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Inflationary models of the early universe provide a natural mechanism for the

formation of large scale structure. This success brings to forefront the question of

naturalness: Does a sufficiently long slow roll inflation occur generically or does it

require a careful fine tuning of initial parameters? In recent years there has been

considerable controversy on this issue [1–4]. In particular, for a quadratic potential,

Kofman, Linde and Mukhanov [2] have argued that the probability of inflation with

at least 65 e-foldings is close to one, while Gibbons and Turok [4] have argued that

this probability is suppressed by a factor of ∼ 10−85. We first clarify that such

dramatically different predictions can arise because the required measure on the

space of solutions is intrinsically ambiguous in general relativity. We then show that

this ambiguity can be naturally resolved in loop quantum cosmology (LQC) because

the big bang is replaced by a big bounce and the bounce surface can be used to

introduce the structure necessary to specify a satisfactory measure.

The second goal of the paper is to present a detailed analysis of the inflationary

dynamics of LQC using analytical and numerical methods. By combining this infor-

mation with the measure on the space of solutions, we address a sharper question

than those investigated in [2, 4, 5]: What is the probability of a sufficiently long slow

roll inflation which is compatible with the seven year WMAP data? We show that

the probability is very close to 1.

The material is so organized that cosmologists who may be more interested in the

inflationary dynamics in LQC than in the subtleties associated with measures can

skip that material without loss of continuity.

Key Words: Loop quantum gravity, cosmology, inflation, measures, probability,

WMAP 7 year data.

I. INTRODUCTION

The inflationary paradigm provides a natural mechanism of generating the seeds of inho-
mogeneities in the cosmic microwave background (CMB) which then evolve to the observed,
large scale structure of the universe. The general scenario involves a rather small set of
assumptions: i) Sometime in its early history, the universe underwent a phase of rapid ex-
pansion during which the Hubble parameter was nearly constant; ii) During this phase, the
universe was well described by a Friedmann, Lemâıtre, Robertson, Walker (FLRW) solution
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to Einstein’s equations together with small inhomogeneities which are well approximated by
first order perturbations; iii) Consider the co-moving Fourier mode ko of perturbations which
has just re-entered the Hubble radius now. A few e-foldings before the time t(ko) at which
ko exited the Hubble radius during inflation, Fourier modes of quantum fields describing
perturbations were in the Bunch-Davis vacuum for co-moving wave numbers in the range
(ko, ∼ 200ko); and, iv) Soon after a mode exited the Hubble radius, its quantum fluctuation
can be regarded as a classical perturbation and evolved via linearized Einstein’s equations.
Analysis of these perturbations implies that there must be tiny inhomogeneities at the last
scattering surface whose detailed features have now been seen in the CMB. Furthermore,
time evolution of these tiny inhomogeneities produces large scale structures which are in
excellent qualitative agreement with observations. Therefore, even though the assumptions
have ad-hoc elements, they appear to capture a germ of truth, not unlike the Bohr atom
did a hundred years ago.

For definiteness, let us assume a quadratic potential for the inflaton and supplement
our calculations with values of two parameters provided by the seven year WMAP data
[6]: the amplitude A(t(k⋆)) of the scalar power spectrum ∆R(t(k⋆)) and the scalar spectral
index nS(t(k⋆)) at the time the fiducial mode k⋆ used by WMAP exits the Hubble radius
(k⋆ ≈ 8.58ko). These numbers, together with the Friedmann equation, determine the values
of slow roll parameters and the initial data for the inflaton and the gravitational field at time
t(k⋆) to within posted observational errors. A slow roll follows and dynamics of perturbations
during this epoch directly lead to the spectrum of inhomogeneities seen in the CMB. We
will refer to this inflationary phase as the desired slow roll to distinguish it from other
inflationary phases that may have occurred, e.g., in an even earlier phase.

The striking success of the scenario brings to forefront an old issue in a sharper form: Does
the desired slow roll inflation occur generically in a given theoretical paradigm? That is, do
generic dynamical trajectories pass through the neighborhood of the values of the inflaton
and gravitational fields selected by the WMAP data with its error bars? This would require
that the inflaton must have been significantly high up compared to the minimum of the
potential at the onset of the desired slow roll. How did it get there? Is it essential to invoke
some rare quantum fluctuations to account for the required initial conditions because the a
priori probability for their occurrence is low? Or, is the desired slow roll inflation robust in
the sense that it is realized in ‘almost all’ dynamical trajectories of the given theory?

To make these questions precise one needs a well-defined framework to calculate proba-
bilities of various occurrences within any given theory. A mathematically natural strategy to
achieve this goal was introduced over two decades ago (see e.g. [7–9]). Recall first that the
space S of solutions to physically interesting classical systems generally carries the natural
Liouville measure dµL. The idea was to calculate a priori probabilities using a flat probabil-
ity distribution P (s) = 1 in conjunction with dµL. More precisely, the a priori probability
of an event E is given by the fractional Liouville volume of S occupied by the region R(E)
consisting of solutions on which the event E is realized [7]. In our case, then, the a pri-
ori probability is given by the fractional volume occupied by the sub-space of solutions in
which the desired slow roll inflation occurs. Note that this a priori probability provides
only a ‘bare’ estimate and further physical input can and should be used to provide sharper
probability distributions P (s) and a more reliable likelihood. However, a priori probabilities
themselves can be directly useful if they are very low or very high. In these cases, it would
be an especially heavy burden on the fundamental theory to come up with the physical input
that significantly alters them.
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However, there is a conceptual obstacle in this calculation: the total Liouville measure of
the space S of solutions is infinite [9], hence there is an intrinsic ambiguity in the calculation
of relative probabilities [3]. But in the observationally favored k=0 FLRW model, this
divergence is a gauge artifact. More precisely, a gauge group G acts on S and, although the
quotient S/G —the space of physically distinct solutions— is compact (with boundary), the
gauge orbits are non-compact, making the total volume of S infinite. It would first appear
that the obvious way to avoid the infinite volume is to work directly with the space S/G
of physically distinct solutions. However, as we will see, the Liouville measure does not
naturally project down to S/G. Therefore, to calculate probabilities, one has to introduce

an additional structure. Because the subtleties associated with the interplay between the
action of the gauge group and the Liouville measure were not well-understood, the necessity
and importance of this additional step was, apparently, not appreciated. We will see in
section IIIB that there is an intrinsic ambiguity in carrying out this step within general

relativity. As a recent analysis of Corichi and Karami [10] shows, this ambiguity is directly
related to the diverging conclusions on probability of inflation in general relativity drawn
by Koffmann, Linde and Mukhanov [2] and Gibbons and Turok [4].

Loop quantum cosmology (LQC) provides a new arena to analyze this issue because
the big bang singularity is naturally resolved and replaced by a big bounce due to quantum
geometry effects [11–15]. We will see in section III that, thanks to the presence of a canonical
bounce time, one can now naturally resolve the ambiguity in the construction of the measure
on S with finite total volume. Were we to try to mimic this construction in general relativity,

we would be led to work at the singularity in place of the bounce, where the calculation would

be meaningless. Away from the Planck regime, LQC is virtually indistinguishable from
general relativity. However, in the Planck regime, there are huge differences and these are
crucial in overcoming the obstacle. With this measure at hand, we can calculate the a priori
probability of the slow roll of the desired type. LQC dynamics are such that this probability
turns out to be greater than 0.999997: Dynamical trajectories starting from almost all initial
data at the bounce surface pass through the phase space region selected by the WMAP data.
Therefore, extreme fine tuning would be necessary to zero-in on solutions where the desired
slow roll does not occur.

Some of the results of our investigation were reported in a Letter [5]. Therefore there is
an inevitable overlap with [5] but there are also key differences. First, in [5] we analyzed
the likelihood of the occurrence of a slow roll inflation with at least ∼ 67 e-foldings in
the history of the universe to the future of the bounce. In this paper we analyze a much
sharper question: What is the probability of occurrence of a slow roll with initial conditions
that are compatible with the 7 year WMAP data? Thus we now focus only on that slow
roll phase which is directly relevant to structure formation. Second, numerical simulations
reported in [5] used values of cosmological parameters —the mass of the inflaton and the
values of the slow roll parameters— from Linde’s 2006 review [16] while in this paper we
use instead the more recent results of the 7 year WMAP data [6]. This accounts for some
differences in some of the detailed numerical results. Finally, and more importantly, our goal
now is broader than that of [5] in the following sense. In LQC, the big bounce is followed
by a qualitatively new phase of super-inflation which could have observable consequences.
Therefore, it is important to have a sufficiently detailed account of the new dynamics from
the big bounce to the onset of the desired slow roll. A second goal of this paper is to provide
this analysis. This detailed description is likely to serve as the point of departure of further
work bridging the Planck era of LQC to the inflationary paradigm described in the beginning
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of this section. This bridge may, for example, provide a better understanding of why the
quantum state of relevant modes is well approximated by the Bunch Davis vacuum at the
onset of inflation, and may even furnish the quantum gravity corrections to this state [17].

The paper is organized as follows. In section II we first recall the relevant features of LQC
and then introduce the phase space and basic equations. In section III we first introduce
the Liouville measure on the space S of solutions, discuss the issue of gauge and obtain the
measure on the space S/G of physically distinct solutions in LQC. In section IV we discuss
in detail the LQC dynamics from the big bounce to the end of inflation using a combination
of analytical and numerical methods. Using this information and the measure introduced in
section III, we calculate the a priori probability of obtaining the desired slow roll. As noted
already, in LQC this probability is very close to 1. Section V summarizes the main results
and compares and contrasts them with related results in the literature.

The material is organized so that cosmologists who may be more interested in inflationary
dynamics of LQC than in the issue of measures can skip sections IIB and especially III
without loss of continuity.

II. PRELIMINARIES

This section is divided into two parts: In the first, we recall the distinguishing features
of LQC that are important to our analysis. In the second, we present effective LQC equa-
tions governing dynamics of the FLRW model coupled to a scalar field with any potential
(satisfying mild regularity conditions) and introduce the Liouville measure on the space of
solutions.

A. Distinguishing features of LQC

In LQC, one applies the basic principles of loop quantum gravity (LQG) [18–20] to simple
cosmological models. Thanks to the quantum geometry underlying LQG, LQC differs from
the older Wheeler-DeWitt theory already at the kinematical level. It turns out that the
Wheeler-DeWitt equation is no longer well-defined on the new kinematical Hilbert space.
Instead, now the quantum Hamiltonian constraint has to be obtained via a procedure that
pays due attention to the quantum geometry of LQG, in particular, the area gap ∆ =
4
√
3πγℓ2Pl. (Here γ is the Barbero-Immirzi parameter of LQG, whose value γ ∼ 0.24 is

fixed by black hole entropy calculations [21, 22].) Somewhat surprisingly, the resulting
dynamics naturally resolves the big bang and big crunch singularities of general relativity
[23]. Exotic matter is not needed; indeed matter fields can satisfy all the standard energy
conditions. Detailed analysis has been carried out in a variety of models: the k=0, 1 FLRW
space-times with or without a cosmological constant [12–14]; Bianchi models [24–26] which
admit anisotropies as well as gravitational waves; and Gowdy models [27] which admit
inhomogeneities, and therefore an infinite number of degrees of freedom. The FLRW models
have been studied most extensively, using both analytical and numerical methods to solve
the exact quantum equations of LQC [12, 13, 15]. In these models, the big bang and the
big-crunch are replaced by a quantum bounce, which is followed by a robust phase of super-
inflation. Interestingly, full quantum dynamics, including the bounce, is well-approximated
by certain effective equations [12, 15, 28]. These equations imply that all strong curvature
singularities —including the big rip and sudden-death— are resolved in FLRW models with
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matter satisfying an equation of state of the type p = wρ [29]. (For recent reviews, see [30].)
In this paper we will restrict our matter source to be a scalar field with the standard

(positive) kinetic energy and a suitable potential. Since all the prior discussion of probabil-
ities is based on general relativity, to facilitate comparison we use effective equations rather
than the full quantum theory. Finally, we will use the natural Planck units c=~=G=1
(rather than 8πG=1, often employed in cosmology). Planck length will be denoted by ℓPl
and Planck mass by mPl. The fundamental time unit, sPl :=

√

G~/c5, will be referred to as
a Planck second.

