the same number in R̄x as dy is in R̄y.

This is contradicted by experience. There is no hint of a factor ry,x in com-
paring outcomes of repeated experiments, or comparing experimental outcomes
with theoretical predictions, or in any other use of numbers in commerce. If one
ignores statistical and quantum uncertainties, numerical outcomes of repeated
experiments or repeated computations are the same irrespective of when and
where they are done.4

The reason for this is a consequence of a basic fact. This is that no experi-
ment and no computation ever directly yields a numerical value as an outcome.
Instead the outcome of any experiment is a physical system in a physical state
that is interpreted as a numerical value. Similarly the outcome of a computation
is a physical system in a state that is interpreted as a numerical value.

The crucial word here is interpreted. If ψy is the output state of a measure-
ment apparatus for an experiment at point y, and φx is the output state of a
computation at point x, then the numerical values of these output states are
given by ay = Iy(ψy) and bx = Ix(φx). Here Iy and Ix are interpretive maps
from the output states of the measurement system into R̄y and from the com-
putation output states into R̄x respectively. The space time dependence of the
maps is indicated by the x, y subscripts.

The ”Naheinformationsprinzip”, no information at a distance principle [24,
22], forbids direct comparison of the information in ψy with that in φx. This
means that Iy(ψy) and Ix(φx) cannot be directly compared. Instead the in-

3Mathematical and physical commerce refers to the use of numerical values as outcomes
of computations and experiments in science, business, and communication.

4A similar criticism of a suggestion by Weyl was made almost 100 years ago by Einstein
[26].
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formation contained in ψy and that contained in φx must be transported, by
physical means, to a common point for comparison.

There are many different methods of physical information transmission. In-
cluded are optical and electronic methods as well as older slower methods. All
methods involve motion of an information carrying physical system from one
point to another, ”information is physical” [25]. The physical system used
should be such that the state of the information carrying degrees of freedom
does not change during transmission from one point to another.

Figure 1 illustrates schematically, in one dimensional space and time, the
nonrelativistic transmission of a theory computation output state obtained at
x′, u and an experimental output state obtained at y, v to a common point, x, t,
for comparison. Here x, x′, y are space locations and u, v, t are times.

Figure 1: A simple example of comparing theory with experiment. The ovals
denote the output computation and experiment systems in states φc and φe
at space and times, x′, u and y, v. P and Q denote the paths followed by these
systems. One has P (u) = x′ andQ(v) = y. The double oval in the center denotes
the the two systems at the point, x, of path intersection where P (t) = Q(t) = x.
The interpretation maps are denoted by IP (s),s and IQ(s),s for different times s.
The real number structures R̄P (s),s and R̄Q(s),s are associated with each point
in the paths P and Q. Fx,t;x′,u and Fx,t:y,v are parallel transform operators
that map the real number structures at the points of theory and experiment
completion to the point of path intersection.

The figure, and the discussion, illustrate a general principle. All activities
in the commerce of mathematics and physics consist of physical procedures and
operations that generate physical output systems in states that are interpreted
as numerical values. The ”no information at a distance” principle forbids direct
comparison of the associated number values at different points. Instead the
systems or suitable information carriers must be brought to a common point
where the numerical information, as number values in just one real number
structure, can be locally compared.
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Similar considerations apply to storage of outcomes of experiments or compu-
tations either in external systems or in the observers brain. As physical dynamic
systems, observers move in space time. If P is a path taken by an observer, with
P (τ) the observers location at proper time τ, the mathematics available to OP (τ)

is that in
∨

P (τ) . If φ(P (τ)) denotes the state of a real number memory trace in

an observers brain, then the number value represented by φ(P (τ)) is given by
IP (τ)(φ(P (τ))). This is a number value in R̄P (τ). At a later proper time τ ′, the
number value represented by the memory trace is IP (τ ′)(φ(P (τ

′)). If there is no
degradation of the memory trace, then IP (τ)(φ(P (τ))) is the same number value
in R̄P (τ) as IP (τ ′)(φ(P (τ

′)) is in R̄P (τ ′). Correspondence maps play no role here
either.

7 Quantum theory

As might be expected, the local availability of mathematics and the freedom
of choice of number scaling factors, have an effect on quantum theory. This is
a consequence of the use of space time integrals and derivatives in the theory.
For example, one would expect to see the gauge field ~A appear in quantum
descriptions of physical systems. To see how this effect arises, it is useful to
limit the treatment to nonrelativistic quantum mechanics on three dimensional
Euclidean space, R3.

