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Inflation as a prediction of loop quantum cosmology
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Loop quantum cosmology is known to be closely linked with an inflationary phase. In this article,
we study quantitatively the probability for a long enough stage of slow-roll inflation to occur, by
assuming a minimalist massive scalar field as the main content of the universe. The phase of the
field in its ”pre-bounce” oscillatory state is taken as a natural random parameter. We find that the
probability for a given number of inflationary e-folds is quite sharply peaked around 145, which is
indeed more than enough to solve all the standard cosmological problems. In this precise sense, a
satisfactory inflation is therefore a clear prediction of loop gravity. In addition, we derive an original
and stringent upper limit on the Barbero-Immirzi parameter. The general picture about inflation,
super-inflation, deflation and super-deflation is also much clarified in the framework of bouncing
cosmologies.

PACS numbers: 04.60.-m 98.80.Qc

I. INTRODUCTION

Loop quantum gravity (LQG) is a tentative nonpertur-
bative and background-independent quantization of gen-
eral relativity. It uses Ashtekar variables, namely SU(2)
valued connections and conjugate densitized triads. The
quantization is obtained through holonomies of the con-
nections and fluxes of the densitized triads (see, e.g., [1]
for an introduction). Basically, loop quantum cosmology
(LQC) is the symmetry reduced version of LQG. In LQC,
the big bang is generically replaced by a big bounce due
to huge repulsive quantum geometrical effects (see, e.g.,
[2] for a review).

Two main LQG corrections are expected when deal-
ing with a semiclassical approach, as will be the case in
this study, which is mostly devoted to potentially observ-
able effects. The first one comes from the fact that loop
quantization is based on holonomies, i.e. exponentials
of the connection rather than direct connection compo-
nents. The second one arises for inverse powers of the
densitized triad, which, when quantized, becomes an op-
erator with zero in its discrete spectrum, thus lacking a
direct inverse. As the status of ”inverse volume” correc-
tions is not fully clear, due to the fiducial volume cell de-
pendence, this work focuses on the holonomy term which
has a major influence on the background equations. The
emphasis is put on LQC as this model provides a well
defined framework, with known and controlled equations
of motion. Most results are, however, probably quite
generic to bouncing models.
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After reviewing the formalism, we derive the probabil-
ity density function for the number of e-folds. This study
is complementary to the ones performed in [3] where the
probability distribution was assumed to be flat and de-
fined at the bounce. Here, we make a very different as-
sumption: the phase of the field oscillating in the remote
past is considered to be the most natural random vari-
able. We don’t use any heavy machinery and rely only
on very minimalistic hypotheses. Nor do we consider
different possible conditions at the bounce, as in [3], but
instead derive them explicitly as predictions of the model.
In addition, we show that, if the critical density is as-

sumed to be a free parameter, a stringent upper limit
on the Barbero-Immirzi parameter, γ, that is the free
parameter of loop gravity, can be obtained. This is es-
pecially important if, as suggested in [4], the entropy of
black holes can be recovered for any γ, therefore leaving
its value mostly unconstrained.

II. FRAMEWORK

The LQC-modified Friedman equation reads as

H2 =
κ

3
ρ

(

1− ρ

ρc

)

. (1)

The main content of the universe is assumed to be a
massive scalar field φ with mass m fulfilling:

φ̈+ 3Hφ̇+m2φ = 0. (2)

Except in the last section, we use the critical den-
sity, i.e. density at the bounce, given by [2] ρc =√
3m4

Pl
/(32π2γ3) ≃ 0.41m4

Pl
, where κ = 8πG and γ =

0.2375.
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We define the fractions of potential and kinetic energy,
normalized to the maximum energy density:

x :=
mφ√
2ρc

and y :=
φ̇√
2ρc

, (3)

so that

ρ = ρc
(

x2 + y2
)

. (4)

The equations of motion for x, y and ρ are:

ẋ = my , ẏ = −my − 3Hy, (5)

ρ̇ = −6Hρcy
2. (6)

Trying to confront LQG with the real world is a key
issue. Many works have been devoted to the computa-
tion of power spectra and their subsequent comparison
with observations (see, e.g., [5]). Here, we don’t follow
this track but, in the spirit of [3], focus instead on the
”probability” of the universe being like it is within the
loop gravity framework. This probability is not obvious
to interpret. However, it clearly says something about
the ”naturalness” of the model.

