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A new category of “intrinsic” effects is proposed to be added to the two already known kinematic
and dynamical categories. An example of intrinsic effect is predicted, its origin source is established,
and a scheme of its experimental detection is proposed. This effect lowers to non-relativistic values
the propagation velocity of a plane electromagnetic wave in a vacuum, when a time-independent
homogeneous magnetic field is superposed over it. This result, pertaining to the classical Maxwell
theory, follows from exact calculations. A critical remark on gravitational waves’ detection is given.
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“In 1889 Morley and Miller... reconfigured the old
Michelson–Morley apparatus to search for changes in the
speed of polarized light caused by a magnetic field.”—
With this historic reference begins the paper by Frank
Nezrick [6]. Morley and Miller, as well as Nezrick and
his group at the Fermilab, have considered dynamical
mechanisms in their predictions, in the Nezrick case, of
the modern quantum field theoretical origin, and the au-
thor categorically summarizes that “[the] unquantized
Maxwell Equations are linear in the fields giving no in-
teraction between photons.”

Below we explicitly show that the linearity of classi-
cal Maxwell’s equations in vacuum does not hinder from
the existence of an interaction between superposed elec-
tromagnetic fields in spite of their perfectly exact and
simple superposable nature. It is well known that cer-
tain properties of these fields are determined by the non-
linear electromagnetic energy-momentum tensor Tµν , fur-
ther taken in the classical vacuum. Our scientific com-
munity has a deep-seated tradition to misapprehend as
a nonsense the natural situation when the same theory
states that a superposition of two or more exact solu-
tions is itself an exact solution, and it meanwhile pre-
dicts an intrinsic effect which does not inflict changes
in the component parts of this superposition, while its
physical characteristics cannot be reduced to a sum for
these component parts. This new classical intrinsic ef-
fect follows from such non-linear and bilinear things as
the energy density and the Poynting vector whose com-
bination, even more non-linear, was already related by
several authors to the observable group velocity of elec-
tromagnetic field’s propagation. They were Pauli [7], p.
115, Eq. (312): vi = 2T i0/T

0
0 ; Landau and Lifshitz [3],

the Problem on p. 69: vi/(1 + v2) = T i0/T
0
0 , dealing

(from the authors’ viewpoint) only with parallelization
of the electric and magnetic fields; Penrose and Rindler
[8], vol. 1, p.324, and vol. 2, pp. 33 and 257-258, who
considered only the pure electric and magnetic type fields
(cf. [5]), eliminating the alternative 3-field (transforma-
tion to single-field frames). The corresponding boosts
are B−2(E × B) and E−2(E × B), respectively. Thus
Penrose–Rindler’s boosts look as mixtures of the Poynt-
ing vector, taken in the non-co-moving frame, but divided
by energy density of the electromagnetic field, pertaining
to the frame co-moving with this field. The velocity we
are speaking here about is in fact related to that which
had to be measured by Frank Nezrick, though he didn’t
mention the above authors. All this now occurs in the
non-quantized electromagnetic theory, thus we do not
bother about an “interaction between photons.” This
situation has to reappear also in general relativity and
in quantum mechanics (see below), but in special rela-
tivity the same type of effect has to be present, easily
calculated, and immediately detectable: see below our
computation.

Working on this effect in the special-relativistic
Minkowskian space-time, we shall use the (+,−,−,−)
signature and natural units (so that the velocity is di-
mensionless and the velocity-of-light constant is c = 1),
the Gaussian units in Maxwell’s equations, Greek 4-
dimensional indices, and the Cartan formalism of exterior
forms (see [2]) as the simplest and most effective way to
treat geometric ideas and to interpret the obtained re-
sults. The electromagnetic field tensor splits, with the
help of monad τ (a unitary time-like vector field, in fact,
the 4-velocities of local test observers) and the dual con-
jugation (or its Hodge-star form), into two 4-dimensional
(co)vectors, electric and magnetic, both ⊥ τ :
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Eµ = Fµντ
ν ⇔ E = ∗(τ ∧ ∗F ), Bµ = −F ∗µν τν ⇔ B = ∗(τ ∧ F ), (1)

F = E ∧ τ + ∗(B ∧ τ), ∗ F = ∗(E ∧ τ)−(B ∧ τ). (2)

It is obvious that E is a polar 4-covector and B, an ax-
ial 4-covector, both restricted to the local physical 3-
subspace of the τ -reference frame. The deduction de-
tails of the above formulae see next to Eqs. (3.1.13),
(3.1.16), and (3.1.18) in [4]. In that book, the com-
plete monad theory of physical reference frames is given.
Jürgen Ehlers [1] was first who formulated the monad
formalism; with it he worked exclusively in the cosmol-
ogy using reference frames co-moving with matter. The
monad belonging to such frames he denoted as u which

coincides with the 4-velocity of the filler of cosmological
space, so that we use here this notation also for a monad
(if any) co-moving with the electromagnetic field. A gen-
eral monad we denote as τ , mostly since the integral lines
of the vector field τ are the physical time (not necessar-
ily time coordinate) lines in a space-time diagram. The
second author who independently formulated the monad
formalism was Abram L. Zel’manov [9], and he worked
with it also in relativistic cosmology, like Ehlers.

