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This is an updated version of ”Gauge Symmetries and Fibre Bundles - Applications to

Particle Dynamics”, Lecture Notes in Physics 188, as first published in 1983. For a

related, and a more recent account, see Ref.[1].
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1 INTRODUCTION

A theory defined by an action which is invariant under a time-dependent group

of transformations can be called a gauge theory. Well known examples of such theories

are those defined by the Maxwell and Yang-Mills Lagrangians. It is widely believed

nowadays that the fundamental laws of physics have to be formulated in terms of gauge

theories.

The underlying mathematical structures of gauge theories are known to be geomet-

rical in nature and the local and global features of this geometry have been studied for

a long time in mathematics under the name of fibre bundles. It is now understood that

the global properties of gauge theories can have a profound influence on physics. For

example, instantons and monopoles are both consequences of properties of geometry

in the large, and the former can lead to, e.g., CP violation, while the latter can lead

to such remarkable results as the creation of fermions out of bosons. Some familiarity

with global differential geometry and fibre bundles seems therefore very desirable to a

physicist who works with gauge theories. One of the purposes of the present work is

to introduce the physicist to these disciplines using simple examples.

There exists a certain amount of literature written by general relativists and particle

physicists which attempts to explain the language and techniques of fibre bundles.

Generally, however, in these admirable reviews, the concepts are illustrated by field

theoretic examples like the gravitational and the Yang-Mills systems. This practice

tends to create the impression that the subtleties of gauge invariance can be understood

only through the medium of complicated field theories. Such an impression, however,

is false and simple systems with gauge invariance occur in plentiful quantities in the

mechanics of point particles and extended objects. Further, it is often the case that

the large scale properties of geometry play an essential role in determining the physics

of these systems. They are thus ideal to commence studies of gauge theories from a

geometrical point of view. Besides, such systems have an intrinsic physical interest

as they deal with particles with spin, interacting charges and monopoles, particles in

Yang-Mills fields, etc.. We shall present an exposition of these systems and use them to

introduce the reader to the mathematical concepts which underlie gauge theories. Many

of these examples are known to exponents of geometric quantization, but we suspect

that, due in part to mathematical difficulties, the wide community of physicists is not

very familiar with their publications. We admit that our own acquaintance with these

publications is slight. If we are amiss in giving proper credit, the reason is ignorance

and not deliberate intent.

The matter is organized as follows. After a brief introduction to the concept of gauge
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invariance and its relationship to determinism in Section 2, we introduce in Chapters

3 and 4 the notion of fibre bundles in the context of a discussion on spinning point

particles and Dirac monopoles. The fibre bundle language provides for a singularity-free

global description of the interaction between a magnetic monopole and an electrically

charged test particle. Chapter 3 deals with a non-relativistic treatment of the spinning

particle. The non-trivial extension to relativistic spinning particles is dealt with in

Chapter 5. The free particle system as well as interactions with external electro-

magnetic and gravitational fields are discussed in detail. In Chapter 5 we also elaborate

on a remarkable relationship between the charge-monopole system and the system of

a massless particle with spin. The classical description of Yang-Mills particles with

internal degrees of freedom, such as isospinor colour, is given in Chapter 6. We apply

the above in a discussion of the classical scattering of particles off a ’t Hooft-Polyakov

monopole. In Chapter 7 we elaborate on a Kaluza-Klein description of particles with

internal degrees of freedom. The canonical formalism and the quantization of most

of the preceding systems are discussed in Chapter 8. The dynamical systems given

in Chapters 3-7 are formulated on group manifolds. The procedure for obtaining the

extension to super-group manifolds is briefly discussed in Chapter 9. In Chapter 10,

we show that if a system admits only local Lagrangians for a configuration space Q,

then under certain conditions, it admits a global Lagrangian when Q is enlarged to a

suitable U(1) bundle over Q. Conditions under which a symplectic form is derivable

from a Lagrangian are also found.

The list of references cited in the text is, of course, not complete, but it is instead

intended to be a guide to the extensive literature in the field.
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2 THE MEANING OF GAUGE INVARIANCE

Below we will deal with systems which exhibit a gauge symmetry. It is thus useful

to clarify the distinction between ordinary symmetries and gauge symmetries at the

beginning.

2.1 The Action

The action S is a functional of fields with values in a suitable range space. The domain

of the fields is a suitable parameter space. Thus for a non-relativistic particle, the

range space may be R3, a point of which denotes the coordinate of the particle. The

parameter space is R, a point of which denotes an instant of time. The fields are

functions from R to R3:

F(R,R3) = q , q = (q1, q2, q3) , q(t) ∈ R3 . (2.1)

Thus each field q assigns a point q(t) in R3 to each instant of time t.

For a real scalar field theory in Minkowski space M4, the parameter space is M4,

the range space is R and the set of fields F(R4,R) is the set of functions from R4 to

R.

Let us denote the parameter space by D, the range space by R and the set of

fields by F(D,R). Then the action S is a functional on F(D,R). It assigns to each

f ∈ F(D,R) a number S[f ]. For instance, in the non-relativistic example cited above,

S[f ] =
m

2

∫

dt
dqi(t)

dt

dqi(t)

dt
. (2.2)

The action also depends on the limits of the time integration. Since these limits are

not important for us, they have here been ignored. If necessary, they can be introduced

by restricting D suitably. In this case, for example, instead of R, we can choose for D

the interval t1 ≤ t ≤ t2.

The concept of a global symmetry group G = {g} may be defined as follows: Sup-

pose G is a group with a specified action r → gr on R ≡ {r}. Then, G has a natural

action f → gf on F(D,R), where (gf)(t) = gf(t). This group of transformations on

F(D,R) is the global group associated with G. We denote it by the same symbol G.

We say further that G is a global symmetry group if

S[f ] = S[gf ] , (2.3)
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up to surface terms. For reasons of simplicity we shall assume hereafter that G is a Lie

group.

As an example, consider the non-relativistic free particle with D = {t| −∞ < t <

∞}, R = R3 and G = SO(3). The rotation group has a standard action on R3. It can

be ”lifted” to the action q → gq on F(D,R), where

[gq](t) = gq(t) [≡ (gijqj(t)]) . (2.4)

Thus in the usual language, g is a global rotation. Further, SO(3) is a global symmetry

group since for the action (2.4)

S[q] = S[gq] . (2.5)

In contrast, the gauge group G associated with G is defined to be the set of all

functions from D to G, i.e. G = F(D,G) = {h}, where for d ∈ D, d
h→ h(d) ∈ G. The

group multiplication in G is defined by (hh′)(d) = h(d)h′(d). This group, as well, has

a natural action on F(D,R), i.e., (hf)(d) = h(d)f(d). If S is invariant under G (up to

surface terms), i.e., S[f ] = S[hf ] + possible surface terms, then the gauge group is a

gauge symmetry group.

It is possible that the sort of boundary conditions we impose on the set of functions

in the gauge group can have serious consequence for the theory (see, e.g., Ref.[2]). If

we do not impose any particular boundary conditions so that the boundary conditions

are ”free”, G will contain constant functions and the associated global group G may

be thought of as the subgroup of G of these constant functions.

Let G be a gauge symmetry group and Γ be a global symmetry group not associated

with G. Now recall that the parameter space contains a parameter which we identify

as time t. The profound difference between the gauge symmetry group G and Γ is

due to the fact that G contains time-dependent symmetries unlike Γ. It affects the

deterministic aspects of the theory and also has its impact on Noether’s derivation of

conservation laws. These twin aspects are manifested as constraints in the Hamiltonian

frame work Ref.[3]. We can illustrate these remarks as follows:

a) Determinism

A trajectory, in our language, is a function f̄ ∈ F(D,R) such that

δS[f̄ ] = 0 . (2.6)

Suppose f̄ is a possible trajectory for a specified set of initial conditions dkf̄ /dtk|t=0 , k =

1, 2, ..., n. Since G is a gauge symmetry group, hf̄ is also a trajectory. Further since
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the time dependence of h is at our disposal, we can choose h such that

dk(hf̄)(t)

dtk

∣

∣

∣

∣

t=0

=
dkf̄(t)

dtk

∣

∣

∣

∣

t=0

k = 0, 1, ..., n . (2.7)

This does not constrain h to be trivial for all time. Here we assume, of course, that G
acts non-trivially on fields. The conclusion is that there are several possible trajectories

for specified initial conditions. In this sense, the theory does not determine the future

from the present if the state of the system is given by the values of f̄ and its derivatives

at a given time.

In the customary formulation, determinism is restored by considering only those

functions which are invariant under G. These gauge invariant functions and their

derivatives at a given time are then defined to constitute the observables of the theory.

Such a definition of observables seems to have little direct bearing on whether they are

accessible to experimental observation. It is a definition which is internal to the theory

and dictated by requirements of determinism.

In a Hamiltonian formulation with no constraints, the specification of Cauchy data,

i.e., a point of phase space, allows us to uniquely specify the future state of the system,

at least for sufficiently small times. The existence of a gauge symmetry group for the

action S thus means that S should lead to a constrained Hamiltonian dynamics. An

orderly way to treat such a dynamics is due to Dirac [3]. We will have occasion to use

it later.

b) Conservation Laws

The infinitesimal variation of S under a gauge transformation is characterized by

arbitrary functions ǫα. If G is a symmetry group, Noether’s argument shows that there

is a charge formally written in the form

Q =

∫

D̄

dtǫαQα , (2.8)

which is a constant of motion
dQ

dt
= 0 . (2.9)

Here D̄ is a fixed time slice of D. Since the ǫα’s are arbitrary functions, we can conclude

that [4]

Qα = 0 . (2.10)

Thus the generators Qα of the gauge group vanish identically.
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In electro-magnetism, the analogues of Eq.(2.10) are the Gauss law

∇ · E+ j0 = 0 . (2.11)

and the vanishing of the canonical momentum Π0 conjugate to A0. The non-Abelian

generalizations of these equations are well known [5].

In the Hamiltonian framework, the equations Qα = 0 become first class constraints.

Quantization of the system then often becomes highly non-trivial in their presence.

2.2 The Lagrangian

The configuration space is usually identified with F(D̄, R), where D̄ now is a fixed

time-slice of D. It is clear however that for precision we should write D̄t for the time

slice at time t. The customary hypothesis is that D̄t for different t are diffeomorphic

and that there is a natural identification of points of D̄t for different times. Under

these circumstances, (which we now assume, we are justified in writing D̄.

As an example, consider a field theory in Minkowski space M4. Slices at different

times t give different three dimensional subspaces R3
t ⊆ R3. Without further consid-

erations, there is no natural identification of points of these spaces, that is, there is as

yet no obvious meaning to the identity of spatial points for observations at different

times. What is done in practice is as follows: On M4, there is an action of the time

translation group {Uτ | − ∞ < τ < ∞}. The latter maps R3
t to R3

t+τ in a smooth,

invertible way. We then identify all points in R3
t and R3

t+τ which are carried into each

other by time translation Uτ . In terms of the conventional coordinates (x, t),

Uτ (x, t) = (x, t+ τ) , (2.12)

and we think of x as referring to the same three dimensional point for all times.

A field f ∈ F(D̄, R) restricted to a given time t is a function on D̄t. Since we

have an identification of points of D̄t for different t, the field f can be regarded as a

one-dimensional family of functions ft ∈ F(D̄, R) parameterized by time. We have

thus established a correspondence

F(D,R) → F(R,F(D̄, R)) , (2.13)

between functions appropriate to the action principle and curves in the configuration

space F(D̄, R).
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The Lagrangian is a function, or more precisely a functional, of ”coordinates and

velocities”. That is, it is a function of a point α ∈ F(D,R) on the configuration space

and of the tangent, denoted by α̇, to this space at this point. This new space, a point

of which is a point and a tangent at the point of the configuration space, is the tangent

bundle TF (D̄, R) on the configuration space.

When the action is reconstructed from the Lagrangian by the formula

S =

∫

dtL[α(t), α̇(t)] , (2.14)

we are integrating L along a curve in the tangent bundle. This curve is not arbitrary

since we require that α̇(t) = dα(t)/dt. Such a curve in the tangent bundle is the ”lift

of a curve” from the configuration space. It is defined by a ”second order” vector field

in the tangent bundle. With this restriction on curves, a curve on the tangent bundle

is uniquely determined by a curve αt ∈ F(D̄, R). Since such a curve in turn defines a

function in F(D,R), we recover the original interpretation of the action as a functional

on F(D̄, R).

We need to investigate the action of the gauge group on the tangent bundle. It

turns out that in its action on the tangent bundle, the gauge group, in its simplest

version, is associated to the global group

G⋉G = { (h, l)|h ∈ G, l ∈ G } . (2.15)

where G is the associated global group, and G is its Lie algebra and the group multi-

plication is

(h′, l′)(h, l) = (h′h, l′ + adh′l) . (2.16)

Here ad is the adjoint representation of G on G. In the notation common in physics

literature

adh′l = h′lh′−1 . (2.17)

Thus G ⋉ G is the semi-direct product of G with G. This result has been discussed

before by Sudarshan and Mukunda [3].

We denote the gauge group associated to G at a given time by Ĝ. The elements of

Ĝ are functions F(D̄, G) = {h} with group multiplication defined by

(hh′)(d̄) = h(d̄)h′(d̄) , d̄ ∈ D̄ . (2.18)

The Lie algebra G is a group under addition and the associated gauge group at a given

time is denoted by Ĝ. Finally the gauge group associated to G⋉G at a given time is

denoted by Ĝ ⋉ Ĝ.
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These remarks can be established by examining the way the action of the gauge

group ”projects down” to an action on coordinates and velocities. A function f ∈
F(D,R) is transformed to hf . Thus the curve at αt ∈ F(D̄, R) is transformed into

(hα)t, where h is time-dependent. Thus a point of the tangent bundle is transformed

according to

(α, α̇) → (hα,
d(hα)

dt
) = (hα, hα̇ + l(hα)) , (2.19)

where h ∈ Ĝ, l = ḣh−1 ∈ Ĝ. In Eq.(2.19), the time-dependence of h and l have

disappeared since we are examining the action at a point of TF(D̄, R). In writing

Eq.(2.19), we have also assumed that the action of the gauge group is local in time,

that is

(hα)t = h(t)α(t) . (2.20)

If (hα)t depends on h(t) as well as (say) its derivatives d
kh(t)/dtk, Eq.(2.19) will have

to be modified. For Yang-Mills theories, this actual happens (see below). We prefer to

illustrate the idea without this complication. With this assumption we can write

(h, l) ∈ Ĝ ⋉ Ĝ , (h, l)(α, α̇) = (hα, hα̇ + l(hα)) . (2.21)

The group multiplication Eq.(2.16) follows from

(h′, l′)(hα, hα̇+ l(hα)) = (hh′α, hh′α̇+ (h′lh′−1)(h′hα) + l′(h′hα))

= (hh′α, h′hα̇ + (l′ + adh′l)(h′hα)) = (h′h, l′ + adh′l)(α, α̇) . (2.22)

The preceding considerations are easily illustrated by YangMills theory where the

vector potential Aµ has values in the Lie algebra G of the gauge groupG and transforms

as follows:

Aµ → hAµh
−1 + h∂µh

−1 . (2.23)

Thus at a fixed time

(h, l)Ai = hAih
−1 , (2.24)

and

(h, l)A0 = hA0h
−1 − l , (2.25)

where

l = ḣh−1 . (2.26)

The group multiplication law Eq.(2.16) follows by considering the application of (h′, l′)

to the left-hand side of Eqs. (2.24) and (2.25).
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The transformation Eq.(2.25) on the configuration space variable A0 is not local

in time since (2.26) involves dh/dt. Nonetheless, the group multiplication Eq.(2.16) is

unaffected.

The space on which the group is supposed to act, however, is not the space of Aµ,

but of (Aµ, Ȧµ). If we consider the subspace (Ai, Ȧi), since (2.24) does not involve ḣ,

we find the group Ĝ⋉ Ĝ. However, the argument has to be modified if Ȧ0 is considered

since its transformation involves l̇. An element of the gauge group is now a triple

(h, l, l̇) with the action

(h, l, l̇)(A0, Ȧ0) = (hA0h
−1 − l, hȦ0h

−1 + [l, hA0h
−1]− l̇) , (2.27)

and the multiplication law

(h1, l1, l̇1)(h2, l2, l̇2) = (h1h2, l1 + h1l2h
−1
1 , l̇1 + [l1, h1h2h

−1
1 ] + h1 l̇2h

−1
1 ) . (2.28)

The action of (h, l, l̇) on (Ai, Ȧi) is obtained from taking the derivative of Eq.(2.24).

In this action, l̇ is passive. The general gauge group GL at the Lagrangian level can

thus in general involve l̇, l̈,
...
l , ... .

The subgroup of constant functions from D̄ to G is what is called the global sym-

metry group. Since it is isomorphic to G, we can denote it by the same symbol G.

It is a subgroup of Ĝ if there are no boundary conditions on functions in Ĝ, that is

if all constant functions are allowed in Ĝ. Thus, with free boundary conditions, we

can conclude the following: Since observables are invariant under Ĝ, they are invariant

under the global group G. That is, all observables are globally neutral.

2.3 The Hamiltonian

The Hamiltonian framework provides an algebraic formulation of the classical theory

in terms of Poisson brackets (PB’s). It is an essential step in the quantization of the

classical theory according to Ref.[6].

In this section, we qualitatively describe the preliminaries to Dirac’s procedure for

setting up the canonical formalism in the presence of constraints. Concrete examples

will be worked out in the subsequent chapters. In the canonical formalism, we start

with defining a ”cotangent bundle” T ⋆F(D̄, R) on the configuration space F(D̄, R)

and PB’s between functions on this bundle. This construction is carried out whether

or not there are constraints present in the theory. A point in this bundle is labeled by

(α, p) where α ∈ F(D̄, R) is a point of the configuration space and p is the “conjugate
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momentum variable”. It is also a function on D̄. The PB’s involving α and p are

conventional.

If we are given a Lagrangian L , then it defines a map TF(D̄, R) → T ⋆F(D̄, R) by

the formula

(α, α̇) → (α,
∂L

∂α̇
) . (2.29)

The Lagrangian is non-singular if this map is one-to-one onto T ⋆F(D̄, R). In that case,

when α and α̇ range over the allowed values, all of T ⋆F(D̄, R) is recovered and every

point of T ⋆F(D̄, R) specifies a state of the system.

It is then an elementary result that the time-evolution on T ⋆F(D̄, R) can be gen-

erated by the formula

ẋ = {x,H} , x ∈ T ⋆F(D̄, R) . (2.30)

where H is the Hamiltonian for the system under consideration and is constructed by

the Legendre transform from L and {·, ·} is the Poisson bracket.

As we remarked earlier, in gauge theories, the image of the map (α, α̇) → (α, ∂L/∂α̇)

is not all of T ⋆F(D̄, R), but only a sub-manifold M of this space. That is, there are

functions φn, n = 1, 2, ..., on T ⋆F(D̄, R) such that φn is zero on M:

φn(α,
∂L

∂α̇
) ≡ 0 . (2.31)

We note that not all functions on T ⋆F(D̄, R) need to have zero PB’s with φn onM, i.e.,

{f, φn} need not vanish on M for all functions f . For instance, in electro-dynamics

the electric field E is conjugate to the potential A and Gauss’ law

∇ · E+ j0 = φ1 . (2.32)

is a (secondary) constraint. But obviously,

{Ai(x), φ1(y)} 6= 0 . (2.33)

on M. Note that we must first evaluate the PB’s and then substitute φn = 0. Due

to the existence of such f , we cannot set φn = 0 before evaluating PB’s. Thus we

cannot eliminate redundant degrees of freedom using Eq.(2.31) without trouble from

the Poisson bracket algebra.

A systematic method to treat the constraints is due to Dirac. References [3] contain

a detailed exposition of the method. In Chapter 8 we will have occasion to illustrate

the method in specific examples.
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3 NON-RELATIVISTIC PARTICLES WITH

SPIN

A classical non-relativistic particle with spin is an example of an elementary sys-

tem where the utility of the fibre bundle formalism can be illustrated. The Hamiltonian

description of such systems is well known (see, e.g., Ref.[3]) and is recalled below. The

construction of a Lagrangian description however is not quite straightforward. One

such construction involves the use of non-trivial fibre bundles. Below we will only

discuss particles with zero electric charge. In Chapter 5 we return to a relativistic

description of charged particles.