In LQC, it is convenient to encode spatial geometry in a variable v proportional to
the physical volume of a fixed, fiducial, cubical cell, rather than the scale factor a. The
conjugate momentum is denoted by b. These are related to the scale factor and its conjugate
momentum via1

v =
a3V0

2πγ
and b = −4πγP(a)

3V0a2
(2.1)

where V0 is the co-moving volume of the fiducial cell, so that its physical volume is a3V0.
(Thus, the only non-vanishing Poisson bracket is {v, b} = −2.) On solutions to Einstein’s

equations, b is related to the standard Hubble parameter H = ȧ/a via b = γH [15]. However,
LQC modifies Einstein dynamics and on solutions to the LQC effective equations we have

H =
1

2γλ
sin 2λb ≈ (0.93mPl) sin 2λb (2.2)

where λ2 := ∆ ≈ 5.2ℓ2Pl is the ‘area-gap’ that sets the discreteness scale of LQC. b ranges
over (0, π/λ) in LQC and general relativity is recovered in the limit λ → 0.

Quantum geometry effects modify the geometric, left side of Einstein’s equations. In
particular, the Friedmann equation becomes

sin2 λb

γ2λ2
=

8π

3
ρ ≡ 8π

3

( φ̇2

2
+ V (φ)

)

. (2.3)

To compare with the standard Friedmann equation H2 = (8π/3) ρ, it is often convenient to
use (2.2) to write (2.3) as

1

9
(
v̇

v
)2 ≡ H2 =

8π

3
ρ
(

1− ρ

ρcrit

)

(2.4)

where ρcrit = 3/8πγ2λ2 ≈ 0.41ρPl. By inspection it is clear from Eqs (2.2) - (2.4) that, away
from the Planck regime —i.e., when λb ≪ 1, or, ρ ≪ ρcrit— we recover classical general
relativity. However, modifications in the Planck regime are drastic. The main features of
this new physics can be summarized as follows.

• In general relativity, the Friedmann equation implies that if the matter density is pos-
itive, ȧ cannot vanish. Therefore every solution represents either a contracting universe or

1 In LQG, the basic variable is a triad rather than a 3-metric and in the LQC literature v is taken to be the

oriented volume which is positive for positively oriented triads and negative for negatively oriented ones.

However, since the change of orientation is a large gauge transformation, in the classical and effective

theories on can restrict oneself just to positive v. We have done so for simplicity of discussion.
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an expanding one. By contrast, the LQC modified Friedmann equation (2.4) implies that
v̇ vanishes at ρ = ρcrit. This is the quantum bounce. To its past, the solution represents a
contracting universe with v̇ < 0 and to its future, an expanding one with v̇ > 0.

• As is customary in the literature on probabilities, let us ignore the exceptional de
Sitter solutions. On all other solutions b is monotonically non-increasing, evolving from
from b = π/λ in the infinite past to 0 in the infinite future. Eqs (2.3) and (2.4) imply that
b = π/2λ at the bounce. Thus, each solution undergoes precisely one bounce.

• In contrast to general relativity, the Hubble parameterH = v̇/3v is no longer monotonic
in LQC. It vanishes at the bounce while in general relativity it diverges at the singularity
and is large in the entire Planck regime. In LQC, H is bounded above, |H| . 0.93mPl, and
achieves its upper bound in every solution at the end of super-inflation.

• If the potential V (φ) is bounded below, say V ≥ Vo, then it follows from (2.3) that φ̇2

is bounded by 2ρcrit − 2Vo. If V grows unboundedly for large |φ|, then |φ| is also bounded.
For example, for V = m2φ2/2, we have m|φ|max = 0.90m2

Pl.

• When the potential is bounded below, |Ḣ| is bounded above by 10.29m2
Pl. The Ricci

scalar —the only non-trivial curvature scalar in these models— is bounded above by 31m2
Pl.

Thus, physical quantities which diverge at the big bang of general relativity cannot exceed
certain finite, maximum values in LQC. One can also show that if v 6= 0 initially, it cannot
vanish in finite proper time along any solution. Thus, the LQC solutions are everywhere

regular irrespective of whether one focuses on matter density, curvature or the scale factor.

B. The Liouville measure

The full set of space-time equations of motion can be written in terms of v(t), φ(t). These
variables are subject to the constraint (2.4) and evolve via:

v̈ =
24πv

ρcrit

[

(ρ− V (φ))2 + V (φ)(ρcrit − V (φ))
]

(2.5)

φ̈+
v̇

v
φ̇+ V,φ = 0 . (2.6)

To calculate probabilities, in section III we have to equip the space S of solutions to these
equations with a natural measure. As a first step in that procedure, we will now obtain
a phase space formulation of these equations. The phase space and equations of general
relativity can be recovered by taking the limit λ → 0 (which in particular implies ρcrit → ∞).

The phase space Γ consists of quadruplets (v, b; φ, pφ), where pφ is given by; pφ =

2πγℓ2Pl v φ̇. The variables φ, pφ range over the entire real line, v over the positive half
of the real line, while b ∈ [0, π/2λ] (since we focus only on the post-bounce branches of
solutions). Thus, the symplectic 2-form is given by

Ω = dφ ∧ dpφ +
1

2
db ∧ dv (2.7)

Hence the Liouville measure on Γ is simply 2dµL = dφ dpφ db dv.
The LQC Friedmann equation implies that these variables must lie on a constraint surface

Γ̄ defined by

C ≡ − 3v

4γλ2
sin2 λb +

p2φ
4πγv

+ 2πγv V (φ) ≈ 0 . (2.8)
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They evolve via

v̇ =
3v

2γ

sin 2λb

λ
, ḃ = − p2φ

πγv2
, (2.9)

φ̇ =
pφ

2πγv
, ṗ(φ) = −2πγv V,φ . (2.10)

As is well-known, the space of solutions S is naturally isomorphic to a gauge-fixed surface,
i.e., a 2-dimensional surface Γ̂ of Γ̄ which is intersected by each dynamical trajectory once
and only once. Since b is monotonic in each solution, an obvious strategy is to choose for Γ̂
a 2-dimensional surface b = bo (a fixed constant) within Γ̄.

It is straightforward to pull-back the symplectic structure to this 2-dimensional gauge-
fixed surface Γ̂. Using the constraint (2.8), it is convenient to coordinatize Γ̂ using v, φ and
express the pulled-back symplectic structure in terms of them:

Ω̂ =
[3π

λ2
sin2 λbo − 8π2γ2V (φ)

]
1

2 dφ ∧ dv (2.11)

This 2-form provides provides a Liouville measure dµ̂L on Γ̂ and hence of the space S of
solutions to the effective equations, given simply by

dµ̂L =
[3π

λ2
sin2 λbo − 8π2γ2V (φ)

]
1

2 dφ dv . (2.12)

The most natural choice in LQC is to set bo = π/2λ so that Γ̄ is just the ‘bounce surface’. We
will make this choice because it also turns out to be convenient for calculations. However,
since the dynamical flow preserves the symplectic structure on Γ, this measure on S is
insensitive to the choice of bo used in gauge fixing.

III. PROBABILITY CONSIDERATIONS

Recall from section I that the a priori probability of occurrence of any event E is to be
given by the fractional volume of the region R(E) in S spanned by solutions in which E
occurs:

P (E) =

∫

R(E)
dµ̂L

∫

S
dµ̂L

. (3.1)

Since the Liouville measure is purely kinematical, this method of calculating a priori prob-
abilities realizes Laplace’s principle of indifference [31]. This interpretation can be made
explicit as follows. Physical input can provide a (non-negative) probability density function
ρ(s) on S satisfying the normalization condition [

∫

S
ρ dµ̂L]/[

∫

S
dµ̂L] = 1. The corresponding

(more refined) probability of occurrence of E is then given by

Pρ(E) =

∫

R(E)
ρ(s) dµ̂L

∫

S
ρ(s) dµ̂L

. (3.2)

Now, one can quantify the information contained in ρ(s) via

Iρ =

∫

S
ρ(s) ln ρ(s) dµ̂L
∫

S
ρ(s) dµ̂L

. (3.3)
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Since I is minimized by ρ(s) = 1, (3.1) is the a priori probability, free of any input or bias.
As mentioned in section I, these ‘bare’ probabilities are useful when they are extremely low
or extremely high. In these cases it is a heavy burden on any theory to provide sufficient
information to significantly overcome this bare probability.

In section IIIA we illustrate these ideas using a 2-dimensional simple harmonic oscillator
constrained to have a fixed energy. In this case the solution space S is compact. Since the
total Liouville volume of S is finite, one can directly implement the ideas outlined above
to calculate various probabilities. In section IIIB we turn to LQC. In this case, S is non-
compact. But we will see that this non-compactness can be directly attributed to the action
of a gauge group G on S. Therefore, it is now natural to work with the space S̃ := S/G of
physically distinct solutions which is compact. However, there is a subtlety which makes the
calculation of desired probabilities ambiguous in general relativity. We discuss this problem
and show that it has a natural resolution in LQC.

Cosmologists who are more interested in the LQC dynamics than in the issue of measure
on S can skip section III without loss of continuity.

A. Harmonic oscillator

Since we encounter a constrained Hamiltonian system both in general relativity and (ef-
fective) LQC, let us begin with a simple example with this feature to illustrate the procedure
of calculating probabilities. Consider a 2-dimensional simple harmonic oscillator constrained
to have a fixed energy E. Let us fix the mass and spring constant to unity for simplicity.
The topology of our phase-space Γ is then R

4, in which we can choose canonical coordinates
x1, p1; x2, p2, with symplectic structure:

ω = dx1 ∧ dp1 + dx2 ∧ dp2 (3.4)

The Hamiltonian constraint is:

H :=
1

2
(x2

1 + p21 + x2
2 + p22) = E (3.5)

The constrained surface Γ̄ is the 3-sphere with radius
√
2E in R

4 and thus compact. The
Hamiltonian vector field is given by

XH = x1
∂

∂p1
− p1

∂

∂x1
+ x2

∂

∂p2
− p2

∂

∂x2
(3.6)

The vector field is of course tangential to Γ̄ and its orbits provide a Hopf fibration: each
orbit is an S1 fiber with the base space being S2. This base space represents the space S of
solutions of the constrained system under consideration.