III. PHASES OF THE LQC BOUNCING

UNIVERSE

Using Eq. (1) and Eqs. (4)-(6), the evolution of the
universe can be generically described by five phases:

A. Pre-bounce oscillations
B. Slow-roll deflation
C. Super-deflation, bounce and super-inflation
D. Slow-roll inflation
E. Post-bounce oscillations

We assume that ρc is large enough so that ρ ≪ ρc is
always the last of the relevant conditions to be violated
before the bounce and the first one to be restored after
the bounce. In the following equations t is always the
cosmic time but it will be shifted between solutions for
the different phases.
The calculations behind the results in this section are

presented in appendix A.

A. Pre-bounce oscillations

This phase is characterized by the fact that x and y
are oscillating with vanishing mean values and growing
amplitudes. In this study, we naturally assume this phase
to be the initial state of the bouncing universe. The
conditions for pre-bounce oscillations are:

ρ ≪ ρc , H < 0 , H2 ≪ m2. (7)

The evolution in this phase can be approximated by:

ρ = ρ0

(

1− 1

2

√

3κρ0

(

t+
1

2m
sin(2mt+ 2δ)

))−2

,

(8)

x =

√

ρ

ρc
sin(mt+ δ) , y =

√

ρ

ρc
cos(mt+ δ). (9)

This is stable until ρ grows large enough to violate the
last condition.

B. Slow-roll deflation

Slow-roll deflation is characterized by an almost con-
stant y and a linearly growing |x|. The probability of
slow-roll deflation is small, since it occurs only if the re-
lation between x and y is very specific at the end of the
phase of pre-bounce oscillations. Slow-roll deflation is
unstable. The conditions for Slow-roll deflation are:

ρ ≪ ρc , H < 0 , H2 ≫ m2 , x2 ≫ y2. (10)

In this phase, the equation of motion for y can be ap-
proximated by:

ẏ =
√

3κρc|x|
(

y − sign(x)
m√
3κρc

)

. (11)

The value y = sign(x) m√
3κρc

is an unstable stationary

point. The variable y will evolve away from sign(x) m√
3κρc

.

However, if y starts out very close to sign(x) m√
3κρc

then

ẏ ≈ 0 for a while, and this leads to slow-roll deflation.

C. Super-deflation, bounce and super-inflation

This phase is characterized by a large |y| and a rapidly
growing or decreasing x (y, and therefore ẋ do not change
sign during this phase). Super-deflation starts directly
after post-bounce oscillations or after slow-roll deflation.
The conditions for this phase are:

H2 ≫ m2 , y2 ≫ x2. (12)

The evolution can be approximated by:

ρ = ρc
(

1 + 3κρct
2
)−1

, y = ±
(

1 + 3κρct
2
)−1/2

, (13)

x = xB ± m√
3κρc

arcsinh
(

√

3κρc t
)

, (14)

where t = 0 at the bounce for Eqs. (13)-(14). This phase
is stable for H < 0 but unstable for H > 0 since, in the
later case, |y| is decreasing rapidly and will eventually
violate the second condition of Eqs. (12).
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FIG. 1: Some typical plots for x as a function of time: Type I (upper left), Type II (upper middle), Type III (upper right),
Type IV (lower left) and Type V (lover right). The mass of the scalar field is m = 10−3 but the features remain true for any
mass.

D. Slow-roll inflation

Slow-roll inflation happens if the second condition of
Eq. (12) is broken before the first one. This is usually
the case. The conditions for slow-roll inflation are:

ρ ≪ ρc , H > 0 , H2 ≫ m2 , x2 ≫ y2. (15)

In this phase, the equation of motion for y can be ap-
proximated by:

ẏ = −
√

3κρc|x|
(

y + sign(x)
m√
3κρc

)

, (16)

which should be compared with Eq. (11). In this case
y = −sign(x) m√

3κρc

is an attractor, therefore Slow-roll

inflation is stable until one of the two last conditions is
violated, which occurs at approximately the same value
of x for both conditions.