7.1 Effect of the local availability of mathematics on quan-

tum theory

The local availability of mathematics requires that the usual setup of just one
C̄, R̄, H̄ is replaced by separate number structures, R̄x, C̄x and separate Hilbert
spaces, H̄x, associated with each x in R3.5 It follows that mathematical oper-
ations, such as space or time derivatives or integrals, which involve nonlocal
mathematical operations on numbers or vectors at different points, cannot be
done. The reason is that these operations violate mathematical locality.

To preserve locality, one must use either parallel transformations or corre-
spondence transformations. These two methods are well illustrated by consid-
ering a single particle wave packets. The usual representation has the form

ψ =

∫
ψ(y)|y〉dy (42)

where the integral is over all space points in R3.
One result of the local availability of mathematics is that, for each y, the

vector. ψ(y)|y〉. is in H̄y, just as ψ(y) is a number value in C̄y. It follows that
the space integral over y makes no sense. It describes a suitable limit of adding

5The association of separate Hilbert spaces to each point x is different here from that
used in gauge theory [22]. In gauge theory, the spaces are all finite dimensional and apply to
internal states of the Fermion fields. Here the Hilbert spaces describe states of systems spread
over space, e.g. as wave packets.
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vectors that belong to different Hilbert spaces. Addition is not defined between
different spaces; it is defined only within one Hilbert space and complex number
structure.

The use of parallel transformations replaces Eq. 42 by

ψx =

∫
x

ψ(y)x|yx〉xdyx. (43)

Here ψ(y)x = Fx,yψ(y) is the same number value in C̄x as ψ(y) is in C̄y, the
number triple, yx, in |yx〉x is the same triple in R̄3

x as y is in R̄3
y, and |yx〉x is

the same state in H̄x as |y〉 is in H̄y. The differentials dyx = dy1xdy
2
xdy

3
x refer

to R̄3
x. The subscript x in

∫
indicates that the integral is based on H̄x, C̄x. The

representations of sameness given above are shown explicitly by

ψ(y)x = Fx,yψ(y)
yx = F̄x,y(y)

|yx〉x = |F̄x,y(y)〉x
dyx = F̄x,y(dy).

(44)

Also |F̄x,y(y)〉x is the same basis vector in H̄x as |y〉 is in H̄y.
Note that the point x on which the integral is based is arbitrary. Eq. 43

holds if the subscript x is replaced by another point z. Then the integral is
based on C̄z , H̄z.

The use of parallel transforms is applicable to other aspects of quantum
mechanics. For each y in R3, the momentum operator, py, for vectors in H̄y is
given by

py = iy~y∇y = iyhy

3∑
j=1

∂j,y. (45)

Here, iy, ~y are numbers in C̄y. The action of py on a vector ψ at point y gives
for the jth component

py,jψ = iy~y∂j,yψ =
ψ(y + dyj)− ψ(y)

dyj
. (46)

As was the case for the space integral, this expression makes no sense because
ψ(y + dyj) is in C̄y+djy and ψ(y) is in C̄y .

This can be remedied by replacing ∂j,y by ∂′j,y where

∂′j,yψ =
ψ(y + dyj)y − ψ(y)

dyj
. (47)

Here ψ(y+ dyj)y = Fy,y+djyψ(y+ dyj). It follows from this that the expression
for the momentum becomes

p′

yψ =

3∑
j=1

p′j,yψ = iy~y

3∑
j=1

∂′j,yψ. (48)
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The Hamiltonian for a single quantum system in an external potential, acting
on a state, ψy at point y, is given by

Hyψ(y) = −
~
2
y

2my

3∑
j=1

(∂′)2y,jψ(y) + V (y)ψ(y). (49)

Here, ~y and my are Planck’s constant and the particle mass. They have values
in R̄y. The values of the external potential, V (y), are also in R̄y.

The main difference between this and the usual expression for a Hamiltonian
is the replacement of ∂j,y with ∂′j,y. Otherwise, the expressions are the same.

For a single particle state, ψ, the momentum representation is ψ =
∫
ψ(p)|p〉dp.

Here dp = dp1dp2dp3. Since the amplitude ψ(p) is a complex number value and
no location for the value is specified, one may choose any location, x, such as
that of an observer, Ox, to assign ψ(p) as a number value in C̄x and the integral
as an element of

∨
x .

The relation between ψ(p) and ψ(x) is given by the Fourier transform. The
components of the space integral in

ψ(p) =

∫
eizpzzψ(z)dz (50)

must all be mapped to a common point, x, for the integral to make sense. This
gives

ψ(p)x =

∫
x

(eizpzz)xψ(z)xdzx (51)

Here
(eizpzz)x = Fx,ze

izpzz = eixpxzx (52)

is the same number in C̄x as eizpzz is in C̄z .
The treatment described can be extended to multiparticle entangled states.