3.1 The Hamiltonian Description

Let x = (x1, x2, x3), p = (p1, p2, p3), and S = (S1, S2, S3) denote the coordinate, the

momentum and the spin of the particle. Here we therefore impose the constraint

S2 ≡ SiSi = λ2 , (3.1)

where λ is a constant. The Poisson brackets are

{xi, xj} = {pi, pj} = 0 , (3.2)

{xi, pj} = δij , (3.3)

{Si, Sj} = ǫijkSk . (3.4)

If the particle is free, the Hamiltonian of the system is

H0 =
p2

2m
, (3.5)

wherem is the mass of the particle. If there is an external, not necessarily homogeneous,

magnetic field B = (B1, B2, B3) present, and the particle has a magnetic moment µ,

the Hamiltonian has the following form:

H = H0 + µS ·B . (3.6)

The equations of motion for the free particle and the interacting particle are, respec-
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tively

ẋi =
pi
m

, (3.7)

ṗi = 0 , (3.8)

Ṡi = 0 , (3.9)

and

ẋi =
pi
m

, (3.10)

ṗi = −µSj∂iBj , (3.11)

Ṡi = µǫijkBjSk . (3.12)

Here we make use of the notation ∂i ≡ ∂/∂xi.

3.2 The Lagrangian Description

If we know the Hamiltonian description, it is often possible to find the Lagrangian of the

system by a Legendre transformation. We can perform the Legendre transformation

provided we can find coordinates for the phase space which are canonical. By this

we mean the following. Let Q denote the configuration space of the system under

consideration. The phase space T ∗Q , in our case, is eight-dimensional. A canonical

system of coordinates for this space is by definition of the form

T ∗Q =
{

(Q1, Q2, Q3, Q4, P1, P2, P3, P4)
}

, (3.13)

where

{Qi, Qj} = {Pi, Pj} = 0 , (3.14)

and

{Qi, Pj} = δij . (3.15)

For our system we can, of course, set

Qi = xi , Pi = pi , i = 1, 2, 3 . (3.16)

It remains to find Q4 and P4. They will depend on S and perhaps x and p. One

can show, however, that there exists no such coordinates Q4 and P4 which are smooth
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functions of S. From the constraint Eq.(3.1), S spans a 2-dimensional sphere. It is

well-known that a 2-dimensional sphere cannot be globally coordinatized by a set of

coordinates (Q4, P4) (see, e.g., Ref.[7]). Any choice of Q4 and P4 will therefore show a

singularity for at least one S. This singularity is the analogue of the Dirac string [8, 9]

in the theory of magnetic monopoles. We refer to Section 3.3 for a proof of this result.

Thus we cannot find a global Lagrangian by a Legendre transformation when we

have a constraint like Eq.(3.1). For a local Lagrangian description we refer to Ref.[10].

Although it is not possible to find a global Lagrangian by a Legendre transformation,

the above system does admit a global Lagrangian description by enlarging the config-

uration space. We shall now construct it and point out some of its novel features. The

canonical formalism for this Lagrangian is the one discussed above. We will discuss

the derivation of this formalism in Chapter 8.

Let Γ = {s} denote the usual spin 1/2 representation of the rotation group (see,

e.g., Ref.[11]). Thus we have

s†s = 1 , det s = 1 . (3.17)

The configuration space Q for the Lagrangian will be the product space R3 × Γ. The

points of R3 as usual correspond to the position coordinates of the particle while a

point s ∈ Γ is related to the spin degrees of freedom Si through

Siσi = λsσ3s
−1 . (3.18)

Here σi , i = 1, 2, 3, are the three Pauli matrices. As a consequence of this definition,

the constraint Eq.(3.1) is fulfilled as an identity.

The Lagrangian of the free spinning particle then is

L0 =
1

2
mẋ2 + iλ Tr(σ3s

−1ṡ) , (3.19)

where the dot indicates differentiation with respect to time.

We now verify that L0 gives the correct equations of motion. Variation of the

coordinate x leads in a known way to

mẍi = 0 , i = 1, 2, 3 . (3.20)

Variation of s can be performed as follows. The most general variation of s can be

written in the form

δs = i ε · σ s , (3.21)
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where

ε · σ = εiσi . (3.22)

This is so because iε · σ is a generic element of the Lie algebra of Γ and the general

variation of s is induced by such an element. Equations (3.17) and (3.21) imply

δs−1 = −is−1ε · σ . (3.23)

Hence, for the variation Eq.(3.21),

δL0 = −λ Tr (σ3s
−1ε̇ · σs) = −2Siε̇i . (3.24)

After a trivial partial integration, this yields the required equation of motion

Ṡi = 0 . (3.25)

If the particle has a magnetic moment µ, the Lagrangian in the presence of an

external magnetic field B is

L = L0 −
µ

2
Tr(SB) ≡ L0 − µSiBi , (3.26)

where

S ≡ Siσi = λsσ3s
−1 (3.27)

and

B = Biσi . (3.28)

In Eq.(3.26), during variations, we should regard Si as a function of s. Now the

variation of x gives

δL = mẋiδẋi − µSj∂iBjδxi (3.29)

where

∂iBj ≡
∂Bj

∂xi
. (3.30)

Hence

mẍi = −µSj∂iBj . (3.31)

The variation Eq.(3.21) of s gives in this case

δLB = − Tr(Sσ · ε̇)− iµ

2
Tr([S,B]ε · σ) , (3.32)
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where we have used the cyclic property of the trace operation, i.e.,

Tr(A[B,C]) = Tr(B[C,A]) . (3.33)

Thus

Ṡi = µεijkBjSk . (3.34)

Equations (3.31) and (3.34) are the same as those given by the Hamiltonian discussed

above.

3.3 Gauge Properties of L0 and L

The Lagrangian LA, A = 0, 1, where L1 ≡ L, exhibits gauge invariance under a gauge

group G which we now discuss in some detail.

Let U(1) = {exp(iσ3θ/2)} and consider the transformation

s→ s exp(iσ3θ/2) , (3.35)

where θ in general is time-dependent. Under this transformation, LA changes only by

the time derivative of a function, that is,

LA → LA + λθ̇ . (3.36)

We distinguish this invariance property of a Lagrangian function from the conven-

tional one where the last term in Eq.(3.36) is absent by saying that LA is weakly invariant

under the gauge transformation Eq.(3.35). This weak invariance of LA clearly suggests

that the equations of motion involve only variables invariant under the gauge trans-

formation Eq.(3.35). For dynamical variables, “invariance” under the transformation

Eq.(3.35), of course, has the conventional meaning. We may note here that the equa-

tions of motion Eqs.(3.31) and (3.34) in fact only contain the gauge invariant dynamical

variables xi and Si.

Since LA changes under the gauge transformation Eq.(3.35), it is not possible to

write it as it stands in terms of gauge invariant quantities only. We can instead attempt

to eliminate the additional gauge degree of freedom in LA by fixing the gauge. This

means the following: We can now show [12] that any gauge invariant is a function of

Si and, of course, of xi. Gauge fixing means that for each S = (S1, S2, S3), we try to

find an element s(S) ∈ SU(2) such that

Siσi = λs(S)σ3s(S)
−1 . (3.37)
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If such an s(S) existed, we could substitute s(S) for s in the Lagrangian LA and thereby

eliminate the gauge degree of freedom. We can show, however, that there exists no

such choice of s(S) which is continuous for all S. The reason for this is as follows. The

vectors S which satisfy the normalization conditions SiSi = λ2 span the two sphere S2.

The existence of a smooth s(S) with the property Eq.(3.37) means that

SU(2) = S2 × U(1) , (3.38)

since any point in Γ can then written in the form s(S) exp(iσ3θ/2). But SU(2) is

simply connected while U(1) on the right hand side of Eq.(3.38) is infinitely connected,

and so the right hand side of Eq.(3.38) is infinitely connected. Here we recall that

U(1) is topologically identical to the circle S1. Hence (3.38) and a smooth s(S) do not

exist. Thus we have the remarkable situation that a Lagrangian for a non-relativistic

spinning system exists only if the space of coordinates and spin variables is non-trivially

enlarged to include a U(1) gauge degree of freedom (at least in our approach).

It is often stated in the literature that U(1) gauge invariance implies electro-

magnetism. But the U(1) gauge invariance of the Lagrangian LA seems to have little to

do with electro-magnetism. In the sections which follow, we will encounter other weakly

gauge invariant Lagrangians in contexts which seem equally remote from Abelian or

non-Abelian gauge fields. Thus the assertions in the literature seem to require qualifi-

cations.

3.4 Principal Fibre Bundles

The Lagrangians LA are associated with what in differential geometry is called a prin-

cipal fibre bundle structure. We now discuss this bundle structure .

As we have seen above, the configuration space appropriate to the Lagrangian LA

is the group space SU(2) = {s}. More accurately, it is R3 × SU(2). But R3 being, in

this case, the set of positions of the particle under consideration, is not relevant in the

present context and will be simply ignored. On the space SU(2), there is the action of

the group U(1), i.e. there is an action

s→ s exp(iσ3θ/2) (3.39)

of U(1). Under this action, LA is weakly invariant for time dependent θ’s. If we now

define the projection map π by

π : SU(2) → S2 , (3.40)
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where

π : s→ λsσ3s
−1 ≡ Siσi , (3.41)

weak invariance of LA implies that the equations of motion depend only on the base manifold

S2 = {S}.
Thus we have the following mathematical structure:

1.) A manifold SU(2) which topologically is the same as the three sphere S3,

2.) the action of a structure group U(1) on the manifold SU(2),

3.) the projection map π from SU(2) to the base manifold S2. Further,

4.) the U(1) action is free, that is, sg = s for g ∈ U(1) implies that g equals the

identity element e of the structure group U(1).

Note that the projection π maps all the right cosets

sU(1) ≡ s · {exp(iσ3θ/2)} (3.42)

to a single point on the base space S2. This right coset is just the orbit of s under

the action of the U(1) group. It is also easy to check that distinct orbits have distinct

images on S2 and that the mapping is onto S2. That is, the space SU(2)/U(1) of the

right cosets can be identified with the base space S2. Thus, if we define an equivalence

relation ∼ by the statement

s1 ∼ s2 if s1g = s2 for some g ∈ U(1) , (3.43)

then π is just the map from SU(2) to the space of equivalence classes generated by the

relation ∼, that is, to the space SU(2)/U(1).

The preceding features define a principal fibre bundle, as denoted by U(1) → S3 →
S2, with the bundle space S3 ≡ SU(2) as a manifold, structure group U(1) and base

space S2. It is a well-known structure in mathematics - the Hopf fibration of the two

sphere S2 (see, e.g., Ref.[13]).

We now give the general definition of a principle fibre bundle G → E → B. For

details, see for, e.g., Daniel and Viallet, Ref.[2] and Ref.[14]. It consists of a bundle

space E, a structure group G, a base space B and a projection map Π from E onto B.

The group G = {g} has an action on the bundle space E:

E ∋ p→ pg ∈ E . (3.44)
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This action is required to be free, that is,

pg = p , for any p , implies that g equals the identity e of G . (3.45)

The projection Π is just the identification of points related by the G-action. Thus

Π(p) = Π(pg) , (3.46)

while

Π(p) = Π(q) (3.47)

implies that

q = pg (3.48)

for some g ∈ G. We can think of B as the space of G-orbits in E.

A global section is a map

ϕ : B → E (3.49)

such that

π ◦ ϕ = identity map on B . (3.50)

Thus for b ∈ B, ϕ(b) is in E and

Π(ϕ(b)) = b for all b in B . (3.51)

A local section is defined analogously by restricting the domain of definition of the map

B → E to an open set in B. For suitable open sets in B, a local section always exists.

In fact, there is always a covering {Vα} of B by open sets Vα where ∪
α
Vα = B, such

that each Vα admits a local section.

The principal fibre bundle E is said to be trivial if E = B × G. A principal fibre

bundle is trivial if and only if it admits a global section. Note that a point p in a trivial

bundle is of the form p = (b, g), where b ∈ B and g ∈ G, while the group acts on E as

follows:

(b, g) → (b, gg′) , g′ ∈ G . (3.52)

Thus the projection map is just

Π(b, g) = b . (3.53)
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3.5 Gauge Fixing

In the conventional treatment of gauge theories (see, e.g., Ref.[5]) there is a procedure

called gauge fixing. It may be explained in the following way. Suppose the configuration

space of the Lagrangian is {ξ}. Here ξ can be a multi-component, as well as a space-

time dependent field. In the latter case, the considerations which follow are only formal.

Suppose the gauge group G is described by the set {g}, a time-dependent, and also

possibly space-dependent, group, and has the action

ξ → ξg (3.54)

on {ξ}. Fixing the gauge consists of picking exactly one point from each orbit {ξg}.
This is accomplished by imposing a condition of the form

χ(ξ) = 0 (3.55)

on ξ. Here χ, of course, can be multi-component, χ = (χ1, χ2, . . . , χn). Thus Eq.(3.55)

can actually be many conditions. The equation (3.55) defines a surface M . From the

previous remarks, it is clear that the surface M must be such that each orbit cuts M

once and exactly once.

If the action (3.54) is free, the previous discussion shows that M is a global section

in a principal fibre bundle. In this case, M exists if and only if {ξ} is a trivial bundle.

Global gauge fixing is possible only in such a case.

In general, the action of the gauge group G on {ξ} can be quite involved. Thus:

a) The action of G may not be free. Then the orbit ξG is not diffeomorphic to G
since some elements of G leave ξ fixed, that is, some degrees of freedom of G disappear

in the map

g → ξg . (3.56)

b) The little group, also called the stability group or the isotropy group, Gξ of ξ is

the set

Gξ = {g ∈ G|g = ξg} . (3.57)

It may happen that two distinct points ξ and ξ′ have little groups Gξ and Gξ′ which are

not conjugate in G. That is, there exist no element ḡ ∈ G, such that

ḡGξḡ
−1 ≡ {ḡgḡ−1|g ∈ Gξ} = Gξ′ . (3.58)

In fact, Gξ and Gξ′ may not even be isomorphic. An example is the action of the

connected Lorentz group L↑
+ on the Minkowski space M4. In this case, if for instance
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x ∈M4 is time-like, the little group is SO(3), while if x is space-like, the little group is

the connected 2+1 Lorentz group. In case b), the different orbits are not diffeomorphic.

If the orbits ξG for different ξ are diffeomorphic, we have a fibration of the space {ξ}
by the group G. If there are topologically distinct orbits, we have a singular fibration

of the space {ξ} by the group G.
In Yang-Mills field theory, there are some results which show the non-existence of

a global gauge condition [15, 16], that is, of a global surface M with the properties

discussed above. These results are usually proved either when the Euclidean space-time

is compactified to the four sphere S4 or its time-slices are compactified to three spheres

S3. The physical meaning of such a compactification is obscure to us [2].

It may be noted that in principle, it is unnecessary to fix a gauge. The orbits of G
in {ξ} are well defined. We can work on the space of these orbits. That is, G defines

an equivalence relation ∼ on {ξ}, ξ and ξ′ being equivalent if they are connected by

the G-action that is,

ξ ∼ ξ′ ⇐⇒ ξ′ = ξg for some g ∈ G . (3.59)

The space of orbits is just the space {ξ} with G-equivalent points identified, that

is, {ξ}/ ∼. Thus for the spinning particle system discussed above, it is unnecessary to

fix a gauge. In fact, a global gauge does not exist for this system since the bundle is

non-trivial. For each fixed time, the space {ξ} in this case is the three sphere S3, the

group G which is gauged is U(1) and the space of orbits S3/ ∼ is S2. This example

also shows that even if a global gauge does not exist, the space of orbits, or the space

of gauge invariant variables, can still be well defined.

However, the sort of systems (like the spinning particle) we discuss in the present

work are rather exceptional. Here we can readily identify the space of gauge invariant

variables in a concrete way. In field theoretical problems, this usually turns out to be

difficult to do. The practice in these problems is to fix the gauge by some convenient

procedure. We have seen that a global gauge fixing is not always possible. Such a

circumstance can cause difficulties in such problems during quantization.

Recently a perturbation theory for gauge fields without gauge fixing has been de-

veloped [17] based on the Langevin equation of non-equilibrium statistical mechanics.

We will not, however, enter into its discussion here.
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4 MAGNETIC MONOPOLES

In this chapter, we discuss the classical formalism for the description of a non-

relativistic charged particle in the field of a point-like Dirac magnetic monopole Ref.[8,

9, 18]. This system as well illustrates the utility of the fibre bundle formalism in an

elementary context. See in this context also Refs.[20, 21, 22].

4.1 Equations of Motion

Let x = (x1, x2, x3) denote the relative coordinates and m the reduced mass of the

system. We assume that the magnetic field is Coulomb-like, i.e.,

Bi = g
xi

4πr3
. (4.1)

Then the conventional Lorentz force equation, for a particle with an electric charge

q = −e, reads
mẍi = n

1

r3
εijkxj ẋk . (4.2)

Here r ≡ |x| is the radial coordinate, εijk is the Levi-Civita symbol, 4πn is the product

eg of the electric and magnetic charges e and g, and dots denote time differentiation.

The equation (4.2) reveals a remarkable structure when written in terms of radial

and angular variables. Let

xi = rx̂i ,
∑

i

x̂2i = 1 . (4.3)

Then Eq.(4.2) is equivalent to

r̈ = r
∑

i

˙̂x2i , (4.4)

d

dt
[mεijkxj ẋk + nx̂i] = 0 . (4.5)

The radial equation (4.4) has the same form as for a non-relativistic free particle. But

from Eq.(4.5), the conserved angular momentum

Ji = mεijkxj ẋk + nx̂i (4.6)

has an additional piece nx̂i as compared to that of the free particle. It can be interpreted

as contributing a helicity

x̂iJi = n (4.7)

along the line joining the particle and the monopole.
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4.2 The Hamiltonian Formalism

It is much easier to write down a Hamiltonian description of this system than it is to

write a Lagrangian description. We describe the former in this section.

Let B = {x ∈ R| r ≡ |x| 6= 0} denote the configuration space. Note that we

have excluded the origin r = 0 from B. Thus the electric charge and the magnetic

monopole are forbidden to occupy the same space-time point. The phase space T ⋆B

can be chosen to have coordinates (x,v), where v = (v1, v2, v3) denotes the relative

velocity of the electric charge and the magnetic monopole.

The equation of motion Eq.(4.2) is readily verified to be produced by the Hamilto-

nian

H =
1

2
m

∑

i

v2i

≡ 1

2
mv2 , (4.8)

provided the Poisson brackets (PB’s) are chosen as follows:

{xi, xj} = 0 , (4.9)

{xi, vj} = δij/m , (4.10)

{vi, vj} = − n

m2
εijk

xk
r3

. (4.11)

Note that since the right-hand side of Eq.(4.2) is proportional to the magnetic field,

the PB Eq.(4.11) is conventional for velocities in the presence of a magnetic field.

As was the case for the spinning non-relativistic particle, a global Lagrangian can

be found if a canonical system of coordinates (Q,P ) for T ⋆B can be found. It may

again be shown, however, that no such global system of coordinates exists [20]. Thus,

it is not possible to construct a global Lagrangian by application of a simple Legendre

transformation.

4.3 The Lagrangian Formalism

The global Lagrangian can be constructed by enlarging the configuration space B ap-

propriate to the Hamiltonian to a U(1) bundle E over B. This Lagrangian exhibits

weak gauge invariance under time dependent U(1) transformations. As a consequence,
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the equations of motion are defined entirely on B. The structure of the Lagrangian for-

malism bears a strong resemblance to the one for the non-relativistic spinning system,

although there are important points of difference as well.

Let {s} denote the set of all two-by-two unitary unimodular matrices, i.e., elements

of the SU(2) group in the defining representation. The space E is

E = R1 × SU(2) ≡ {(r, s)} . (4.12)

Here r is the radial variable with the restriction r > 0. So the electric charge and

the magnetic monopole are again forbidden to occupy the same spacetime point. The

relation of s to the relative coordinates xi is given by

X̂ = σix̂i = sσ3s
−1 . (4.13)

In the Lagrangian below, the basic dynamical variables are r and s. So, wherever

xi occurs, it is to be regarded as written in terms of r and s.

