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This is an ongoing review on my conjecture that information processing at causal horizons is
the key ingredient of all physics. Assuming that information is fundamental and the information
propagates with finite velocity, one can find that main physical laws such as Newton’s second law and
Einstein equation simply describe the energy-information relation (dE=TdS) for matter or space
time crossing a causal horizon with temperature T for observers. Quantum mechanics arises from
ignorance of the observers about matter crossing the horizon, which explains why superluminal
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demands the zero cosmological constant.
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I. INTRODUCTION

For thousands of years great minds of mankind tried to find the most fundamental element in nature such as four
elements, atoms, quarks, and strings. Nowadays, there is a hope that this quest will eventually lead us to a ‘theory of
everything’ reconciling general relativity with quantum mechanics and other forces. In this perspective, configurations
of a fundamental object such as a superstring can represent all known particles and their species. However, to have
configurations, the object should have some internal structure and this implies that the object should consist of even
smaller objects. This brings us an obvious logical paradox.
On the other hand, there is a long history of the conception that the universe is actually made of abstract entities like

logic rather than material objects. A famous example is the Pythagorean who believed that numbers are fundamental
constituents of the nature. Interestingly, recent developments of quantum information science revealed that abstract
information can play a fundamental roll in the physical world. This idea can be represented by an implicative slogan
in quantum information community, “It from Bit!”
There are many observations supporting the slogan. For instance, it was shown that quantum mechanics and special

relativity miraculously cooperate so as not to allow super-luminal information transfer (See for example [1]), and
this no-signalling condition could be a basic principle of physics. Furthermore, Landauer’s principle [2] stating that
erasing information requires energy consumption implies an intrinsic relation between information and energy. It was
also suggested that wavefunctions in quantum mechanics actually represent information of a system [3] or relations [4]
rather than particle or wave.
Studies of black hole physics after Bekenstein and Hawking have consistently implied that there is a deep connection

among gravity, thermodynamics and information [5]. Recently proposed Verlinde’s idea [6] linking gravity to entropic
force enhance this viewpoint, because entropy can be interpreted as a measure of information. He derived Newton’s
second law and Einstein’s equation from the relation between the number of degrees of freedom N of a holographic
screen and energyE ∼ NT in a volume enclosed by the screen. Here, T is the temperature of the screen. Padmanabhan
[7] also proposed that classical gravity can be derived from the equipartition energy of horizons. These works,
influenced by Jacobson’s proposal that Einstein equation describes the first law of thermodynamics at local Rindler
horizons, attracted much interest in community [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. All these
works emphasize the connection between thermodynamics and gravity.
On the other hand, in a series of works [23], the author and co-workers (LLK hereafter) suggested that information

plays a crucial role in gravitational systems such as dark energy and black holes. For example, in 2007 LLK presented
a rather exotic idea that a cosmic causal horizon with a radius r ∼ O(1/H) could have Hawking temperature Th ∝ 1/r,
quantum informational entropy Sh ∝ r2 represented by bits, and hence, a kind of thermal energy Eh ∼ ThSh ∝ r,
which can be identified to be the dark energy with density ρh ∼ r−2 ∼ O(M2

PH
2). Here, MP is the Planck mass and

H is the Hubble parameter. We set the Boltzman constant kB = 1. This energy corresponds to the quantum vacuum
energy of a spatial region bounded by the horizon and is related to information erasing process due to the expanding
cosmic horizon and also possibly to quantum entanglement of the vacuum. LLK also suggested that a black hole mass
has a similar quantum informational origin, and that Jacobson’s formalism about Einstein gravity actually represents
information loss process at local Rindler horizons in a curved spacetime.
Since entropy is usually proportional to N , there is a clear similarity between this informational energy Eh and

the equipartition energy E considered by Verlinde. However, there are also some differences between two approaches
which will be shown below.
In this paper, based on these works, it is suggested that major physics such as quantum mechanics, Einstein gravity

and Newton’s mechanics are simply describing information processing at causal horizons.