It is sufficient to consider two particle states. For example a two particle state
ψ1,2 where the total momentum of the two particles is 0 can be expressed by

ψ1,2 =

∫
ψ1(p)ψ2(−p)|p〉1| − p〉2dp. (53)

Use of Fourier transforms gives

ψ1,2 =

∫
dz1dz2(

∫
eiz1pψ1(p)|p〉1e

−iz2pψ2(−p)| − p〉2dp). (54)

The integral must be transformed to a Hilbert space with just one scalar
field. For a point x with C̄x, H̄x, the integrand factors are parallel transformed
to obtain

(ψ1,2)x =

∫
x

(dz1)x(dz2)x(

∫
(eiz1p)xψ1(p)x|px〉1(e

−iz2p)xψ2(−p)x| − px〉2dpx).

(55)
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Here
(eiz1p)x = Fx,z1(e

iz1p)
(e−iz2p)x = Fx,z2(e

−iz2p)
(56)

Also px is the same value in C̄x as p is in C̄z1 in the z1 integral, Eq. 54, and
−px is the same value in C̄x as −p is in C̄z2 in the z2 integral.

7.2 Inclusion of number system scale factors

The above shows that the imposition of ”mathematics is local” on quantum
theory is more complex than the usual treatment with just one scalar field
and one Hilbert space for all space points. Since the description with parallel
transforms is equivalent to the usual one, the added complexity is not needed if
one goes no further with it.

This is not the case if one extends the treatment to include space dependent
scaling factors for the different C̄x, R̄x. For a given x, the local representations
of C̄y on C̄x are given by scaled representations, C̄

ry,x
x , of C̄y on C̄x. Also the

local representation of H̄y on H̄x with effects of the number scaling included, is
given by H̄

ry,x
x .

For y = x + ν̂dx, a neighbor point of x, the scaling factor, ry,x is given by,

ry,x = e
~A(x)·ν̂dx, Eq. 34. If y is distant from x and ~A(x) is integrable, then,

expressing ry,x as an integral along a straight line path from x to y gives, (Eq.
39)

ry,x = exp(

∫ 1

0

3∑
i=1

Ai(sxi)xs(xi)xds) = exp(

3∑
i=1

∫ yi

xi

Ai(zi)xdz
i
x) =

3∏
i=1

ry,x,i

(57)
Here xi = ~x · î and yi = ~y · î are the components of ~x and ~y in the direction i. The
last equality assumes that the components of ~A commute with one another.6

The subscript x indicates that the integrals are defined on R̄x.
The presence of ~A(x) affects the expression of a wave packet state ψ as given

by Eq. 43. In this case the wave packet expansion of ψx is given by

ψx =

∫
x

ry,xψ(y)x|yx〉dyx (58)

where ry,x is given by Eq. 57.
This result is obtained by noting that for each y the local representation of

H̄y, C̄y on H̄x, C̄x, with scaling factor included, is H̄
ry,x
x , C̄

ry,x
x . The vector in

H̄
ry,x
x that is the same vector as ψ(y)|y〉 is in H̄y, is denoted by ψ(y)rx ·rx |yrx〉.

Here ψ(y)rx is the same number value in C̄
ry,x
x as ψ(y) is in C̄y and |yrx〉 is the

same vector in H̄
ry,x
x as |y〉 is in H̄y. This follows from the observation that

yrx and y are the space positions associated with |yrx〉 and |y〉 in H̄
ry,x
x and H̄y

respectively. Scalar vector multiplication in H̄
ry,x
x is shown by ·rx.

6Here, and in what follows, ~A(x) is assumed to be integrable.
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The corresponding state on H̄x is obtained by noting that

ψr
x ·rx |yrx〉 ⇒ ry,xψ(y)x(·

r
x)x|ry,xyx〉 = ry,xψ(y)x

·x

ry,x
ry,x|yx〉 = ry,x ·x |yx〉.

(59)
This is the result shown in Eq. 58. The use of (·rx)x = ·x

ry,x
, Eq. 32, is based on

the requirement that H̄
ry,x
x satisfies the same Hilbert space axioms [17] as does

H̄x.
It must be emphasized that the usual predictions of the quantum mechan-

ical properties of wave packets, with ~A(x) = 0 everywhere, do a good job of
prediction of experimental results. So far, quantum mechanical predictions and
experiments have not shown the need for the presence of ~A. This shows that the
effect of the ~A field must be very small, either through the values of the field
itself or by use of a very small coupling constant, g, of the field to numbers and
vectors. This would be accounted for by replacing ~A in Eqs. 34 and 57 by g ~A.

In this sense the presence of ~A is no different than the presence of the gravi-
tational field. In theory, a proper description of quantum mechanics of systems
should include the effects of the gravitational field. However, it can be safely
neglected because the field is so small, at least far away from black holes where
quantum physics is done.