E. Post-bounce oscillations

The conditions for post-bounce oscillations are:

ρ ≪ ρc , H > 0 , H2 ≪ m2. (17)

The evolutions in this phase can be approximated by:

ρ = ρ0

(

1 +
1

2

√

3κρ0

(

t+
1

2m
sin(2mt+ 2δ)

))−2

,

(18)
together with Eqs. (9).

IV. PARAMETERS AND CLASSES OF

EVOLUTION

At the bounce x2 + y2 = 1; the parameters for the
solutions can therefore be taken to be xB and sign(yB).
Only the relative sign between xB and yB is physical.
We choose sign(yB) = 1 without loss of generality. The
solutions can be divided into five classes:

Type I: Longer slow-roll inflation than slow-roll defla-
tion, x does not change sign around the bounce.

Type II: Slow-roll inflation but no slow-roll deflation.

Type III: Both slow-roll inflation and slow-roll defla-
tion with opposite signs of x.

Type IV: Slow-roll deflation but no slow-roll inflation.

Type V: Longer slow-roll deflation than slow-roll
inflation, x does not change sign around the bounce.

Typical plots of x for each class of solutions are shown
in Fig. 1. This fully clarifies the different possible sce-
narios in effective LQC.

V. TYPICAL BEHAVIORS AND

PROBABILITIES

In this section, the probabilities for different evolu-
tions, from random initial conditions set in the pre-
bounce oscillation phase, are calculated. In this phase,
the evolution of the universe is described by Eqs. (8)-(9),
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FIG. 2: sign(yB)xB as a function of δ (upper plot) and its
probability distribution (lower plot). The mass of the scalar
field is m = 1.21× 10−6, as favored by observations.

with parameters ρ0 and δ. However, the transformation

ρ0 → ρ1

δ → δ − 2m√
3κρ1

(

1−
√

ρ1

ρ0

)

t → t+ 2√
3κρ1

(

1−
√

ρ1

ρ0

)

(19)

will not change the solution, allowing us to take δ as the
only parameter. In addition, a flat probability distribu-
tion for δ will be preserved over time, making it a most
natural choice. Assuming such a distribution for δ, and
choosing ρ0 so that the solution is initially well approx-
imated by Eqs. (8)-(9), the probability of different xB

can be calculated numerically using the full Eqs. (1) and
(4)-(5) (we project the result down to the physically rel-
evant parameters by considering sign(yB)xB). The value
of sign(yB)xB as a function of δ and the resulting prob-
ability distribution are showed in Fig. 2.
The probability of sign(yB)xB , previously taken as un-

known, is in fact highly peaked around 3.6× 10−6. This
corresponds to solutions of Type II, as could be expected
from the arguments given in the previous section. Luck-
ily, this also corresponds to a strong kinetic energy dom-
ination at the bounce (therefore backreaction effects can
be more safely neglected [6]).
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FIG. 3: Probability density of the number of e-folds during
slow-roll inflation. The mass of the scalar field is m = 1.21×
10−6.

In this case, slow-roll inflation starts at |x| = xmax :=
max(|x|), which is related to the length of slow-roll infla-

tion by N = κρc

2

(

xmax

m

)2 ≃ 5.1
(

xmax

m

)2
, where N is the

number of e-folds during slow-roll inflation. The proba-
bility density for N is given in Fig. 3, showing that the
model nearly unavoidably leads to a long enough phase of
inflation. This becomes an important prediction of LQC:
inflation and its duration are not arbitrary in the model.
A raw analytical estimate for N can also be eas-

ily obtained by assuming that the phase of super-
deflation, bounce and super-inflation starts at H = −m
and x = 0, and ends at H = m. One then finds
that xmax = 2m√

3κρc

ln
(

2

m

√

κ
3
ρc
)

, where we have used

arcsinh
(

1

m

√

κ
3
ρc
)

≈ ln
(

2

m

√

κ
3
ρc
)

. This leads to

N =
2

3
ln

(

2

m

√

κ

3
ρc

)2

, (20)

which agrees very well with numerical mean values.