A combination of Tαβ with an arbitrary monad τ yields

T νµT
µ
ξ τντ

ξ =
1

(8π)2

[(
E2 + B2

)2 − 4(E×B)2
]
≡ 1

(8π)2

[(
B2 −E2

)2
+ 4(E •B)2

]
=

1

(16π)2
(
I1

2 + I2
2
)

(3)

where I1 = FµνF
µν and I2 = F

∗
µν Fµν are two invari-

ants on which the simplest classification of electromag-
netic fields (see [5]) is based. It is remarkable that these
constructions are not only scalars under general transfor-
mations of coordinates, but they are also independent of
the reference frame choice: the right-hand side does not

involve the monad. Considering the propagation of elec-
tromagnetic field, we do not include the high-frequency
limits related to field’s discontinuities (bicharacteristics).
From (3) and the Landau and Lifshitz 3-velocity taken
as an example, we see that

0 ≤ |v|
1 + v2

=
1

2

√
1− I1

2 + I2
2

4(E2 + B2)2
=
|E||B|

E2 + B2
| sinα| ≤ 1

2
, (4)

α being the angle between E and B in the strict local
Euclidean sense; moreover, the function |v|/(1 + v2) is
everywhere monotonic. In particular, this means that the
propagation of all pure null fields (|E| = |B|, α = π/2)
occurs with the unit absolute value of the 3-velocity, the
velocity of light, and all other electromagnetic fields prop-
agate with sub-luminal velocities which can always be
made equal to zero in corresponding co-moving reference
frames. These conclusions also hold in general relativ-
ity, and they are universally expressed in seemingly “3-
dimensional” notations characteristic to the general ref-
erence frame theory.

Instead of taking any of the 3-velocities given in [3, 7,
8], we shall now use our general definition ([4], p. 42, Eq.
(2.2.11)) of the velocity v between u-monad and τ -monad
frames from the viewpoint of the latter frame:

u = (τ · u)(τ + v), u 6⊥ v ⊥ τ. (5)

It is obvious that this v will be the desired velocity of

the electromagnetic field propagation in τ -frame, if the
Poynting vector vanishes in u-frame. Thus let us con-
sider a linearly polarized plane monochromatic electro-
magnetic wave (the situation does not substantially de-
pend on this choice of polarization) as the first compo-
nent of the superposition with a time-independent ho-
mogeneous magnetic field (the second component) in the
z-direction of propagation of the wave (a constant elec-
tric field yields similar results). In Cartesian coordinates
t, x, y, z (the spatial ones forming a right triplet), this su-
perposition reads (since E and B are covectors ⊥ dt, the
negative signs meaning positivity of the respective vec-
tors’ components; to make all expressions more concise,
we abbreviate ω(t− z) as phase of the wave Θ and E/H
as A):

E = −E cos Θdx, B = −Hdz − E cos Θdy (6)

where E is the scalar amplitude of both electric and mag-
netic vectors of the wave, and H is the constant (both
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in space and time) magnitude of superimposed magnetic
field. For two electromagnetic invariants one easily finds
that I1 := 2(B2 − E2) = 2H2 > 0, I2 := −4E · B = 0;
consequently, this field belongs to the pure magnetic type
(see details of the classification in [5]). This superposi-
tion is in fact a specific not precisely monochromatic wave
whose behavior can be best understood in the reference
frame co-moving with it. We shall find such a frame us-
ing the pure-magnetic-type property of this wave’s field.
First, we write the field ∗F as a simple bivector (see [2],

p. 26). Taking for the general frame monad τ = dt, we
find from (2) and (6) that

∗F =
(
E cos Θdz ∧ dy +H dz ∧ dt+ E cos Θdy ∧ dt

)
≡
(
Hdz + E cos Θdy

)︸ ︷︷ ︸
P, a spacelike covector

∧ (dt− dz)︸ ︷︷ ︸
Q, a null covector

= P ∧Q.

(7)
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FIG. 1. Diagrams of the velocity |v| for −π/2 ≤ Θ =Theta= Θ ≤ π/2.