Another feature of Eq. 58 is the dependence on the reference point x. This
can be removed by restricting the integration volume to a region of space, ex-
cluding x, where the region contains essentially all of ψ. This is what one does
in any experiment since ψ is prepared in a region that does not include the
observer.

The removal of x dependence then follows from expressing Eq. 58 as a sum
of two terms, one as the integral over V and the other over all space outside V :

ψx =

∫
x,V

ry,xψ(y)x|yx〉dyx +

∫
x,W

ry,xψ(y)x|yx〉dyx. (60)

The subscript, W, on the second integral means that it refers to integration over
all space outside V. Here x is a point in W .

Assume that V is chosen so that the integral overW can be neglected. Then

ψx
∼=

∫
x,V

ry,xψ(y)x|yx〉dyx. (61)

This equation has a problem in that the correspondence transforms are ex-
tended from any point in V to a point outside V. However these transforms are
restricted here to apply within space or space time integrals, and not outside
the integration volume.

This can be fixed by choice of a point z on the surface of V and replacing
ry,x by Ux,zry,z. The factor ry,z accounts for the correspondence transform from
a point y in V to a point z on the surface of V , and Ux,z is a unitary operator
that parallel transforms the result from z to x. Then one has

ψx,z
∼= Ux,zψz = Ux,z

∫
z,V

ry,zψ(y)z|yz〉dyz =

∫
x,V

(ry,z)xψ(y)x|yx〉dyx. (62)
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The subscript z on ψx,z indicates a possible dependence on the choice of z on
the surface of V . Figure 2 illustrates the setup for two points y, u in V .

Figure 2: Representation of scaling factors in the integrals from point z on
the surface of V to points y and u. The direction implied in the order of the
subscripts of r is opposite to the direction of the parallel transformations taking
the integrand factors from y and u to z. Ux,z parallel transforms ψz to ψx,z.
This is the same vector in H̄x as ψz is in H̄z.

This result shows that the wave packet representation is independent of x,
such as an observers location, provided it is outside of V . However, to the extent
that ~A cannot be neglected, the representation does depend on the location of
z. To see what this dependence is, let w be another point on the surface of V .
Then, following Eq. 62, ψx,w is given by

ψx,w
∼= Ux,wψw = Ux,w

∫
w,V

ry,wψ(y)w|yw〉dyw =

∫
x,V

(ry,w)xψ(y)x|yx〉dyx.

(63)
For the comparison, at x, of ψx,z with ψx.w, it is sufficient to compare,

in H̄z , the parallel transformation of ψw to z with ψz, in H̄z. The parallel
transformation of ψw to z is given by

(ψw)z =

∫
z,V

(ry,w)z(ψ(y)w)z |(yw)z〉d(yw)z. (64)

Use of the fact that parallel transforms of numbers and and vectors from y to
w and then to z are the same as transforms from y to z gives

(ψw)z =

∫
z,V

(ry,w)zψ(y)z|yz〉dyz . (65)

Since ~A is integrable, one can write

(ry,w)z = (ry,zrz,w)z = ry,z(rz,w)z (66)

to obtain

(ψw)z = (rz,w)z

∫
z,V

ry,zψ(y)z |yz〉dyz. (67)
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The subscript, z, denotes parallel transformation to z, of mathematical elements
that are not in

∨
z . No subscript appears on ry,z as it is already a number value

in R̄z.
This shows that (ψw)z differs from ψz by a factor, (rz,w)z = (rw,z)

−1, Eq. 41.
The difference is preserved on parallel transformation to x in that (ψw)x = ψx,w

differs from (ψz)x = ψx,z by a factor (rz,w)x.

If the effect of ~A is small, then it is useful to express ry,x as an expansion
to first order in the exponential. For example the expression for ψx in Eq. 58
becomes,

ψx
∼=

∫
x

(1 +

∫ y

x

~A(w)x · ν̂dwx)ψ(y)x|yx〉dyx. (68)

Here ν̂ is a unit vector along the direction from x to y. The first term of the
expansion corresponds to the usual case with ~A equal to 0 everywhere. The x
dependence arises from the second term, which gives the correction due to the
presence of ~A.

The restriction of the integration to a finite volume V, as in Eq. 62, removes
the dependence on x in that ψx is the same vector in H̄x as ψy is in H̄y provided
y is not in V . Expansion of (ry,z)x to first order in small terms shows that the

z dependence arises from the ~A containing term as in Eq. 68.
The dependence on z can be appreciable because z can be any point on the

surface of V . What is interesting is that this dependence can be greatly reduced
by using the properties of actual measurements to minimize the effect of ~A on
the predicted expectation value.