The Lagrangian is

L =
1

2
m

∑

i

ẋ2i + inTr σ3s
−1ṡ (4.14)

=
1

2
mṙ2 +

1

4
mr2 Tr

˙̂
X2 + inTr σ3s

−1ṡ , (4.15)

In writing Eq.(4.15) the identity Tr X̂
˙̂
X = 0 has been used. Variation of r in Eq.(4.15)

leads directly to Eq.(4.4). The most general variation of s is

δs = iεiσis , εi real. (4.16)

Hence

δX̂ = i[ε · σ, X̂ ] , ε · σ = εiσi , (4.17)

and

δ Tr σ3s
−1ṡ = i Tr ε̇ · σX̂ . (4.18)

The variation of s in Eq.(4.15) thus leads to

Tr ε · σ d
dt
{−1

2
[X̂ ,mr2

˙̂
X ] + nX̂} = 0 , (4.19)

where we have used the identity Eq.(3.33). The bracketed expression in Eq.(4.19) is a

linear combination of Pauli matrices and εi is arbitrary. Therefore,

d

dt
{− i

2
[X̂,mr

˙̂
X ] + nX̂} = 0 , (4.20)
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which is equivalent to
dJi
dt

= 0 , (4.21)

that is, to Eq.(4.5).

Thus L leads to both the equations of motion Eq.(4.4) and Eq.(4.5).

4.4 Gauge Properties of L

The Lagrangian L shows a weak gauge invariance under gauge transformations associ-

ated with the U(1) group

U(1) =
{

g = eiσ3θ/2
}

. (4.22)

This is similar to the weak gauge invariance of the Lagrangian for the spinning systems.

Under the gauge transformation

s→ seiσ3θ/2 , θ = θ(t) , (4.23)

we have the weak gauge invariance

L→ L− nθ̇ . (4.24)

As for the spinning system, associated with L, there is the fibre bundle structure

U(1) → S3 → S2 . (4.25)

Again, it is impossible to fix a gauge globally so as to eliminate the U(1) gauge

degree of freedom. This is because L is only weakly gauge invariant, and S3 6= S2×U(1).
Thus there does not exist an s(X̂) ∈ SU(2) which is continuous for all X̂ such that

X̂ = s(X̂)σ3s(X̂)−1 . (4.26)

It is of course possible to find an s(X̂) which fails to be continuous only at one

point, say the south pole [x̂ = (0, 0,−1)]. Such an s(X̂) is

s(X̂) =
1

2
{α1− 1

α
[σ3, X̂ ]} ,

α = [2(1 + x̂3)]
1/2 . (4.27)

It is easy to verify that s(X̂) appearing in Eq.(4.27) is a unimodular unitary matrix

and fulfills Eq.(4.26). Note that s(X̂) in Eq.(4.27) is, however, not differentiable at the
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south pole. Substitution of Eq.(4.27) into the interaction term appearing in Eq.(4.15)

yields

inTr σ3s(X̂)−1ṡ(X̂) = nε3ij x̂i ˙̂xj/(1 + x̂3) (4.28)

which is a conventional form of the interaction Lagrangian with a string singularity

along the x3 axis.

Alternatively, we can cover the two sphere S2 = {X̂} by two coordinate patches

U1 and U2 and find group elements si(X̂) which are defined and continuous in U1

and U2 and which fulfill Eq.(4.26). Substitution of si(X̂) for s in Eq.(4.14) leads to

Lagrangians Li defined on Ui. In the intersection region U1 ∩ U2, in view of Eq.(4.26),

[s1(X̂)−1s2(X̂)]σ3[s1(X̂)−1s2(X̂)]−1 = σ3 . (4.29)

This means that si differ from each other in the overlapping region by a gauge trans-

formation,

s1(X̂) = s2(X̂)ei
σ3
2
θ (4.30)

for some θ = θ(t). Hence L1 and L2 differ by the total time derivative of a function in

U1 ∩ U2:

L1 = L2 − nθ̇ . (4.31)

Such a (singularity free) formulation which works with two local Lagrangians is the

non-relativistic analogue of the work of Wu and Yang [22].
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5 RELATIVISTIC SPINNING PARTICLES

In this chapter, we give the Lagrangian description for relativistic spinning parti-

cles, which is formulated on he Poincare group manifold [24]. It describes a particle

which, after quantization, is associated with any particular irreducible representation

of the connected Poincaré group P↑
+. The Lagrangian formalism.can be generalized

[24, 25] to include couplings with both electro-magnetism and gravity. We recover the

usual equations of motion for the two systems, i.e., the Bargmann-Michel-Telegdi [26]

equations for electro-magnetism and the Mathisson - Papapetrou [27] equations for

gravitation. The latter equations have been generalized to include coupling to torsion

[28]. Such systems are also recovered from our formalism.

5.1 The Configuration Space

The Lagrangian is associated with a non-trivial principal fibre bundle structure U(1) →
L↑
+ → L↑

+/U(1), which is obtained in the following way. The bundle space is the

connected component of the Lorentz group L↑
+. The structure group is, as usual, U(1).

It acts on L↑
+ = {Λ} by right multiplication, i.e.,

Λ → Λg , g ∈ U(1) . (5.1)

Thus the base space is the space of left cosets L↑
+/U(1) . As in previous sections, we

can infer from connectivity arguments that L↑
+ 6= (L↑

+/U(1))× U(1). Thus the bundle

is non-trivial.

The configuration space Q for the Lagrangian is the connected Poincaré group, i.e.,

P↑
+ = {z,Λ) | z = (z0, z1, z2, z3) ∈ R4 , Λ = [Λa

b] ∈ L↑
+} . (5.2)

Here za is interpreted as the components of the space-time coordinate of the particle.

The interpretation of Λ is as follows. If pa and Sab are the momentum and spin

components of the particle, we write

pa = mΛa0 , m > 0 , (5.3)

and
1

2
Sabσ

ab = λΛσ12Λ
−1 ≡ −iS , (5.4)

where the matrix elements of σab are given by

(σab)cd = −i(δac δbd − δadδ
b
c) , (5.5)
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and λ is a constant. These equations are valid for a time-like four vector pa. The

cases where the four vector pa is not time-like will be treated later. Note that by the

definitions above,

Sab = λ(Λa1Λb2 − Λa2Λb1) , (5.6)

and

p0 = mΛ00 > 0 , pap
a = −m2 . (5.7)

Therefore we obtain
1

2
SabS

ab = λ2 , (5.8)

and

paS
ab = 0 . (5.9)

Here the Latin indices are raised and lowered by the Lorentzian metric

η = (−1, 1, 1, 1) . (5.10)

5.2 The Lagrangian for a Free Spinning Particle

The Lagrangian for a massive spinning particle is then given by

Lp = paż
a + i

λ

2
Tr

[

σ12Λ
−1Λ̇

]

, (5.11)

where pa is defined in the equation (5.3). The dynamical variables za, pa and Λ in

Eq.(5.11) are all functions of the parameter τ which parametrize the space-time tra-

jectory of the particle. The dot indicates differentiation with respect to τ . Note that

the action
∫

Lpdτ by construction is invariant under reparametrizations τ → f(τ).

Let us first derive the equations of motion. The variation of za is standard and

leads to

ṗa = 0 . (5.12)

The most general variation of Λ is, as usual,

δΛ = iε · σΛ , (5.13)

where

ε · σ = εabσab . (5.14)

This implies

δΛ−1 = −iΛ−1ε · σ . (5.15)
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Hence

δLp = −iTr [kε · σ] + i

2
Tr

[

S
d

dτ
(ε · σ)

]

, (5.16)

where the matrix k is defined by kab = żapb. The traces have a conventional meaning,

i.e.,

Tr [kε · σ] =
∑

ab

kab(ε · σ)ba . (5.17)

After a partial integration in the Eq.(5.16) and use of Eq.(5.12), we obtain the equation

for the conservation of total angular momentum:

d

dτ
Mab = 0 , (5.18)

where

Mab = zapb − zbpa + Sab . (5.19)

The proof that Lp actually describes a particle which is associated with an irre-

ducible representation of the connected Poincaré group P↑
+ follows by showing that

mass and spin have definite values. The mass has a definite value due to Eq.(5.7).

Note also that the sign of p0 is fixed by Eq.(5.3) since Λ ∈ L↑
+. Thus Lp does not

describe a particle which can have both positive and negative energies. Both signs can

be obtained by abandoning the condition that Λ00 > 0.

We can show that the spin has a definite value from equations (5.8) and (5.9). The

latter shows that in the rest frame of the particle, the spin tensor Sab has only space

components. The former shows that the magnitude of this spin tensor has a definite

numerical value. Thus the spin 3-vector Si ≡ εijkSjk/2 has a definite value in the

particle rest frame. In general, by computing the square of the Pauli-Lubanski vector

Wa, i.e.,

Wa =
1

2
εabcdM

bcpd , (5.20)

where εabcd is the usual anti-symmetric tensor with ε0123 = 1, we find

WaW
a =

1

2
m2λ2 . (5.21)

It is important to realize that the preceding equations imply

pa =
mża√
−ż · ż

, (5.22)

and

Ṡab = 0 . (5.23)



5 RELATIVISTIC SPINNING PARTICLES 29

Thus the conventional relation between momentum and velocity is recovered, and

Eq.(5.12) becomes the usual equation of motion when written in terms of za. The

derivation of these results relies on Eq.(5.18) which can be rewritten as

żapb − żbpa + Ṡab = 0 . (5.24)

in view of Eq.(5.12). It also relies on the time derivative of Eq.(5.9), i.e.,

paṠ
ab = 0 . (5.25)

Multiplication of Eq.(5.24) by pa shows that pa and ża are, in fact, parallel. The

constant of proportionality can be determined by using the normalization condition

pap
a = −m2 and the condition that p0 > 0. This gives Eq.(5.22). Now Eq.(5.22)

applied to Eq.(5.24) yields Eq.(5.23).

The canonical quantization of the Lagrangian Eq.(5.11) will be carried out in Sec-

tion 8.3.

5.3 The Spinning Particle in an Electro-Magnetic Field

We now discuss the coupling of electro-magnetism to spinning particles [25]. In order

that our system reduces to the standard formulation in the limit of zero spin and

electric charge q = e, the minimal coupling term eAa(z)ż
a must be present in the

interaction Lagrangian. Here Aa(z) is the electro-magnetic potential. When the spin

is non-zero, an additional coupling to the electro-magnetic field of the form cFab(z)S
ab

may be present, where Fab = ∂aAb − ∂bAa and c is a constant. As we will see below,

the constant c is associated with the gyro-magnetic ratio of the particle. One possible

choice for the electro-magnetic interaction Lagrangian is therefore

LEI = eAa(z)ż
a + c

√
−ż · żFab(z)S

ab . (5.26)

The second term in Eq.(5.26) is the generalization of the interaction term in the

Hamiltonian Eq.(3.6) for a non-relativistic, spinning particle. The factor
√
−ż · ż in

the second term of Eq.(5.26) was inserted in order to retain the invariance under

reparametrization transformations τ → f(τ). As will be shown later, alternatives to

Eq.(5.26) are possible.

The equations of motion are obtained by varying Λ and z in the total action

S =

∫

dτLP +

∫

dτLEI . (5.27)
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Variations in Λ now lead to

Ṡab + żapb − żbpa = c
√
−ż · ż

(

F ac(z)S b
c − F bc(z)S a

c

)

, (5.28)

where Mab is defined in Eq.(5.19). Variations of za

ṗa = eFab(z)ż
b + c

√
−ż · żScd∂aF

cd(z) + c
d

dτ

(

ża√
−ż · ż

S · F (z)
)

, (5.29)

where we have introduced the notation S · F (z) ≡ SabF
ab(z). Note that we no longer

have the usual relationship between momentum and velocity Eq.(5.22). In general,

the velocity and momentum variables are, in fact, not even parallel. This follows after

substitution of Eq.(5.28) and Eq.(5.29) into the condition

˙Sabpb + Sabṗb = 0 . (5.30)

We find,

pa = − 1

p · ż
(

m2ża + c
√
−ż · ż

(

pbF
bc(z)Sca + S b

a Scd∂bF
cd(z)

)

+cSab
d

dτ

(

żb√
−ż · ż

S · F (z)
)

+ eFbc(z)ż
bSab

)

. (5.31)

In order to compare this system with that of Bargmann et al. in Ref.[26], let us examine

the weak and homogeneous field limit. Upon substituting Eqs. (5.28) and (5.31) into

(5.29), we then find the Lorentz equation of motion, i.e.,

m
d

dτ

(

żb√
−ż · ż

)

= eF ab(z)żb . (5.32)

The equation for the spin precession can be expressed in terms of the Pauli-Lubanski

vector as defined in Eq.(5.20). Substituting Eqs.(5.28), (5.31), and (5.31) into Eq.(5.29)

into the equation

Ẇa =
1

2
εabcd

(

˙Sbcpd + Sbcṗd
)

, (5.33)

and again keeping terms which are at most linear in the homogeneous field we find

Ẇa = −2c
√
−ż · żFabW

b − 2c+ e/m√
−ż · ż

(

żcFcbW
b
)

ża . (5.34)

Equations (5.32) and (5.34) and are the Bargmann-Michel-Telegdi equations for a spin-

ning particle [26] with the identification

c = −ege
4m

, (5.35)
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where ge being the gyro-magnetic ratio.

The field equations for this system are obtained by adding the usual free field action,

i.e.,

SE = −1

4

∫

d4xFab(x)F
ab(x) , (5.36)

to Eq.(5.27). By varying the electro-magnetic potentials Aa and integrating by parts,

we find

∂aF
ab(x) = −q

∫

dτδ4(x− z(τ))żb + 2c

∫

dτ
√
−ż · ż ∂aδ4(x− z(τ))Sab , (5.37)

where, as above, we use the notation ∂a ≡ ∂/∂xa. The second term on the right

hand side of Eq.(5.37) represents the dipole contribution to the field in the sense of

Papapetrou [27, 28] (see also in this context the work by Bailyn and Ragusa [29] and

references therein).

As was stated above the interaction Lagrangian Eq.(5.26) is not uniquely deter-

mined (for a related discussion see Ref.[30]). For instance, we can replace the second

term in Eq.(5.26) by [31]

− c

m
paż

aSbcF
bc(z) . (5.38)

This term preserve all the symmetries of the previous system, yet it gives a different set

of equations of motion. In the limit of a weak homogeneous field the two systems can,

however, be shown to be equivalent. Note that the term in Eq.(5.38) can be absorbed

in the first term in LP in Eq.(5.11), through a ”renormalization” of the mass m:

m→M(α) = m+
ege
4m

; α = FabS
ab . (5.39)

In fact, if we no longer restrict ourselves to Lagrangians which are 1inear in FabS
ab, we

can consider the case where the massM(α) is an arbitrary function of α (which may be

relevant when one is considering particles with an anomalous magnetic moment [32]).

In this case the total particle Lagrangian would be

LP + LEI = Lp =M(α)Λa0ż
a + i

λ

2
Tr

[

σ12Λ
−1Λ̇

]

+ eAa(z)ż
a , . (5.40)

The resulting equations of motion are

Ṡab + żapb − żbpa =
d lnM(α)

dα
pcż

c
(

F ac(z)S b
c − F bc(z)S a

c

)

, (5.41)

where we have corrected for a printing error in Eq.(31) of Ref.[25], and

ṗa = eFab(z)ż
b +

d

dα
(lnM(α))pcż

c∂aFbd(z)S
bd . (5.42)
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These equations have also been considered by Dixon [33]. Even though the equations

Eq.(5.41) and Eq.(5.42) correspond to a large class of systems, depending on the choice

of M(α), they all lead to the Bergmann-Michel-Telegdi equations in the weak and

homogeneous field limit. Here the identification of the particle s mass and the gyro-

magnetic ratio ge are given by

m =M(0) , (5.43)

and

ge =
4

e

dM(α)

dα
|α=0 , (5.44)

which are, of course, consistent with the specific choice Eq.(5.35).

5.4 The Spinning Particle in a Gravitational Field

It is rather straightforward to generalize LP to include gravitational effects. It is then

convenient to regard the gravitational field as a gauge field [34], i.e., the Poincaré group

is regarded as a local symmetry group. Let h = haµ be the vierbein fields and Aab
µ the

corresponding Yang-Mills potentials for the Lorentz group. Our notation is as follows.

A Latin index like a is a tangent space index and a Greek index like µ is a curved space

index. The metric tensor is gµν = ηabh
a
µh

b
ν and δµν = hµah

a
µ. The action now is

S =

∫

dτLP +

∫

d4xLF , (5.45)

where

LP = mΛaoh
a
µż

µ + i
λ

2
Tr[σ12Λ

−1DτΛ] , (5.46)

and

LF = − 1

16πG
F ab
µνh

µ
ah

ν
bdet(h) . (5.47)

Here the Yang-Mills the components of the field strength F ab
µν are given by

Fµν ≡ i

2
F ab
µνσab = [Dµ, Dν ] . (5.48)

where Dµ is the covariant derivative

Dµ = ∂µ +
i

2
Aab

µνσab , (5.49)

and

DτΛ = Λ̇ + żµAµΛ , (5.50)
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with Aµ ≡ Aab
µ σab. Furthermore, in Eq.(5.47), G is Newton’s constant.

The equations of motion are found as follows. If we vary Λ as in Eq.(5.13), we see

that Eq.(5.16) is replaced by

δLP = −iTr
[

Jε · σ
]

+
i

2
Tr

[

S
d

dτ
(ε · σ)− [żµAµ, S]ε · σ

]

, (5.51)

where

Jab = haµżµmΛb0 . (5.52)

We thus find the equation for spin precession [35]

Jab − J ba + (DτS)
ab = 0 , (5.53)

where

(DτS) =
dS

dτ
+ [żµA

µ, S] . (5.54)

Variation of the coordinate zµ leads to the Mathisson-Papapetrou equation in the

presence of torsion [27, 28]. We find

δLP = −δzµ
(

ṗµ − żλ∂µh
aλpa

)

+ δżµ
1

2
Tr

[

SAµ
]

+ δzµ
1

2
Tr

[

S∂µA
λ
]

żλ , (5.55)

where pµ = haµpa. Partial integration in the second term and substitution from

Eq.(5.53) leads to

ṗµ − żλ∂µh
aλpa + żaA

ab
µ pb −

1

2
Tr

[

SFµν

]

żν = 0 . (5.56)

This is actually the same equation as the Mathisson-Papapetrou equation in the pres-

ence of torsion, i.e.,

(Dτp)a − hµa ż
ν
(

(Dµhν)
b − (Dνhµ)

b
)

pb −
1

2
hµaTr

[

SFµν

]

żν = 0 . (5.57)

In the Equation (5.57) we make use of the notation

(Dτp)a ≡
dpa
dτ

+ ηabż
λAbc

λ pc , (5.58)

and

(Dµhν)
b ≡ ∂µh

b
ν + Abc

µ hcν . (5.59)

For a discussion of the field equations, we refer to Ref.[24].
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5.5 General Irreducible Representations of P↑
+

To find Lagrangian descriptions for other unitary irreducible representations of the

Poincare group P↑
+ it is sufficient to alter the definitions of pa and Sab. For example,

in order to describe a massless particle, like the photon or a massless neutrino, we may

replace mΛa0 in Eq.(5.7) by

(Λa0 + Λa3)ω , (5.60)

where ω corresponds to the angular ”frequency” of the massless particle. Equation

(5.60) ensures that

pap
a = 0 . (5.61)

For a massless particle, the Pauli-Lubanski vector Wa, as given by the Equation (5.20),

obeys the condition that WaW
a = 0, and a since paW

a = 0, it is easy to show the

following identity

Wa = λpa . (5.62)

It follows that for λ = 1/2 and λ = 1, we get a ”neutrino” and a ”photon” of definite

helicity. The sign of the helicity can, of course, be reversed by reversing the sign of λ.