It is convenient to use a set of coordinates adapted to this Hopf fibration:

x1 + ip1 =
√
2E eiξ1 sin η ≡ z1 and x2 + ip2 =

√
2E eiξ2 cos η ≡ z2 (3.7)

where η ∈ (0, π/2) and ξ1, ξ2 ∈ (0, 2π). Then Γ̄ is given by |z1|2 + |z2|2 = 2E and the angles
η, ξ1, ξ2 provide a a natural set of intrinsic coordinates on it. The pull-back Ω̄ of Ω to Γ̄ can
now be expressed as

Ω̄ = 2E sin 2η dη ∧ dξ− (3.8)
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and the restriction of the Hamiltonian vector field to Γ̄ is given by

X̄H = 2
∂

∂ξ+
(3.9)

where we have set 2ξ± = ξ1± ξ2. As expected, Ω̄ is degenerate and the degenerate direction
is precisely X̄H . It is obvious that η, ξ− and Ω̄ are Lie dragged by X̄H . Hence they have
unambiguous projections to the 2-sphere of orbits of X̄H , i.e., to the space S of solutions.
The total Liouville volume of S is given by:

∫

S

Ω̄ = 2E

∫ π/2

0

dη sin 2η

∫ 2π

0

dξ− = 2π(2E) . (3.10)

We can now use the Liouville measure dµL = (2E) sin 2η dηdξ− on S to calculate the
a priori probabilities of physical events of interest. Consider example, the total angular
momentum

J := x1p2 − x2p1 = −E sin 2η sin 2ξ− (3.11)

which is a Dirac observable and thus projects down from Γ to S unambiguously. Another
Dirac observable is the eccentricity of the orbit in x1, x2 plane defined in each solution,
e = rmin/rmax where r2 = x2

1 + x2
2. One can show that e is determined completely by the

ratio |J |/E:

e =
rmin

rmax
=

√

√

√

√

√

1−
√

1− J2

E2

1 +
√

1− J2

E2

. (3.12)

To gain insight into the likelihood of various values for both observables, it is natural to
ask, e.g., for the a priori probability that |J |/E is larger than a given number f ∈ [0, 1]. We
obtain :

P
(

(|J |/E) > f
)

=
1

4πE

∫

A

Ω̄ = 1− f (3.13)

where A is the region such that sin 2η sin 2ξ− > f . We find that the probability for e > 1/2
is P|J |/E>16/25 = 1−16/25 = 9/25 and the probability for e > 3/4 is only 49/625 ≈ 0.08. We
can therefore conclude that almost circular orbits (e ≈ 1) are rare according to our measure,
and thus if the orbit of a particle in this system were observed to be very close to circular,
further physical explanation would be required.

Finally, in this analysis we identified the solution space S with the quotient of Γ̄ by the
orbits of the Hamiltonian vector field. In general relativity and LQC it is more convenient
to gauge fix. In the present case, because the orbits of XH provide a Hopf fibration of Γ̄ a
global gauge fixing is not available. Still, for calculating probabilities, we can ignore sets of
measure zero and parameterize S by points of a 2-dimensional surface Γ̂ given by ξ+ = const.
For physical questions such as the ones discussed above, the resulting a priori probabilities
are insensitive to the choice of the constant and the results are the same as those obtained
above.

B. Measures for general relativity and LQC

Recall from section II that the phase space Γ of LQC is naturally coordinatized by
(v, b;φ, pφ) where v takes values in the positive half line, φ, pφ on R and b ∈ (0, π/λ). These
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phase space variables are subject to the Hamiltonian constraint (2.8) of effective LQC and
dynamics of this theory is generated by the Hamiltonian vector field XC of the constraint
function C:

XC =
(3v

2γ

sin 2λb

λ

) ∂

∂v
−
( p2φ
πγv2

)
∂

∂b
+
( pφ
2πγv

) ∂

∂φ
−
(

2πγv V,φ

) ∂

∂pφ
. (3.14)

There is a gauge symmetry which will play an important role in our probability considera-
tions. Since v is, by definition, the physical volume of a fiducial cell and the choice of this
cell is arbitrary, physics does not change under the transformation

(v, b;φ, pφ) −→ (αv, b;φ, αpφ) (3.15)

which corresponds merely to a rescaling of the fiducial cell by a positive number α (recall:

pφ = 2πγℓ2Pl v φ̇). Thus the phase space Γ is acted upon by the action of a gauge group G
generated by (3.15). (This gauge freedom is equivalent to that in rescaling the scale factor
in the more familiar Wheeler-DeWitt phase space.) At an infinitesimal level this rescaling
defines a vector field

G = v
∂

∂v
+ pφ

∂

∂pφ
. (3.16)

Under this rescaling the constraint function (2.8) and the symplectic structure (2.7) are
merely rescaled, LGC = C and LGΩ = Ω, such that the Hamiltonian vector field (3.14) is
left invariant, LGXC = 0. Hence, as one would expect of gauge transformations, G descends
to the space S of solutions. These considerations hold both for effective LQC and general
relativity.

Next, let us find a suitable parametrization of S. Note first that we can solve (2.8) for
pφ:

pφ = ±
[3πv2

λ2
sin2 λb− 8π2γ2v2V (φ)

]1/2
. (3.17)

Without loss of generality we can restrict ourselves to the positive branch pφ ≥ 0 because
identical considerations will apply to the negative branch. Thus the constraint surface Γ̄ is
coordinatized by (v, b, φ). Since the dynamical trajectories lie in Γ̄, the space of solutions

S is 2-dimensional and naturally isomorphic to any gauge-fixed surface Γ̂ in Γ̄ which is
intersected by each dynamical trajectory once and only once. Since b is monotonic along
dynamical trajectories, we can take Γ̂ to be the 2-dimensional surface (v, b = bo, φ) for any

fixed constant bo in the domain (0, π/λ) of b.2 The Liouville measure dµ̂L on Γ̂, and hence
on S, is then given by (2.12):

dµ̂L =
[3π

λ2
sin2 λbo − 8π2γ2V (φ)

]
1

2 dφ dv . (3.18)

Since it is induced by the symplectic structure, the dµ̂L volume of any region on the b = bo
section is the same as that of its image on any other b = const surface under the Hamiltonian
flow XC . In this sense, dµ̂L is insensitive to the choice of bo. The analogous structures

2 It is then convenient to choose the freedom in rescaling the constraint —i.e., in the choice of the lapse

function— to make b the affine parameter of the Hamiltonian vector field, so that XC now maps each

b = const surface to another b = const surface.



11

ΓGR, Γ̄GR, Γ̂GR and dµ̂GR
L in general relativity are obtained by taking the limit λ → 0. In

particular, in this limit b → H , the Hubble parameter. Hence in general relativity one can
naturally fix the gauge by setting H = Ho for any positive constant Ho.

The essential problem in both cases is that the spaces of solutions S and SGR are non-
compact and their volume with respect to dµ̂L and dµ̂GR

L is infinite. Therefore we cannot
directly use the procedure of section IIIA to calculate probabilities of events of interest. Let
us restrict ourselves to positive potentials V (φ) —such as the quadratic and quartic ones
which are often analyzed in detail— which diverge at φ = ±∞. Then the constraint (2.8)
(and its GR analog, the Friedmann equation) immediately implies that the range of φ is

bounded on Γ̂. Thus, the non-compactness of Γ̂ and Γ̂GR arises only because v ranges over
the entire positive real line. However, as we saw in the beginning of this sub-section, the
transformation (v, φ) → (αv, φ) is a gauge motion. Thus, the total Liouville measure of S is
infinite simply because each orbit of the gauge group G is infinitely long.

Let us spell out the interaction between the gauge group and the space of solutions S

explicitly. Since LGC = 0, the gauge vector field G is tangential to Γ̄. Furthermore since
LGb = 0 (and LGH = 0 in general relativity), G is also tangential to the gauge-fixed surface
b = bo in effective LQC (and to the gauge-fixed surface H = Ho in general relativity). Thus,

G is tangential to Γ̂ (and Γ̂GR), i.e., the action of the gauge group G naturally respects our

parametrization of the space S of solutions using Γ̂. The space of physically distinct solutions
is the quotient S̃ := S/G, coordinatized just by φ which takes values on a compact interval,
say (φmin, φmax). Since we are interested in gauge invariant questions, regions R(E) of S
consisting of solutions in which physical events —such as the desired slow roll inflation—
occur contain whole orbits of G and project down unambiguously to S̃. To calculate the
probability of such events, then, it would suffice to have available a natural measure on S̃.
Since S̃ is a closed interval, one would expect a natural construction to provide it with a
finite total measure, making the calculation of desired probabilities well-defined as in section
IIIA.

Thus, the natural strategy is to attempt to introduce a volume element on S̃ = Γ̂/G
starting from the symplectic structure Ω̂ on Γ̂.3 The obvious candidate for such a volume
element is the natural 1-form ω̂α = Ω̂αβG

β which is transverse to the gauge direction Gα.

Unfortunately, since LGω̂α = (LG Ω̂αβ)G
β = ω̂α 6= 0, this 1-form ω̂α does not project down

to S̃. Therefore to implement this strategy one has to introduce an additional structure. Let
us fix a line So in S = Γ̂ given by v = vo for some constant vo, which is naturally isomorphic
to S̃ = Γ̂/G.4 One can then just pull-back the 1-form ω̂ to So and perform integrations there.

Expression (2.11) of Ω̂ implies that the total volume of So is given by

∫

So

ω̂ =

∫ φmax

−φmax

(3π

λ2
sin2 λbo − 8π2γ2V (φ)

)
1

2 vo dφ , (3.19)

which is manifestly finite. Finally, a change in the value of vo would simply rescale ω̂ by

3 A straightforward push-forward of the Liouville measure µ̂L on S = Γ̂ is not useful because it would assign

to any interval on Γ̂/G the same volume as its inverse image in Γ̂ which is infinite.
4 The use of a more general line, v = f(φ), would correspond to giving the gauge orbits a φ dependent

regularized volume. This would introduce an ad-hoc new input in the construction. With v = vo, the

regularized volume of each orbit is the same and, as explained below, it drops out in the calculation of

probabilities of physical events.
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a constant. Since the relative probability P (E) of the occurrence of a physical event E is
given by

P (E) =

∫

I(E)
ω̂

∫

So
ω̂

, (3.20)

where I(E) is the intersection of the v = vo line and the region R(E) on which the property
E is realized, clearly, P (E) is independent of the choice of vo made above.

Thus, it would appear that we have satisfactorily eliminated the spurious infinity in the
total Liouville measure and arrived at a natural procedure to calculate desired probabilities.
However, there is an important subtlety which makes the procedure ambiguous. Recall
that in order to arrive at ω̂ we made two gauge choices: We set b = bo (or, H = Ho in
GR) and then v = vo. The symplectic structure and the 1-form ω̂ on S is preserved by
the Hamiltonian flow and (with the appropriately chosen lapse) the flow maps each of our
2-dimensional gauge fixed surfaces b = const to another such surface. However, under this
flow, the data (v = vo, b = bo; φ, pφ = pφ(vo, bo, φ)) with constant v on the b = bo slice is not
mapped to data with constant v at another slice, say b = b1. (Here pφ(vo, bo, φ) is the solution
(3.17) of the constraint). Therefore the final step, where we carry out the integration on
the v = vo line, of our procedure sensitively depends on our initial choice of bo (or H = Ho

in general relativity). The question then is: Is there a canonical choice bo one can make in
LQC (or, Ho in general relativity)?