Consider a position measurement on a system in state ψx, Eq. 58. The
expectation value for this measurement, calculated at x, is given by

〈ψx|ỹ|ψx〉x =

∫
x

ry,xyx|ψ(y)|
2
xdyx. (69)

This expectation value7 is an idealization or what one does. It does not take
account of what one actually does.

Typically, position measurements are done by dividing a volume of space up
into cubes and measuring the relative frequency of occurrence of the quantum
system in the different cubes. A measurement consists of a large number of
repetitions of this measurement on repeated preparations of the system in state
ψ. Assume the cubes in space have volume ∆3 where ∆ is the length of a side.
Then outcomes of the repeated experiment are ”yeses” from the cube detectors
whose locations are denoted by triples, j, k, l of integers. Each ”yes” means
that the location is somewhere in the volume of the responding detector cube
located at position, zj,k,l = j∆, k∆, l∆. The local availability of mathematics
means that zj,k,l is a triple of numbers in R̄zj,k,l

.
The presence of parallel and correspondence transformations enables phys-

ical theory to express exactly what is done experimentally. Eq. 58 for ψx is

7All but one of the r factors appearing in the integrand are canceled by the r factors in
the denominators of the multiplication operations.
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replaced by an expression that limits integrals with scaling factors to the cube
volumes and parallel transports these integrals to a common point x where they
can be added together. The result, ψ′

x, is given by

ψ′

x =
∑
j,k,l

Ux,z

∫
Vj,k,l

rw,zψ(w)z |wz〉dwz . (70)

Here the sum is over all cubes. Each cube is labeled by a point z = zj,k,l on
the cube surface. Each integral over the volume, Vj,k,l = ∆3, of cube, j, k, l,
is a vector in H̄z. Within each integral, the r factor scales the values of each
integrand at point w to values at z. Ux,z parallel transforms the integrals at
different z to a common point x.

The theoretical expectation value for the experimental setup described here
is given by

〈ψ′|ỹ|ψ′〉x =
∑
j,k,l

Ux,z

∫
Vj,k,l

rw,zwz|ψ(w)|
2
zdwz . (71)

The effect of the r factor is smaller here than it is in the expectation value using
ψx. The reason is that it is limited to integrations over small volumes.

This representation of the prediction is supported by the discussion on math-
ematical and physical commerce. The ”no information at a distance” principle
requires that the information contained in the outcomes of each position mea-
surement, as physical systems in ”yes” or ”no” states for each point zj,k,l, be
transmitted by physical means to x where the results of the repeated measure-
ments are tabulated. The tabulation is all done at x. No factor involving ~A
appears in the transmission or tabulation.

As noted, the effect of ~A appears only in the integrals over the volumes ∆3.
In these integrals, to first order,

rw,z
∼= 1z +

∫ w

z

~A(y)z · µ̂dyz . (72)

Since the integral is limited to points within the volume ∆3, it is clear that as
∆ → 0, the integrals for each cube also approach 0.

This shows that the effect of the ~A field diminishes as the accuracy of the
measurement increases. In the limit ∆ = 0, the ~A field disappears and one gets
the usual theoretical prediction without ~A present. However, the Heisenberg
uncertainty principle prevents the limit, ∆ = 0, from actually being achieved.

The presence of the ~A field affects other quantum mechanical properties of
systems. For example, the description of the momentum operator with ~A 6= 0,
replaces Eq. 48 by

pA,yψ =

3∑
j=1

pA,j,yψ = iy~y

3∑
j=1

Dj,yψ. (73)

Dj,yψ is given by altering Eq. 47 to read

Dj,yψ =
ry+dyj,yψ(y + dyj)y − ψ(y)

dyj
. (74)
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Here ry+dyj ,zψ(y+dy
j)y is the number value in C̄y that corresponds to ψ(y+dy

j)
in C̄y+dyj .

Using the fact that

ry+djy,y = eAj(y)d
jy (75)

and expansion to first order in the exponential gives,

Dj,yψ = ∂′j,yψ +Aj(y)ψ(y). (76)

The momentum components become

pA,j,y = iy~yDj,y = iy~y(∂
′

j,y +Aj(y)). (77)

This expression is similar to that for the canonical momentum in the presence
of an electromagnetic field. Note that Aj(y) is pure real.