The tachyonic representations are obtained by choosing

pa = ρΛa3 . (5.63)

Different values of ρ and λ give different irreducible representations as may be seen

from the values of the invariants pap
a and WaW

a:

pap
a = ρ2 , (5.64)

and

WaW
a = −ρ2λ2 . (5.65)

For the irreducible representations with zero four-momentum, we set

pa = 0 , (5.66)

and choose the Lagrangian to be

LP =
i

2
Tr

[

KΛ−1Λ̇
]

, (5.67)

where K = Kabσ
ab is a fixed element of the Lie algebra. From the variation Eq.(5.13),

we find the equation of motion
d

dτ
Sab = 0 , (5.68)
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where
1

2
Sabσ

ab = ΛKΛ−1 . (5.69)

Thus S is the spin angular momentum. The irreducible representations are character-

ized by the two invariants [36], i.e., SabS
ab/2 and S∗

abS
ab/2. Since

1

2
SabS

ab = 2KabK
ab , (5.70)

and
1

2
S∗
abS

ab = 2K∗
abK

ab , (5.71)

we can, classically, get any real values for these invariants by choosing valuer for Kab

appropriately. To quantize the system (see Chapter 8), we are, as usual, obliged to

give them values which are appropriate for unitary irreducible representations [36].

5.6 Relation Between the Charge-Monopole System and the

Massless Spinning Particle System

In this section we point out some striking analogies between the charge-monopole

system and the system of a massless particle of fixed helicity. The similarities of the two

systems become evident when the roles of coordinates and velocities are interchanged.

The analogies are as follows:

1) The angular momentum of a charged particle in the field of monopole contains

a helicity n (see Chapter 4 and Eq.(4.7)) along the direction joining the monopole and

the charge. The angular momentum of a massless particle of spin λ contains helicity λ

along the direction of the momentum of the particle.

2) The components of the position vector of the charge-monopole system commute,

but the components of the velocity vector do not (at least not for finite charge-monopole

separation). Thus the system cannot be localized in velocity space. Furthermore, there

is no globally defined momentum vector, consequently a globally defined momentum

space wave function cannot be defined. For a massless particle, on the other hand, the

components of momenta commute, i.e.,

[pi, pj] = 0 . (5.72)

But the components of position do not

[xi, xj ] = −iλεijk
pk
p3

. (5.73)
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Using Eqs. (5.72) and (5.73), along with the canonical commutation relation Eq.(5.76)

as given below, we can verify that Ji = εijkxjpk + λpi/p generates rotations for this

system. Equation (5.73) is analogous to the commutation relation for the components

of velocity for the charge-monopole system Eq.(4.11). It is consistent with the fact

that the photon cannot be localized [37]. With the Hamiltonian H = |p| , we are lead

to the equations of motion

[xi, xj ] = −iλεijk
pk
p3

. (5.74)

and
d

dt
(εijkxjpk + λpi/p) , (5.75)

if we supplement the commutation relations Eqs.(5.72) and (5.73) with the canonical

commutation relation

[xi, pj] = iδij . (5.76)

3) The non-trivial topology of the charge-monopole system depends on the fact

that their relative spatial separation cannot become zero. As a consequence, the con-

figuration space has the topology R × S1. The unusual topological features of the

charge-monopole system can be characterized in terms of this bundle. If the relative

coordinate is allowed to vanish as well, the configuration space becomes R3, which does

not admit non-trivial U(1) bundles.

In contrast, since for a massless particle its three momentum cannot be transformed

to zero by Lorentz transformations, the origin in momentum space should be excluded.

The topology of p is thus R1 × S1. For a non-zero helicity, its Lagrangian description

is facilitated by making use of the U(1) bundle R1 × S3 over R1 × S2. In the photon

Lagrangian, the entire Lorentz group appears to play the role of the bundle space.

Consider, however, the translation group T2 as generated by

Π1 =M10 +M13 , (5.77)

and

Π2 =M20 +M23 . (5.78)

The photon Lagrangian is invariant under the transformations

Λ → Λ ˙exp(iαa(x)Πa) . (5.79)

Thus it can be globally written on L+/T2 = R1 × S3 by factoring these gauge degrees

of freedom. The Euclidean group generated by σ3, Π1, and Π2 is the familiar stability

group of the four momentum (1, 0, 0, 1).



5 RELATIVISTIC SPINNING PARTICLES 37

4) From the expression for the conserved angular momentum, we see that under a

parity transformation, λ → −λ for both systems under consideration. Thus a charge-

monopole system with a fixed value of e and g (e(g) being the electric (magnetic)

charge), or a massless particle of fixed helicity, is incompatible with parity invariance.

5) There are no bound states in the charge-monopole system. For large times, the

motion approaches that of two free particles, i.e., as t→ ∞, ,

x(t) → vt+ x0 +O(t−2) . (5.80)

where x(t) is the trajectory in the relative coordinate, and x0 and v are constant

vectors. It follows that as t→ ∞ the conserved angular momentum Ji = εijkxkpk+λx̂i,

where p = mv, approaches the value

Ji = εijk(x0)jxkpk + λp̂i , (5.81)

which has the same form as that for a massless particle. In Ref.[38], the preceding

limit for the charge-monopole system was discussed in detail. It was shown that the

commutation relations of x0 and p are the same as those in the Eqs.(5.72), (5.73), and

(5.76).

A canonical formalism was, furthermore, developed in Ref.[38] for a free, non-

relativistic particle with no internal degrees of freedom. This formalism was unusual in

that upon quantization, the angular momentum contained a helicity λ in the direction

of the three momentum p. If λ is chosen as half integral, the system thus becomes

”fermionic”. Such a system resembles a massless particle or the large time limit of

the charge-monopole system. In Ref.[38] no Lagrangian formulation of the system was

given. We may notice here that it is just the non-relativistic analogue of the photon

Lagrangian i.e.,

L = pp̂kẋk − iTr
[

σ3s
−1ṡ

]

. (5.82)

Here s ∈ SU(2), the momentum is pk = pp̂k and σkpkk = sσ3s
−1. Thus p is not an

independent variable, but is defined in terms of the dynamical group element s.
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6 YANG-MILLS PARTICLES

The classical description of a charged particle in an electro-magnetic field is well-

known. The motion of the particle is described by the Lorentz force equation, while

the dynamics of the field is described by the Maxwell equations. The non-Abelian

generalization of these equations is due to Wong [39]. Instead of an electric charge,

the corresponding Yang-Mills particle carries a spin-like variable I which transforms

under the adjoint representation of the internal symmetry group. The Wong equations

provide a coarser level of description than a non-Abelian gauge field theory since they

treat the sources only as particles. Hence they may be more tractable than a gauge

field theory and may also reveal important features of the latter. For such reasons,

there is currently a growing interest in the Wong equations. Below, we first recall the

Wong equations. Then the Hamiltonian and Lagrangian descriptions of these equations

are discussed. The Lagrangian description in our approach [12, 40] requires the use of

non-trivial fiber bundles.

6.1 The Wong Equations

The Wong equations, with a gauge coupling e, are

m
d

dτ

[

ża√
−ż2

]

= −eF α
ab(z)Iαż

b , (6.1)

and

(Da)αβF
β
ab(x) = e

∫

dτδ4(x− z(τ))żb(τ)Iα(τ) . (6.2)

Here, za = za(τ) denotes the particle trajectory in Minkowski space, while F β
ab ≡

∂aA
β
b − ∂bA

β
a + ecβαγA

α
aA

γ
b and (Da)αβ ≡ δαβ∂a + ie[T (γ)]αβA

γ
a with the adjoint repre-

sentation [T (γ)]αβ = −icαβγ , are the usual Yang-Mills tensor and covariant derivative,

respectively. The range of the indices α,β and γ is equal to the dimension n of the

internal symmetry group G. The vector I = I(τ) transforms under the adjoint repre-

sentation of G. From Eq.(6.2) and the identity

[Da, Db)]αβF
β
ab = 0 , (6.3)

one finds the following consistency condition on I:

d

dτ
Iα(τ)− eża(τ)Aρ

a(z(τ))cραβIβ(τ) = 0 , (6.4)
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Here cραβ are the structure constants of G.

It is known [12] that the spectrum of the Casimir invariants constructed out of I

determines the irreducible representations (IRRs) of G which occur in the quantum-

mechanical Hilbert space. We want to describe a particle which belongs to a definite

IRR of G. Thus we impose also the constraint: Casimir invariants of I have definite

numerical values. It is easy to show that this constraint is consistent with the time

evolution of I according to Eq.(6.4).

It is instructive to verify that the preceding equations reduce to the Lorentz and

Maxwell equations when G = U(1). In this case I has only one component, say I1.

Since, in this case, cραβ = 0, the component I1 is a constant of motion by Eq.(6.4) and

it can be assigned a definite numerical value, say λ. Identifying eλ with the electric

charge, Eqs.(6.1) and (6.2) are seen to reduce to the Lorentz and Maxwell equations

of motion.

6.2 The Hamilton Formalism

The Hamiltonian is a simple generalization of the electrodynamic Hamiltonian. It is

H = HF +HP , (6.5)

where

HP =
[

(pi − eAα
i (z)Iα)

2 +m2c4
]1/2

+ eAα
0 (z)Iα , (6.6)

and HF is the Hamiltonian for the Yang-Mills field [5]. The latter is well-known. In

writing Eq.(6.6), we have identified z0 with time τ ≡ t. The Poisson brackets (PBs)

involving zi’s and pi’s, i = 1, 2, 3, are conventional. They have also zero PBs with Iα.

The PBs involving Iα alone are

{Iα, Iβ} = cαβγIγ . (6.7)

It is then straightforward to verify that the Hamiltonian Eq.(6.5) and the PBs in

Eq.(6.7) lead to the required equations of motion.

6.3 The Lagrangian Formalism

The presence of a spin-like variable I whose Casimir invariants are fixed suggests in

analogy to previous sections that a Lagrangian can be found on a configuration space

E which contains additional gauge degrees of freedom. This is indeed the case. The
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space E turns out to be R3⊗G where R3 is the usual space of spatial coordinates and

G is the internal symmetry group.

We assume as usual that G is a compact and connected Lie group with a simple

Lie algebra G. Let Γ = {s} be a faithful unitary representation of G. The associated

Lie algebra Γ has a basis T (ρ)(ρ = 1, 2, ..., n)) with T (ρ)† = T (ρ). More precisely, this

is a basis for iG. We choose T (ρ) so that the normalization condition

Tr[T (ρ)T (σ)] = δρσ , (6.8)

is fulfilled.

The commutation relations of T (ρ) are

[T (ρ), T (σ)] = icρσλT (λ) . (6.9)

The Lagrangian for the particle dynamics is

L = −m[−ż2]1/2 − iTr[Ks−1(τ)Dτs(τ)] . (6.10)

Here s ≡ s(τ) ∈ Γ represents the novel degrees of freedom in L. The covariant

derivative Dτ is defined by

Dτ =
d

dτ
− ieżaAa , Aa ≡ Aα

a (z(τ))T (α) , (6.11)

where Aα
a are the Yang-Mills potentials. The matrix K is defined by

K = KρT (ρ) , (6.12)

where Kρ are real valued constants. Their specific values determine the IRR of G to

which the particle belongs.

The Yang-Mills Lagrangian

− 1

4

∫

d3xF α
abF

αab , (6.13)

can be added to L. We omit it here since the treatment of the Yang-Mills is standard

(see, e.g., Ref.[5]).

The definition of the internal vector I ≡ I in terms of s and K is

I = IαT (α) = sKs−1 . (6.14)

The resemblance of equations (6.10) and (6.14) to the corresponding equations in the

previous sections should be noted.
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Let us now derive the equations of motion. The general variation of s is, as usual,

δs = iε · Ts , ε · T = εαT (α) . (6.15)

For this variation,

δL = Tr[Ks−1(ε̇ · T + ie[ε · T, żAa])s] . (6.16)

This becomes after a partial integration

δL = −Tr[ε · T (DτI)] , (6.17)

where

DτI ≡ dI

dτ
− ie[żaAa, I] . (6.18)

Since DτI ∈ Γ and εα are arbitrary, the variation of s leads to Eq.(6.4), i.e.,

DτI = 0 . (6.19)

The Euler-Lagrange equation for the variation of za can be obtained from

d

dτ

∂L

∂ża
= m

d

dτ

[

ża

(−ż2)1/2
]

− d

dτ
Tr[iIAa]

=
∂L

∂za
= −eTr[I∂aAb]żb . (6.20)

In view of Eq.(6.19), we thus find Eq.(6.1), i.e

m
d

dτ

[

ża

(−ż2)1/2
]

= −eTr[IF ab]żb , (6.21)

where Fab ≡ F α
abT (α).

The variation of Aa gives Eq.(6.2) in a standard way. Note that for this variation,

the relevant term in the interaction has the conventional form

− eżaIαA
α
a (z) . (6.22)

It is again helpful to understand the form of L when the gauge group is U(1),

i.e., s = exp(iψ) where ψ is a real-valued function of τ . The we can treat K as a

constant number and L differs from the usual electro-magnetic Lagrangian by a term

proportional to dψ/dτ . Since the latter is a time-derivative of a function, we thus see

that for the U(1) gauge group, L is equivalent to the usual Lagrangian.
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6.4 Gauge Properties of L

The Lagrangian L is invariant under the usual Yang-Mills gauge transformation. Thus

if h(x) ∈ Γ, it is invariant under

Aa(x) → h(x)Aa(x)h(x)
−1 +

i

e
h(x)∂ah(x)

−1

s(τ) → h[z(τ)]s(τ) . (6.23)

It is also weakly invariant under a novel gauge group. The latter acts only on s and

not on Aa. It depends in general on the nature of K. We thus explain it under two

headings: (A) the generic case and (B) the non-generic case. In the discussion which

follows we assume that K 6= 0.

A. The Generic Case

Let H = {g} denote all elements in Γ with the property

gKg−1 = K . (6.24)

Thus H is the stability group of K under the adjoint action.

In the generic case, the Lie algebra H corresponding to H is just the Cartan sub-

algebra containing K. If C is an a priori chosen Cartan subalgebra, then in this case,

there is a t ∈ Γ such that

tHt−1 = C . (6.25)

For example, if G = SU(2), Γ is its two-dimensional irreducible representation and

K = σ3, then H = U(1) = {exp[iσ3θ/2]}. On the other hand, if Γ is the adjoint

representation of SU(3), so that Γ = SU(3)/Z3, and K = I3, then H is spanned by I3

and Y (with a standard SU(3) notation).

It can be shown that ”most” K are of this sort. The closure of the set of such K

is all of the Lie algebra Γ [41]. Note that for the generic case the group H and the Lie

algebra H are Abelian.

Under the gauge transformation

s→ sg , g ∈ H , (6.26)

with s and g τ -dependent, we find

L→ L− iTr[Kg−1ġ] . (6.27)
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The extra term is the time derivative of a function since H is Abelian. For instance,

we can choose a basis K, Lα, where α = 1, 2, ..., k for H such that

Tr[KLα] = 0 . (6.28)

Then we can write

g = eiΘKeiΘαLα . (6.29)

For this form of g,

− iTr[Kg−1ġ] = Tr[K2Θ̇] , (6.30)

in view of Eq.(6.28). Thus L is weakly invariant under H . The principal fiber bundle

structure relevant to L is

H → Γ → Γ/H , (6.31)

where Γ/H = {sH} is the space of left cosets. Thus Γ and Γ/H are the bundle and

base spaces and H is the structure group.

These principal fiber bundles are never trivial. For instance, if Γ is the defining

representation of SU(2) and H = U(1) = exp(iΘσ3/2) we get the Hopf fibration of

the two sphere. The non-triviality of the bundle can also be seen in general. Since H ,

being Abelian is the product of U(1)s (modulo perhaps a discrete group), it is infinitely

connected. But Γ, being the representation of a simple compact Lie group, is finitely

connected. Thus Γ 6= Γ/H ×H .

It follows that it is impossible to fix the gauge globally in this problem. However

L is invariant under gauge transformations of the form {exp(iΘαLα)} [Cf. equations

(6.29) and (6.30). Thus the corresponding gauge degrees of freedom can be eliminated

and L can be written in terms of a configuration space Γ/{exp(iΘαLα)}. Since L is

only weakly invariant if Θ 6= 0, the gauge degree of freedom for the U(1) gauge group

{exp(iKΘ)} cannot be so eliminated.

We note here the possibility of a topological problem which can prevent the elimi-

nation of the gauge degrees of freedom associated with Γ/{exp(iΘαLα)}. It can occur

that the ratios of the eigenvalues of K are not all rational. Then {exp(iΘK)} is iso-

morphic to the non-compact group of translations on R1 . The topology of the latter is

incompatible with the topology of the compact H . Thus, in this case, the decomposi-

tion g = exp(iΘK) exp(iΘαLα) is incompatible with the topology of H and we cannot

eliminate these gauge degrees of freedom in a smooth way.

Note that since Γ is a faithful representation of G we can replace Γ by G in much

of the preceding discussion.
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B. The Non-Generic Case

The non-zero elements in the complement of the generic K’s in Γ constitute the

non-generic K’s [12]. The stability group

H{g ∈ Γ|gKg−1 = K} , (6.32)

for a non-generic K is larger than that generated by the Cartan subalgebra containing

K. For example, if G = SU(3) and K = Y , then H = U(2). A basis for H is

I1, I2, I3, Y There are no non-generic elements for SU(2).

Let K be non-generic with stability group H . We can still choose a basis K,Lα,

where α = 1, 2, ..., k for H with the property (6.28). Now

Tr[K[Lα, Lβ]] = Tr[Lα[Lβ , K]] = 0 . (6.33)

If we write

Lα, Lβ] = dαβγLγ + ξK . (6.34)

it follows that

Tr[K2] = 0 . (6.35)

But Tr[K2] = Tr[KK†] > 0 Thus ξ = 0. The conclusion is that H is the direct sum of

two Lie algebras:

H = H0 +H1 . (6.36)

The algebra H0 is one dimensional and is spanned by K. The algebra H1 has a basis

Lα, where α = 1, 2, ..., k. For the SU(3) example above, H0 = U(1) with basis Y and

H1 = SU(2) with basis I1, I2, I3.

A general gauge transformation is of the form

g = eiΘKeiΘαLα . (6.37)

Under s→ sg

L → L− iTr[Kg−1ġ]

= L+ Tr[K2Θ̇] + Tr[e−iΘαLα
d

dτ
eiΘαLα ] . (6.38)

Since H1 is a Lie algebra, the term within the parentheses in Eq.(6.38) is in H1.

Hence the last term is zero by Eq.(6.28). It follows that L is weakly invariant under

gauge transformations due toH . The gauge group in this case is in general non-Abelian.
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The principal fiber bundle structure is

H → Γ → Γ/H , (6.39)

as in the generic case. It is non-trivial because H is infinitely connected. The latter

statement is proved as follows: Let H0 and H1 be the groups associated with H0 and

H1. Then the group for H0+H1 is H = H0⊗H1, possibly modulo some discrete finite

group. Thus H is infinitely connected. For example, if Γ = SU(3) and K = Y , then

H is U(2) which is infinitely connected. Notice that H is then not SU(2)⊗ U(1), but

SU(2)⊗ U(1)/Z2.

As in the generic case, L is invariant under H1. Thus the H1 gauge freedom can be

eliminated and L can be written as a function on Γ/H1. After this partial elimination

of gauge freedom, there still remains the H0 gauge freedom and the principal fiber

bundle structure

H0 → Γ/H1 → Γ/H . (6.40)

This remaining gauge freedom cannot be eliminated.