In general relativity, the answer is in the negative: there is no preferred value of the Hub-
ble parameter or a canonical instant of time in any solution. Therefore the calculation of
probabilities has an intrinsic ambiguity. Although there are also other differences (discussed
in section V), this ambiguity lies at the source of dramatically different predictions on the
probability of inflation because, in effect, by choosing very different values of Ho, one can
arrive at very different measures for computing probabilities. In terms of these considera-
tions, Gibbons and Turok chose a low value of Ho and found that the sub-space of solutions
admitting a sufficiently long slow roll occupies an extremely tiny relative volume of S with
respect to the resulting measure on S. A higher value of Ho —as was advocated in the
early literature (see, e.g. [32])— increases this probability very substantially. In LQC, on
the other hand, the bounce surface provides a canonical ‘time’ instant, i.e., a natural value
for bo, namely bo = π/2λ where the matter density attains its maximum value. The corre-
sponding surface in general relativity would be the big bang singularity and, unfortunately,
we cannot use the ‘data at the big bang’ to parameterize the space S of solutions. 5

To summarize, as discussed in the early literature [7–9], the Liouville measure on the
phase space naturally descends to the space S of solutions but the total dµ̂L measure of
S is infinite. In the observationally favored k=0 models this infinity is physically spurious
because it arises only because the length of gauge orbits is infinite. For physical questions
one can work with the quotient S/G which is just a bounded interval of the real line both in
general relativity and LQC. However, although the Hamiltonian vector field XC is invariant
under the action of the gauge group G, the symplectic structure is not. Consequently, the
Liouville measure fails to naturally descend to a measure (with finite total volume) on S/G.
To introduce such a measure, an additional structure is needed. Because of the presence of

5 A common suggestion that one should carry out the calculation when the Hubble parameter is of Planck

scale, rather than infinite, comes close to the natural strategy in LQC but the suggestion is only qualitative

and, strictly speaking, quite different because in LQC the Hubble parameter vanishes at the bounce surface.
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the bounce, this structure is naturally available in LQC. In general relativity, by contrast,
there does not appear to exist a natural way to introduce the required structure; the analog
of the bounce surface would be the big bang singularity itself! Consequently, in general
relativity, the calculation of a priori probabilities of various physical events along the lines
of [7–9] is intrinsically ambiguous.

Remark: In LQC, the final result can be stated directly in terms of the Liouville measure
dµ̂L on S = Γ̂. The regions of interest R(E) spanned by solutions in which a physical event
E occurs contain whole orbits of the gauge group G: R(E) = I × R

+ where I is a closed
interval in [−φmax, φmax] and R

+ denotes the v axis (φ and v evaluated at the bounce surface
b = π/2λ). The associated probability P (E) is given by first introducing a ‘slab’ Ivo in the

2-dimensional space Γ̂, bounded by v = vo and v = 1/vo with 0 < vo < 1, and then taking
the limit vo → 0:

P (E) = lim
v0→0

Liouville Volume of [I × Iv0 ]

Liouville Volume of [Itotal × Iv0 ]
(3.21)

This is the expression that was used in [5].

IV. INFLATIONARY DYNAMICS IN LQC

The event E of interest to us is the presumed slow roll that is compatible with the WMAP
data. With a canonical measure on the space S/G of physically distinct solutions of LQC
at hand, we can now ask for the relative volume occupied by the region R(E) consisting
of solutions in which E occurs. In this section we will first characterize this subspace by
analyzing in detail the post-bounce dynamics of LQC and then calculate its relative volume.

In section IVA we collect useful facts about the desired slow roll that are used throughput
the subsequent subsections. Solutions of effective LQC equations can be naturally identified
with their initial data at the bounce surface. It turns out that the qualitative features
of the relevant dynamical evolution are largely dictated by the ratio of the kinetic to the
potential energy in this initial data. In particular, as we will see in section IVC, only those
dynamical trajectories for which the kinetic energy overwhelmingly dominates fail to lie in
R(E). To bring out this point, in section IVB we will study in detail the solutions in which
the kinetic energy completely overwhelms the potential energy at the bounce. In section
IVC we first briefly discuss dynamics in other solutions and then show that except in the
case of very extreme kinetic energy domination at the bounce, the solutions necessarily lie
in R(E). In section IVD we find a bound on the relative volume of R(E) which shows that
the probability of seeing the desired phase of slow roll inflation is extremely close to 1 in
LQC. While the detailed discussion uses a quadratic potential, we argue that the qualitative
result is likely to hold much more generally.

A. The desired slow roll

Let us begin by recalling the slow roll parameters that are used in the discussion of the
WMAP data. There are two conceptually distinct sets of parameters [33]

ǫ = − Ḣ

H2
, η =

Ḧ

ḢH
and ǫV :=

1

16π

(V ′

V

)2
m2

Pl, ηV =
V ′′

8πV
m2

Pl . (4.1)
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Smallness of the first set ensures that the Hubble parameter is changing very slowly in the
dynamical phase under consideration. (Sometimes one uses the symbol ǫH for ǫ and ηH for
η to highlight this.) Inflation —i.e., accelerated expansion— is characterized by ǫ < 1. For
slow roll, on the other hand, we need ǫ ≪ 1 and η ≪ 1. As is common in the literature, in
our study of slow roll, we will keep terms of order 1 in these parameters but ignore higher
order terms. For concreteness, we will end the slow roll phase when ǫ = 0.1 so that the
errors will be less than a percent. In theoretical investigations one often uses the second set
of slow roll parameters which is tailored to the properties of the potential. During the epoch
in which general relativity is an excellent approximation, the two sets are closely related by
dynamics. In particular, ǫV = [(1 + η/3)/(1− ǫ/3)]2 ǫ. Hence the difference between ǫ and
ǫV is of second order in ǫ, η. Finally, these parameters are best suited for studying dynamics
during the general relativity era. In full LQC, on the other hand, Ḣ = 0 at the end of super-
inflation but the super-inflation phase is far from being quiescent if the bounce is kinetic
energy dominated. A better definition of the first slow roll parameter is ǫ = (3KE)/(2ρ).
In general relativity, this definition agrees with (4.1) but with this definition the slow roll
condition ǫ ≪ 1 is violated even at the end of super-inflation if the bounce is kinetic energy
dominated. In this paper we will use the standard definition (4.1) because all our slow roll
considerations will refer only to the general relativity epoch.

Next, let us recall the constraints imposed by the WMAP data on scalar perturbations.
The data is tailored to the co-moving wave number k⋆ given by [6]

k⋆
ao

= 2× 10−3Mpc−1 or k⋆ = 8.58 ko (4.2)

where ao refers to the scale factor today and, as before, ko refers to the wave number that has
just re-entered the Hubble radius today. (It is only the combination k⋆/ao that has direct
physical meaning; 2πao/ko is the physical wave length of this reference mode today.) Within
inflationary models, the data constrains initial values of fields describing the homogeneous
isotropic background at time t(k⋆) i.e., the time at which the mode k⋆ exits the Hubble radius

during inflation. In the rest of this subsection, we will make these constraints explicit.
The amplitude A(t(k⋆)) of the scalar power spectrum ∆2

R(k⋆) at this wave number is
given by:

A(t(k⋆)) =
H2(t(k⋆))

πǫ (t(k⋆))m
2
Pl

= 2.43× 10−9 (4.3)

and the scalar spectral index nS(k⋆) is given by

ns(t(k⋆)) = 1− d ln∆2
R

d ln k

∣

∣

∣

k⋆
= 0.968 (4.4)

with error bars of about ±4.50% for A and ±1.25% for nS [6].
In the next two sub-sections, we will focus on the quadratic potential, V (φ) = (1/2)m2φ2.

The equation of motion of the scalar field (2.5) then simplifies to:

φ̈+ 3Hφ̇+m2φ = 0. (4.5)

For this potential, 1−nS = 4ǫ (irrespective of the value of the inflaton mass) so we conclude
that the value of the slow roll parameter at the time t(k⋆) is given by:

ǫ(t(k⋆)) = 8× 10−3 . (4.6)
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The observed value of the amplitude of the scalar power spectrum then determines the
Hubble parameter H(t(k⋆)) and the Hubble radius RH(t(k⋆)):

H(t(k⋆)) = 7.83× 10−6mPl or RH(t(k⋆)) = 1.28× 105 ℓPl (4.7)

Therefore, it follows from our discussion in section IIA that the LQC corrections to general

relativity are highly suppressed at t = t(k⋆) and thereafter. For simplicity, we will use this
fact in what follows.

Using the approximation ǫ = ǫV at time t(k⋆) (which is consistent with observational error

bars) we can determine φ(t(k⋆)) from (4.6). Then, using the implication ǫ/3 = φ̇2/(φ̇2 +
m2φ2) of the definition of ǫ, and the Friedmann equation, it is easy to obtain the following
values

φ(t(k⋆)) = ±3.15mPl, φ̇(t(k⋆)) = ∓1.98× 10−7m2
Pl

m = 1.21× 10−6mPl η(t(k⋆)) = 1.61× 10−2 . (4.8)

(In the reduced Planck units, often used in the cosmological literature, the inflaton mass
is m = 6.06 × 10−6Mpl.) Because this value of m is somewhat different from that given
in [16], which was used in [5], some of the details of numerical results in this section differ
from those reported there. However, as noted in [5], the main results reported there do not
change appreciably even if this value is changed by a couple of orders of magnitude.

For the desired slow roll, without loss of generality we can assume φ(t(k⋆)) < 0 and

(φ̇)(t(k⋆)) > 0, so that φ decreases as the inflaton slides down the potential. Then we can
ask for the number of e-foldings of slow roll inflation starting from this time, t = t(k⋆) when
ǫ = 8 × 10−3 until it increases to 0.1. This is the ‘desired’ slow roll phase of interest to our

analysis. We have:

N := ln
aend

a(t(k⋆))
=

∫ φend

φ(t(k⋆))

H

φ̇
dφ = − 8π

m2
Pl

∫ φend

φ(t(k⋆))

(1 + η
3
)

(1− ǫ
3
)

V

V ′
dφ

≈ 2π

m2
Pl

[

(1 +
η

3
)(1 +

ǫ

3
)φ2

]t(k⋆)

end
≈ 2π

m2
Pl

[

φ2(t(k⋆))− φ2
end

]

≈ 57.5 (4.9)

where in the second line we have ignored second and higher order terms in the slow roll
parameters.6 For simplicity, here we have used the general relativity field equations. The
LQC result

N =
2π

m2
Pl

[

(1 +
η

3
)(1 +

ǫ

3
)φ2 [1 − V (φ)

2(1− ǫ
3
)ρcrit

]
]t(k⋆)

end
(4.10)

gives corrections of order (φ/φmax)
2 ∼ 10−10 which are totally negligible.