The expressions for the Hamiltonian for a single particle remain as shown in
Eq. 49 except that ∂′ is replaced by D. For example Eq. 49 becomes

(Hy)ψ(y) = −
~
2
y

2my

3∑
j=1

(D)2j,yψ(y) + V (y)ψ(y) (78)

with Dy,j given by Eq. 76.
Inclusion of scaling factors into the two particle state entangled by momen-

tum conservation is straightforward. This is achieved by including scale factors
in the two particle space integral,

∫
x
(dz1)x(dz2)x, in Eq. 55. The result is

(ψ1,2)x =
∫
x
rz1,x(dz1)xrz2,x(dz2)x

×(
∫
(eiz1p)xψ1(p)x|px〉1(e

−iz2p)xψ2(−p)x| − px〉2dpx).
(79)

Here rz1,x and rz2,x are given by Eq. 57.

8 Gauge theories

One approach [22] to gauge theories already makes partial use of the local avail-
ability of mathematics with the assignment of an n dimensional vector space to
each x. Here the vector space is assumed to be a Hilbert space, H̄x, at each x.
This H̄x is quite different from that discussed in the previous section in that
the vectors in H̄x refer to the internal states of matter fields. Matter fields ψ
are functionals where for each space time point x, ψ(x) is a vector in H̄x.

The freedom of choice of a basis [21, 22] in each H̄x is reflected in the
factorization,

Uy,x = Yy,xVy,x, (80)

of a parallel transform operator, Uy,x, [24] from H̄x to H̄y where y = x+ ν̂dx is
a neighbor point of x.8

8Factorization is necessary because Uy,x cannot be expressed as an exponential of Lie alge-
bra elements or as a matrix of numbers. The reason is that the action of such a representation
on a vector in H̄x gives another vector in H̄x. It is not a vector in H̄y . Factorization remedies
this in that Vy,x is a unitary map from H̄x to H̄x and Yy,x is a unitary map from H̄x to H̄y.
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The unitary operator Vy,x expresses the freedom of basis choice. As such it
is an element of the gauge group U(n) with a Lie algebra representation [27, 28]

Vy,x = eiΞµ(x)dx
µ

eiΩ
j
µ(x)τjdx

µ

. (81)

Sum over repeated indices is implied. The τj are the generators of the Lie
algebra su(n) and the Ωj

µ(x) are the components of the n different gauge fields,
~Ωj(x). ~Ξ(x) is the gauge field for the U(1) factor of U(n).

The covariant derivative of the field, ψ, is expressed by

Dµ,xψ =
Vµ,xψ(x+ dxµ)x − ψ(x)

dxµ
. (82)

Here Vµ,x is the µ component of Vy,x. Expansion of the exponential to first order
in small quantities gives

Dµ,xψ = ∂′µ,xψ + i(g1Ξµ(x) + g2Ω
j
µ(x)τj)ψ(x). (83)

Coupling constants, g1 and g2, have been added. The definition of ∂′µ,xψ is
essentially the same as that given in Eq. 47. It is given by

∂′µ,xψ =
ψ(x+ dxµ)x − ψ(x)

dxµ
. (84)

Here ψ(x+dxµ)x = Ux,x+dxµψ(x+dxµ) is the same vector in H̄x as ψ(x+dxµ)
is in H̄x+dxµ.

The covariant derivative, Eq. 83, accounts for the local availability of math-
ematics and the freedom of basis choice. It does not include the effects of scaling
factors for numbers. This is taken care of by replacing Vµ,xψ(x+ dxµ)x in Eq.
82 by rx+dzµ,xVµ,xψ(x+dx

µ)x. This is a vector in the local representation, H̄r
x,

Eq. 32, of H̄y on H̄x.
Expansion of the exponentials to first order adds another term to Dµ,x in

Eq. 83. One obtains [18, 20]

Dµ,xψ = ∂′µ,xψ + grAµ(x) + i(g1Ξµ(x) + g2Ω
j
µ(x)τj)ψ(x). (85)

A coupling constant, gr, for ~A(x) has been added. The coupling constants, and
i are all number values in C̄x.

The physical properties of the gauge fields inDµ,x are obtained by restricting
the Lagrangians to only those terms that are invariant under local and global
gauge transformations [28]. For Abelian gauge theories, such as QED, ~Ω(x) is
absent. Invariance under local gauge transformations, Λ(x), requires that the
covariant derivative satisfy [28]

D′

µ,xΛ(x)ψ(x) = Λ(x)Dµ,xψ(x). (86)

D′

µ,x is obtained from Dµ,x by replacing Aµ(x) and Ξµ(x) with their primed val-
ues, A′

µ(x),Ξ
′

µ(x). The presence of the primes allows for the possible dependence
of the fields on the local U(1) gauge transformation, Λ(x) where

Λ(x) = eiφ(x). (87)
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Use of Eq. 84 and separate treatment of real and imaginary terms gives the
following results: [28]

A′

µ(x) = Aµ(x)
g1Ξ

′

µ(x) = g1Ξµ(x)− ∂′µ,xφ(x).
(88)

This shows that the real field ~A is unaffected by a U(1) gauge transformation.
It also shows that Ξµ(x) transforms in the expected way as the electromagnetic
field.

