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In physics we encounter particles in one of two ways. Either as fundamental

constituents of the theory or as emergent excitations. These two ways differ by how

the particle relates to the background. It either sits on the background, or it is an

excitation of the background. We argue that by choosing the former to construct

our fundamental theories we have made a costly mistake. Instead we should think of

particles as excitations of a background. We show that this point of view sheds new

light on the cosmological constant problem and even leads to observable consequences

by giving a natural explanation for the appearance of MOND-like behavior. In

this context it also becomes clear why there are numerical coincidences between

the MOND acceleration parameter a0, the cosmological constant Λ and the Hubble

parameter H0.
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I. WHICH OF OUR BASIC PHYSICAL ASSUMPTIONS ARE WRONG?

In theoretical physics we encounter particles in two different ways. We either encounter

them as fundamental constituents of a theory or as emergent entities. A good example of

the first kind is a scalar field. Its dynamics is given by the Lagrangian
∫

d4x

(

1

2
(∂φ)2 −m2φ2 + . . .

)

. (1)

An example of an emergent particle is a spin-wave in a spin-chain. It given by

|k〉 =
N
∑

n=1

exp

(

2πi
nk

N

)

|n〉 (2)

If |0〉 is the gound state of the spin-chain then |n〉 is the state where spin n is flipped.

Of all the differences between these two concepts of particles we want to stress one in

particular: the relation these particles have to their respective backgrounds.

The scalar field is formulated as a field on spacetime. The above Lagrangian does not

include the metric. If we include the metric we obtain
∫

d4x
√
−g

(

1

2
gab∂aφ∂bφ−m2φ2 + . . .

)

. (3)

This way the scalar field knows about a non-trivial spacetime. Einstein told us that this

is not a one-way street. The presence of a scalar field in turn changes the background. The

proper equations that describe this interaction between matter and background are obtained

by adding the curvature tensor to the above Lagrangian. This interaction does not change

the basic fact about the scalar field that it is sitting on spacetime. It is distinct from the

spacetime that it sits on.

This is in contrast to the emergent particle. There is no clean separation possible between

the particle and the background, i.e. the ground state in this case. The spin-wave above is

an excitation of the background not an excitation on the background.

We can now state what basic assumption we think needs changing. Currently we built

our fundamental theories assuming the matter-on-background model. We will argue here

that this assumption is wrong and that instead all matter is of the emergent type and that

the excitation-of-background model applies.

Our basic assumption that is wrong: Matter does not sit on a background but is an

excitation of the background.
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In the following we will do two things. First we will show that the assumption that matter

sits on a background creates problems and how our new assumption avoids these problems.

Then we will argue that the new assumption has observable consequences by showing how

MOND like behavior arises naturally.

II. THE COSMOLOGICAL CONSTANT

The basic assumption that matter sits on a background directly leads to one of the

thorniest problems of theoretical physics: the cosmological constant problem. All matter is

described by quantum fields which can be thought of as a collection of quantum harmonic

oscillators. One feature of the spectrum of the harmonic oscillator is that it has a non-

vanishing ground state energy of ~ω/2. Because the quantum field sits on spacetime the

ground state energy of all the harmonic oscillators making up the field should contribute to

the curvature of space. The problem with this reasoning is that it leads to a prediction that

is many orders of magnitude off. In fact if one assumes that there is some large frequency

limit ω∞ for the quantum field then the energy density coming from this ground state energy

is proportional to the fourth power of this frequency:

ǫ ≃ ω4

∞
(4)

If one chooses ω∞ to be the Planck frequency then one obtains a value that is 123 orders

of magnitude larger than the observed value of the cosmological constant. This has been

called the worst prediction of theoretical physics and constitutes one part of the cosmological

constant problem (see [1, 2] for more details).

Let us emphasize again how crucial the basic assumption of matter-on-background is for

the formulation of the cosmological constant problem. Because we have separated matter

from the background we have to consider the contributions coming from the ground state

energy. We have to do this even when the matter is in its ground state, i.e. when no particles

are present. This is to be contrasted with the excitation-of-background model. If there are

no waves present there is also no ground state energy for the excitations to consider. The

cosmological constant problem can not be formulated in this model.

There are two objections to this reasoning that we have to deal with. The first objection

is that although the above reasoning is correct it is also not that interesting because there is
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no gravity in the picture yet. We will deal with this objection in the next section. The other

objection concerns the ontological status of the vacuum fluctuations. Isnt it true that we

have observed the Casimir effect? Since the Casimir effect is based on vacuum fluctuations

the cosmological constant problem is not really a problem that is rooted in any fundamental

assumption but in observational facts. For its formulation no theoretical foundation needs

to be mentioned. We will deal with this objection now.

There are two complementary views of the Casimir effect and the reality of vacuum fluc-

tuations. In the more well known explanation of the Casimir force between two conducting

plates the presence of vacuum fluctuations is assumed. The Casimir force then arises because

only a discrete set of frequencies is admissible between the plates whereas no such restriction

exists on the outside. The Casimir effect between two parallel plates has been observed and

this has led to claims that we have indeed seen vacuum fluctuations. This claim is not quite

true because there is another way to think about the Casimir effect. In this view vacuum

fluctuations play no role. Instead, the Casimir effect results from forces between the cur-

rents and charges in the plates. No vacuum diagrams contribute to the total force[3]. If the

emergent matter is described by the correct theory, say quantum electrodynamics, we will

find the Casimir effect even if there are no vacuum fluctuations.

We see that the cosmological constant problem can be seen as a consequence of us viewing

matter as sitting on a background. If we drop this assumption we can not even formulate

the cosmological constant problem.