6 Consistency with assumptions made in the inflationary scenario require the actual slow roll to begin

somewhat earlier because k⋆ = 8.58ko and the use of Bunch-Davis vacuum requires the mode ko to be

well within the Hubble radius at the onset. The initial data we begin with ensures that this will be the

case. If we assume that at the onset the RH is 100 times the physical wavelength of the mode ko, then

there are ∼ 6.75 e-foldings between the onset and t(k⋆), bringing the total number of slow roll e-foldings

from the onset until the end (i.e. until ǫ = 0.1) to Ntotal ∼ 64. This is a lower bound; an earlier onset

and hence a larger number of e-foldings is permissible within this scenario.
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To summarize, assuming the inflationary scenario with a quadratic potential, the WMAP
data provides us within observational errors of . 2% : i) the value of the inflaton mass;
and ii) the initial data for inflation at some time t(k⋆) in the early history of the universe.
This data then automatically leads to the desired slow roll inflation with ∼ 57 e-foldings
starting t = t(k⋆). The question now is: What is the probability that the LQC dynamical
trajectories pass through this very small region of the phase space, irrespective of what their

initial data are at the bounce surface?

B. Extreme kinetic energy domination at the bounce

In this sub-section we will study in detail the LQC dynamics of solutions for which less
than 10−10 of energy density is in the potential at the bounce. Recall that, since the total
matter density at the bounce always equals ρcrit, the value |φB| of the scalar field at the
bounce point is bounded above by φmax = 0.90m2

Pl/m ≈ 7.47 × 105mPl. We will use the
fraction

f :=
φB

φmax
(4.11)

to bin the solutions. By definition, f takes values in the interval [−1, 1]. Note also that
f 2 = V (φ)/ρcrit, the fraction of the total energy density at the bounce that is in the po-
tential. Therefore in this section we will focus on solutions with |f | < 10−5. Starting at
the bounce, we will first describe the main features of the LQC evolution using suitable
analytical approximations and compare these with results obtained by numerical evolution
of the exact system.

Let us begin by noting a symmetry of the phase space equations of motion: Given a
solution

(

φ(t), pφ(t); v(t), b(t)
)

to (2.8) and (2.9),
(

−φ(t),−pφ(t); v(t), b(t)
)

is also a solution.
Therefore, in the discussion of dynamics it suffices to focus on the initial data at the bounce
point where pφ|B ≥ 0, i.e., φ̇B ≥ 0, allowing φB to take both positive and negative values. The
numerical simulations were performed in these two sectors. The analytical considerations
presented in this section are meant to provide a physical understanding of the main features
of the early phases of LQC dynamics. Since these do not depend on the sign of φB, for
concreteness, in the detailed discussion of analytical considerations we will assume φB to be
non-negative (which corresponds to numerical simulations reported in Table I) and comment
on the φB < 0 case only at the end.

1. Super-inflation

Immediately after the bounce, there is a super-inflation phase. Since the potential energy
at the bounce is very low, this phase of evolution can be well approximated by adding only
small corrections to the analytically well-understood massless case [12, 15]. From the bounce
to the end of super-inflation, the pair (H, Ḣ) goes from (H = 0, Ḣ = 10.28 (1 − f 2)) to
(H = 0.93, Ḣ = 0) in Planck units. Thus, this phase is highly dynamical for the Hubble
parameter. Let us ignore terms of the order f 4. Then, the amount of time, ∆t, that
super-inflation lasts is well approximated by

∆t ≈ ∆H

Ḣavg

≈ Hmax

2πφ̇2
B

=
Hmax

4πρcrit(1− f 2)
≈ Hmax

4πρcrit
(1 + f 2) ≈ 0.18 sPl (4.12)



17

How much does the volume change? We can estimate the number of e-foldings from the
bounce to the end of super-inflation as follows:

log(N) =
∫

Hdt ≈ Havg∆t ≈ H2
max

8πρcrit
(1 + f 2) (4.13)

This implies that the number of e-foldings during super-inflation is only about 1.09. During
this time the change in the value of the inflaton is given by:

∆φ =
∫

φ̇ dt ≈ φ̇avg ∆t ≈ 1.41Hmax

8π
√
ρcrit

(1− f 4

2
) ≈ 0.14 (1− f 4

2
)mPl (4.14)

which is also very small. Thus, although the change in the value of the Hubble parameter
during super-inflation is dramatic, because the duration of this phase is so short, the total
changes in the values of the scale factor and the inflaton are also very small. While we
approximated Ḣ and φ̇ by their average values in these calculations, the final results for
∆t and ∆φ are in excellent agreement with the exact numerical calculations summarized in
Table I.

Remark: Dynamics during inflation is often described using an analogy with a damped
simple harmonic oscillator. This is because when the slow roll conditions hold H is ap-
proximately constant and equation (4.5) resembles that satisfied by a damped harmonic
oscillator, with damping parameter ζ = 3H/2m. Although the universe does undergo an
accelerated expansion during super-inflation, since H changes radically, intuition derived
from a damped harmonic oscillator is not useful in this phase. At the end of super-inflation,
the Hubble parameter takes its maximum value, Hmax = 0.93mPl. Therefore, the ‘friction
term’ ζ = 3H/2m is extremely large, ζ ∼ 1.15 × 106. However, because the kinetic energy
is very large —approximately half that at the bounce— it still takes an appreciable time for
the inflaton to slow down. During this rather long period, dynamics is still not mimicked by
a damped harmonic oscillator. It is only when the potential energy dominates —as is the
case during the desired slow roll— that the analogy becomes useful.

2. From the end of super-inflation to turn around

Let us now consider the post-super-inflation phase. An analytical calculation can be
carried out in two steps with approximations tailored to each case: i) the phase which com-
mences at the end of super-inflation and ends when the kinetic energy equals the potential
energy; and ii) the phase between the time this equality is reached and turn-around of the
inflaton, i.e., when the kinetic energy reduces to zero. Dynamics has qualitatively different
features in these two phases because the first is dominated by kinetic energy and the second
by potential.

In phase i), the ratio of the potential to the kinetic energy is function α(t) which takes
values in (0, 1). The approximation consists of replacing it with its ‘average’ value αo. At
the end of the calculation, αo is determined by comparing the analytic expression with the
exact numerical answer in one of the cases given in Table I and then used in other cases.
We start with the equation ḃ = −4πγφ̇2 from (2.9) and, using the constraint equation (2.8)
and the approximation, obtain a differential equation containing only b. The solution b(t)
is given by

cot λb(t)− cot λb(te) =
2.4439 λ (t− te)

1 + αo
(4.15)
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f Event φ φ̇ H Ḣ t ǫ

1.07× 10−6 Bounce 8.00 × 10−1 9.05 × 10−1 0 1.03× 101 0 ∞
End of SI 9.44 × 10−1 6.39 × 10−1 9.26 × 10−1 0 1.80 × 10−1 0

KE = PE 2.91 3.52 × 10−6 1.02 × 10−5 −1.56 × 10−10 4.04 × 104 1.50

φ̇ = 0 3.03 0 7.50 × 10−6 0 1.66 × 105 0

ǫ = 8× 10−3 3.01 −1.88 × 10−7 7.46 × 10−6 −4.45 × 10−13 3.05 × 105 8× 10−3

1.17× 10−6 Bounce 8.75 × 10−1 9.05 × 10−1 0 1.03× 101 0 ∞
End of SI 1.02 6.39 × 10−1 9.26 × 10−1 0 1.80 × 10−1 0

KE = PE 2.98 3.61 × 10−6 1.04 × 10−5 −1.63 × 10−10 3.94 × 104 1.50

φ̇ = 0 3.10 0 7.67 × 10−6 0 1.63 × 105 0

ǫ = 8× 10−3 3.07 1.92 × 10−7 7.62 × 10−6 −4.56 × 10−13 3.28 × 105 8× 10−3

1.25× 10−6 Bounce 9.37 × 10−1 9.05 × 10−1 0 1.03× 101 0 ∞
End of SI 1.08 6.39 × 10−1 9.26 × 10−1 0 1.80 × 10−1 0

KE = PE 3.04 3.67 × 10−6 1.06 × 10−5 −1.69 × 10−10 3.87 × 104 1.50

φ̇ = 0 3.16 0 7.82 × 10−6 0 1.60 × 105 0

ǫ = 8× 10−3 3.12 −1.95 × 10−7 7.75 × 10−6 −4.81 × 10−13 3.75 × 105 8× 10−3

1.42× 10−6 Bounce 1.06 9.05 × 10−1 0 1.03× 101 0 ∞
End of SI 1.20 6.39 × 10−1 9.26 × 10−1 0 1.80 × 10−1 0

KE = PE 3.16 3.81 × 10−6 1.10 × 10−5 −1.82 × 10−10 3.73 × 104 1.50

φ̇ = 0 3.28 0 8.11 × 10−6 0 1.56 × 105 0

ǫ = 8× 10−3 3.15 −1.97 × 10−7 7.82 × 10−6 −4.86 × 10−13 8.23 × 105 8× 10−3

1.59× 10−6 Bounce 1.19 9.05 × 10−1 0 1.03× 101 0 ∞
End of SI 1.33 6.39 × 10−1 9.26 × 10−1 0 1.80 × 10−1 0

KE = PE 3.28 3.96 × 10−6 1.15 × 10−5 −1.97 × 10−10 3.59 × 104 1.50

φ̇ = 0 3.40 0 8.42 × 10−6 0 1.51 × 105 0

ǫ = 8× 10−3 3.15 −1.97 × 10−7 7.82 × 10−6 −4.87 × 10−13 1.45 × 106 8× 10−3

1.77× 10−6 Bounce 1.32 9.05 × 10−1 0 1.03× 101 0 ∞
End of SI 1.46 6.39 × 10−1 9.26 × 10−1 0 1.80 × 10−1 0

KE = PE 3.40 4.11 × 10−6 1.19 × 10−5 −2.13 × 10−10 3.46 × 104 1.50

φ̇ = 0 3.52 0 8.73 × 10−6 0 1.47 × 105 0

ǫ = 8× 10−3 3.15 −1.97 × 10−7 7.82 × 10−6 −4.87 × 10−13 2.08 × 106 8× 10−3

TABLE I: Dynamical evolution of φ and H for various values of f in the case φB > 0. Analytical

considerations imply that certain entries should be identically zero; their values are are O(ǫmachine)

in simulations but denoted by a boldface zero (0) in the Table. Events considered are: the bounce

point, end of super-inflation (End of SI), equality of potential and kinetic energy (KE = PE),

turn around (φ̇ = 0), and reaching ǫ = 8×10−3. The desired slow roll compatible with the WMAP

data is not realized if f ≤ 1.17× 10−6 but is realized for f ≥ 1.25 × 10−6.

where te is the proper time at the end of super-inflation. It can be substituted back in the
original Friedmann equation to obtain t − te as a function of φ(t) − φ(te). Finally, we set
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Method φe = 9.44 × 10−1 φe = 1.02 φe = 1.08 φe = 1.20 φe = 1.33 φe = 1.46

Exact Numerics 4.04× 104 3.94 × 104 3.87× 104 3.73 × 104 3.59 × 104 3.46 × 104

Analytic Eq(4.17) 4.00× 104 3.91 × 104 3.84× 104 3.71 × 104 3.58 × 104 3.46 × 104

TABLE II: The time interval tEq − te as a function of the value φe of in the inflaton at the end of

super-inflation: Comparison between the exact numerical result and the analytical approximation.

As φe increases, the difference between kinetic and potential energies at the end of super-inflation

decreases, whence it less takes less time to achieve equality between potential and kinetic energy.