As is well known the properties of the ~Ξ field show that it is massless. The
reason is that a mass term for this field is not locally gauge invariant [22, 28].

Unlike the case for the ~Ξ field, a mass term can be present for the real ~A
field. This suggests that it represents a gauge boson for which mass is optional.
That is, depending on what physical system ~A represents, if any, the presence
of a mass term in Lagrangians is not forbidden.

For nonabelian gauge theories, such as U(2) theories, Eq. 88 still holds.
However there is an additional equation giving the transformation properties of
the three vector gauge fields under local SU(2) gauge transformations. These
properties result in the physical representation of these fields in Lagrangians as
charged vector bosons [28]. The ~A and ~Ξ bosons are still present.

8.1 Physical properties of the ~A field from the gauge the-

ory viewpoint

At this point it is not known what physical system, if any, is represented by
the ~A field. Candidates include the inflaton field [29, 30], the Higgs boson, the
graviton, dark matter, and dark energy. One aspect that one can be pretty sure
of is that the ratio of the ~A field - matter field coupling constant, gr, to the
fine structure constant, α, must be very small. This is a consequence of the
great accuracy of the QED Lagrangian and the fact that the ~A field appears in
covariant derivatives for all gauge theory (and other) Lagrangians.

As was noted, ~Ξ is the photon field. Inclusion of this field and a Yang Mills
term for the dynamics of this field into the Dirac Lagrangian gives the QED
Lagrangian [28].

9 Conclusion

This work is based on two premises: the local availability of mathematics and
the existence of scaling factors for number systems. Local availability is based
on the idea that the only mathematics that is directly available to an observer
is that which is, or can be, in his or her head. Mathematical information that
is separate from an observer, Ox, at space time point x, such as a textbook or
a lecturer at point y, must be physically transmitted, e.g. by acoustic or light
waves, to Ox where it becomes directly available.
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This leads to a setup in which mathematical universes,
∨

x, are associated
with each point x. If an observer moves through space time on a world line,
P (τ), parameterized by the proper time τ, the mathematics directly available
to OP (τ) at time τ is that in

∨
P (τ) .

Each
∨

x contains many types of mathematical systems. If S̄x is in
∨

x, then∨
y contains the same system type, S̄y, and conversely. Each

∨
x contains the

different types of number systems and many other systems that are based on
numbers. Included are the real and complex numbers R̄x and C̄x.

Here the mathematical logical definition [12, 13] of each type of system as
a structure is used. A structure consists of a base set, basic operations, rela-
tions, and constants that satisfies axioms appropriate for the type of structure
considered. Examples are R̄ and C̄, Eq. 6 for the real and complex numbers.

For each type of number structure it is possible to define many structures
of the same type that differ by scaling factors [19]. For each real number r,
one can define structures R̄r, Eq. 11, and C̄r, Eq. 13, in which a scale factor
r relates the number values in R̄r and C̄r to those in R̄ and C̄. The scaling of
number values must be compensated for by scaling of the basic operations and
relations in a manner such that R̄r and C̄r satisfy the relevant axioms for real
and complex numbers if and only if R̄ and C̄ do.

The local availability of mathematics requires that one be able to construct
local representations of C̄y on C̄x. Two methods were described. One uses par-
allel transformations. These define or represent the notion of sameness between
mathematical systems at different points. If Fx,y is a parallel transform map
from S̄y onto S̄x, then for each element, wy, in S̄y, wx = Fx,y(wy) is the same
element in S̄x as wy is in S̄y. In this case the local representation, Wx,yS̄y, of
S̄y on S̄x is S̄x itself.

The other method uses what are called correspondence maps. These combine
parallel transformations with scaling. The local representation of C̄y on C̄x is
C̄r

x, which is a scaling of C̄x by a factor r = ry,x. (From now on R̄ is not
explicitly mentioned as it is implicitly assumed to be part of C̄.) The local
representation of an element, ay, of C̄y corresponds to the element ry,xax in C̄x.
Here ax = Fy,xay is the same element in C̄x as ay is in C̄y.

It was seen that the scaling of numbers plays no role in the general use of
numbers in mathematics and physics. This includes such things as compar-
ing outcomes of theory predictions with experimental results or in comparing
outcomes of different experiments. More generally it plays no role in the use
of numbers in the commerce of mathematics and physics. The reason is that
theory computations and experiment outcomes obtained at different locations
are never directly compared. Instead the information contained in the outcomes
as physical states must be transmitted by physical systems to a common point.
There the states of the physical transmittal systems are interpreted locally as
numbers, and then compared.