II. IT FROM BIT

Let me start by summarizing some well-known physical principles and laws.

1. Landauer’s principle: To erase information dS, at least energy dE = TdS should be consumed.
→ Information is related to thermal Energy

2. E = mc2: Energy is related to Mass (matter)

3. Einstein Equation, Gµν = 8πG Tµν → Matter generates Gravity

4. Unruh effect: Quantum fluctuation looks thermal to some observers

Now, in a very naive language, my observations can be summarized as follows. By combining the principles 1 and 2,
one can see “Matter is related to information”. On the other hand, 1+2+3 implies “Gravity is related to information”.
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1+4 means “Quantum mechanics is related to information”. Although these propositions should be justified by more
rigorous reasonings, this brief argument shows the essence of the idea.
Inspired by the above principles and laws, it is now suggested that we can choose the followings as new and general

guiding principles which any physical law is based on.

• Guiding principles

1. Information is fundamental → Physical laws should be such that they respect observers’ information about
given matter and spacetime

2. Holographic principle → Amount of information in a region bounded by a causal horizon is finite in bits and
proportional to the area of the horizon

3. Landauer’s principle, dE = TdS or the second law of thermodynamics → information-energy relation

4. Finite information propagation velocity → Causal horizons exist in spacetime

5. General equivalence principle → All systems of reference (coordinates) are equivalent regardless of their motions

Note first that we are assuming neither quantum mechanics nor Einstein gravity. They shall be derived from above
assumptions. We need to assume the existence of spacetime and coordinates.

Dark
Energy

Thermody-
namics

Quantum
Mechanics

Gravity

Information

Newton
Mechanics

Holographic
Principle

dE=TdS

FIG. 1. Relation between various physics fields. Information seems to be the root of all physics. Causal horizons for some
observers act as an information barrier, and thermodynamics occurs as a result. Then, an information-energy (i.e., entropy-
energy) relation dE = TdS at the horizons lead to main equations of physics.

Some of these assumptions deserve more explanation. Finite information propagation velocity implies that there is
an information barrier in spacetime for some observers. This barrier could be, for example, a Rindler horizon, a black
hole event horizon or a light cone. Thus, there could be a situation where matter (particles or waves) crosses the
causal horizon for an observer. Then, the observer can get no more information about the matter. It is reasonable
that this ignorance of the observer about the matter should be represented by the increase of the informational
entropy S (for example Shannon entropy or entanglement entropy) of the horizon. According to the holographic
principle this should be accompanied by the horizon area increase. Furthermore, due to Landauer’s principle or the
second law of thermodynamics, there should be some kind of ‘thermal energy’ dE = TdS. That means the usual first
law of thermodynamics in gravitational systems is actually the second law disguised. Major physical laws such as
Einstein equation and Newton’s equation seem to simply represent this information-energy relation.

In short I suggest the following conjecture.

• Conjecture: Main physical laws simply describe the energy-information relation for matter or space time cross-

ing a causal horizon
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From this conjecture, the following results are derived (See Fig. 1.). Quantum mechanics arises from ignorance of
observer outside of a causal horizon about matter inside the horizon (section III). For an accelerating Rindler observer
relative to a particle this leads to Newton’s second law as in Verlinde’s formalism (section IV). For a local inertial
frame in curved spacetime the conjecture leads to Einstein equation through Jacobson’s formalism and naturally
explain the origin of Verlinde’s entropic gravity (section V). Finally, if we apply the conjecture to a cosmic causal
horizon, we obtain dark energy comparable to observed one and zero cosmological constant (section VI).