The gauge group can thus be reduced to U(1) in L both the generic and non-

generic case with the possible exception as noted in the section on the elimination of

some gauge degrees of freedom in the generic case. In fact, in almost all our examples

from particle mechanics, the gauge group is either U(l) or can be reduced to U(l) by

a process similar to the one above. In Chapter 10 we prove a general theorem which

shows that under certain assumptions nothing more involved than U(l) bundles need

appear in mechanics. That is, we show that a global Lagrangian can always be found

by enlarging the space of degrees of freedom appropriate to the equations of motion to

at most a U(1) bundle on this space.

|

6.5 An Application: Scattering off ’t Hooft-Polyakov

Monopole

As an aside, we now illustrate how one can apply the preceding formalism to probe a

specific Yang-Mills field configuration. The field configuration of interest is that of the

’t Hooft-Polyakov monopole solution [42]. When placed at large distances from the

monopoles center, the Yang-Mills particle is known to behave similarly to that of an

electric charge in a Dirac monopole field [43]. This follows quite simply through the

use of the Lagrangian Eq.(6.10), as is shown below.
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In this example G = SU(2) and we may set T (α) = σα/
√
2. At large distances

from the center of the ’t Hooft-Polyakov monopole the gauge potentials Aa take the

form

Ai(x) =
1

2e|x|2 εαijxjσα ,

A0(x) = 0 , |x|2 = xixi , i = 1, 2, 3 . (6.41)

Here we shall restrict the discussion to non-relativistic particles. Upon substituting

into L we obtain

L =
1

2
mż2i − iTr[Ks−1ṡ]− i

4
Tr[sKs−1[ẑ,

d

dτ
ẑ]] ,

ẑ =
ziσi
r

, r = |z| . (6.42)

In analogy with Chapter 4, let us write

ẑ = tσ3t
−1 , (6.43)

where where t ∈ Γ will be regarded as a dynamical variable defining ẑ. Notice that the

dynamics of this system will not be altered if we make the replacement

s = tu , u ∈ Γ , (6.44)

in Eq.(6.42). Variations of s can be implemented through variations of u. They can also

be implemented through variations of t, which will simultaneously rotate the particle

and its isospin I. Clearly, the above two variations are equivalent to varying s and t

independently.

Thus an equivalent Lagrangian for this system is

L =
1

2
mż2i − iTr[K(tu)−1 d

dτ
(tu)]− i

4
Tr[tuK(tu)−1[ẑ,

d

dτ
ẑ]] (6.45)

=
1

2
mṙ2 +

1

4
mr2Tr[(

d

dτ
ẑ)2]− 1

2
Tr[Itσ3]Tr[σ3t

−1ṫ]− iTr[Ku−1u̇] , (6.46)

using the fact that Tr[ẑdẑ/dτ ] = 0, and where we have defined It ≡ t−1It. Let us now

take up the equations of motion. Variations of the coordinate zi will be performed

through variations of r and t [cf. Chapter 4]. Variations of u yield

İt −
1

2
Tr[σ3t

−1ṫ][It, σ3] = 0 . (6.47)
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The isospin vector It thus precesses around the third direction in internal space. The

precessional frequency depends on the position of the particle through the variable t.

By taking the trace of Eq.(6.47) with σ3, we find

Tr[σ3It] = −2n = constant . (6.48)

The remaining equations of motion are obtained from variations in the first three terms

in Eq.(6.46). Notice that the first three terms are identical to the Lagrangian Eq.(4.15)

describing a charged particle in a Dirac monopole field with the assignment Eq.(6.48).

Thus the Yang-Mills particle behaves as a charged particle in a Dirac monopole field

with additional internal dynamics given by Eq.(6.47). Here the correspondence is

eg

2π
↔ −Tr[σ3It] . (6.49)

Unlike the charge-monopole system of Chapter 4, n is not a fixed number in the La-

grangian, but rather a dynamical quantity which obeys the inequality:

n2 ≤ 1

2
Tr[I2t ] =

1

2
Tr[I2] . (6.50)

We thus expect that in the quantum mechanical system for the particle, a spectrum in

n will appear, consistent with the inequality (6.49)[43].
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7 KALUZA-KLEIN THEORY

The unified field theory of Kaluza and Klein [44] has been experiencing a revival

of interest since the development of gauge field theories in elementary particle physics.

Here the dynamical fields, denoted collectively by ψ, depend both on a space-time

coordinate x and a group element s, i.e., ψ ≡ ψ(x, s). If M4 = {x} is the Minkowski

space and G = {s} denotes the internal symmetry group, the fields are thus defined

on the principal fibre bundle M4 ×G [45, 46].

In this section, we will discuss such theories in the context of particle mechan-

ics. For extended objects [47], the Kaluza-Klein formalism can be generalized in a

straightforward manner [48].

7.1 Kaluza-Klein Description of Point Particles

The conventional description of the Kaluza-Klein formalism is as follows. Let xa denote

the space-time coordinate of the particle. Let G = s be a semi-simple, compact Lie

group represented by unitary matrices. Here we wish to use G to describe the internal

degrees of freedom of the particle. The natural metric to be used on M4 × G is a

combination of the invariant line element on M4 and the left invariant metric on G

[45]. The Lagrangian is chosen to be

L = −m
(

−ẋ2 − λTr[s−1ṡs−1ṡ]
)1/2

. (7.1)

Here m and λ are constants, and xa ≡ xa(τ), s ≡ s(τ). Geometrically, this Lagrangian

has the following meaning. Let us enlarge the Minkowski M4 to M4 × G and regard

the latter as the configuration space. Recall that the Lagrangian for a free particle pos-

sessing no internal symmetries is proportional to the invariant length inM4. Similarly,

the Lagrangian (7.1) is proportional to the invariant length on M4 ×G.

The system given by Eq.(7.1) has the following properties:

i) The states in the quantum system described by L belong to a reducible represen-

tation of G. This differs from the quantum system for the Yang-Mills particle described

in Chapter 6 (also Cf. Sec.8.4).

ii) The square of the momentum, p2, depends on the quadratic Casimir operator.

This leads to a mass spectrum for the particle.

Regarding i) we note that quantum mechanical Hilbert space carries the regular

representation (see Sec.8.5). Thus the multiplicity of an irreducible representation is

equal to its dimension by the theorem of Peter and Weyl [11].
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We can show ii) by computing the operator pa which generates translations, and

the internal generators Iα from L, and showing that they are algebraically related.

Thus we find

pa =
∂L

∂ẋa
=
m2ẋa
L

. (7.2)

The generators Iα can be found by examine the variation

δs = iεαT(α)s , (7.3)

where T(α) are the hermitian generators of G, which fulfill

Tr[T(α)T(β)] = δαβ . (7.4)

It follows that

δL = −iε̇α
m2λ

L
Tr[T(α)ṡs−1] . (7.5)

Thus the quantities

Iα = i
m2λ

L
Tr[T

(

α)ṡs−1
]

, (7.6)

are conserved. In Section 8.5 they will be shown to generate internal symmetry trans-

formations. Now

pap
a =

m4

L2
ẋ2 , (7.7)

and furthermore,

IαIα = −m
4λ4

L2
Tr

[

s−1ṡs−1ṡ
]

, (7.8)

where we have used the completeness of the generators, i.e .

T(α)Tr
[

T(α)s−1ṡ
]

= s−1ṡ . (7.9)

Hence we obtain

pap
a − 1

λ
IαIα = −m2 . (7.10)

By defining the mass M as p2 =M2, we can rewrite Eq.(7.10) as follows

M2 = m2 − 1

λ
IαIα . (7.11)

If λ is less than zero, the M2-spectrum increases with the quadratic Casimir operator.

If λ is larger than zero, the mass M becomes imaginary for some value of IαIα, L

becomes complex and the system is inconsistent.
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7.2 Reformulation of the Kaluza-Klein Theory

We shall now formulate the Kaluza-Klein Lagrangian in a different way. Although the

classical equations of motion for this new system are identical to those discussed in

the previous section, the corresponding quantum theories differ. Unlike in the previous

section, the quantum mechanical Hilbert space derived from the following Lagrangian

carries an irreducible representation of the group G.

The idea here is a simple generalization of the Lagrangian formalism used to describe

the relativistic point particle as discussed in detail in Chapter 5. For the latter, if the

mass is m and the spin is zero, the Lagrangian has the form

L = paẋ
a , (7.12)

where pap
a = −m2. We can generalize Eq.(7.12) to

L = paẋ
a + iTr

[

Ks−1ṡ
]

, (7.13)

where pa is now defined by

pa =

(

m2 +
1

λ
Tr

[

K2
]

)1/2

Λa0 . (7.14)

If K = KαT (α) is treated as a dynamical variable we recover precisely the system

discussed in the previous section, where the quantum mechanical Hilbert space carries

the left regular representation of G. Here, however, K will be treated as a constant.

The equivalence of Eqs.(7.14) and (7.1) at the classical level is now shown by proving

that for the Lagrangian Eq.(7.13), Tr [K2] is the quadratic Casimir operator of the

generators of G. Now consider the variation Eq.(7.3) of s for which

δ
(

iTr
[

Ks−1ṡ
])

= −Tr
[

sKs−1T(α)ε̇α
]

. (7.15)

Consequently, the following charges Jα are conserved

Jα ≡ Tr
[

T(α)sKs−1
]

. (7.16)

Jα actually form the generators of G on the quantum mechanical Hilbert space. The

desired result

pap
a = −m2 − 1

λ
JαJα , (7.17)

then follows from Eq.(7.14).
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Note that the system described here is equivalent to the description of a free

Wong article (Cf. Chap.6), except for the constraint (7.17), which resulted from the

redefinition of momentum. The constraint (7.17) is rather arbitrary. In fact, we

can easily arrange for any mass-internal symmetry relation by changing the func-

tion appearing in front of Λa0 in Eq.(7.14)). In order to see this we notice that if

Cn(J), n = 1, 2, ..., , rank(G), denotes the Casimir invariants of G, then by Eq.(7.16),

Cn(J) = Cn(K). It follows that by setting

pa = f(C1(K), C1(K), ...)Λa0 , (7.18)

for a suitable function f , we can get any mass spectrum. For a conventional formulation

of theories of this kind we refer the reader to the work by N. Mukunda et al. [49]. Note

that the procedure of redefining momenta (or actually the mass) of a particle was

also found to be useful in introducing an anomalous magnetic moment for a spinning

particle (Cf. Sec.5.3).

7.3 Interaction with External Fields

Above we have considered a non-interacting particle with internal degrees of freedom.

The incorporation of external fields is straightforward and as a result we can obtain the

Wong equations [39]. In order to achieve this result we replace the time derivatives of

the group element s(t) in Eq.(7.1) by the corresponding covariant derivative Eq.(6.11),

i.e., we consider the Lagrangian [48]

L = −m
(

−ẋ2 − λTr
[

s−1Dτss
−1Dτs

])1/2
. (7.19)

The equation of motion for the non-Abelian charges

Iα = i
m2λ

L
Tr

[

T(α)(Dτs)s
−1
]

, (7.20)

is, as before, obtained by considering the variation Eq.(7.3), i.e., δs = iεαT(α)s. The

analogue of the Eq.(7.5) is then

δL = −iε̇α
m2λ

L
Tr[T(α)(Dτs)s

−1]

+εα
m2λ

L
Tr

[

[ẋaAa,T(α)(Dτs)s
−1]

]

. (7.21)

We obtain the equation of motion

dIα(τ)

dτ
= i[ẋa(τ)Aa(x(τ)), Iα(τ)] , (7.22)
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i.e., the Eq.(6.19).

The Euler-Lagrange equation for xa(τ) is

d

dτ

(

∂L

∂ẋa

)

= m2 d

dτ

(

ẋa

L

)

− d

dτ
(IAa)

= −eTr [I∂aAb] ẋb , (7.23)

as in the derivation of Eq.(6.20). By choosing the parameter τ in such a way that

L = m, we obtain the Lorentz-Maxwell-Wong equation (6.1) in the proper time gauge.

Finally, we notice that in the presence of an external field the mass-internal sym-

metry relation Eq.(7.10) is changed to

(pa + eIαA
α
a ) (p

a + eIαA
aα)− 1

λ
IαIα = −m2 . (7.24)
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8 THE CANONICAL FORMALISM AND

QUANTIZATION

In this section we carry out the canonical quantization for the various systems dis-

cussed in the previous chapters. Since all the Lagrangians presented here are singular,

i.e., there exist constraints amongst the corresponding phase-space variables, we will

rely on Dirac’s quantization procedure. For extensive reviews on this procedure, see

Ref.[3].

A common feature of all the systems presented here is that elements of a group G

appear as dynamical variables. A method of treating group elements for setting up the

canonical formalism was given in Refs.[3] and [12]. We recall it below.

Let s ∈ G be parametrized by a set of variables (local coordinates) ξ = (ξ1, ξ2, . . . , ξn)

so that s = s(ξ), n being the dimension of G. The functional form of s(ξ) will not

be important for us. We can then regard the Lagrangian as a function of ξ and ξ̇ as

well as of any other configuration space variables present in the system and of their

velocities.

We first note a preliminary identity. Let us define a set of functions f(ε) =

(f1(ε), f2(ε), . . . , fn(ε)), ε = (ε1, ε2, . . . , εn), by

eiT (α)εαs(ξ) = s[f(ε)], f(0) = ξ , (8.1)

where T (α)’s form a basis for the Lie algebra of the group with

[T (α), T (β)] = i cαβγT (γ) . (8.2)

Differentiating Eq.(8.1) with respect to εα and setting ε = 0, we find

iT (α)s(ξ) =
∂s(ξ)

∂ξβ
Nβα(ξ) , (8.3)

where

Nβα(ξ) =
∂fβ(ε)

∂εα
|ε=0 . (8.4)

Here detN 6= 0, for if not, there exist χα, not all zero, such that Nρσχσ = 0. By

Eq.(8.3), χσT (σ)s(ξ) = 0, and hence χσT (σ) = 0. But this contradicts the linear

independence of the T (α)’s.
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Now the coordinates ξα and their conjugate momenta πα fulfill the Poisson bracket

(PB) relations

{ξα, ξβ} = {πα, πβ} = 0 ,

{ξα, πβ} = δαβ . (8.5)

Since N is nonsingular, we can replace the phase space variables πα by tα where

tα = −πβNβα . (8.6)

From Eqs.(8.3) and (8.5) it follows that

{tα, s} = i T (α)s , (8.7)

{tα, s−1} = −i s−1T (α) , (8.8)

{tα, tβ} = cαβγ tγ . (8.9)

To prove Eq.(8.9) note that from the Jacobi identity and Eq.(8.5) it follows that

{{tα, tβ}, s} = −{{tβ, s}, tα} − {{s, tα}, tβ}

= i cαβγT (γ)s . (8.10)

Thus

{tα, tβ} = cαβγtγ + F , (8.11)

where {F, s(ξ)} = 0. Consequently F is independent of the π’s. Substituting πα = 0 in

Eq.(8.11), we find F = 0. This proves Eq.(8.9). It also follows from a direct calculation

using Eq.(8.3) and Eq.(8.6).

The PB’s Eqs.(8.7), (8.8), and (8.9) involving tα and s are simple and do not

require a particular parameterization for s(ξ). We therefore find it convenient to use

these variables in canonically quantizing the systems below.

8.1 Non-Relativistic Spinning Particles

Here we show how the Hamiltonian description for a spinning particle (Eqs.(3.1)-(3.6))

is obtained from the Lagrangian Eq.(3.19) [Eqs.(3.26)]. Now G is SU(2) = {s} and

T (i) = σi/2. The phase-space coordinates are xi, pi, s and ti, where pi is canonically

conjugate to xi . From Eq.(3.19) [(3.26)] we obtain the following primary constraint:

φi = ti − Si ≈ 0 , (8.12)
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where Si is defined in Eq.(3.18). From Eqs.(8.7), (8.8), and (8.9),

{φi, φj} = εijk(φk − Sk) . (8.13)

Applying Dirac’s procedure, the following Hamiltonian is obtained from the Lagrangian

Eq.(3.19):

H =
p2

2m
+ φiηi , (8.14)

where ηi are Lagrange multiples. From the requirement that

{φi, H} = 0 , (8.15)

on the reduced phase space, we find that there exist no secondary constraints. Instead,

we obtain conditions on ηi, i.e.,

εibcηbtc = 0 . (8.16)

Since those ηi = η
(t)
i in a direction parallel to ti are left arbitrary, only those

variables which have a weakly zero PB’s have a well defined time-evolution. Only such

variables are of physical interest. We will call them observables. Of course, xi and pi

are observables. In addition, so are ti and Si. This follows from

{ti, φj} = εijkφk , (8.17)

and

{s, η(t)i φi} = − i

2
η
(t)
i σis =

i

2
sσ3 . (8.18)

Eq.(8.18), which is weakly valid, corresponds to an infinitesimal version of the U(1)

gauge transformation discussed in Chap.3. Hence only those functions of s which are

invariant under gauge transformations (3.36) are also observables. But these are pre-

cisely Si or functions thereof. However, we can eliminate Si by applying the constraints.

Thus a complete set of observables on the reduced phase space are

xi , pi and ti , (8.19)

since Si can be eliminated via the constraints. In so doing note that

titi = λ2 . (8.20)

It remains to compute the Dirac Bracket (DB’s) for the variables (8.20). But these

are identical to the corresponding PB’s since all variables (8.20) have weakly zero PB
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with the constraints (Cf. Eq.(8.17). Consequently, we have recovered the Hamiltonian

description for a non-relativistic spinning particle Eqs.(3.1)-(3.5). Note that instead

of eliminating Si via the constraints, we could have eliminated ti. In this case the

DB’s involving Si do differ from the corresponding PB’s. It can be shown that DB’s

for two Si’s are given by Eq.(3.4) Consequently, both procedures are equivalent. It is

straightforward to repeat the above analysis in the case where a spinning particle with

magnetic moment µ is placed in an external magnetic field.

In passing to the quantum mechanical system, as usual, we replace the Poisson

bracket by −i times the commutator bracket. Now the particular representation which

occurs in the quantum theory is determined by λ (Cf. Eq.(8.20)). This implies that i)

only one irreducible representation (IRR) appears in the theory, and ii) quantization

is possible only if λ2 is restricted to having the values

t2 = l(l + 1) , l = 0,
1

2
, 1, .... . (8.21)

Note ii) is similar to the Dirac charge quantization condition which occurs in magnetic

monopole theory.

8.2 Magnetic Monopoles

The canonical quantization for the magnetic monopole theory proceeds in a similar

fashion to the proceeding section. The essential difference is due to equation Eq.(4.14),

which constrains the configuration space variables for the monopole. Consequently,

the independent phase space coordinates now consist of r, pr, s and ti, where pr is

canonically conjugate to r. From Eq.(4.15) we find only one primary constraint,

φ ≡ x̂iti − n ≈ 0 , (8.22)

where x̂i is defined in Eq.(4.13). Computing the Hamiltonian

H =
p2r
2m

+
1

2mr2
(

titi − n2
)

+ ηφ . (8.23)

Here η is a Lagrange multiplier. The constraint Eq.(8.22) is rotationally invariant, i.e.,

{φ, ti} = 0. Hence the requirement that {H, φ} = 0 on the reduced phase space leads

to no secondary constraints.

As before, observables are those variables which have zero PB’s with φ. Among

them are

xi , pi , ti and x̂i . (8.24)
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The latter follows from

{φ, s} =
i

2
sσ3 , (8.25)

which is analogous to (8.18). As before, this corresponds to a U(1) gauge transforma-

tion, and only those functions of s which are invariant under sue transformations are

observables. But these are precisely x̂i or functions thereof, so Eq.(8.24) corresponds

to a complete set of observables subject to the constraint (8.22).

A representation for the quantum theory can be constructed as follows. Let us

regard the wave functions as functions of r and s:

ψ ≡ ψ(r, s) . (8.26)

The position coordinates are diagonal in this representation in view of Eq.(4.13). The

momentum pr acts as the usual differential operator on ψ. The operators ti are the dif-

ferential operators which represent the elements σi/2 in the left regular representation

of SU(2), i.e.,

[exp (iθktk)ψ] (r, s) = ψ(r, exp(− i

2
θktk)s) . (8.27)

The constraint (8.22) is taken into account by imposing the condition

x̂itiψ = nψ , (8.28)

on the wave functions. In view of Eqs.(8.27) and (4.14), this means

ψ(r, exp(− i

2
θktk)s) = ψ(r, s) exp(iθn) , (8.29)

The scalar product of wave functions is

(ψ, χ) ≡
∫ ∞

0

drr2
∫

SU(2)

dµ(s)ψ∗(r, s)χ(r, s) , (8.30)

where dµ is the invariant Haar measure on SU(2).