In this work, number scaling was limited to theory calculations that involve
space time derivatives or integrals. Examples of this were described in quantum
theory and in gauge theories. An example discussed in some detail was the
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expansion of a wave packet ψ =
∫
ψ(y)|y〉dy. Since ψ(y)|y〉 is a vector in H̄y,

the integrand has to be moved to a common point, x for the integral to make
sense. This can be done by parallel transform maps which give

ψx =

∫
x

ψ(y)x|yx〉dyx (89)

or by correspondence maps which give

ψx =

∫
x

ry,xψ(y)x|yx〉dyx. (90)

Here the scaling factor, ry,x, is the integral from x to y of the exponential of

the gauge field, ~A(y), as in Eq. 57.
It was also seen that one can use both transform and correspondence maps

to express the wave packet in a form that reflects exactly what one does in an
experiment that measures either the spatial distribution or the position expecta-
tion value of a quantum particle. If the experiment setup consists of a collection
of cube detectors of volume ∆3 that fill 3 dimensional Euclidean space, the out-
come of each of many repeated experiments is a triple of numbers, j, k, l that
label the position, j∆, k∆.l∆ of the detector that fired.

As was seen in the discussion of mathematical and physical commerce, the
outcomes of repeated experiments must be physically transported to a common
point, x where they are interpreted as numbers in R̄x for mathematical com-
bination. It follows that the scaling factors are limited to integration over the
volume of each detector. This results in the replacement of ψx by ψ′

x where,
Eq. 70,

ψ′

x =
∑
j,k,l

Ux,z

∫
Vj,k,l

rw,zψ(w)z |wz〉dwz . (91)

The sum is over all cubes. z = zj,k,l is a point on each cube surface. Each
integral is over the volume, Vj,k,l, of each cube. The r factor, Eq. 72, scales the
values of each integrand at point w to values at z. Ux,z parallel transforms the
integrals at different z to a common point x.

The state, ψ′

x, differs from ψx, or the usual quantum mechanical wave packet
expression for ψ, in that it ties theory closer to experiment. It also reduces the
effect of scaling to the sum of the effects for the volumes of each of the detectors.
The effect is reduced because, for any point w in the sensitive volume of the
experiment, the effect of ~A on the transform from w to x is limited to the part
of the path in the detector volume containing w. As the detector volumes go to
0, so does the effect of ~A. The increase in the number of detectors as the volume
of each gets smaller does not remove this effect.

In this sense the usual quantum theory wave packet integral for ψ is a limit
in that it is independent of experimental details. Unlike the case for the usual
representation of ψ, use of ψ′

x to make predictions will give values that depend
on experimental details. The fact that there is no indication, so far, of such
dependence, at least to the accuracy of experiment, means that the effect of
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~A(x) must be very small. Whether the small effect is due to small values of ~A

itself or a small value of a coupling constant of ~A to states and matter fields, is
not known at present.

The relation between ψ′

x and the usual integral for ψ is further clarified by
the observation that ψx → ψ as the detector volume goes to 0. However, the
Heisenberg uncertainty principle prevents experimental attainment of this limit.

It must be emphasized that the tying the wave packet integral to experiment
details, as with ψ′

x has nothing to do with collapse of the wave packet during
carrying out of the experiment. ψ′

x is just as coherent a state as is ψ.

The gauge field ~A also appears in the expression for the canonical momen-
tum. The usual expression for momentum p =

∑
j i~∂j,x is replaced by, Eq.

73
pA,x = ix~xDj,x (92)

where
Dj,x = ∂′j,x + ~A. (93)

∂′j,x, Eq. 47, accounts for the local availability of mathematics.
As a covariant derivative, Dµ,x appears in gauge theories with additional

terms. It was seen that the limitation of Lagrangians to terms that are in-
variant under local gauge transformations, [22, 28], results in ~A appearing as a
gauge boson for which mass is optional. This is the case for both Abelian and
nonabelian gauge theories.

The physical nature of ~A, if any, is unknown. What is known is that the
great accuracy of QED requires that the coupling constant of ~A to matter fields
must be very small.

It must be emphasized that this work is only a first step in combining ”math-
ematics is local” with the freedom of choice of scaling factors for number struc-
tures. An example of work for the future is to determine the effect of number
scaling factors on geometry. It is suspected that the scaling factors may induce
conformal transformations into geometry. More work also needs to be done on
the effects of number scaling on quantum mechanics. An interesting question
here is whether scaling factors are needed at all in classical mechanics.

Finally, one may hope that this work provides a real entry into the descrip-
tion of a coherent theory of physics and mathematics together. Such a theory
would be expected to describe mathematics and physics together as part of a
coherent whole instead of as two separate but closely related disciplines.
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