The analytical approximation replaced the ratio α(t) between the two energies by an ‘average’ αo

during this phase i) after the end of super-inflation.

t = tEq, the time at which kinetic and potential energies are equal, to obtain:

φ(tEq)− φ(te) = 0.1628
√
1 + αo (yEq − ye) where sinh(y) = 1 + (

5.56

1 + αo

)t . (4.16)

Next, the constraint equation (2.8) determines φ(tEq) in terms of b(tEq) and we can invert
the expression (4.15) of b(t) to eliminate it in favor of tEq − te. The result is an expression
relating tEq − te and φ(te) alone. It determines how long the first post-super-inflation phase
lasts for any given value φe of the inflaton at the end of super-inflation:

φe =
1

m

0.640
√

1 +
(

1 + 5.56
1+αo

(tEq − te)
)2

− 0.1628
√
1 + αo (yEq − ye)

≈ 9.508× 104 (1 + αo)

tEq
− 0.1628

√
1 + αo

(

sinh−1 (1 +
5.56(tEq)

1 + αo
) − 0.88

)

(4.17)

where for simplicity we set te = 0 in the last step. Comparison of this expression with the
entry f = 1.77× 10−6 in table Table I, one finds that the fit with the exact numerical result
is best when αo = 1/3. We will use this value and compare the approximate analytical
expression with the exact numerical result in all cases covered in Table I. The resulting
Table II shows that the agreement is very good; the analytical approximation we made by
replacing α with its ‘average’ αo works quite well. Table II also shows that the duration
tEq − te ∼ 104 sPl of phase i) is much longer than that of super-inflation.

Eq (4.17) determines the duration tEq − te of phase i) as a function of the value of the
inflation at the end of super-inflation. The same approximation as was used there provides
expressions for values of H, φ, φ̇ at the end of phase i) as a function of tEq − te:

H(tEq) ≈
1 + αo

3.00(tEq − te)
; φ̇(tEq) ≈

0.1152(1 + αo)

tEq − te
; φ(tEq) ≈

9.5207× 104 (1 + αo)

tEq − te
.

(4.18)
Again, there is good agreement with the exact numerical results. For the Hubble parameter
a comparison is given in Table III.

Thus the analytic approximation yields a good portrait of dynamics of all physical quan-
tities of interest. Note that the Hubble parameter changes very significantly during this
phase also: At the end of super-inflation, we have H ≈ 0.93mPl while at tEq, H ≈ 10−5mPl.

Similarly, while φ̇ ≈ 0.9m2
Pl at the end of super-inflation, we have φ̇(tEq) ≈ 4× 10−6m2

Pl.



20

Method φe = 9.44 × 10−1 φe = 1.02 φe = 1.08 φe = 1.20 φe = 1.33 φe = 1.46

Exact Numerics 1.02 × 10−5 1.04 × 10−5 1.06 × 10−5 1.10 × 10−5 1.15× 10−5 1.19 × 10−5

Analytic Eq(4.18) 1.11 × 10−5 1.13 × 10−5 1.15 × 10−5 1.19 × 10−5 1.24× 10−5 1.28 × 10−5

TABLE III: Value of the Hubble parameter H at t = tEq as a function of the value φe: Comparison

between the exact numerical result and the analytical approximation. The analytical approximation

replaced the ratio α(t) between the two energies by an ‘average’ αo during this phase i) after the end

of super-inflation. The resulting error is less than 10%. Since φe ≈ φB = fφmax, H(tEq) increases

monotonically with f . Since H(tEq) ≈ 10−5mPl, general relativity is an excellent approximation

to LQC at t = tEq.

Method φe = 9.44 × 10−1 φe = 1.02 φe = 1.08 φe = 1.20 φe = 1.33 φe = 1.46

Exact Numerics 1.26× 105 1.24 × 105 1.21× 105 1.19 × 105 1.15 × 105 1.12 × 105

Analytic Eq(4.18) 1.26× 105 1.23 × 105 1.21× 105 1.17 × 105 1.12 × 105 1.08 × 105

TABLE IV: Duration of phase ii), tTA − tEq, as a function of φe: Comparison between the exact

numerical result and the analytical approximation. The analytical approximation assumes that

φ̈Avg is given by β × φ̈(tEq) where β is set equal to 1/4 by agreement with numerical values for

φe = 0.944mPl. the analytical expression then reproduces the exact numerical results for other

values of φe to within 4%.

Let us now turn to the subsequent phase ii) which lasts until the inflaton turns around, i.e.,
its kinetic energy vanishes identically. Since the energy density has dramatically decreased
during phase i) —at tEq, the matter density ρ(tEq) is of the order 10−11ρPl in all cases
given in Table III— general relativity is an excellent approximation in this phase. Also,
since the kinetic energy is sub-dominant, in contrast to phase i), phase ii) is dynamically

rather quiescent. At the start of this phase, values of H, φ, φ̇ are given by (4.18). Using

them and (4.5) we can calculate φ̈(tEq) and
...
φ (tEq). In all cases summarized in Table III,

φ̈(tEq) ∼ 10−10m2
Pl and

...
φ(tEq) . 10−16m3

Pl. Because of this quiescent behavior we can hope
to obtain the time duration (tTA − tEq) until the turn around by a simple calculation:

(tTA − tEq) ≈ ∆φ̇

φ̈avg

≈ − φ̇(tEq)

βφ̈(tEq)

≈ φ̇(tEq)

β(3H(tEq) +m)φ̇(tEq)
=

1

β(3H(tEq) +m)
(4.19)

where β is a coefficient (of O(1)) relating the value of φ̈ at t = tEq to its average value in
phase ii). (As explained in the caption of Table IV, β was set to 1/4 in numerical evaluations
of (4.19).)

Table IV provides a comparison with the exact numerical values and those calculated
using (4.19). Note that the quiescent phase ii) lasts even longer than the more dynamic
phase i). In the case of super-inflation we could use the ‘averaging approximation’ because,
although the Hubble parameter is very dynamic, the phase is very short lived. In phase ii)
we could use it because although the phase is long lived, it is quiescent. Finally, although
phase ii) lasts ∼ 105 sPl, because Ḣ, φ̇ are . 10−10, . 10−6 at t = tEq, the change in H, φ
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during phase ii) is quite small, again highlighting the quiescent nature of the phase.
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FIG. 1: Illustrative evolution of the scalar field. In this plot we use a negative value of φB to

complement the analytical discussion: φB = −5.5mPl and φ̇B > 0. (See the case f = −7.35×10−6

in Table V.) The inflaton rolls down the potential quickly at first because the kinetic energy at

the bounce is large. The kinetic energy equals potential energy at t = tEq ≡ 3.51 × 104 sPl and

φ changes more slowly during the subsequent quiescent phase. The WMAP value ǫ = 8 × 10−3

is reached t = 7.08 × 105 sPl and the end of slow roll, ǫ = 0.1, used in this paper is reached at

t = 1.24 × 107 sPl. Because φB is negative, in this case the inflaton turns around after the end of

the desired slow roll, at t = 1.84× 107 sPl.

3. Post turn-around

At the end of phase ii), the inflaton turns around and starts rolling down the potential.

Since by definition φ̇(tTA) = 0, the slow roll parameter ǫ also vanishes there. However,

because Ḣ ∝ φ̇2, it also vanishes there, whence the slow roll parameter η need not be small
and we are not assured the beginning of a slow roll. The desired slow roll, if it is realized in
the given solution, must occur subsequently, as the inflaton rolls down the potential.

Recall that, for the desired slow roll to be realized, we must have φ(t(k⋆)) ≈ 3.15mPl. This
point can be reached if and only if φ(tTA) > 3.15mPl. When is this condition realized and
when does it fail to be realized in the extreme kinetic energy dominated case under consider-
ation? The analytical formulas of the last two sub-sections show that φ(tTA) increases with
f and the illustrative numerical values we have presented ensure that φ(tTA) > 3.15mPl

if φB ≥ 0.937mPl. (This is a sufficient condition rather than a sharp bound.) Since
|φ| ∈ (0, 7.47mPl) in the extreme kinetic energy dominated case, our result suggests that it
is likely that the desired conditions are met. However, in the analytical considerations we
focused only on the φB ≥ 0 case and moreover made some approximations. Therefore, we
also carried out a large number of numerical simulations of exact equations to first confirm
and then sharpen this implication. (Tables I and V contain only a few illustrative results.)
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FIG. 2: Illustrative evolution of the scale factor for the same case as in Fig 1, i.e., for φB = −5.5mPl

and φ̇B > 0. (See the case f = −7.35×10−6 in Table V.) The WMAP value ǫ = 8×10−3 is reached

t = 7.08×105 sPl and the end of slow roll, ǫ = 0.1, used in this paper is reached at t = 1.24×107 sPl.

The number of e-foldings flattens out soon after this time.

The simulations were performed in MATLAB using a Runge-Kutta (4,5) ordinary differ-
ential equation solver (ODE45) with both relative and absolute tolerances set at 3×10−14. To
facilitate computation, the logarithm of the ratio of the volume at a given time to the volume
at the bounce was chosen to be a fundamental variable. On each solution the preservation
of the Hamiltonian constraint was verified at the level of the tolerances. For robustness
sample solutions were also evolved independently with various different tolerances, using
a set of equations which did not involve the initial volume, and seen to agree with those
given by the Runge-Kutta algorithm. Time scales for the evolutions were chosen such that
the numerical noise introduced by the deviation of the Hamiltonian constraint from zero
would not contribute significantly (i.e. greater than one part in 106) to the fundamental
variables. Separate searches were used around the end points of the allowed space, i.e., very
low values of f for which the dynamical trajectories fail to be consistent with the WMAP
data. This ensured that the extremely high probability we found for the LQC dynamics to
be compatible with the WMAP data is in fact a lower bound.

As discussed in section IVA, for the quadratic potential the WMAP data implies that
there was a time t(k⋆) in the early history of the universe when ǫ = 8×10−3 and φ = 3.15mPl

within error bars (of . 4.5%). In LQC we can specify the initial data at the bounce.
Numerical simulations let us answer the following question for the extreme kinetic energy
dominated bounce: What are restrictions on the initial data at the bounce for the ensuing
LQC dynamical trajectory to meet the WMAP constraint? Full numerical simulations bear
out conclusions suggested by Tables I and V:

WMAP constraint is met provided

{

f ≥ 1.25× 10−6 if φB ≥ 0

|f | ≥ 7.35× 10−6 if φB < 0 .
(4.20)

Thus, in the extreme kinetic dominated case, we are guaranteed that the event E —the

desired slow roll compatible with WMAP observations— will be realized in the solution under
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f Event φ φ̇ H Ḣ t ǫ

−7.02× 10−6 Bounce −5.25 9.05 × 10−1 0 1.03× 101 0 ∞
End of SI −5.11 6.39 × 10−1 9.26 × 10−1 0 1.80 × 10−1 0

KE = PE −3.15 3.80 × 10−6 1.10 × 10−5 −1.82 × 10−10 3.81 × 104 1.50

φ̇ = 0 5.42× 10−2 0 2.25 × 10−7 0 1.71 × 107 0

ǫ = 8× 10−3 NA NA NA NA NA NA

−7.22× 10−6 Bounce −5.40 9.05 × 10−1 0 1.03× 101 0 ∞
End of SI −5.26 6.39 × 10−1 9.26 × 10−1 0 1.80 × 10−1 0