Let {Dj(s)} be the representation of SU(2) with angular momentum j. Wave

functions ψ with finite norm have the expansion [11]

ψ(r, s) =
∑

j

∑

ρ,σ

αj
ρσD

j
ρσ(s) . (8.31)

Here Dj
ρσ(s) re the matrix elements of {Dj(s)} in the conventional basis with the third

component of angular momentum diagonal.
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The constraint (8.29) means that in Eq.(8.31), only those αj
ρσ with σ = −n are

non-zero. Thus
{

Dj
ρ,−n

}

, fixed n , (8.32)

is a basis for expansions of the form (8.31). Since σ is necessarily integral or half-

integral, we have the Dirac quantization condition

2n = integer . (8.33)

In (8.32), j and ρ are half-integral if 2n is odd and integral if 2n is even.

The quantum mechanics outlined here is essentially equivalent to conventional treat-

ments.

8.3 Relativistic Spinning Particles

In this section we shall only be concerned with free relativistic spinning particles. The

group G is now the connected component of the Lorentz group L↑
+ = {Λa

b} with

generators σab with matrix elements (σab)cd obtained from Eq.(5.5). Here Eq.(8.2)

reads

[σab, σcd] = i (−ηbcσad + ηbdσac + ηacσbd − ηdaσbc) . (8.34)

In addition Eqs.(8.9) and (8.7) are replaced by

[tab, tcd] = (−ηbctad + ηbdtac + ηactbd − ηdatbc) , (8.35)

and

{tab,Λ} = iσabΛ . (8.36)

A. Spinnless Particles

For simplicity, we begin with the case where the spin is absent, i.e., λ = 0 in Eq.(5.11).

The phase space coordinates are given by za, πa, Λ, and tabd, where πa is canonically

conjugate to za. The primary constraints are

φab = tab ≈ 0 , (8.37)

and

θa = pa − πa ≈ 0 . (8.38)
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where pa is defined in Eq.(5.3). The equation (5.37) follows because there are no time-

derivatives of Λ appearing in the Lagrangian. The constraints obey the PB algebra:

{θa, θb} = 0 , (8.39)

and

{φab, θc} = i(σab)cdp
d , (8.40)

along with Eq.(8.35).

Because of the reparametrization symmetry of the Lagrangian, the Hamiltonian

consists solely of the constraints (for a discussion of this issue, see, for example, Ref.[3]),

i.e.,

H = ρabφab + κaθa , (8.41)

where ρab and κa are Lagrange multipliers. Once again, there are no secondary con-

straints. Instead ρab and κa are restricted by

ρabpb = 0 , (8.42)

and

κapb − κbpa = 0 , (8.43)

on the reduced phase space. In deriving Eqs.(8.42) and (8.43) we have used the repre-

sentation for σabgiven by Eq.(5.5). Eqs.(8.42) and (8.43) imply that

ρia = εijkrjΛ
−1
ka , i, j, k = 1, 2, , 3 , (8.44)

and

κa = kpa , (8.45)

where ri, i = 1, 2, 3 and k are undetermined constants. This, in turn, implies that four

linearly independent combinations of Eqs.(8.37) and (8.38) form first class constraints,

namely

φi ≡ εijkφjΛ
−1
ka , (8.46)

and

φ0 ≡ θaΛ
a
0 . (8.47)

Observables, by definition, have zero PB’s with φa. Among them are

πa and Jab = zaπb − zbπa , (8.48)
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where we have applied the constraints. Additional observables can be formed from

pa and tab, however, these degrees of freedom can be eliminated via the constraints

Eqs.(8.37) and (8.38). There exist six independent observables amongst the remaining

ten degrees of freedom for the system. The former are exactly given by Eqs.(8.48),

since four constraints now exist on the variables πa and Jab,

πaπ
a = −m2 , (8.49)

and

W a = 0 , W a ≡ 1

2
εabcdπbJcd . (8.50)

Note that Eq.(8.50) yields three relations since πaW
a is identically zero. Equations

(8.49) and ((8.50) indicate that the above system describes a particle of mass m and

spin zero.

It remains to compute the DB’s for the variables (8.48). We first define J∗
ab:

J∗
ab = Jab + φabd , (8.51)

which, along with πa, form a complete set of first class variables. Consequently, all

DB’s involving J∗
ab and πa are identical to the corresponding PB’s. Equivalently, we

can define a DB with Jab according to

{Jab, ·}∗ ≡ {J∗
ab, ·} . (8.52)

Using Eq.(8.52), we obtain the usual Poincare algebra forπa and Jab,

{πa, πa}∗ = 0 ,

{Jab, πc}∗ = ηacπb − ηbcπa , (8.53)

{Jab, Jcd}∗ = ηacJbd + ηbdJac + ηadJcb + ηbcJda .

Note that the equations (8.49) and (8.50) lie in the center of the algebra generated by

πa and Jab. So if desired, one can eliminate redundant variables from πa and Jab, by

hand, without conflict with their DB’s (8.53).

Since the Hamiltonian is simply a linear combination of the constraints (8.46) and

(8.47), it generates no time-evolution for πa and Jab. So if desired, we can declare that

π0 generates time-translations. Also we can identify

xi =
1

π0
Ji0 , i = 1, 2, 3 , (8.54)
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as the space coordinate of the particle. It fulfills

{xi, πj}∗ = δij , (8.55)

and

{xi, xj}∗ = 0 . (8.56)

In proving Eq.(8.56), a direct computation yields

{xi, xj}∗ =
1

π2
0

(

−Jij +
1

π0
(Ji0πj − Jj0πi)

)

. (8.57)

The result is then obtained after applying the definition for Jab (Cf. Eq.(8.48)).

B. Spinning Particles

In this case, we consider non-zero values for λ in Eq.(5.11). Here, Eq.(8.37) s replaced

by

φab = tab − Sab ≈ 0 , (8.58)

where Sab is given by Eq.(5.4). Equation (8.58), along with (8.38), form the primary

constraints for this system. Their PB’ are given by (8.39), (8.40) and

{φab, φcd}∗ = ηbc(φda − Sda)− ηad(φbc − Sbc)

+ ηac(φbd − Sbd)− ηdc(φca − Sca) . (8.59)

The Hamiltonian, once again, consists solely of the constraints, i.e., Eq.(8.41). Again

there are no secondary constraints, and, instead, the Lagrange multipliers are restricted

by (8.42) and

κapb − κbpa = 2 (Sacρ
c
b − Sbcρ

c
a) , (8.60)

on the reduced phase space. After applying the definitions for Sab and pa (Cf. Eqs.(5.3)

and (5.4)), we find

m

2λ

(

κ̃aηb0 + ηa1ρ̃b2 − ηa2ρ̃b1 − κ̃bηa0 − ηb1ρ̃a2 + ηb2ρ̃a1

)

= 0 , (8.61)

where κ̃ ≡ Λ−1ρ and ρ̃ ≡ Λ−1ρΛ. Eqs.(8.42) and (8.61) along with

ρ̃ab = −ρ̃ba , (8.62)
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imply that all components of κ̃ and ρ̃ vanish except for κ̃0 and ρ̃12. Consequently, there

are two first class constraints: Eq.(8.47) and

φabΛ
a1Λb2 ≈ 0 . (8.63)

Once again pa and Jab (Cf. Eq.(8.48)) are observables for the system. However, they

no longer form a complete set of observables. Since now only two first class constraints

can be found, there exist a total of eight observables for the system. But there are

only six independent degrees of freedom in pa and Jab. Additional observables for this

system are Sab. Note that there are four constraining equations on Sab:

Sabπ
b = 0 , (8.64)

1

2
SabS

ab = λ2 . (8.65)

Eq.(8.64), which holds on the reduced phase space, contains a total of three constraints

since Sabπ
aπb vanishes identically. Thus two independent degrees of freedom remain in

Sab, i.e., Πa, Jab andSab form a complete set of observables.

Alternatively, the five independent degrees of freedom in Jab andSab can be ex-

pressed more compactly by

Mab ≡ Jab + Sab . (8.66)

Now Mab contains all five degrees of freedom since

WaW
a = m2λ2 , (8.67)

where

W a =
1

2
εabcdπbMcd , (8.68)

is the only constraining equation on Mab.

Equation (8.67) indicates that particle has a fixed spin λ. It, along with (8.49),

can be used to eliminate, by hand, the redundant degrees of freedom from πa and Mab.

This follows because (8.49) and (8.67) lie in the center of the algebra generated πa and

Mab. remains to be shown that this algebra is, once again, the Poincaré algebra.

With this in mind, we define

M∗
ab ≡Mab + φab = Jab + tab , (8.69)

which, along with πa, form a complete set of first class a variables. DB’s involving Mab

can the be defined by

{Mab , ·}∗ ≡ {M∗
ab , ·} , (8.70)
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while DB’s involving πa are equivalent to the corresponding PB’s. Using Eq.(8.70) we

then verify that πa and Mab generate the Poincaré algebra. the Poincare algebra .

Again, if desired, we can declare that time-translations are generated by π0. The

standard canonical DB’s (8.55) and (8.56) are obtained after defining the space coor-

dinate xi according to (see Sudarshan and Mukunda, Ref.[3], p.439-454):

xi =
1

π0

(

Mi0 −
εijkπjWk

m(m− π0)

)

. (8.71)

Note that Eq.(8.71) does reduce to Eq.(8.54) in the limit of zero spin. In addition,spin

3-vectors S̃i with the usual brackets

{S̃i , S̃j}∗ = εijkS̃k , (8.72)

can be defined in terms of the Poincaré generators [3]:

S̃i = − 1

m

(

Wi −
Wjπjπi

π0(m− π0)

)

. (8.73)

The variables S̃i differs from Si = εijkSjk/2 which can be reconstructed in terms of the

Poincaré generators. The latter variables do not satisfy Eq. (8.72).

In conclusion, the eight degrees of freedom in πa andMab can be expressed in terms

of xi, πi, and S̃i, which have standard bracket relations. The Hamiltonian for π0 is

H =
√

π2
i +m2 , (8.74)

where we have chosen the positive root in eliminating the constraint (8.49). In terms

of the variables xi, πi, and S̃i the constraint (8.67) translates to

S̃iS̃i = λ2 . (8.75)

This system represents the obvious generalizations of the non-relativistic spinning par-

ticle system described in Sections 3.1 and 8.1. As before, we find that only one IRR

appears in the quantum theory, and quantization is possible only if λ2 is restricted to

having the values given in Eq.(8.21).

8.4 Yang-Mills Particles

For simplicity we shall specialize to the case of non-relativistic particles. Consequently,

we replace the first term in Eq.(6.10) by mẋ2i /2. Now the phase space coordinates are
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xi, pi, s, and tα. Here s ∈ Γ, where Γ being a faithful unitary representation of an

arbitrary compact connected Lie group G.

The Hamiltonian for this system is

H =
1

2m
(pi − eAα

i tα)
2 + eAα

0 tα + ηαφα , (8.76)

where the primary constraints are given by

φα = Iα − tα ≈ 0 . (8.77)

In deriving Eq.(8.76) we have used the constraints to rearrange terms. As usual, there

are no secondary constraints and the η’s are restricted by

cσρληρtα = 0 , (8.78)

on the constrained surface. Let there be k independent vectors {ηρ = η
(A)
ρ , A =

1, 2, ..., k} satisfying Eq.(8.78). The first class constraints of the theory are

φA = η(A)
ρ φρ . (8.79)

Observables have zero PB’s with φA. They consist of

xi , pi , tα . (8.80)

Note that the Iα’s are also observables. This follows from

s, φA = −η(A)s , (8.81)

where η(A) = ηAαT (α) generate the stability group of t = tαT (α) under the adjoint

action. This group is isomorphic to the group H (Cf. Sec.6.4). From Eq.(8.81), only

those functions of s which are invariant under the action of the little group of t are

of interest. These must be functions of I. However, the I’s can be eliminated via the

constraint. Thus we are left with variables (8.80). Since they all have weakly zero PB

with φα, all DB’s involving these variables are identical to the corresponding PB’s.

As in Section 8.1, not all the tα’s are independent. From Eqs.(6.14) and (8.77), t

is constrained to lie on a certain orbit in Γ. These orbits are labeled by the constants

Kα. Using Eq.(6.14) any function of the tα which is a constant on the orbits can be

written as a function of theKα’s. in particular, the Casimir invariants can be expressed

in terms of K. For the case of G = SU(2), we are left with one constraint, which is

analogous to (8.20).
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The particular representation which occurs in the quantum theory is determined

by the Casimir invariants, which in turn are determined by the Kα’s. Once again,

only one IRR appears in the quantum theory and quantization is possible only if the

Casimir invariants formed out of the Kα’s are restricted to a certain discrete set.

8.5 Kaluza-Klein Formulation

As was true in several other cases the Lagrangian here (Cf. Eq.(7.1)) contains a re-

parametrization symmetry. Here we shall remove it by fixing x0 = τ . The Hamiltonian

for this system is

H =

√

m2 + p2i −
1

λ
t2α , (8.82)

where xi, pi, and tα are the usual phase space variables. Unlike the previously discussed

systems, there are no constraints on the phase space variables. This is due to the fact

that tα can be expressed in terms or ṡs−1 (Cf. Eq.(7.6). Here Iα = tα).

In the previous section tαT (α) was constrained to lie on certain orbits in the Lie

algebra. These orbits determined which IRR was to appear in the quantum theory.

Now there are no constraints on the variables tα and, consequently, all IRR’s appear

in the quantum theory.

In setting up the quantum theory, we can write down wave-functions which are

functions of s as well as xi:

ψ = ψ(s, x) . (8.83)

This follows since all components sαβ can be simultaneously diagonalized. Then the

tα ’s are differential operators which represent the generators T (α) in the left regular

representation of the group. In particular,

(exp (iθαLα)ψ)(s, x) = ψ(exp (−iθαT (α)) s, x) . (8.84)

The scalar product with respect to which the tα ’s are Hermitian a is given by

(φ, ψ) =

∫

dµ(s)d3xφ∗(s, x)ψ(s, x) , (8.85)

where dµ(s) is the invariant Haar measure of the group. The left regular representation

is highly reducible. Every irreducible representation occurs with a multiplicity equal

to its own dimension.
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If an irreducible representation of the Kaluza-Klein system is desired, we must deal

with the formulation given in Section 7.2. As was noted earlier, the system there is

identical to that of the Yang-Mill particle with the mass

√

m2 +
1

λ
Tr[K2] . (8.86)

Excluding this additional requirement, the quantization of such a system .is identical

to that discussed in Section 8.4.
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9 PSEUDO-CLASSICAL DESCRIPTION

In the previous sections, we have seen how to describe the spin and isospin degrees

of freedom of a particle in terms of dynamical group elements g(ξ) ∈ G. It has been

pointed out however, that Grassmann variables, i.e., anti-commuting c-numbers, can

be utilized for the same purpose. Such a formulation is usually, referred to as pseudo-

classical mechanics. Upon quantization the anti-commuting c-numbers leads to certain

irreducible representations of some symmetry group G. In the case of spin degrees

of freedom it was discussed by Volkov, Peletminskii [50] and Martin [51] that the

classical Grassmann variables, are replaced by Pauli matrices after quantization. These

considerations for point particles (and extended objects) have recently been discussed

in much detail in the literature [52, 53]. They have also been applied to internal degrees

of freedom [40, 54, 55].

The algebra of the anti-commuting Grassmann variables can be used to extend the

notion of Lie algebras to graded Lie-algebras [56]. The notation of graded Lie algebras,

usually referred to as super-symmetry, has been extended to field theory leading to

global and local (i.e., super-gravity) super-symmetric field theories. For a review of

this very dynamic field of research and for further references see, e.g., Ref.[57]. In this

Chapter we apply some of these concepts to the description of the systems discussed

in the previous chapters.

9.1 Non-Relativistic Spinning Particles

The Lagrangian for a free, non-relativistic spinning particle involving dynamical anti-

commuting Grassmannian variables, fa(τ), is [53, 54]

L0 =
1

2
ẋ2i +

1

2
faḟa . (9.1)

The equations of motion derived from Eq.(9.1) are

mẍa = 0 , ḟa = 0 . (9.2)

The orbital angular momentum La = εabcxapb and spin Sa, as defined by

Sa = − i

2
εabcfbfa . (9.3)

Note that the Lagrangian (9.1) is weakly invariant under the transformations

xa → xa − iǫ
fa√
m

, fa → fa + ǫ
√
mẋa , (9.4)
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where ǫ is a c-number Grassmann parameter. We define (9.4) to be a ”super-symmetry”

transformation. Under (9.4),

L0 → L0 + i

√
m

2

d

dt

(

faẋaǫ
)

, (9.5)

Thus the action
∫

dτL0 is invariant.

Interactions can be added to the Lagrangian (9.1) in a straightforward manner,

although in general, they will not be invariant under (9.4). For example, consider the

interaction of a particle having magnetic moment µ (and no charge) with an external

electro-magnetic field B. The form of the Lagrangian is then the same as in Eq.(3.26),

i.e.,

L = L0 − µSaBa . (9.6)

A variation of the coordinate xa leads to the equation of motion Eq.(3.31). A variation

of fa leads to

ḟa + µεabcfbBc = 0 . (9.7)

Using the definition (9.3) of the spin angular momentum, we obtain the spin precession

equation Eq.(3.34), i.e.,

Ṡa = µεabcBbSc . (9.8)

The interaction given in Eq.(9.3) is not invariant under the super-symmetry transfor-

mation (9.4), since it transforms according to

−µṠaBa → −µṠaBa + iµ
√
mǫεabcBaẋbfc + i

µǫ√
m
Safb∂bBa . (9.9)

On the other hand, if we add the term qAaẋa for a particle with charge q = −e, which
transforms according to

−eAaẋa → −eAaẋa + i
e√
m
∂bAaǫfbẋa + i

e√
m
ḟaAa , (9.10)

to the interaction Lagrangian (9.6), and set

µ =
e

m
, (9.11)

the weak invariance under Eq.(9.4) is restored. Here

Fab = εabcBc = ∂aAb − ∂bAc . (9.12)
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Next we give a super-field formulation [58, 59] of the above systems. It provides us

with a systematic method for constructing Lagrangians which are invariant under the

super-symmetry transformations as in Eq.(9.4). We define Xa(t,Θ) to be a ”super-

coordinate”, i.e., it depends an super-space parameters t and Θ, the latter being a

Grassmann parameter. We then identify the coefficients of the Taylor expansion of

Xa(t,Θ) in Θ with xa and fa/
√
m, i.e.,

Xa(t,Θ) = xa(t) + i
Θ√
m
fa(t) . (9.13)

Now consider the following ”super-charge” operator

Q ≡=
(

i
∂

∂Θ
−Θ

∂

∂t

)

. (9.14)

It follows that

[Q,Q]+ = −2i
∂

∂t
, (9.15)

i.e., the anti-commutator of two super-charges yields the ”energy operator”. Equa-

tion (9.15) thereby expresses a general property of super-symmmetry algebras [57].

Furthermore, it can be easily verified that the super-charge Q induce translations in

super-space (t,Θ) according to

δXa(t,Θ) ≡ iǫQXa(t,Θ) = Xa(t+ iǫΘ,Θ− ǫ)−Xa(t,Θ) . (9.16)

The transformation defined by the Equation (9.16) applied to the super-coordinate

Xa(t,Θ) is identical to the super-symmetry transformations (9.16) applied to xa and

fa.

For the purpose of constructing weakly invariant Lagrangians, we now note the

following:

i) Let Y = Y (t,Θ) + Θη(t) be a super-coordinate, which undergoes the transfor-

mation

δYa(t,Θ) = iǫQYa(t,Θ) . (9.17)

Then η(t) is invariant under this transformation up to a total time derivative. This is

analogous to the transformation properties of the D-term in 3 + 1 dimensional super-

symmetry [57].
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ii) Let P (t,Θ) be a (fermionic-) bosonic operator which (anti-) commutes with

Q. Then if the super-field Y transforms according to Eq.(9.17), so does P (t,Θ)Y .

Examples of first-order differential operators P fulfilling this property are

∂

∂t
, dΘ ≡ ∂

∂Θ
− iΘ

∂

∂t
, (9.18)

the former being bosonic while the latter is fermionic.

iii) If Y and Z transform according to Eq.(9.17), then so does the product Y Z.