III. QUANTUM MECHANICS FROM INFORMATION THEORY

In this section it will be shown that quantum field theory (QFT), and hence quantum physics, is not fundamental
and can be derived by considering information of matter crossing Rindler horizons [24]. Let us begin by considering
an accelerating Rindler observer ΘR with acceleration a in x1 direction in a flat spacetime with coordinates X =
(t, x1, x2, x3) (See Fig. 1). The Rindler coordinates ξ = (η, r, x2, x3) for the observer are defined with

ct = r sinh(aη/c), x1 = r cosh(aη/c) (1)

on the Rindler wedges. There is an inertial Minkowski observer ΘM too. Now, consider a field φ flowing across the
Rindler horizon at a point P and entering the future wedge F . A configuration for φ(x, t) is not necessarily meant to
be classical but to be just some physical function of spacetime. It is important to note that in this theory the field φ
cannot have a specific value before measurements according to our assumptions, unless the relevant observer gets the
information about the field value in advance.

1

aP

F

R
QR

QM

x1

t

FIG. 2. Rindler chart for the observer ΘR (curved line), who has no accessible information about field φ in a causally
disconnected region F . Thus, the observer can only estimate a probabilistic distribution of the field, which turns out to be
thermal and equal to that of a quantum field for inertial observer ΘM (dashed line) in Minkowski spacetime.

As the field enters the Rinder horizon for the observer ΘR, the observer shall not get information about future
configurations of φ any more and all what the observer can expect about φ evolution beyond the horizon is a prob-
abilistic distribution P [φ] of φ beyond the horizon. Already known information about φ acts as constraints for the
distribution. I suggested that this ignorance is the origin of quantum randomness. Physics in the F wedge should
reflect the ignorance of the observer in the R wedge, if information is fundamental [24].
One constraint comes from the energy conservation

n
∑

i=1

P [φi]H(φi) = E, (2)

where H(φi) is the Hamiltonian as a function of the i-th configuration of the field φi and E is its expectation. Another
one is the unity of the probabilities

∑n

i=1 P [φi] = 1. Then, using Boltzmann’s principle of maximum entropy one can
calculate the probability distribution estimated by the Rindler observer

P [φi] =
1

Z
exp [−βH(φi)] , (3)

where β is the Lagrangian multiplier, and the partition function is

Z =

n
∑

i=1

exp [−βH(φi)] = tr e−βH , (4)
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where the trace is assumed to be performed with a (classical) discrete vector basis. Lisi showed a related derivation
of the partition function by assuming a universal action reservoir for information [25].
From now on, let us consider a continuum limit for a scalar field φ with Hamiltonian

H(φ) =

∫

d3x

[

1

2

(

∂φ

∂t

)2

+
1

2
(∇φ)2 + V (φ)

]

(5)

and potential V . For the Rindler observer with the coordinates (η, r, x2, x3) the proper time variance is ardη and
hence the Hamiltonian is changed to

HR =

∫

r>0

drdx⊥ ar[
1

2

(

∂φ

ar∂η

)2

+
1

2

(

∂φ

∂r

)2

+
1

2
(∇⊥φ)

2
+ V (φ)], (6)

where ⊥ denotes the plane orthogonal to (η, r) plane. Then, Eq. (4) becomes Eq. (2.5) of Ref. [26];

ZR = tr e−βHR . (7)

It is important to notice that Z (and hence ZR) here is not a quantum partition function but a classical statistical
partition function corresponding to the uncertain field configurations beyond the horizon.
Unruh showed [26] that the real-time thermal Green’s functions of the Rindler observer with ZR are equivalent to

the vacuum Green’s function in Minkowski coordinates. Thus, as well known, the Minkowski vacuum is equivalent
to thermal states for the Rindler observers. What is newly shown in Ref. [24] is that the thermal partition function
ZR assumed in Ref. [28] is actually from information loss about field configurations beyond the Rindler horizon and,
therefore, the QFT formalism is equivalent to the purely information theoretic formalism. Recall that Eq. (7) was
derived without using any quantum physics. Since quantum mechanics can be thought to be single particle limit of
QFT, this implies also that quantum mechanics emerges from information theory applied to Rindler horizons and is
not fundamental. Another important point here is that thermal nature or quantum randomness of quantum field is
due to the information barrier and more fundamental than quantum nature.
This explains why superluminal communication is impossible even using quantum nonlocality (entanglement).