III. GRAVITY

The above argument for viewing matter as an excitation of a background is only useful

if we can include gravity in the picture. In [4] we have argued that this can be achieved

by regarding the ground state itself as the variable quantity that is responsible for gravity.

In the simplest case the vacuum is described by a scalar quantity θ. If we assume that the

energy of the vacuum is given by

E =
1

8π

∫

d3x (∇θ)2, (5)
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then we can calculate the force between two objects mi, i = 1, 2. If we introduce the

gravitational mass of an object by

m =
1

4π

∫

∂m

dσ · ∇θ, (6)

where ∂m is the boundary of the object m, then the force between them is given by

F =
m1m2

r2
. (7)

Usually we express Newton’s law of gravitation not in terms of the gravitational masses mi,

i = 1, 2, but in terms of the inertial masses mi, i = 1, 2. In [4] we have argued that the

inertial mass of an object is given by

m =
2m

3a
m, (8)

where a is the radius of the object. In terms of the inertial masses mi Newton’s law then

takes the usual form

F = G
m1m2

r2
, (9)

where G has to be calculated from the fundamental theory:

G =

(

3a

2m

)2

(10)

In this picture of gravity the metric does not play a fundamental role. Gravity appears

because the ground state θ depends on the matter.

IV. MOND AS A CONSEQUENCE

The picture of gravity that we have given in the last section is valid only for zero tem-

perature. If the temperature is not zero we need to take the effects of entropy into account

and instead of looking at the energy we have to look at the free energy

F = E − TS. (11)

We thus have to determine the dependence of the entropy S on the temperature T and the

ground state θ. The entropy should not depend on θ directly because every θ corresponds

to the same ground state. The entropy should only be dependent on changes of θ. If we are

only interested in small values of T we find

S = σT (∇θ)2, (12)
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for some constant σ. The total free energy is thus

F = E − TS (13)

= E(1− 8πσT 2). (14)

We see that a non-zero temperature does not change the form of the force but just its

strength. The new gravitational constant is given by

GT =
1

1− σT 2
GT=0. (15)

The situation changes in an interesting way if there is a large maximal length scale Lmax

present in the problem. The contributions to the entropy of the form (∇φ)2 come from

excitations with a wavelength of the order

L = |∇φ|−1. (16)

If this wavelength L is larger than Lmax than these excitations should not exist and thus

not contribute to the entropy. Instead of a simple (∇φ)2 term we should thus have a term

of the form

C(Lmax |∇θ|) · (∇θ)2, (17)

where the function C is such that it suppresses contributions from excitations with wave-

lengths larger than Lmax. For wavelengths much smaller than the maximal wavelength we

want to recover the usual contributions to the entropy. Thus, if Lmax · |∇θ| is much bigger

than unity we want C to be one:

C(x) = 1, for x ≫ 1. (18)

For x ≪ 1 we assume that the function C possesses a series expansion of the form

C(x) = αx+ βx2 + . . . . (19)

For small values of Lmax · |∇θ| we thus find that the dependence of the entropy on φ is of

the form

T 2σ

∫

d4x αLmax|∇φ|3. (20)

It is here that we make contact with the Lagrangian formulation of Milgrom’s odd new

dynamics (or MOND, see [5] and [6] for more details). In [7] Bekenstein and Milgrom have
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shown that a Lagrangian of the form

∫

d3x

(

ρθ +
1

8πG
a2
0
F

[

(∇θ)2

a20

])

(21)

gives rise to MOND like dynamics if the function F is chosen such that

µ(x) = F ′(x2). (22)

Here µ(x) is the function that determines the transition from the classical Newtonian regime

to the MOND regime. It satisfies

µ(x) =







1 x ≫ 1

x x ≪ 1
(23)

From this it follows that the function F satisfies

F (x2) =







x2 x ≫ 1

2/3 x3 x ≪ 1
(24)

The behavior of the Lagrangian is then

a2
0
F

( |∇θ|2
a2
0

)

=







|∇θ|2 a−1

0 |∇θ| ≫ 1

2

3a0
|∇θ|3 a−1

0
|∇θ| ≪ 1

(25)

This is exactly the behavior of the free energy that we have just derived if we make the

identification
2

3a0
= ασT 2Lmax. (26)

There are currently two candidates for a maximal length scale Lmax. These are the Hubble

scale

LH = cH0 (27)

and the cosmic horizon scale

LΛ =

√

1

Λ
. (28)

It is a remarkable fact of the universe that we live in that both of these length scales satisfy

the relationship that we derived in (26) if we further assume that the constant ασT 2 is of

order one. We have thus established a connection between the acceleration parameter a0,

the cosmological constant Λ, and the Hubble parameter H0. In standard cosmology these

coincidences remain complete mysteries.
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V. DISCUSSION

Particles are either fundamental or they are emergent. If they are fundamental they are

sitting on a background; if they are emergent they are excitations of a background. Rather

than being a purely philosophical issue we have argued that this distinction is important and

that the assumption that particles are fundamental is wrong. Assuming instead that particles

are emergent leads to the resolution of theoretical problems as well as having observational

consequences. We have argued that the cosmological constant problem as it is usually

formulated can not even be stated if we think of particles as excitations of a background.

Also, we have shown that this picture gives a straight forward way of understanding the

appearance of MOND like behavior in gravity. The argument also makes clear why there

are numerical relations between the MOND parameter a0, the cosmological constant Λ, and

the Hubble parameter H0.

Our derivation of MOND is inspired by recent work [8–17] that uses Verlinde’s derivation

of Newton’s law of gravity [18] as a starting point. Our derivation differs from these in that

it does not rely on holography in any way. Our formulae for the entropy are all completely

three-dimensional.
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