Let L0∗ = L0∗(t,Θ) transform under super-symmetry according to Eq.(9.17). Then

the coefficient of L0∗ is invariant up to a time derivative. Since we desire an invariant

quantity which is bosonic, L0∗ should be fermionic. A choice for L0∗ which is quadratic

in first order derivations of Xa is

L0∗ = i
m

2

∂Xa

∂t
dΘXa . (9.19)

The Θ coefficient of L0∗(t,Θ) can be extracted by integrating over e and utilizing the

usual rule [60]

∫

dΘΘ = 1 ,

∫

dΘ = 0 , (9.20)

Applying this to Eq.(9.19), we then find

∫

dΘL0∗(t,Θ) = L0(t) , (9.21)

where L0(t) is the free particle Lagrangian (9.1).

Next we consider adding an interaction term to ((9.19). We first take up the case of a

particle interacting with a scalar (bosonic) potential V = V (X). The latter transforms

under super-symmetry according to Eq.(9.17). Since V (X) is bosonic it must appear

in L∗ = L0∗ + LI∗ times a fermionic operator. The latter must anti-commute with Q.

Thus interactions like LI∗ = ΘV (X) are excluded since they explicitly break the super-

symmetry invariance. On the other hand, interactions like LI∗ = dΘV (X) preserve the

super-symmetry invariance. However, integrating with respect to Θ leaves only a total

time derivative so no interaction results. Consequently, it appears difficult to construct

super-symmetric invariant version of a particle interacting with a scalar potential. The

latter is possible, however, for other treatments of the super-symmetric point particle

(Cf . Ref.[61]).
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In our formalism we can quite easily write down the interaction of the particle with

a vector potential Ai = Ai(X). Here we simply make the replacement

∂

∂t
Xa → ∂

∂t
Xa − 2

e

m
Aa(X) ,

dΘXa → dΘXa , (9.22)

in Eq.(9.19). Expanding the total Lagrangian in Θ and performing the Θ-integral

according to the rule Eq.(9.20), one obtains

L(t) = L0(t)− eẋaAa(x)−
e

m
SaBa . (9.23)

This is identical to the Lagrangian (9.23) added with (9.10), with the restriction

that the electric charge q = −e and the magnetic moment µ are related according

to Eq.(9.11).

Here we notice that the Lagrangian in Eq.(9.23), or Eq.(9.11), leads to the conclu-

sion that the gyro-magnetic ratio of the particle is 2. This is actually a general feature

of super-symmetric point particles (see, e.g., Refs.[62, 25, 40]). In super-symmetric

field theories, where the super-symmetry is unbroken, this situation corresponds to the

anomalous magnetic moment being zero (see, e.g., Ref. [63]).

In the above we have used a hermitian Grassmannian variable Θ to describe the spin

degrees of freedom. One can also develop a non-relativistic super-symmetry by making

use of a complex Grassmann variable. As was shown by Witten [61] and discussed by

other authors [64, 65] super-symmetric quantum theories can be useful for studying

the non-perturbative breaking of super-symmetry.

9.2 Super-Symmetric Point Particles in the Field of a Mag-

netic Monopole

In this Section we will super-symmetrize [61] the qlobal Lagrangian of Chapter 4. This

can be achieved by applying the rules given in Section 9.1 for constructing, weakly

invariant super-symmetric Lagrangians. In Chapter 4 a dynamical group element s(t)

entered in the construction of the global Lagrangian (4.14). We can write s(t) in the

form

s(t) = exp (iT (a)εa(t)) , (9.24)
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where T (a) = σa/2. Similarly, we can define a group element s∗ on the super-space

(t,Θ), according to

s∗(t) = exp (iT (a)ηa(t,Θ)) , (9.25)

where ηa(t,Θ) is now a ”super-field”. If we write ηa(t,Θ) = εa(t) − 2Θξa(t), then

Eq.(9.25) can be expressed by

s∗(t) = (1 + Θξ)s(t) , (9.26)

where ξ = ξaσa. Note that no conditions have to placed on ξaother then it being

an add Grassmann variable in order that Eq.(9.26) be consistent with s†∗s∗ = 1 and

det(s∗) = 1.

A natural extension of the Lagrangian (4.14) is

L∗(t) = L0∗ − nTr
[

σ3s
†
∗dθs∗

]

, (9.27)

where L0∗ is given by the Eq.(9.19). We must, furthermore, generalize (4.13), i.e., the

relation between the relative coordinate xa and the dynamical group element s, to the

(t,Θ)-space. This extension can now be easily achieved after constructing the following

polar decomposition of the super-coordinate X(t, θ):

X(t, θ) = x(t, θ) + iΘ
f√
m

= R∗(t,Θ)X̂∗(t, θ) , (9.28)

where

R∗(t,Θ) = r(t) + +i
Θ√
m
x̂(t) · f(t) , (9.29)

and

X̂∗(t, θ) = x̂(t) + i
Θ

r
√
m

(

f(t)− x̂(t)(x̂(t) · f(t))
)

. (9.30)

In Eqs.(9.29) and (9.30) x = rx̂. The super-symmetric generalization of the Eq.(4.13)

then is

X̂∗ = X̂∗aσa = s∗σ3s
†
∗ . (9.31)

The Eqs.(9.19), (9.26), (9.27), and (9.31) lead to the following Lagrangian

L =

∫

dΘL∗(t,Θ) =
1

2
mẋ2a +

1

2
faḟa + inTr

[

σ3s
†ṡ
]

+ 2niεabcx̂aξbξc . (9.32)
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By making use of the constraint Eq.(9.31) and the explicit form of s∗(t,Θ), as given

by Eq.(9.26), we obtain

X̂∗(t,Θ) = x̂(t) + Θ[ξ(t), x̂(t)] , (9.33)

where x̂ = sσ3s
†. Eqs.(9.30) and (9.33) then lead to the following relationship

εabcx̂afbfc = 4mr2εabcx̂aξbξc , (9.34)

i.e., the Lagrangian (9.32) can now be written in the following form

L =
1

2
m

(

ṙ2 + r2 ˙̂x2a

)

+
1

2
faḟa + inTr

[

σ3s
†ṡ
]

− e

m
SaBa . (9.35)

Here B is the magnetic field of the monopole, i.e.,

Ba =
g

4π

xa
r2

, (9.36)

and 4πn = eg (Cf. with Section 4.1). In the expression (9.35) x̂a is to be regarded as

a function of s (Cf. Eq.(4.13)). For fa = 0, (9.35) becomes the Lagrangian (4.15).

In order to obtain the equations of motion we consider variations of the dynamical

variables r, fa, and s. The variation of r in Eq.(9.35) gives

mr̈ = r ˙̂x2a +
2n

mr3
S · x̂ . (9.37)

A variation of the Grassmann variables fa leads to a spin precession equation (Cf.

Eq.(9.8))

Ṡa =
e

m
εabcBbSc . (9.38)

Again for variations in s, we take (Cf. Eqs.(3.21) and (3.21))

δS = iǫkσks . (9.39)

By the Eq.(4.13), (9.39) will induce an infinitesimal rotation of the unit vector x̂ as

given by Eq.(4.17), i.e.,

δx̂a = −2εabcǫbx̂c . (9.40)

We therefore obtain the following result due to the variation of (9.39):

δL = 2ǫa

(

d

dt
(La + nx̂a) +

e

m
εabcSbBc

)

. (9.41)
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Eqs.(9.38) and (9.41) can now be combined to give

d

dt
(La + nx̂a + Sa) = 0 , (9.42)

i.e., angular momentum conservation. After a long but straightforward calculation,

the Eqs.(9.37), (9.38), and (9.42) can be combined to yield the following equation (Cf.

Eq.(3.11):

mẍ = −eẋ×B− e

m
∇(S ·B) , (9.43)

which is the equation of motion for a spinning particle in a non-homogeneous magnetic

field (Cf. Section 3.2 and Ref.[66]) The equation (9.43) can also be obtained directly

from the Lagrangian (9.35) by considering simultaneous variations of s and r. Here

one makes use of the relation

2n ˙̂xaǫa = −e(ẋ×B) · δx , (9.44)

where δx = −2ǫ × x + δrx̂. Equation (9.35) follows from (9.40) and the explicit form

of the magnetic monopole field 9.36. As expected (Cf. Section 9.1) the gyro-magnetic

ratio of the particle is 2 according to the Eqn.(9.38). Here we also notice that although

L+nx̂ is not conserved, its projection along the x-direction is. In fact, the latter is just

n. This fact will turn out to be important when we quantize the system (Cf. Section

9.5) .

9.3 The Super-Symmetric Hopf Fibration

In Chapter 4 we have seen that the non-trivial U(1) bundle on the two-sphere S2 could

be used to find a global Lagrangian description of magnetic monopoles. Let us recall

how these bundles, here denoted by LM , were constructed [13, 62, 67]. For some related

work see also Refs.[68, 69, 70] . In Section 4.4 we regarded SU(2) as a U(1) bundle

over S2, where the action of the U(1) group corresponded to the gauge transformation

Eq.(4.23), i.e.,

s(t) → s(t) exp
(

iσ3α(t)/2
)

. (9.45)

The projection map from the SU(2)s bundle to the two-sphere S2 is given by Eq.(4.13),

i.e.,

s(t) → s(t)σ3s
†(t) = X̂(t) . (9.46)
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Now consider the following cyclic subgroup of SU(2)

ZM = {zk = exp

(

iσ3
2πk

M

)

| k = 0, 1, ...,M1} , (9.47)

where M is a positive integer. ZM has an action on s ∈ SU(2) which commutes with

the projection (9.46), i.e., if

s→ szk , (9.48)

then

s→ sσ3s
† → szkσ3(szk)

† = X̂ . (9.49)

The U(1)-bundles over the two-sphere S2 are then generated by the quotient of SU(2)

with the group-action (9.48) [71]. A function f on LM can now be regarded as a

function on SU(2) which is ZM invariant, i.e.,

f(sz) = f(s) , (9.50)

for all zk ∈ ZM . In view of the fact that the wave functions the charge-monopole

system have the property of being Z|2n| invariant they can be regarded as on R1×Z|2n|.

In this sense, there is a topological interpretation of the Dirac quantization condition

Eq.(8.33) (Cf. Ref.[70]).

In the present chapter we have constructed the super-symmetric generalization of

the fibrations of S3 as discussed above. Let us here briefly examine the corresponding

mathematical structure. The super-symmetric version SU(2)∗ of SU(2) is defined by

letting the group parameters become super-fields as indicated by the Eq.(9.25). Let

U(1)∗ = {exp (iσ3γ)} , (9.51)

where γ is an even Grassmann variable. U(1)∗ ha a right-handed action on SU(2)∗,

i.e.,

s∗ → s∗ exp (iσ3α) . (9.52)

The projection map (9.25) can therefore be generalized to

s∗ → s∗σ3s
†
∗ = σax̂∗a , (9.53)

where the image of the map (Cf. Eq.(9.30)) is the super-symmetric version S2
∗ of the

two-sphere S2. The bundle which describes the spinning charge-monopole system is

then

LM∗ = SU(2)∗/ZM . (9.54)
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As will be shown in Section 9.5, the Dirac quantization condition Eq.(8.33) is full-filled

also in this case, i.e., we choose M = |2n|.
The U(1)∗ gauge transformation will induce a transformation on the ξ-variables

defined in the Eq.(9.26). In fact, if we write

exp (iσ3γ(t,Θ)) = (1 + Θσ3β(t)) exp (iσ3α(t)) , (9.55)

then by the projection map (9.31) and (9.26) ξ will transform according to

ξ(t) → ξ(t) + β(t)x̂(t) , (9.56)

i.e., ξ undergoes a translation parallel to x̂. Since X∗ is gauge invariant, it determines

ξ only up to a transformation (9.56). Eq.(9.33) is consistent with this observation.

9.4 Super-Symmetric Yang-Mills-Particles

In the present Section we will combine the description of Yang-Mills particles (Cf.

Chapter 6) with the super-symmetry discussed above. For simplicity, we will restrict

ourselves to non-relativistic particles, but the discussion can easily be generalized to

the relativistic case [72].

The free part of the Lagrangian will again be given by Eq.(9.19). We now extend

the minimal coupling prescription Eq.(9.2) to the non-Abelian case, where the Yang-

Mills vector potential is a matrix (Cf. Eq.(6.11)). The super-symmetric generalization

of the Lagrangian Eq.(6.10) is therefore

L∗ = L0∗ + LI∗ , (9.57)

where L0∗ is given by Eq.(9.19) and the minimal coupling term LI∗ is

LI∗ = Tr
[

Ks†∗(t,Θ)D(t,Θ)s∗(t,Θ)
]

. (9.58)

Here we have generalized the covariant derivative appearing in Eq.(6.11) to

D(t,Θ) = dΘ − ie(dΘX(t,Θ))Aa(X(t,Θ)) . (9.59)

Next we expand the dynamical group element s∗(t,Θ) (Cf. Eq.(9.26)):

s∗(t,Θ) = (1 + Θξ(t))s(t) , ξ(t) = ξa(t)T (a) , (9.60)
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and the super-coordinate X(t,Θ) according to Eq.(9.13). We then integrate Eq.(9.57)

with respect to Θ, i.e.,

L(t) =

∫

dΘL∗(t,Θ) = L0(t) + LI(t) . (9.61)

The result is that L0(t) is given by Eq.(9.1) and that

LI = −Tr
[

Ks†Dts
]

− i
e

m
Tr [Ifafb∂bAa]− Tr

[

Iξξ +
e√
m
[I, ξ]Aafa

]

,

where I is given by Eq.(6.14) and Dt is the same as in Eq.(6.11). Since the Lagrangian

Eq.(9.61) does not contain time derivatives of the dynamical variable ξ, it plays the role

of an auxiliary field (see, e.g., Ref.[57]). The ξ-variable in the Lagrangian is necessary

in order that successive super-symmetric transformations, induced by the translations

t→ t+ iǫΘ , Θ → θ − ǫ , (9.62)

close without the use of the equations of motion (see, e.g., Ref.[58]). We are allowed

to substitute the equation of motion for ξ, i.e.,

[ξ, I] = − e√
m
fa[Aa, I] , (9.63)

back into the Lagrangian Eq.(9.62). Equation (9.63) leads to

Tr[Iξξ] =
e2

2m
fafbTr[I[Aa, Ab]] . (9.64)

After substituting (9.63) and (9.64) into Eq.(9.62), we then find

LI = −Tr[Ks†Dts] = − e

m
S · Tr[IB] , (9.65)

where B is the non-Abelian magnetic field strength.

Concerning the equations of motion as derived from the Lagrangian (9.65), or (9.62),

we notice that the spin precession Eq.(9.38) will be modified according to

Ṡa =
e

m
εabcB

α
b IαSc . (9.66)

Thus the gyro-magnetic ratio is 2 as expected.
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9.5 Canonical Formulation and Quantization of Pseudo-Classical

Systems

In deriving the canonical formalism for the preceding systems, we follow the methods

used in Chapter 8. For treating the fermionic variables, we shall apply the methods of

Ref.[54], which are as follows.

Let χa denote the momenta denote the momenta conjugate to fa. If C and D are

any anti-commuting variables, then PB is defined according to

{C,D} ≡ −
(

∂C

∂fa

∂D

∂χa
+
∂C

∂χa

∂D

∂fa

)

. (9.67)

Hence,

{fa, fb} = {χa, χb} = 0 , {fa, χb} = −δab . (9.68)

The remaining PB’s are defined in the usual way.

For the non-relativistic particle interacting with a magnetic field (Cf. Eqs.(9.1) and

(9.23)),

χa =
∂L

∂ḟa
= − i

2
fa . (9.69)

Thus we obtain the primary constraints

ζa = χa +
i

2
fa ≈ 0 . (9.70)

The Hamiltonian is

H =
1

2m
(pa − eAa)

2 +
e

m
S ·B+ λaζa , (9.71)

where λa are Lagrange multipliers. The requirement that {ζa, H} ≈ 0 determines the

λa’s, i.e.,

λa =
e

m
εabcBbfc , (9.72)

and thus leads to no secondary constraints.

The constraints ζa are second class, since

{ζa, ζb} = −iδab . (9.73)

They many be eliminated by introducing the DB’s [54]:

{fa, fb}∗ = −iδab , {fa, χb}∗ = −1

2
δab , (9.74)
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as well as

{χa, χb}∗ =
i

4
δab . (9.75)

The DB’s which involve xa or pa are all equal to the corresponding PB’s. Thus we can

replace PB’s by DB’s and then eliminate χa via Eq.(9.69).

The generator of the super-symmetry transformation on the phase space variables

is

Q =
1√
m
fa (pa − eAa) , (9.76)

since

{fa, Q}∗ = − i√
m

(pa − eAa) , {χa, Q}∗ =
1√
m
fa . (9.77)

(Cf. with Eq.(9.4).) Furthermore, the Hamiltonian Eq.(9.71) can be expressed by

H =
1

2i
{Q,Q}∗ . (9.78)

In passing to the quantum theory we replace the DB’s in Eq.(9.74) by (−i) times

the anti-commutator brackets (and the remaining DB’s by (−i) times the commutator

brackets). In particular

[fa, fb]+ = δab . (9.79)

It is known, as a consequence [54], that an IRR of the fa’s is obtained in the quantum

theory by the identification

fa = − 1√
2
σa , (9.80)

with σa’s being the Pauli matrices. Consequently, the spin of the particle is 1/2.

Furthermore, Eq.(9.78) becomes

H = Q2 . (9.81)

For the monopole system described in Section 9.2, we replace the above variables xa

and pa by r, pr , s and ta (pr and ta are canonically conjugate to r and xa, respectively

(Cf. Section 8.2). The variables tα and s again satisfy the Poisson bracket relations

Eqs.(8.7), (8.8), and (8.9). For this system, in addition to the constraint Eq.(9.70) we

have Eq.(8.22), i.e.,

φ ≡ x̂iti − n ≈ 0 . (9.82)

The Hamiltonian is now

H =
p2r
2m

+
1

2mr2
(

tata − n2
)

+
e

m
S ·B+ λaζa + ηφ , (9.83)
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λa and η being Lagrange multipliers. As before there are no secondary constraints.

The constraints ζa are once again second class while φ is first class. The former are

eliminated via the DB’s Eq.(9.74, while the gauge symmetry generated by the latter is

eliminated by working on the reduced phase space, which is coordinatized by r, pr ta

and x̂a (Cf. Section 8.2).

For the monopole system we can express the super-symmetry generator globally by

Q =
1√
m

(

fax̂apr −
1

r
εabctafbx̂c

)

, (9.84)

as compared with Eq.(9.76). After applying the constraint (9.82), we can once again

show that Hamiltonian is given by Eq.(9.78).

In passing to the quantum theory we again make the identification Eq.(9.79), yield-

ing the spin-half particle. The quantization of the remaining variables is the same as

in Section 8.2. In particular, quantization is possible on1y if 2n = integer.

Next, we take up the canonical quantization of the super-symmetric Yang-Mills

particle described in Section 9.4. We pick up the discussion with the interaction La-

grangian Eq.(9.65), where the auxiliary variables ξ have already been eliminated. The

corresponding phase space for this system is spanned by xa, s, fa and the canonically

conjugate variables pa , tα, and χa. The variables tα and s again satisfy the Poisson

bracket relations Eqs.(8.7), (8.8), and (8.9). The bosonic variables are constrained by

equation (8.77), i.e.,

φα = Iα − tα ≈ 0 , (9.85)

while the fermionic variables are constrained by Eq.(9.70). The Hamiltonian for this

system is

H =
1

2m
(pa − eAα

a tα)
2 +

e

m
SatαB

α
a + λaζa + ηαφα . (9.86)

The treatment of the bosonic constraints and the fermionic constraints have both

been previously discussed (the former in Section 8.4). Here the super-symmetry gen-

erator is

Q =
1√
m

(pa − eAα
a (x)tα) fa . (9.87)

It can have a non-trivial action on the isospin variables when an external field is present

{tα, Q}∗ = − e√
m
facαβγA

β
a(x)tγ . (9.88)

The quantum theory for the above system describes a particle of spin-half and isospin

which is determined by the value of the constants Ka.
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10 LOCAL AND GLOBAL LAGRANGIANS

In the previous chapters, we considered systems which admit a global Hamilto-

nian description. That is, these systems have a globally defined Hamiltonian or energy

function, and the corresponding symplectic form (or equivalently, the Poisson bracket)

is globally defined. However, these systems do not admit global canonical coordinates.