Quantum randomness and hence quantum correlation originates from the very fact that information cannot be sent
faster than light.
In Ref. [28] it was shown by analytical continuation that in the Rindler coordinates ZR ismathematically equivalent

to

ZR = N0

∫

φ(0)=φ(β′)

Dφ exp{−α
∫ β′

0

dη̃

∫

r>0

drdx⊥ ar

[

1

2

(

∂φ

ar∂η̃

)2

+
1

2

(

∂φ

∂r

)2

+
1

2
(∇⊥φ)

2
+ V (φ)

]

}, (8)

where we introduced a constant α having a dimension of 1/HRt and β ≡ αβ′.
By further changing integration variables as r̃ = rcos(aη̃), t̃ = rsin(aη̃) and choosing β′ = 2π/a ≡ 1/αTU the region

of integration is transformed from 0 ≤ η̃ ≤ β′, 0 ≤ r ≤ ∞ into the full two dimensional t̃ − r̃ space. This β′ value
leads to Unruh temperature TU = a/2απ. From the well-known QFT result, one can find 1/α = ~. This means that
the Planck constant ~ is some fundamental temperature given by nature.
Then, the partition function becomes

ZE
Q = N1

∫

Dφ exp

{

−IE
~

}

. (9)

where IE is the Euclidean action for the scalar field in the inertial frame. By analytic continuation t̃ → it, one can
see ZE

Q becomes the usual zero temperature quantum mechanical partition function ZQ for φ. Since both of ZR and

ZQ can be obtained from ZE
Q by analytic continuation, they are physically equivalent as pointed out in Ref. [28].

It is straightforward to extend the previous analysis to quantum mechanics for point particles. We can imagine a
point particle at a point P just crossing the Rindler horizon and entering the future wedge F . The maximal ignorance
of the observer about the particle is represented by probability distribution P [xi(t)] for the i-th possible path that
the particle may take. Then, the partition function is

ZR =

n
∑

i=1

exp [−βH(xi)] = tr e−βH , (10)
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where H is the point particle Hamiltonian now. Since the usual point particle quantum mechanics is a non-relativistic
and single particle limit of the quantum field theory, we expect ZR is equal to the quantum partition function for the
particle with mass m in Minkowski spacetime

ZQ = N2

∫

Dx exp

[

− i

~

∫

dt̃

{

m

2

(

∂x

∂t̃

)2

− V (x)

}]

(11)

= N1

∫

Dx exp

{

− i

~
I(xi)

}

,

where I is the action for the point particle. Then, as is well known one can associate each path xi with a wave function
ψ ∼ e−iI , which leads to Schrödinger equation for ψ [29].

IV. NEWTON MECHANICS FROM INFORMATION

Quantum mechanics of the previous section, of course, leads to classical Newton mechanics for an appropriate limit
(~ → ∞ and c → ∞ ). Alternatively, one can also directly derive Newton mechanics from the information-energy
relation based on the partition function as in Verlinde’s approach.
The free energy G from the partition function of the previous section can be expressed as

G = − 1

β
lnZR. (12)

The classical path xcl for the particle corresponds to the saddle point (ZR ∼ exp[−βIE(xcl)] ) [30], where IE(xcl) is
the Euclidean action for classical path satisfying the Lagrange equation. In this limit the free energy becomes

G ≃ Gcl = − 1

β
(−βIE(xcl)) + C = IE(xcl) + C, (13)

where C is a constant. Since the maximum entropy is achieved when G is minimized, we see that classical physics
with the minimum action corresponds to a maximum entropy condition. In other words, the classical path is the
typical path maximizing the Shannon entropy h[P ] of the path with the constraints for the Rindler observer.
Therefore, one can find that the entropy associated with the thermodynamical interpretation of mechanics and

gravity is related to information of matter crossing the horizon. For fixed temperature, pressure and volume, the
minimum free energy condition dG = 0 is equivalent to dE − TdS = 0, i.e., the first law of thermodynamics or the
information-energy relation, dE = TdS. This explains why classical physics can be obtained from thermodynamics
as in Verlinde’s approach. The maximum entropy proposal in Verlinde’s theory can be explained in this theory.
To be concrete, consider an accelerating test point particle with acceleration a and mass m (Fig. 1) and an observer

