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Fine structure constant variation or space-time anisotropy?
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Recent observations on quasar absorption spectra supply evidences for variation of fine

structure constant α. In this paper, we propose another interpretation of the observational

data on quasar absorption spectra: a scenario with space-time inhomogeneity and anisotropy.

Maybe the space-time is characterized by Finsler geometry instead of Riemann one. Finsler

geometry admits less symmetries than Riemann geometry does. We investigate the Finslerian

geodesic equations in Randers space-time (a special Finsler space-time). It is found that the

cosmological redshift in this space-time is deviated from the one in general relativity. The

modification term to redshift could be generally revealed as a monopole plus dipole function

about space-time locations and directions. We suggest that this modification corresponds to

the observed spatial monopole and Australian dipole in quasar absorption spectra.

PACS numbers: 98.80.Es, 98.80.Jk, 02.40.-k

I. INTRODUCTION

It has been widely accepted that Standard cosmological model (ΛCDM model) [1] is the

paradigm of the modern cosmology. This model makes several observable predictions which have

withstood large quantities of tests by cosmological observations during the last two decades. Until

now, almost all observations, such as the cosmic microwave background (CMB) anisotropy [2], the

cosmological accelerating expansion [3, 4] and the large scale structure(LSS) [5], agree with the

predictions of ΛCDM model. Thus, this model is indeed great successful. Despite of these, it still

faces several cosmological large scale anomalies (see review in Ref. [6]), such as large scale velocity

flows [7], alignment of low multipoles in the CMB [8–10], large scale alignment in the quasar optical

polarization [11] and the preferred axis of Hubble diagram [6, 12]. These anomalies imply that

there may exist inhomogeneous and anisotropic at large scale which are led by certain common

preferred direction in space-time [6]. All of these are beyond the ΛCDM model and may lead to

new physics.

It is well known that there are in principle no any variation of the fundamental physical con-
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stants, such as fine structure constant α = e2/~c (e is the unit electric charge, ~ is the reducible

Planck constant and c is the speed of light in vacuum), in ΛCDM model which is based on the

cosmological principle [13] and Einstein’s general relativity [14]. However, there have been sev-

eral propositions for the existence of possible variation of α currently. Since Dirac [15] postulated

in 1937 the universal gravitational constant G was not a constant possibly, great interests have

been stimulated in studies on the variation of fundamental physical constants including fine struc-

ture constant α. Kinds of experiments and observations [16, 17] have been employed in searching

for possible α variation. Meanwhile, quantities of theories or models (see review and details in

Ref.[17]) have been proposed and studied, which suggest various possibilities for the α variation.

There are several reasons for possible variation of α (see review and details in Ref.[17, 18]), such as

the existence of extra dimensions, quantum gravity, nonuniqueness of vacuum state, spontaneous

symmetry breaking in very early universe and et al.. Thus, it is interesting and meaningful to

study possible α variation.

To search for the variation of α, there are three classes of experiments: atomic methods, nuclear

methods, and gravitational methods (for review and details see, for example, Ref.[16]). Almost

all publications presented just constraints or upper limitations on the variation of α [16, 19].

However, recent astrophysical observations provided some evidences [20–22] for the α variation.

The many-multiplet (MM) method [23–25] was employed to analyze the data of quasar absorption

spectra [23, 26]. The MM method is mainly based on comparing different transitions in different

mulitiplets or atoms from cosmic and laboratorial spectra respectively [19, 21]. In addition, the

quasar absorption spectra encode information about the atomic energy levels at the positions and

time of emissions [16], so that analysis of them will reveal information about α around distant

quasars. One has to determine the α-dependence of the atomic spectra in order to observe the

variation of α around the distant quasars. In the condition that α has a small shift (δα/α =

α−α0

α0
≪ 1), the energy levels within one fine-structure multiplet could be described as [16, 20]

ω = ω0 + qx ≡ ω0 + q ·
2δα

α
. (1)

Throughout of the paper, ω and α also represent respectively for the atomic energy levels and

fine structure constant at the positions and time of emissions from quasars with redshift z =

λobs/λlab − 1.

Recently, Webb et al. [20] analyzed the data of quasar absorption spectra from Keck-Hires

Telescope (Keck) with the MM method. They claimed that α would be smaller in large scales

δα

α
(z) = (−0.543 ± 0.116) × 10−5 . (2)
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This is a spatial monopole function about redshift z. Most recently, they [21, 22] claimed that

evidence of a spatial dipole, named as “Australian Dipole”, of α-variation was found also by quasar

absorption spectra from Keck, Very Large Telescope (VLT) and both combined. They found that

α would take a spatial dipole variation with an increase in the northern hemisphere and a decrease

in the southern hemisphere. The spatial dipole of α variation could be revealed as

δα

α
(cosΘ, z) = (1.10 ± 0.25) × 10−6 , (3)

where Θ is the angle between the quasar sightline and the best-fit dipole position [22]. The spatial

monopole and dipole of α variation were found to take the same order of magnitude ∼ 10−6.