VI. CONSTRAINTS

So far, we have used the standard value of ρc, with a
Barbero-Immirzi parameter γ assumed to be known from
black hole entropy (see, e.g., [7]). By instead taking ρc
as a free parameter, we can constrain ρc and γ. Previous
attempts to constrain ρc (see [8]) from cosmological data
were based on xmax < 1. However, we have shown that,
in all realistic cases, xmax ≪ 1.
We can derive an upper limit on γ by requiring a large

enough probability for a long enough slow-roll inflation.
Fig. 4 shows P (N > 65) as a function of ρc and Table
I gives the constraints on ρc and γ for different required
minimum probabilities for N > 65 (one can also perform
an analytical calculation using Eq. (20), leading to ρc <
1.6 × 10−5). Basically, the result is that γ should be
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FIG. 4: Probability for having more than 65 e-folds of slow-
roll inflation, P (N > 65), as a function of ρc. The mass of
the field is m = 1.21 × 10−6.

P (N > 65) ρc γ

0.5 1.9× 10−5 6.6
0.05 5.4× 10−6 10.1
0.01 3.2× 10−6 11.9

TABLE I: Lower bound on ρc and upper bound on γ for
different probabilities for slow-roll inflation longer than 65 e-
folds.

smaller that 10.1 at 95% confidence level and smaller that
11.9 at 99% confidence level. This is much more stringent
that previous cosmological constraints [8]: γ < 1100.

VII. CONCLUSION

This letter establishes that a long enough slow-roll in-
flationary phase is nearly unavoidable in LQC. The pre-
ferred value is N = 145 e-folds, this is a prediction of
the model. Values lower than 100 or greeter than 170
are highly non-probable. In addition, the value of xB,
the square root of the fraction of potential energy at the
bounce, is no longer unknown but is shown to be very
close to 3.5× 10−6. Finally, the Barbero-Immirzi param-
eter is now bounded to be smaller than 10-12 (depending
on the confidence level), which is, by far, the best cos-
mological constraint.

Appendix A: Derivation of evolutions in the

different phases

In this appendix we present the calculations behind
the results in section III.

1. Oscillations

These calculations apply to both pre- and post-bounce
oscillations.

The first condition of Eq. (7) and Eq. (17) ensure that
we can approximate Eq. (1) by:

H = ±
√

κ

3
ρ. (A1)

In addition, the last condition of Eq. (7) and Eq. (17)
ensures that we can approximate x and y by oscillat-
ing functions with frequency m and varying amplitudes.
This, together with Eq. (4) gives Eq. (9). From this, Eq.
(6) can be simplified to:

ρ̇ = ∓2
√
3κ cos2(mt+ δ) ρ3/2, (A2)

which can be integrated to give Eq. (8) and Eq. (18).

2. Slow-roll

These calculations apply to both slow-roll deflation
and slow-roll inflation.
The last condition of Eq. (10) and Eq. (15) ensures

that we can approximate Eq. (4) by:

ρ = ρcx
2. (A3)

This, together with Eq. (1) and the first condition of Eq.
(10) and Eq. (15) gives

H = ±
√

κ

3
ρc|x|, (A4)

so that the second part of Eq. (5) becomes Eq. (11) or
Eq. (16).

3. Super deflation, bounce and superinflation

Without approximations, Eq. (1) can be written as:

H = ±
√

κ

3
ρ

(

1− ρ

ρc

)

. (A5)

The second condition of Eq. (12) ensures that we can
approximate Eq. (4) by

ρ = ρcy
2. (A6)

Using the two above equations, Eq. (6) can be simplified
to:

ρ̇ = ∓2

√

3κ

(

1− ρ

ρc

)

ρ3/2, (A7)

which can be integrated to give Eq. (13), which is true
both before and after the bounce. Integrating the first
part of Eq. (5), using the second part of Eq. (13) gives
Eq. (14).
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