ΘR at rest at the instantaneous distance ∆x from the particle. If we accept the general principle of relativity stating
that all systems of reference are equivalent regardless of their motions, we can imagine an equivalent situation where
the particle is at rest and the observer ΘR accelerates in the opposite direction with acceleration −a.
The key idea is that for an accelerating object there is always such an observer that the object seems to cross a

Rindler horizon of the observer. For this observer there should be information loss or erasing, and hence, some thermal
energy associated. If the observer is at a specific distance ∆x = c2/a, the observer could see the particle just crossing
his or her Rindler horizon. Then, the Rindler horizon hides information of the particle and this leads to information
loss, which should be compensated by an increase of the entropy Sh of the Rindler horizon. This distance ∆x = c2/a
is special, because, for the observer there, τ becomes a proper time and the Rindler Hamiltonian becomes a physical
one generating τ translation. Since the horizon is a Rindler horizon, we can safely use the Unruh temperature

TU =
~a

2πc
(14)

for the horizon.
Then, if we accept the holographic principle, it is natural to think that the mass of the test particle m is converted

to the horizon energy ∆Eh. Therefore, the following relations

mc2 = ∆Eh = TU∆Sh =
~a

2πc
∆Sh (15)

should hold, which implies for a = c2/∆x

∆Sh =
2πcm∆x

~
, (16)
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FIG. 3. A test particle with mass m is accelerating with acceleration a with respect to an observer instantaneously resting at
∆x from the particle. Alternatively we can imagine that the particle is at rest and the observer moves in the opposite direction
with acceleration −a. The observer could see the particle crossing a Rindler horizon (the shaded plane).

i.e, Eq. (3.6) of Verlinde’s paper. Culetu [18] pointed out the role of the specific distance ∆x in Verlinde’s formatlism.
There have been criticisms [18, 33, 34, 35] on the assumptions Verlinde took for this entropy variation formula for

the screen due to an approaching particle. This difficulty disappears in our theory, where we identify the Rindler
horizon as Verlinde’s holographic screen and the entropy of the Rindler horizon Sh as the entropy of the screen S.
Then, one can define the holographic entropic force

F =
∆Eh

∆x
= TU

∆Sh

∆x
= ma, (17)

which is just Newton’s second law.
In short, from the viewpoint of our theory, Verlinde’s holographic screen corresponds to Rindler horizons and its

entropy is associated with the lost path information of the particle crossing Rindler horizons [36]. Then, there is an
entropic force linked to this information loss which can be calculated. Thus, our theory reproduces and supports
Verlinde’s mathematical formalism basically. However, there are several differences between Verlinde’s model and our
theory, which will be shown in the next section. Interestingly, this new interpretation seems to also give a hint for
the origin of inertia and mass. The inertia of the particle can be interpreted as resistance from the horizon dragging
which the external force feels. This dragging force is proportional to acceleration, hence, F = ma.
We see that inertia and Newton’s second law have something to do with Rindler horizons and information loss at

the horizons. In our formalism and Verlinde’s formalism, inertial mass and gravitational mass have a common origin
and hence equivalent. This is consistent with the Einstein’s equivalence principle.