It is well known that Glashow and Cohen proposed very special relativity (VSR) [27] in which the

Lorentz group is replaced by its subgroup. There exists certain preferred direction [28–31] in VSR,

which leads to Lorentz violation. It has also been clear that the preferred direction could give rise

to certain anisotropy of the speed of light in the vacuum [32, 33]. Thus the fine structure constant

α would vary with directions and show certain anisotropy in space, since it is inverse ratio in the

speed of light. In addition, the line element of VSR has been proved to be a Finslerian line element

[28–31]. So that Finsler space-time could bring about new insights on the variation of α. Finsler

space-time admits less Killing vectors (equivalently less symmetries) than Riemann space-time

does [34]. This means there exist certain preferred directions which lead to inhomogeneities and

anisotropy in Finsler space-time. Of course, such inhomogeneities and anisotropy would lead to the

variation of the speed of light which make the α vary with locations and directions in space. These

are the effects of Lorentz violation which make the Finsler space-time different from the ΛCDM

model. The attribute of monopole of α variation implies that the universe is inhomogeneous at

large scale and the existence of spatial dipole implies that there may exist certain anisotropy at

large scale. As mentioned above, this kind of anisotropy may be also the reason why other large

scale cosmological anomalies emerge [6]. The inhomogeneities and anisotropy of this kind signal

certain non-trivial cosmic topology [9]. Then there may exist a special kind of space-time structure

at large scale other than the usual Friedmann-Robertson-Walker (FRW) structure in ΛCDM model.

Maybe Finsler space-time a reasonable candidate for new physics correspond to the α variation

claimed. These are new results in the work and may potentially lead to new physics.

In Einstein’s general relativity, gravity is connected with curvature in Riemann geometry. In

the same way, one could discuss gravity based on Finsler geometry [35, 36]. Gravity in Finsler

space-time has been studied for a long time [37–40]. An incomplete list of works in this field

includes: a specified Finsler structure makes the modified Newton’s gravity [41] equivalent to
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Milgrom’s Modified Newtonian Dynamics (MOND) [42]; a Finlerian gravity model accounts to

the accelerated expanding universe without invoking dark energy hypothesis [43]; Randers space

[44] accounts for the anomalous acceleration [45] in solar system observed by Pioneer 10 and

11 spacecrafts; Finsler space-time leads modification to the gravitational deflection of light [46]

corresponding to observations on Bullet Cluster [47]; Finslerian kinematics is in good agreement

with secular trend of the Astronomical Unit and secular eccentricity variation of the Moon’s orbit

[48]; the Finslerian extension of Schwarzchild metric asymptotically approaches Bogoslovsky locally

anisotropic space-time instead of Minkowski space-time [49].

In this paper, we suggest an inhomogeneous and anisotropic space-time could describe well

the astronomical observations on quasar absorption spectra. The rest of the paper is arranged as

follows. In the section II, we discuss the space-time inhomogeneity and anisotropy in the framework

of Finsler geometry. A uniform formula for redshift is presented in the section III. The observed

data showed monopole and the Australian Dipole is fitted in the new scenario. We give conclusions

and remarks in the section IV.

II. SPACE-TIME INHOMOGENEITY AND ANISOTROPY

Finsler geometry [35, 36] has its origination from integrals of the form

∫ b

a
F (x, y) dτ , (4)

where x and y ≡ dx/dτ stand respectively for position and velocity under natural coordinate

bases. The integrand F is called Finsler structure. Unlike Riemann structure being defined on the

manifold M , Finsler structure is defined on the slit tangent bundle TM \ 0. A Finsler structure of

M is a positive-definite function with the property

F (x, λy) = λF (x, y) (5)

for all λ > 0. A manifold M associated with a Finsler structure F on TM \ 0 would be called

a Finsler manifold. The Finsler metric tensor is a Hessian matrix, the coefficients of which are

defined as [35]

gµν ≡
∂

∂yµ
∂

∂yν

(

1

2
F 2

)

. (6)

It is also called fundamental tensor and is used to raising and lowering the indices together with

its inverse gµν .
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The parallel transport has been studied in the framework of Cartan connection [50–52]. The

notation of parallel transport in Finsler manifold means that the length F
(

dx
dτ

)

is constant. The

geodesic equation for Finsler manifold is given as [35]

d2xµ

dτ2
+Gµ = 0 , (7)

where

Gµ =
1

2
gµν

(

∂2F 2

∂xλ∂yν
yλ −

∂F 2

∂xν

)