KE = PE −3.31 4.00 × 10−6 1.16 × 10−5 −2.01 × 10−10 3.62 × 104 1.50

φ̇ = 0 5.64× 10−2 0 2.14 × 10−7 0 1.79 × 107 0

ǫ = 8× 10−3 NA NA NA NA NA NA

−7.35× 10−6 Bounce −5.50 9.05 × 10−1 0 1.03× 101 0 ∞
End of SI −5.36 6.39 × 10−1 9.26 × 10−1 0 1.80 × 10−1 0

KE = PE −3.41 4.12 × 10−6 1.19 × 10−5 −2.14 × 10−10 3.51 × 104 1.50

φ̇ = 0 5.51× 10−2 0 2.21 × 10−7 0 1.84 × 107 0

ǫ = 8× 10−3 −3.14 1.97 × 10−7 7.80 × 10−6 −4.86 × 10−13 7.08 × 105 8× 10−3

−7.69× 10−6 Bounce −5.75 9.05 × 10−1 0 1.03× 101 0 ∞
End of SI −5.61 6.39 × 10−1 9.26 × 10−1 0 1.80 × 10−1 0

KE = PE −3.68 4.44 × 10−6 1.29 × 10−5 −2.48 × 10−10 3.26 × 104 1.50

φ̇ = 0 5.71× 10−2 0 2.11 × 10−7 0 1.97 × 107 0

ǫ = 8× 10−3 −3.14 1.97 × 10−7 7.80 × 10−6 −4.87 × 10−13 2.03 × 106 8× 10−3

−7.92× 10−6 Bounce −5.92 9.05 × 10−1 0 1.03× 101 0 ∞
End of SI −5.78 6.39 × 10−1 9.26 × 10−1 0 1.80 × 10−1 0

KE = PE −3.85 4.66 × 10−6 1.35 × 10−5 −2.73 × 10−10 3.10 × 104 1.50

φ̇ = 0 5.48× 10−2 0 2.22 × 10−7 0 2.07 × 107 0

ǫ = 8× 10−3 −3.14 1.97 × 10−7 7.80 × 10−6 −4.86 × 10−13 2.94 × 106 8× 10−3

−8.02× 10−6 Bounce −6.00 9.05 × 10−1 0 1.03× 101 0 ∞
End of SI −5.86 6.39 × 10−1 9.26 × 10−1 0 1.80 × 10−1 0

KE = PE −3.94 4.75 × 10−6 1.38 × 10−5 −2.84 × 10−10 3.04 × 104 1.50

φ̇ = 0 5.51× 10−2 0 2.21 × 10−7 0 2.11 × 107 0

ǫ = 8× 10−3 −3.14 1.97 × 10−7 7.80 × 10−6 −4.86 × 10−13 3.36 × 106 8× 10−3

TABLE V: Dynamical evolution of φ and H for various values of f in the case φB < 0. Analytical

considerations imply that certain entries should be identically zero; their values are are O(ǫmachine)

in simulations but denoted by a boldface zero (0) in the Table. Events considered are: the bounce

point, end of super-inflation (End of SI), equality of potential and kinetic energy (KE = PE),

turn around (φ̇ = 0), and reaching ǫ = 8 × 10−3. Because φB < 0, the turn around happens after

the desired inflation ends. The desired slow roll compatible with the WMAP data is not realized

if |f | ≤ 7.22 × 10−6 but is realized if |f | ≥ 7.35× 10−6.
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consideration if f is outside the interval (−7.35 × 10−6, 1.25 × 10−6). (Again, this is only
a sufficient condition.) Since full range of f in the kinetic energy dominated case under
consideration is (−10−5, 10−5), this result suggests that E will be realized in ‘more than
half the trajectories’ in this case. We will sharpen this statement using the normalized
Liouville measure in section IVD.

The precise numbers in the sufficient condition (4.20) depend on the sign of φB at the
bounce. We will conclude with a brief discussion of the origin of the difference between
the φB > 0 and φB < 0 cases. The origin of the asymmetry lies in the fact that (because

of symmetries of field equations) we have restricted ourselves to data with φ̇B ≥ 0. So, if
φB < 0, the inflaton is already rolling down the potential at the bounce. If initially it is
sufficiently high up in the potential with, |φB| > 5.5mPl, friction can slow it down sufficiently
for the desired slow roll to begin at φ ≈ −3.15mPl. But if |φB| < 5.5mPl, then the kinetic
energy is too large for the friction term to slow it sufficiently for the desired slow roll to
commence before it reaches the bottom of the potential. Then it starts climbing up on the
φ > 0 branch but does not acquire a value higher that ∼ 3.15 required for the dynamical
trajectory to pass through the region satisfying the WMAP constraints. In the φB > 0 case,
by contrast, if φB & 0.94, the kinetic energy at the bounce is sufficient to propel the inflaton
to values higher than 3.15mPl on the φB > 0 branch of the potential to allow for the desired
slow roll.

In subsection IVC2, we will show that the likelihood of attaining the desired slow roll is
in fact 1 if the bounce is not extreme kinetic energy dominated and in section IVD we will
calculate the precise probability for the occurrence of E on the entire space S of solutions
using the normalized Liouville measure.

C. Generic LQC solutions and the WMAP slow roll

In section IVC1 we continue our description of qualitative features of LQC dynamics,
now for bounces with f > 10−5. This discussion is rather sketchy compared to that of
section IVB because in this case there are no subtleties with respect to the WMAP data: as
we show in section IVC2, all dynamical trajectories meeting this condition at the bounce
satisfy the WMAP constraints.

1. Evolution of other initial data: Qualitative features

We will highlight only those features which are qualitatively different from the kinetic
energy dominated bounce discussed in detail in section IVB. Again, for concreteness, we
will focus on the case when φB and φ̇B are both positive. Let us begin with the intermediate
case 10−5 < f . 1/

√
2 where the kinetic energy still exceeds the potential energy at the

bounce but does not dominate it as in section IVB. The super-inflation era is similar to that
described in section IVB1 but because φ̇B is now lower, the phase lasts longer. The inflaton
climbs up the potential but change in its value is again small. The Hubble parameter, on
contrast, is again dynamical. However, the post super-inflation dynamics exhibits significant
differences. For, now the value of φB is higher and φ̇B lower while, as before, H assumes its
largest value at the end of super-inflation. Therefore, the coefficient of friction, ζ = 3H/2m,
is again large but there is less kinetic energy to lose before reaching the turn-around., which
is now reached within 10−100sPl after the bounce. Consequently, now the change φ(tTA)−φB
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is negligible, a key feature not shared by regime (i).
Next, let us examine the f & 1/

√
2 where the potential energy is greater than the kinetic

energy. Now, the LQC effects dominate for an even longer time. Again, because φ̇ > 0, the
inflaton climbs up the potential but turns around earlier and earlier and the super-inflation
phase lasts longer and longer as f increases. Now the turn around (φ̇ = 0) will occur during
super-inflation! The change (φ(tTA)−φB) is even more negligible because the kinetic energy
at the bounce is lower than that in the f < 0.5 case. The slow roll conditions are easily
met soon after turn-around. A difference from this phase of slow roll and that for f > 1/

√
2

is that H continues to grow during the slow roll because we are still in the super-inflation
phase. There is an enormous number of slow roll e-foldings already in the deep Planck
regime where the matter density is greater than half the critical density.

2. Compatibility with the WMAP data

In the extreme kinetic energy domination we could carry out numerical simulations start-
ing from the bounce until the end of the desired slow roll. For f > 0.1, this becomes quite
difficult even with the truncation error as small as one part in 1014 because the super-inflation
phase can become so long that the required evolution spans ∼ 1014sPl or more. Therefore,
to maintain the precision we had in the kinetic dominated case, another line of reasoning is
necessary.
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FIG. 3: WMAP data implies that, for a quadratic potential, at the time t(k⋆) at which the reference

mode k⋆ exits the Hubble horizon, |φ| = 3.15mpl and ǫ = 8×10−3 within error bars of ∼ 4.5%. We

wish to analyze whether generic dynamical trajectories pass through this small neighborhood in

the phase space. For reasons discussed in section IVC2, we consider trajectories with initial data

with a fixed, low value of φ (which we take to be φ = −5.5mPl), allowing all permissible values of

φ̇. The plot shows that in all the resulting dynamical trajectories, at the time when φ = −3.15mPl,

we have ǫ ≈ 8× 10−3 with fluctuations less than 2× 10−5. This implies that all LQC trajectories

with |f | ≥ 7.35 × 10−6 pass through the desired, small region of the phase space.

Motivated by our result (4.20), in this subsection we consider initial data at the bounce
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with |φB| ≥ 5.5mPl.
7 We will first argue that the resulting dynamical trajectory must pass

through the point with |φ| = 5.5mPl with some kinetic energy. Since this is a low value of
|φ|, the inflation will reach the WMAP value |φ| = 3.15mPl rather quickly. So it is feasible
to carry out a numerical simulation for dynamics between |φ| = 5.5mPl and |φ| = 3.15mPl

with the desired, high degree of accuracy. The question for numerics is then: Is the value
of ǫ at the time when |φ| = 3.15mPl close to the WMAP value ǫ = 8 × 10−3 within the
4.5% error bars? For initial data at the bounce for which |φB| ≫ 5.5mPl, the super-inflation
phase will last very long time and, had we begun the simulation at the bounce, we would
have lost accuracy by the time the inflaton reaches |φ| = 3.15mPl. We avoid this problem
by giving an analytic argument that the inflation must reach |φ| = 5.5mPl and carry out
numerical calculations for dynamics only between |φ| = 5.5mPl and |φ| = 3.5mPl.

Let us begin with the negative branch of the φB space, i.e., first consider the case when
−5.5mPl ≥ φB ≥ −|φmax| = −7.47×105mPl. In this case, immediately after the bounce the
inflaton will roll down the potential. Intuitively, it may seem obvious that in this descent it
must encounter the point φ = −5.5mPl with some kinetic energy. But a priori there are two
possibilities that may prevent this occurrence. First, we have to examine the possibility that
the inflaton may come to rest for some value φ = φo < −5.5mPl and just stops there. But
the equation (4.5) satisfied by the inflaton implies that at the instant φ̇ = 0, φ̈ = −m2φo > 0
(since φo 6= 0). Therefore the inflaton cannot just stay at φo < 0. A more subtle possibility

is that the inflaton asymptotically approaches φo < −5.5mPl, with φ̇ approaching zero, but
never actually reaches it in a finite time. That is, the limiting value of φ̇ could be zero at
φ = φo but this could happen at time to = ∞. But by integrating (4.5) between the bounce

time tB and the hypothetical time to at which φ̇ is to vanish, it is easy to show that:

to − tB <
|φ̇B|

m2|φB|
(4.21)

so that to is necessarily finite. Thus, if φB < −5.5mPl (and by assumption φ̇B > 0), the
inflaton must slide down the potential and reach the value φ = −5.5mPl with some kinetic
energy.