V. GRAVITY FROM INFORMATION

Similarly, one can interpret Jacobson’s formalism and Verlinde’s entropic gravity in terms of information at Rindler
horizons [36]. The equivalence principle allows us to choose an approximately flat patch for each spacetime point.
According to the principle one can not locally distinguish the free falling frame from a rest frame without gravity.
Therefore, we can again imagine an accelerating observer Θ with acceleration −a respect to the test particle in the
rest frame of the particle. If ∆x = c2/a, the test particle is just at the Rindler horizon for the observer Θ, and there
should be energy related to entropy change, i.e., dEh = TdSh.
Following Jacobson we can generalize this information-energy relation by defining the energy flow across the horizon

Σ

dE = −κλ
∫

Σ

Tαβξ
αdΣβ (18)

where dΣβ = ξβdλdA, dA is the spatial area element, and Tαβ is the energy momentum tensor of matter distribution.
Using the Raychaudhuri equation one can denote the horizon area expansion δA ∝ dSh and the increase of the entropy
as

dSh = ηδA = −ηλ
∫

Σ

Rαβξ
αdΣβ , (19)

with some constant η [37]. If Sh saturates the Bekenstein bound, η = c3/4~G.
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Inserting Eqs. (18) and (19) into dE = TUdSh = ~κdSh/2πc one can see 2πcTαβξ
αdΣβ = ηRαβξ

αdΣβ . For all local
Rindler horizons this equation should hold. Then, this condition and Bianchi indentity lead to the Einstein equation

Rαβ − Rgαβ
2

+ Λgαβ =
2π

ηc
Tαβ (20)

with the cosmological constant Λ as shown in Jacobson’s paper.

T

M

mx

FIG. 4. A test particle with mass m is free falling with acceleration a at distance r from a massive object with mass M
at the center. Consider an equivalent situation where is an accelerating observer Θ with acceleration −a. If the observer is
instantaneously at the distance ∆x = c2/a from the test particle, the observer could see the particle crossing the local Rindler
horizon (the dashed line) for the observer.

Of course, one can derive Newton’s gravity from the above Einstein equation. Alternatively, it is also meaningful
to derive Newton’s gravity from dE = TdS relation and to show that our approach fills the gap between Jacobson’s
formalism and Verlinde’s entropic gravity.
Consider an observer instantaneously at the distance ∆x from the test particle with mass m. We can consider a

set of such observers surrounding the central mass M at the distance r + ∆x from the center. I suggested that the
holographic screen considered by Verlinde can be interpreted to be an imaginary overlap of these Rindler horizons
with a same Unruh temperature TU for the observers (Fig. 4). Again, the mass of the test particle m should be
converted to the horizon energy Eh and this induces the increase of the horizon entropy ∆Sh eventually. Therefore,
one can see relations

mc2 = ∆Eh = TU∆Sh =
~a

2πc
∆Sh. (21)

Using the relation ∆x = c2/a above, one can obtain the entropy change in Eq. (16) again. Inspired by the holographic
principle we assume that mass inside a region is equal to the horizon energy, that is,

Mc2 = Eh = 2ThSh = 2TUSBH , (22)

where the horizon energy relation Eh = 2ThSh [38] and the Bekenstein bound (i.e., Sh = SBH) were used. The
Bekenstein-Hawking entropy

SBH =
c3 A

4G~
(23)

is a bound of information in a region of space with a surface area A [5]. Since it was shown that the entropy of a
Rindler horizon is equal to one quarter the area of the horizon in Planck units, this choice is reasonable. From this
equation one can obtain TU =Mc2/2SBH and the acceleration

a =
2πcTU

~
=
GM

r2
. (24)

Then, from Eq. (16) and the above equation, the entropic force is given by

F = TU
∆S

∆x
=
GMm

r2
, (25)
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which is just Newton’s gravity.
Therefore, we conclude that the holographic screens at a given position in Verlinde’s formalism are actually Rindler

horizons at the position for specific observers accelerating relative to the test particle. This identification could easily
explain many questions on Verlinde’s formalism and provide better grounds for the theory. The entropy-distance
relation holds only for specific observers, and the use of Unruh temperature is valid, because the holographic screen
can be actually a set of Rindler horizons. This shows the interesting connection between Jacobson’s model [37] or the
quantum informational model [32, 39] to Verlinde’s model.
However, there are also several distinctions between Verlinde’s entropic gravity and our information theoretic model.