(8)

is called geodesic spray coefficient. Obviously, if F is Riemannian metric, then

Gµ = γ̃µνλy
νyλ , (9)

where γ̃µνλ is the Riemannian Christoffel symbol. Since the geodesic equation (7) is directly derived

from the integral length of a curve σ

L(σ) =

∫

F

(

dx

dτ

)

dτ , (10)

the inner product

(

√

gµν
dxµ

dτ
dxν

dτ = F
(

dx
dτ

)

)

of two parallel transported vectors is preserved.

The Randers space is a special kind of Finsler space with Finsler structure F on the slit tangent

bundle TM\0 of a manifold M as

F (x, y) ≡ α(x, y) + β(x, y) , (11)

where

α(x, y) ≡
√

ãµν(x)yµyν , (12)

β(x, y) ≡ b̃µ(x)y
µ, (13)

and ãij is Riemannian metric.

The geodesic spray coefficient Gµ in Randers-Finsler space-time reads [35]

Gµ = (γ̃µνλ + lµb̃ν|λ)y
νyλ + (ãµν − lµb̃ν)(b̃ν|λ − b̃λ|ν)α

(

dx

dτ

)

yλ , (14)

where lµ ≡ yµ/F , γ̃µνλ is the Christoffel symbol of Riemannian metric ã and b̃ν|λ denotes the

covariant derivative with respect to the Riemannian metric ã

b̃ν|λ =
∂b̃ν
∂xλ

− γ̃µνλb̃µ . (15)
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In the rest of the paper, we just consider the case that β is a closed 1-form. Thus, the geodesic

equation of such Randers space-time is given as

d2xµ

dτ2
+ (γ̃µνλ + lµb̃ν|λ)y

νyλ = 0 . (16)

In ΛCDM model, the cosmological principle indicates that the universe is homogeneous and

isotropic at large scale, which leads to the Friedmann-Robertson-Walker (FRW) metric. In the

comoving coordinates, the FRW metric takes the form

ds2 = dt2 − a2(t)

[

dr2

1− kr2
+ r2

(

dθ2 + sin2 θdϕ2
)

]

, (17)

where k = −1, 0,+1 respectively stand for an open, flat, and closed universe, and a(t) is called

scale factor. The cosmological redshift zR(t) is given as

1 + zR(t) =
a(t0)

a(t)
=

1

a
, (18)

which reveals the ratio of expansion undergone by the universe between the time t and the present

time t0.

Unfortunately, the FRW universe does not match with the Keck and VLT observations. The

attribute of monopole in α variation implies the universe is not homogenous, and “Australian

Dipole ”implies the universe is not isotropic. As is mentioned above, Finsler space-time naturally

admits less Killing vectors (then less symmetries) than Riemann space-time does. It could be a

reasonable framework to corporate with the Keck and VLT observations.

III. UNIFORM REDSHIFT AND AUSTRALIAN DIPOLE

We suppose that the metric of the universe takes the FRW-Randers-Finsler form, in which ãµν

is the flat FRW metric and β is a closed 1-form. Then, we find from (16) that

0 =
d2x0

dτ2
+ δij ȧa

dxi

dτ

dxj

dτ
+

dx0

dτ
f

(

x,
dx

dτ

)

, (19)

0 =
d2xi

dτ2
+ 2δij

ȧ

a

dx0

dτ

dxj

dτ
+

dxi

dτ
f

(

x,
dx

dτ

)

, (20)

where f
(

x, dxdτ
)

≡ b̃ν|λ
dxν

dτ
dxν

dτ /F and a dot denotes d
dx0 . The equation (20) has a solution

a2
dxi

dτ
∝ J1, (21)
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where we involve a new quantity J1. It is defined as d ln J1
dτ ≡ −f

(

x, dxdτ
)

. By making use of the

equation (21), we obtain a solution of (19),

a
dx0

dτ
∝ J1 . (22)

While b̃ vanishes, J1 reduces to dimensionless constant for photons. The Riemannian norm b̃ is

much smaller than 1. Therefore, the energy of the universe is of its Riemannian form E ≃ dx0

dτ .