If to P we add lQ (l being an arbitrary function) and
use this sum P ′ instead of the former P , ∗F does not
suffer any change (neither F does). While P · P < 0,
P ′ · P ′ = 2Hl −H2 − E2 cos2 Θ. Thus if we choose l =
H + E2

2H cos2 Θ, the vector P ′ becomes timelike, P ′ ·P ′ =

H2 > 0, and we can take P ′/H as a properly normalized

monad u =
(

1 + A2

2 cos2 Θ
)

(dt − dz) + dz + A cos Θdy.

Now (7) reads ∗F = Hu ∧ (dt − dz), so that in the new
frame u the electric field identically vanishes due to (1)
rewritten for u, hence we have found one of the field’s co-
moving frames. In such calculations one has to remember
that when only one (here, magnetic) field survives after
the reference frame is transformed, there are other pos-
sible transformations which already do not change this
situation (in fact, all those which involve an additional
motion in the direction of this 3-field, even when this
motion occurs to be with a non-constant magnitude of
the 3-velocity described by strictly local Lorentz trans-
formations, thus working in non-inertial frames). Con-
sequently, there appears a continuum of such single-field
(E- or B-) frames (cf. [8]; of course, they work in general
as well as in the special relativity), and the search for

more elegant frames depends on the individual taste of
the researcher. This means that the 3-velocities given in
[3, 7, 8] may describe only particular choices of co-moving
frames (if they are correct at all).

Let us now calculate 3-velocity v of the co-moving
frame u [group propagation velocity of the electromag-
netic field (6)] with respect to the frame τ = dt, using
our general definition (5):

v =
A cos Θ

1 + A2

2 cos2 Θ

(
dy − A

2
cos Θdz

)
, (8)

|v| =
A cos Θ

√
1 + A2

4 cos2 Θ

1 + A2

2 cos2 Θ
, (9)

thus when E/H ≡ A ≤ 1, |v| < 1, and frames co-moving
with the superposition of fields are, in principle, realiz-
able. When H → 0, the propagation velocity approaches
to that of light, while if E � H, it becomes as low as one
wishes; see Fig. 1 where |v| is given in natural units.

The most simply realizable experiment for detection of
this intrinsic effect can be performed with a large distance
of the light propagation in a sufficiently long optic fiber
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wound upon a bobbin containing a straight concentric
conductor with a direct electric current in it to produce
a magnetic field along the fiber with the light beam. The
dielectric properties of the fiber can be easily filtered out
since in this experiment the superimposed constant mag-
netic field will dominate, and the comparatively weak
light beam can be manipulated to get different velocities
of its propagation, practically not changing the dielectric
properties of the fiber.

Of course, the effects expressed in mutually analogous
characteristics (e.g, those which are related to a shift of
the propagation velocity of electromagnetic field), can be
superimposed. However, in so doing, such parallel effects
are of entirely different orders of magnitude: the dynam-
ical effects depend on interaction constants (in particu-
lar, when there appears a non-linearity in the dynami-
cal field equations, for example, via quantum theoretical
corrections like those mentioned in [6]); the kinematic
effects (e.g., the 3-velocities composition law) are more
universal, but they do not change c = 1 composed with
any subluminal velocity; the intrinsic effects are signifi-
cantly stronger than the other ones in view of the stable
non-linearity of the expressions which yield them, with-
out any participation of interaction constants. Therefore
the intrinsic effects generally are dominant also in other
branches of physics. The intrinsic effect related to the

group velocity shift has to occur in quantum mechan-
ics (without the second quantization, in the linear equa-
tions such as the Schrödinger and Dirac ones) where the
3-velocity should follow from the non-linear probability
density flow and probability density itself.

The gravitational deformation in general relativity
does in fact belong to the kinematic effects, when it is
described without the use of geodesic deviation equation.
Thus, for example, the interferometric detection of grav-
itational waves cannot give a non-zero result, since the
scales of all types of equally oriented lengths do change
in gravitational fields in the same proportion, and the
numbers of light wavelengths fitting along the alternative
arms of interferometer cannot suffer changes in a passing
gravitational wave. I am regretful not to tell these con-
siderations to Kip S. Thorne more than two decades ago,
simply because of a kind of awkward modesty (at a sem-
inar of the Institute for Physical Problems in Moscow in
1970ies during the talk of Herzenstein and Pustovoyt on
their proposal of such a detection of gravitational waves,
when I had told them this fact, the talk immediately col-
lapsed, and I felt very sorry for it).

I would like to thank Dr. Arturo Chávez Chávez for
fruitful discussions in which he acquainted me, in partic-
ular, with the reference [6].
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