First, in Verlinde’s work, the screen bounds the emerged part of space, and the approaching particle eventually merges
with the microscopic degrees of freedom on the screen. In our theory, spacetime is not necessarily emergent and the
particle just crosses the horizon. Second, in his theory, the entropy of the screen changes as the particle approaches to
the screen, and the screen should move appropriately to satisfy the entropy formula, while in our theory the change is
due to information loss at Rindler horizons of specific observers. Third, in Verlinde’s theory the holographic screens
correspond to equipotential surfaces, while in our theory they correspond to isothermal Rindler horizons (i.e., with the
same |a|). Finally, since Rindler horizons are observer dependent, there is no objective or observer-independent notion
of the Rindler horizon entropy increase in our theory. This help us to avoid the issue of the time reversal symmetry
breaking in entropic gravity. These differences help us to resolve the possible difficulties of Verlinde’s model [40] and
to understand the connection between gravity and information. Compared to other models, our theory emphasizes
the role of information rather than thermodynamics.

VI. DARK ENERGY FROM INFORMATION

Before Verlinde’s proposal LLK suggested a rather radical idea that dark energy is related to information content of
the cosmic horizon [23, 31, 32, 41, 42]. If the cosmic causal horizon has a radius r ∼ O(H−1), Hawking temperature
T ∼ 1/r, and entropy S ∼ r2, there could be a kind of thermal energy E ∼ TS ∼ r corresponding to the vacuum
energy, dubbed ‘quantum informational dark energy’ by the authors. Here H = da/adt is the Hubble parameter with
the scale factor a and the cosmic horizon could be the event horizon, the Hubble horizon or the apparent horizon.
(There appeared similar dark energy models based on the Verlinde’s entropic gravity [33, 43, 44, 45].)

A
T

r

dS

FIG. 5. Expansion of a cosmic horizon Σ with a radius r and the Hawking temperature T induces the information erasing of
the gray region with entropy dS. This information erasing consumes the energy TdS, which can turn into dark energy finally.

To calculate the horizon energy Eh as vacuum energy of the universe, let us consider a generic holographic entropy
for a causal cosmic horizon with radius r,

S =
ηc3r2

G~
, (26)

and

T =
ǫ~c

r
, (27)

with parameters η and ǫ. For the Hawking-Gibbons temperature ǫ = 1/2π, and for the Bekenstein entropy η = π.
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Now, one can calculate the vacuum energy using the holographic principle. By integrating dE on the isothermal
surface Σ of the causal horizon with Eqs. (26) and (27), we obtain the horizon energy

E =

∫

Σ

dE = T

∫

Σ

dS =
ηǫc4r

G
. (28)

Another possible interpretation is that this is the energy of the cosmic Hawking radiation [46]. Then, the energy
density due to Eh is given by

ρh =
3E

4πr3
=

6ηǫc3M2
P

~r2
≡ 3d2c3M2

P

~r2
, (29)

which has the form of the holographic dark energy [47]. This kind of dark energy was also derived in terms of
entanglement energy [23] and quantum entanglement force [39]. From the above equation we immediately obtain a
formula for the constant

d =
√

2ηǫ, (30)

which is the key parameter determining the characteristic of holographic dark energy. The simplest choice is such
that Sh saturates the Bekenstein bound and Th is the Hawking-Gibbons temperature ~c/2πr. Then, ηǫ = 1/2 and
d = 1, which is favored by observations and theories [48, 49]. Thus, the holographic principle applied to a cosmic
causal horizon naturally leads to the holographic dark energy with d = 1 [39]!
From the cosmological energy-momentum conservation equation, one can obtain an effective dark energy pressure

[47]

pDE =
d(a3ρh(r))