Then, we find from the solution (22) that the formula of the redshift in FRW-Rander-Finsler

space-time is of the form

1 + zF (t) =
J1
a

. (23)

In the following, we try to get a formula for J1 . The derivative of the term b̃µ
dxµ

dτ gives

d

dτ

(

b̃µ
dxµ

dτ

)

=
dxν

dτ

∂

∂xν

(

b̃µ
dxµ

dτ

)

=
dxν

dτ

(

b̃µ
dxµ

dτ

)

|ν

= b̃α|β
dxα

dτ

dxβ

dτ
+ b̃µ

(

d2xµ

dτ2
+ γ̃µνλ

)

dxν

dτ

dxν

dτ

=

(

1−
b̃µ
F

dxµ

dτ

)

b̃α|β
dxα

dτ

dxβ

dτ
, (24)

where “|” denotes the covariant derivative with respect to the Riemannian metric α. Here, we have

used the fact that the term b̃µ
dxµ

dτ is a scaler in Riemannian spacetime with metric ãµν , to get the

second equation of (24). And we have used the geodesic equation (16) to get the last equation of

(24). Noticing that F is constant along the geodesic, we find from equation (24) that

d ln
(

F − b̃µ
dxµ

dτ

)

dτ
= −b̃ν|λ

dxν

dτ

dxν

dτ
/F = −f

(

x,
dx

dτ

)

. (25)

It implies that

J1 = 1− b̃µ
dxµ

dτ
, (26)

with normalization of τ (F has been normalized).

Combining the equations (18), (23) and (26) together, we obtain the cosmological redshift

deviation in Finsler space-time from the one in Riemann space-time:

1 + zR
1 + zF

≃ 1 + b̃µp̂
µ , (27)

where the over-hat represents that p̂µ is a unit four-momentum of light.

It is obvious that the second term b̃µp̂
µ on the right of the equation (27) could be rewritten into

a monopole plus dipole function about space-time locations and directions. The dipole term comes
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from the inner product of the space components of b̃µ and p̂µ, and the monopole one comes from the

inner product of the time components of them. We may live in an inhomogeneous and anisotropic

universe, but used to calculate all quantities from a homogeneous and isotropic view. This may be

the reasons that the observational formulas for the fine structure constant α is varied from point to

point in spacetime. Thus, one should try to setup a new scenario with space-time inhomogeneity

and anisotropy, and deal with the observational data of quasar absorption spectra from a uniform

view of FRW-Randers-Finsler space-time. The relative frequency ∆ω (∆ means relative value

between two parameters) between two given transitions emitted from quasars should be observed

or detected as (∆ω0)/(1 + zF ) around the Earth in the frame of Finsler space-time. However,

the observational data show that it takes the form ((∆ω0) + (∆q)x)/(1 + zR) in the perspective

of Riemann space-time. By using the equations (1)(18)(27), we would obtain the observational

formulas of spatial monopole (2) and dipole (3) for α variation. Both the dipole and monopole

terms of α-variation appear naturally in the Finsler space-time. In the condition that the dipole

and monopole terms in equation (27) take the order of magnitude ∼ 10−7, the order of magnitude

of α variation would appear to be ∼ 10−6, which is compatible with the formulas from observations.

IV. CONCLUSIONS AND REMARKS

The line element of VSR could be written as [28–31]:

ds = (ηµνdx
µdxν)

1−b
2 (nσdx

σ)b . (28)

where the unit vector nk stands for a preferred direction in the three-dimensional space. The param-

eter b stands for the level of space anisotropy characterizing the deviation of the metric (28) from

Minkowski metric ηµν = diag(+1,−1,−1,−1) [29]. In the case that b and (nσdx
σ) / (ηµνdx

µdxν)1/2

are small(≪ 1), the right side of equation (28) could be expanded approximately into a line ele-

ment of Randers form. From the “ether drift” experiment obtained in 1970 [29, 53, 54], the space

anisotropy has an upper limit b < 5 × 10−10 around the Earth. However, there could be a little

larger space anisotropy at large scale (for instance, Hubble scale). Then there would be no con-

tradiction between our result at large scale and the constraint from the “ether drift” experiment

around the Earth.

In this paper, we have proposed that the Finsler space-time with inhomogeneities and anisotropy

could account for the observational formulas of the variation of fine structure constant α. Based

on the Finslerian geodesic equations in a FRW-Randers-Finsler space-time, a uniform cosmologi-
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cal redshift was obtained, which is deviated from the one in FRW-Riemann space-time. And the

deviation could be revealed generally as one monopole plus dipole function about space-time lo-

cations and directions. Such a monopole plus dipole function is found to account for the formulas

of α variation possibly. Thus, the observations of variation of fine structure constant from quasar

absorption spectra could be viewed as a test of space-time inhomogeneity and anisotropy at large

scale. As was mentioned above, the standard theories could not reasonably explain any variation

of α while Randers-Finsler space-time with inhomogeneities and anisotropy could. This may signal

certain hints for new physics.
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