Thus a global Lagrangian cannot be found in terms of the variables which occur in

the Hamiltonian description. Now by a theorem of Darboux [73], local canonical co-

ordinates always exist. Thus, locally, the Legendre transform can be made and a

Lagrangian can be found. These local Lagrangians are defined on coordinate neigh-

bourhoods and are, in general, not defined globally. In previous Chapters, in effect, we

have constructed global Lagrangians from these local ones by introducing additional

gauge degrees of freedom, that is, a principal fibre bundle structure.

In this Chapter we now give a systematic method for finding the global Lagrangian

when the system admits local Lagrangians and a global Hamiltonian description. The

analysis presented here is similar to an analysis used in context of geometric quantiza-

tion.

Three striking results emerge from the analysis:

i) The construction in terms of U(1) fibre bundles works only if, classically, a

certain ”quantization” is fulfilled. For the system of several charges and monopoles,

this result has been proved by Friedman and Sorkin [20]. For that system, the condition

is
eigj
ekgl

= a rational number , (10.1)

where ei and gi are electric and magnetic charges. Note that this implies that electric

and magnetic charges (and hence their product) are separately quantized. ( Take

gj = gl to get the first result. Take gei = ek to get the second result.) Note also that

Eq.(10.1) is weaker than Dirac’s result [8, 9]

eigj = 2πk , k integer , (10.2)

the proof of which requires quantum mechanics.

ii) Once the quantization condition is fulfilled, a global Lagrangian can be found by

introducing U(1) gauge degrees of freedom, that is a U(1) fibre bundle. It is interesting

that in such a case nothing more involved than a U(1) fibre bundle is required or the

construction of the global Lagrangian.
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iii) Global Lagrangians can be constructed even if the quantization condition is

not fulfilled and hence the fibre bundle approach fails. The fibre bundle construction

is a special case of this more general construction.

In the proof of these results, we use the language of differential geometry because

of its convenience. We have done so sparingly however, so that a reader with a small

familiarity with differential geometry can follow the argument.

10.1 The Fibre Bundle Construction

Before discussing the main result, we first recall the proof of a theorem due to Weil [74].

For our purposes, Weil’s result can be stated as follows: Let Ω be a closed two-form

on Q, i.e.,

Ω = Ωijdx
i∧ dxj , (10.3)

and

dΩ = 0 or ∂iΩjk + ∂jΩki + ∂kΩij = 0 . (10.4)

Further, for every closed two-surface M in Q, let

∫

M

Ω = 2πνλ , ν = 0,±1,±2, ... . (10.5)

Here λ is the same for all M and ν is characteristic of M . Then there exists a U(1)

bundle E on Q, and a form Ω̃ on E with the following properties:

1) Ω̃ is exact, i.e., Ω̃ = dΛ.

Here Λ is a globally defined one-form on E.

2) Ω̃ is ”gauge invariant” and hence projects down to a form on Q.

3) The latter is precisely Ω.

Here by gauge invariance we mean the following: Let φ and φ′ and be two sections (Cf.

Chapter 3) from a coordinate neighbourhood in Q to E. Then the pull backs φ∗Ω̃ and

φ′∗Ω̃ are equal. Stated in another way, let π : E → Q be the projection map from the

bundle E to the base Q, then Ω̃ = π∗Ω.

In conventional classical mechanics, where global canonical coordinates exist, the

symplectic form

dpi ∧ dqi , (10.6)

is necessarily exact:

dpi ∧ dqi = d(pidq) . (10.7)
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Weil’s result gives us conditions under which a non-exact symplectic form can be turned

into an exact one. This is accomplished by introducing gauge degrees of freedom. Note

in this context the ”quantization” of the integrals in Eq.(10.5). The origin of the

classical quantization condition is this equation.

If λ = 0, then Ω is exact. We shall also assume hereafter that λ 6= 0. We shall also

assume that Q is paracompact. Under this technical assumption, Q has a contractible

covering {Uα} by coordinate neighbourhoods Uα. In such a covering, each of the sets

Uα, Uα ∩ Uβ, Uα ∩ Uβ ∩ Uγ , ..., is either empty or can be smoothly contracted to a

point. The proof of the converse to the Poincaré lemma [73] is therefore valid on each

of these sets. It follows from Eq.(10.3) that

Ω|Uα = dΘα , (10.8)

where Ω|Uα is the restriction of Ω to Uα. Also, since d(Θα − Θβ) = 0 on Uα ∩ Uβ , we

have

Θα −Θβ = dfαβ on Uα ∩ Uβ , (10.9)

where

d(fαβ + fβγ + fγα) = 0 on Uα ∩ Uβ ∩ Uγ . (10.10)

Equation (10.10) states that fαβ + fβγ + fγα a constant on Uα ∩ Uβ ∩ Uγ . Suppose

further that

fαβ + fβγ + fγα = 2πnαβγλ , (10.11)

where nαβγ takes integer values. Then the map F : Q→ U(1) as defined by

F (fαβ) ≡ gαβ = exp

(

ifαβ
λ

)

, (10.12)

fulfills the cocycle property

gαβgβγgγα = 1 on Uα ∩ Uβ ∩ Uγ . (10.13)

The functions gαβ are defined on Uα ∩ Uβ and have values in U(1). Hence they define

a U(1) bundle on Q.

It may be shown [74] that Eq.(10.11) is equivalent to Eq.(10.5). Thus with Eq.(10.13),

we have a U(1) bundle on Q. It is defined as follows. Let x and x′ be the co-ordinates

of the same point p in Uα ∩ Uβ for the coordinate systems appropriate to Uα and Uβ.

Then (x, h(α)) and (x′, h(α)gαβ) define the same point in the fibre over p in the bundle
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space E. Here h(α) ∈ U(1). Such a definition of principal fibre bundles is equivalent to

the definition we gave in Chapter 3.

Let

mα = −iλ(h(α))−1dh(α) . (10.14)

The form mα is defined on the fibres over Uα in the coordinate system appropriate to

Uα. We have,

mα −mβ = iλg−1
αβdgαβ = −dfαβ , (10.15)

on Uα ∩ Uβ. Comparison of Eq.(10.9) and Eq.(10.15) shows that

Θα +mα = Θβ +mβ . (10.16)

Thus the one-form

Θ = Θα +mα , (10.17)

is globally defined on E. Further, since

dmα = 0 , (10.18)

we can write Ω = dΘ if we regard Ω as a form on E. (More correctly, it is the form Ω̃

in the statement of the theorem). The theorem is thus proved.

In the statement of our result, we regard the Hamiltonian or energy and the sym-

plectic form as defined in terms of coordinates and velocities (and not in terms of

coordinates and momenta). We define Q to be the configuration space for a dynamical

system. Let {Uα} be a contractible covering of Q (again assumed to be paracom-

pact) by coordinate neighbourhoods Uα and TUα be the tangent bundle (the space of

coordinates and velocities) over Uα. Suppose now that the following is true:

i) The dynamical system admits local Lagrangians L(α) defined on TUα.

ii) The energy function H is defined globally on TQ = ∪αTUα. In local coordi-

nates, this means
∂L(α)

∂ẋi
ẋi − L(α) =

∂L(β)

∂ẋi
ẋi − L(β) , (10.19)

on TUα ∩ TUβ (assumed not to be empty).

iii) The symplectic ω exists globally, that is

d

[

∂L(α)

∂ẋi
dxi

]

= d

[

∂L(β)

∂ẋi
dxi

]

, (10.20)

on TUα ∩ TUβ.
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iv) The integral of ω over any closed two-dimensional surface M in Q fulfills an

analogue of Eq.(10.5):
∫

M

ω = 2πνλ , ν = 0,±1,±2, ... . (10.21)

Here λ is the same for all TQ and ν is characteristic of TQ. Then there exists a U(1)

bundle E on Q and a global Lagrangian on TE for this system.

Both assumptions ii) and iii) are necessary conditions for the existence of a Hamil-

tonian description. A system of charges and monopoles fulfills these conditions. Con-

dition iv) is surprising in a classical context since it ”quantizes” certain integrals of

ω. We shall show that for a system of charges and monopoles, it coincides with the

Friedman-Sorkin condition mentioned previously.

To prove our result we can proceed as follows. If ψα = (∂L(α)/∂ẋi)dxi then by

Eq.(10.20),

d(ψα − ψβ) = d

[

∂

∂ẋi

(

L(α) − L(β)
)

dxi

]

= 0 . (10.22)

Hence, ψα − ψβ can be regarded as a closed one-form on Uα ∩ Uβ . Since Uα ∩ Uβ is

contractible,

ψα − ψβ = dfαβ on Uα ∩ Uβ , (10.23)

where fαβ fulfills Eq.(10.11) by Eq.(10.21). As before, we can construct a U(1) bundle

E on Q and forms mα with the property (10.15). Hence the form χ defined by

χ = κα +mα , (10.24)

exists globally on E and

dχ = ω , (10.25)

or more precisely dχ = π∗ω where π is the projection π : E → Q.

Now by the energy condition Eq.(10.19),

L(α) − L(β) =
∂fαβ
∂xi

ẋi . (10.26)

Thus the Lagrangian

L̃ = L(α) − iλ(h(α))−1dh
(α)

dt
, (10.27)

is globally defined on TE. Since the last term is (locally) the time-derivative of a

function, L(α) and L(β) also give the same equations of motion. The result is thus

proved.
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Let us understand the result in terms of the charge-monopole system. If

{ξi, ξj} = ωij(ξ) , (10.28)

are the PB’s for a system of coordinates ξ = (ξ1, xi2, ..., ξ2n) for the phase space, the

symplectic form is

ω =
1

2
ωij (ξ)dξ

i ∧ ξj , (10.29)

where

ωijω
jk = δki . (10.30)

For a system of one charge and one monopole, the PB’s are given in Chapter 4 by

Eqs.(4.8) - (4.10). With coordinates (x1, x2, x3, v1, v2, v3), they imply that

ω = 2mdvi ∧ dxi +
1

2
Fijdxi ∧ dxj , (10.31)

where

Fij = n
εijkxk
r3

, (10.32)

If M is a closed surface in Q not enclosing the monopole, it follows by Stokes theorem

that
∫

M
ω = 0. If M is a 2-sphere S2 (with outward orientation) which encloses

the monopole we get
∫

M
ω = −4πn. Multiple integrations over S2 with different

orientations effectively correspond to different M . Thus, in general,

∫

M

ω = 4πnνn , (10.33)

where νn is an integer.

In comparing with Eq.(10.21) we may set ν = νn and λ = 2n. Consequently, the

requirement Eq.(10.21) imposes no restrictions on the system and only defines λ. This,

however, is not the case when more than one monopole is present.

If an additional monopole is introduced to the above system we must add

− n′εijk
x′k
r′3

dx′i ∧ dx′j , (10.34)

to Eq.(10.32). Here x′ corresponds to the distance between the electric charge and the

additional monopole. Now

∫

M

ω = 4πnνn + 4πn′νn′ , (10.35)
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where νn and νn′ are integers. Consequently, Eq.(10.21) implies that

λν = 4πnνn + 4πn′νn′ . (10.36)

Since Eq.(10.36) holds for any M , we can choose it such that νn′ = 0. It then follows

that λ equals n times a rational number. Similarly, by choosingMM such that νn′ = 0,

we can conclude that λ equals n′ times a rational number. But then

n

n′
= a rational number , (10.37)

which is consistent with Eq.(10.1). Only here ei = eje.

The following brief remarks about the consequences of discarding the global energy

condition Eq.(10.19) may be of interest. If this condition is abandoned, the global

nature of symplectic form Eq.(10.29) implies only that

L(α) − L(β) =
∂fαβ
∂xi

ẋi + ραβ , (10.38)

where ραβ does not depend on ẋi. Further,

i) ραβ = −ρβα and ραβ + ρβγ + ργα = 0.

ii) Since L(α) and L(β) give the same equations of motion on TUα∩TUβ , the ραβ ’s

are actually constants and hence are globally defined.

Now let φα be a partition of unity subordinated to the covering {Uα}, i.e.,

Supp[φα] = Uα , φα ≥ 0 ,
∑

α

φα = 1 . (10.39)

Then the globally defined functions

κα =
∑

λ

ραλφλ , (10.40)

κα − κβ = ραβ , (10.41)

in view of ii) above. Thus

L̂ = L̂(α) − κα , (10.42)

fulfill an equation of the form Eq.(10.26) and

L̂ = L̂ − iλ(h(α))−1dh
(α)

dt
, (10.43)

is globally defined on TE. Also ω has the usual relation to L̂. However, since κα a can

depend on x, L̂ may not give the original equations of motion.
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10.2 Global Lagrangians without the Quantization Condition

The discussion which follows is taken from Ref.[75].

The variational-principles which follow often involve the phase space as the space

Q = {ξ}. They are thus often related to Hamilton’s variational principle.

We shall discuss Hamiltonian systems. Thus a globally defined Hamiltonian H and

a globally defined symplectic form ω [Cf. Eq.(10.29) ] are assumed to exist. Further ω

is closed and non-degenerate, i.e.,

dω = 0 , (10.44)

and

detωij 6= 0 . (10.45)

The Hamilton equations of motion for this system are

∂H

∂ξi
= ωjiξ̇

j . (10.46)

Suppose now that ω is exact. By definition, then, there exists a globally defined

one-form f = fi(ξ)dξ
i such that

ω = df . (10.47)

The equations of motion in this case follow from the global Lagrangian

L = fi(ξ)ξ̇
j −H(ξ) . (10.48)

In familiar situations whereQ admits global canonical coordinates, we see from Eq.(10.46)

that the variational principle associated with L is just Hamilton’s variational principle.

If ω is not exact as for the charge-monopole system, then a global f does not exist.

Thus we have to modify the above procedure for finding L. One such procedure was

described in the previous section. We now point out an alternative approach.

The first step in the modification is to change the configuration space from Q to

the space of paths PQ over Q. It is defined as follows. Let ξ0 be a fixed reference point

in Q. This point may be chosen at will. Then a point of PQ is a path γ from ξ0 to

some point ξ:

γ = { γ(σ) | 0 ≤ σ ≤ 1 , γ(0) = ξ0 , γ(1) = ξ} . (10.49)

These paths are defined at a given time. We denote the time-dependent paths by

γ(σ, t) [γ(σ, 0) = ξ0] . (10.50)
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We now show that we can always write an action principle with configuration space

as PQ. The procedure, of course, works also when ω is exact. We illustrate it in this

context first.

The Hamiltonian H can first be promoted to a functional H̃ on paths at a given

time:
∫ 1

0

dσH̃[γ(σ, t)] = H [γ(1, t)] . (10.51)

Consider next a family of paths γ(σ, t) with

γ(1, t) = ξ(t) . (10.52)

Thus as σ and t vary, γ(σ, t) sweeps out a surface ∆ in Q with the boundary

∂∆ = ∂∆1 ∪ ∂∆1 ∪ ∂∆3 , (10.53)

where

∂∆1 = { ξ(t) | t1 ≤ t ≤ t2} ,

∂∆2 = {γ(σ, t1) | 1 ≤ σ ≤ 1} ,

∂∆3 = {γ(σ, t2) | 1 ≤ σ ≤ 1} . (10.54)

By applying Stokes’ theorem, we can write the action S as

S =

∫ t2

t1

dt
[

fi(ξ)ξ̇
i −H(ξ)

]

=

∫

∂∆1

[

fi(ξ)dξ
i −H(ξ)dt

]

, (10.55)

as

S =

∫

∆

[

1

2
ωij[γ(σ, t)]dγ

i(σ, t) ∧ dγj(σ, t)− H̃[γ(σ, t)]dσ ∧ dt
]

+

{
∫

∂∆3

fi[γ(σ, t)]dγ
i(σ, t)−

∫

∂∆2

fi[γ(σ, t)]dγ
i(σ, t)

}

. (10.56)

Since we shall not vary the initial and final paths γ(σ, t1) and γ(σ, t2) in the varia-

tional principle, the expression in the ”script bracket” above will not contribute to the

equations of motion. The action on the space of paths PQ can thus be taken to be

S =

∫

∆

[

ω[γ(σ, t)]− H̃[γ(σ, t)]dσ ∧ dt
]

. (10.57)

It involves only the symplectic form ω and not the one-form f . It appears to define a

field theory in one ”space” and one time.
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The action S as given by Eq.(10.57) was derived in the case that ω was exact.

However, it involves only ω and thus is expected to be valid even if ω is not exact.

This expectation is correct as may shown by varying

S =
1

2

∫

∆

ωij
∂γi

∂σa

∂γj

∂σb
εabdσ ∧ dt−

∫

∂∆1

Hdt , (10.58)

where σ0 = t, σ1 = σ, and ε01 = −ε10 = 1. We find, upon using dω = 0, i.e.,

∂iωjk + ∂jωki + ∂kωij = 0, and regrouping terms,

δ(
1

2

∫

∆

ωij
∂γi

∂σa

∂γj

∂σb
εabdσ ∧ dt) = −

∫

∆

d
[

ωijdγ
iδγj

]

= −
∫

∂∆1

ωijdγ
iδγj , (10.59)

since δγj = 0 on ∂∆2 ∪ ∂∆3. Also

δ(

∫

∂∆1

Hdt) =

∫

∂∆1

∂H

∂ξj
δγjdt . (10.60)

Thus the equations of motion (Cf. Eq.(10.46) is recovered.

For a charge-monopole system the preceding technique can be directly applied to

the conventional local Lagrangian:

L = L0 + LI , L0 =
1

2
mẋ2i , LI = eAiẋi , (10.61)

in order to find the global Lagrangian. Here (Cf. Eq.(9.12)),

∂iAj − ∂jAi = −εijk
gxk
4πr3

, (10.62)

is the monopole magnetic field. The latter is globally defined but, of course, the

potential Ai is not. The space Q is R3 − {0} = S2 ×R+ , where

S2 = {x̂i =
xi√
xixi

} , R+ = {r = √
xixi | xixi > 0} . (10.63)

Let the reference point be ξ0 = (1, 0, 0). Then the space PQ is the space of paths γ

radiating from ξ0. The globally defined action and Lagrangian are

S =

∫

L̃(σ, t)dσ ∧ dt , L̃(σ, t) = L̃0(σ, t) + L̃I(σ, t) ,

S =

∫

L̃(σ, t)dσ ∧ dt , (10.64)

L̃0(σ, t) = − eg

8π
εijkε

abγ̂i(σ, t)
∂γ̂j
∂σa

(σ, t)
∂γ̂k
∂σb

(σ, t) .
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Here

γ̂i(σ, t) =
γi(σ, t)

√

γj(σ, t)γj(σ, t)
. (10.65)

and we identify γi(1, t) with xi(t).

Finally we make contact with the fibre bundle approach as follows. If ω fulfills a

quantization condition of the form Eq.(10.21), we know that there is a U(1) bundle E

over Q on which ω becomes exact:

ω = dχ on E . (10.66)

The action S can be thought of as defined on PE, the path space for E. Thus we now

regard ∆ as a surface in E. Now

∫

∆

ω =

∫

∂∆1

χ , (10.67)

plus terms which are not varied and may be discarded. In this way, we have a globally

defined action on E:

S =

∫

∂∆1

(χ−Hdt) . (10.68)

Here ,as in the treatment of the kinetic energy term for the charge-monopole system,

we regard H as being defined on E. Note that this procedure does not work without

the quantization condition.

The quantization condition allows us to reduce the path space PE to the U(1) ×
U(1)× ...×U(1) - bundle E over Q with k factors of U(1) when there are k two-cycles

S1, S2, ...Sk, such that
∫

Sj

dω = aj and
ai
aj

is rational . (10.69)

For further details, see Ref.[75, 1].
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