−3a2da
, (31)

from which one can derive the equation of state. To compare predictions of our theory with current observational
data, we need to choose the horizon. The event horizon is the simplest one, if there is no interaction term between
dark energy and matter [47]. In this case one can find the equation of state for holographic dark energy as a function
of the redshift z [47];

ωDE =

(

1 +
2
√

Ω0
Λ

d

)(

−1

3
+ z

√

Ω0
Λ(1− Ω0

Λ)

6d

)

(32)

≃ w0 + w1(1 − a),

where the current dark energy density parameter Ω0
Λ ≃ 0.73 [47, 50]. For d = 1 these equations give w0 = −0.903 and

w1 = 0.208. According to WMAP 7-year data with the baryon acoustic oscillation, SN Ia, and the Hubble constant
yields w0 = −0.93± 0.13 and w1 = −0.41+0.72

−0.71 [51]. Thus, the predictions of our theory well agree with the recent
observational data. If we use an entanglement entropy calculated in [39] for Sh, one can obtain d slightly different
from 1.
It was also shown that holographic dark energy models with an inflation with a number of e-folds Ne ≃ 65 can

solve the cosmic coincidence problem [47, 52] thanks to a rapid expansion of the event horizon during the inflation.
Following [39] and [45] one can obtain an entropic force for the dark energy

Fh ≡ dEh

dr
=
c4ηǫ

G
, (33)

which could be also identified as a ‘quantum entanglement force’ dubbed by LLK, if Sh is the entanglement entropy.
It is simple to see why the cosmological constant Λc should be zero. The classical cosmological constant Λc appears

in the gravity action as

S =

∫

d4x
√−g(R− 2Λc). (34)

It is usually argued that after taking vacuum expectation of quantum fields, the Friedmann equation has additional
contribution Λq = ρq/M

2
P c

2 from the vacuum quantum fluctuation ρq. Thus, the total cosmological constant becomes
Λ = Λc + Λq, and the total vacuum energy density is given by

ρvac =M2
P c

2(Λc + Λq). (35)



11

Without a fine tuning it is almost impossible for two terms to cancel each other to reproduce the tiny observed value,
which is the well-known cosmological constant problem.
A constant Λc results in vacuum energy proportional to Λr3 clearly violating the holographic principle for large r

(where matter energy density of the universe is small), because Eh ∝ r according to the principle and the information-
energy relation. This implies that the ‘time independent’ classical cosmological constant Λc should be zero and Λq is
proportional to ρh in Eq. (29), unless there is interaction between matter and dark energy. Of course, this argument
does not show how to remove the cosmological constant explicitly in QFT. QFT is not one of our assumptions but
derived with specific conditions. Since the holographic principle is in contradiction with QFT at a large scale, this
might mean that we need to change QFT at a cosmological scale.
In summary, in this theory the dark energy density is small due to the holographic principle, comparable to the

critical density due to the O(1/H) horizon size or Ne ≃ 65, and non-zero due to quantum vacuum fluctuation. The
holographic principle also demands that the cosmological constant is zero.

VII. DISCUSSION

In short, the Einstein equation links matter to gravity and his famous formula E = mc2 links matter to energy. We
know also that the Landauer’s principle links information to energy. Thus, now we have relations among information,
gravity, quantum mechanics and classical mechanics. Our theory implies that physical laws are more about information
rather than particles or waves. Quantum randomness and its thermal nature arise from information theory applied at
causal horizons. This gives us a new hint of quantum gravity. Our new approach also shows interesting connections
between Jacobson’s model [37], the quantum informational model [32, 39] and Verlinde’s model.
We also see that inertia and Newton’s second law have something to do with Rindler horizons and information

loss at the horizons. In our formalism and Verlinde’s formalism, inertial mass and gravitational mass have a common
origin and hence equivalent.
All these studies are not a simple reinterpretation of existing physics. If information really is the essence of the

universe, this alters our very paradigm in looking at physics, and it may serve as a key to solving hard problems in
the field such as a theory of everything, dark energy, and quantum gravity.
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