Next, consider the case when φB > 0. In this case, our focus will be on initial data at
the bounce with φB ≥ 5.5mPl. Since we again have φ̇B > 0, initially the inflaton now climbs

up the potential. However, it again follows from (4.5) that it reaches φ̇ = 0 in a finite time

to and at that time φ̈ = −m2φ < 0 (since φ is now positive). So this is the turn around
point and the inflaton rolls down the potential. Again, by the same reasoning as before, as
it rolls down, the inflaton cannot come to rest for a value φ 6= 0. Therefore as it rolls down,
it must pass through the point φ = 5.5mPl, for some value of φ̇. To summarize, dynamical
trajectories for every initial data at the bounce with |φB| ≥ 5.5mPl eventually encounter a

point at which |φB| = 5.5mPl.
We used high precision numerics to analyze the LQC dynamics following this event. The

value of φ̇ at this event can be arbitrary. We sampled the full range, (φ̇ = 0, φ̇ = 0.90m2
Pl),

first using uniformly distributed thousand data points and then logarithmically distributed
thousand points. Using φ = −5.5mPl and each of these values of φ̇ as initial data solved the
full set of LQC equations numerically. The key questions then are: i) Do all these dynamical

7 This space has an overlap with the f < 10−5 case already considered in detail in section IVB. This

ensures that there are no ‘gaps’, i.e., we will cover the full space of initial data at the bounce.
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trajectories eventually pass through a phase space point at which φ = −3.15mPl; and, ii)
Within the WMAP error bars, which of them have ǫ = 8×10−3 at the time when φ assumes
the value 3.15mPl? As one would expect from the analytical considerations discussed above,
the answer to the first question is in the affirmative. As the inflaton rolls down the potential
from φ = −5.5mPl, it necessarily encounters the value φ = −3.15mPl. The answer to the
second question is summarized in Fig. 3: in each of these two sets of 1000 simulations,
at the time the inflaton assumes the value φ = −3.15mPl, the slow roll parameter ǫ takes
values in the range

ǫ = 8× 10−3 ± 2× 10−5 . (4.22)

That is, each of these trajectories passes through the small portion of the phase space
compatible with the WMAP data.

Finally, let us consider the complementary case with initial data at the bounce satisfying
φB > 5.5mPl. In this case, as discussed above, the inflaton first rises up the potential and
then rolls down. Therefore now the numerical simulation should start with φ = 5.5mPl and
φ̇ ∈ (−0.90mPl, 0). But because of the symmetry on the space of solutions noted in the
beginning of section IVB, these solutions can be obtained just by reversing the sign of the
solutions φ(t) obtained from numerical evolutions starting from the initial data φ = −5.5mPl

and φ̇ ∈ (0, 0.90mPl). Thus, all the dynamical trajectories are compatible with the WMAP
data also in this case.

To summarize, combining the results of sections IVB3 and numerical simulations just
discussed, we can conclude that the LQC dynamical trajectories resulting from any initial
data at the bounce surface with |φB| ≥ 5.5mPl realizes the constraints on values of fields at
t = t(k⋆) imposed by the WMAP data. Thus, it is only when the bounce is in the extreme
kinetic dominated regime that some of the dynamical trajectory —namely those that violate
(4.20) can fail to meet the WMAP constraint.

D. Probability of the desired slow roll in LQC

We are now ready to combine results of sections III B, IVB and IVC to calculate the a
priori probability of realizing the desired slow roll in LQC.

In the terminology of section IIIB, the event E of interest is the passage of the dynamical
trajectory through the small region in the phase space singled out by the WMAP data and
our task is to find the relative volume of the region R(E) of the space of solutions in which
E occurs. The calculation requires a normalized measure. In section IIIB we found that,
thanks to a suitable gauge fixing, each equivalence class of physically distinct LQC solutions
can be characterized completely by the value φB of the inflaton at the bounce surface. Since
bλ = π/2 at the bounce, (3.19) implies that the total measure on the space So of physically
distinct solutions is given by

N =

∫

So

ω̂ =

∫ φmax

−φmax

(3π

λ2
− 4π2γ2m2φ2

)
1

2 dφ =
3π

4γλ2m
(4.23)

where we have used the fact that we have a quadratic potential and where, for definiteness
we have set the volume vo at the bounce to 1. (Recall that vo simply rescales the measure
by a constant and therefore drops out in the calculation of probabilities.) The probability
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P (E) of the occurrence of our event E is then given by (3.20):

P (E) =
1

N

∫

I(E)

(3π

λ2
− 4π2γ2m2φ2

)
1

2 dφ (4.24)

where I(E) is the interval on the φB-axis corresponding to the physically distinct LQC
solutions in which E occurs. (For details, see section IIIB.)

In sections IVB and IVC we found that a sufficient condition for the event E to occur
is that the initial data of the solution at the bounce should satisfy

φB 6∈ [−5.5mPl, .94mPl] or, equivalently, f 6∈ [−7.35× 10−6, 1.25× 10−6] (4.25)

Therefore the probability that E does not occur is bounded by the length of the interval
[−5.5mPl, .94mPl] in the φB-axis w.r.t. the measure given by the 1-form ω̂:

P (E not realized) ≤ 1

N

(

∫ φ+

0

+

∫ φ
−

0

) (3π

λ2
− 4π2γ2m2φ2

)
1

2 dφ

≤ 1

π
(f+

√

1− f 2
+ + sin−1 f+) +

1

π
(f−

√

1− f 2
− + sin−1 f−)

. 2.74× 10−6 (4.26)

where φ+ = .94mPl, φ− = 5.5mPl and f± = φ±/φmax. Thus, the probability that the desired
slow roll does not occur in an LQC solution is less than three parts in a million. Hence a
great deal of fine tuning would be necessary to avoid the slow roll inflation that meets the
WMAP constraints.

For simplicity, throughout our analysis, we set the cosmological constant Λ to be zero.
But it is completely straightforward to include it since it just shifts the zero of our potential.
Since the sign of the observed cosmological constant is positive, for any given value of φ, its
inclusion would have the effect of increasing the fraction of the total energy density in the
potential. This in turn would lower the values of |φB| that are needed in (4.20) to ensure
that the trajectory meets the WMAP constraint. Thus the probability of achieving the
desired slow roll would further increase. However, since the observed value of Λ is so small,
this effect will not be noticeable even at the level of numerical accuracy used in this paper.
We also focused on the spatially flat FLRW models because they are observationally favored.
But it is not difficult to include spatial curvature. Again, given observational constraints,
we expect that this inclusion will not significantly alter our main conclusions [34]. In these
respects, the results are robust.

What about the choice of the inflaton potential? All our detailed considerations hold only
for a quadratic potential. Recall however that a generic potential V (φ) is well-approximated
by a quadratic one near its minimum. Suppose V (φ) has a single minimum φo and that
|V (φ) − V (φo) − (1/2)m2φ2| ≪ V (φ) − V (φo) for all φ ∈ [−5.5mPl, 5.5mPl] where m ≈
1.21× 10−6mPl. Then our considerations will apply: As the inflaton slides down from |φ| =
5.5mPl it will enter a phase of slow roll inflation compatible with the WMAP constraints.
As an illustration, let us suppose that the potential is a combination of a quadratic and a
quartic parts:

V (φ) =
1

2
m2φ2 +

λ

4
φ4 (4.27)

Then, our assumption is met if λ ≪ 9.68 × 10−14. For a rough comparison, note that the
WMAP bound for a pure quartic potential is 4.4 × 10−14. Thus, it is not unreasonable to
expect that, at a qualitative level, our conclusions on probabilities will continue to hold for
a wide class of physically interesting potentials.
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V. DISCUSSION

In the main body of this paper we analyzed inflation in the observationally most interest-
ing case of the k=0 FLRW cosmologies using the framework of LQC. Our goal was two-fold.
First, assuming a quadratic potential, we examined in detail the effective LQC dynamics in
presence of an inflaton with standard potentials. Second, we used this dynamics to calculate
the a priori probability of realizing the desired slow roll inflation that is compatible with
the WMAP data.

Let us begin with dynamics. Since the big bang singularity is replaced by the big bounce,
and since all physical fields are regular at the bounce, we could specify initial conditions
at the bounce surface and explore the resulting dynamics. We allowed all possible initial
data, subject only to the Hamiltonian constraint. We found that the subsequent dynamics
is sensitive to the distribution of energy density at the bounce between kinetic and potential
parts. In all cases, there is a universal super-inflation phase that follows the bounce; indeed
it persists even when there is no potential at all. For concreteness, let us focus on the case
when φ̇ and φ are both positive at the bounce so the inflaton is climbing up the potential.

We first discussed in detail the case in which less than one part in 1010 of the total
energy density at the bounce is in the potential because this is the only case in which some
of the solutions can fail to exhibit the desired slow roll. In this case, the super-inflation
phase is very short lived. However, it is also extremely dynamic: during the fraction of a
Planck second of super-inflation, the Hubble parameter increases dramatically from zero to
its maximum allowed value, 0.93mPl. Because H is so large at the end of super-inflation, the
friction term in the equation of motion of the inflaton is also large whence the inflaton loses
kinetic energy as it climbs up the potential. After ∼ 104 sPl, the potential energy equals
kinetic energy and then dominates it (where, as before, sPl denotes Planck seconds). After

another ∼ 104 − 105 sPl, φ̇ vanishes, the inflaton turns around and starts climbing down
the potential. In a ‘majority’ of solutions —but not all— it soon enters the desired slow roll
that is compatible with the 7-year WMAP observations [6].

In the intermediate case, the kinetic energy is still greater than the potential at the bounce
but does not overwhelm it. Now dynamics undergo the same qualitative phases. However,
the super-inflation phase lasts a bit longer and the turn around occurs much sooner, only
about 10−100sPl after the bounce. This is because the initial kinetic energy is smaller than
that in the first case while the strength of the friction term is the same because the Hubble
parameter again takes its maximum value at the end of super-inflation. Because the turn
around occurs much sooner, in contrast to the situation in the extreme kinetic domination,
the increase in the value of φ between the bounce and the turn-around is very small. Finally,
if the potential energy density exceeds the kinetic energy density at the bounce, dynamics
is very different. Now the LQC effects dominate in the sense that the super-inflation phase
lasts longer and its duration increases rapidly as the fraction of total energy in the potential
increases. Furthermore, the turn around occurs already during super-inflation! Our first
goal was to present these qualitative differences in the pre-slow-roll dynamics.

The WMAP data puts very strong constraints on the values of fields at the time t(k⋆)
when the mode with wave number k⋆ exits the Hubble radius during the desired phase of
inflation. The key question is: Are ‘most’ dynamical trajectories such that these constraints
are met at some time during the post-bounce evolution? We showed that the answer is in
the affirmative unless the bounce is kinetic energy dominated as in section IVB. Even in
this case, the WMAP constraints are met unless fraction of the total energy at the bounce



30

which is in the potential is less than 7.35×10−6. In this precise sense the tiny region of phase
space selected by the WMAP data serves as an attractor to LQC dynamics. This may not
seem surprising because inflationary trajectories are known to be attractors also in general
relativity. However, in LQC there are strong quantum gravity effects in the super-inflation
phase as well as in the phase that follows immediately after super-inflation. These could well
have spoiled the attractor behavior and a large fraction of the data specified at the bounce

could well have given rise to trajectories that steer away from the WMAP region. That this
does not happen is noteworthy.

The attractor behavior is a qualitative feature of dynamics. It does not provide a sharp
quantitative estimate on the likelihood of realizing the desired slow roll. To obtain this
estimate, one needs a measure on the space of (physically distinct) solutions, such that the
total volume of this space is finite. As explained in section I, a natural strategy [7–9] is to
use the Liouville measure on the phase space. This leads to a priori probabilities of events,
such as the occurrence of the desired slow roll. However, volume of the 2-dimensional space
S of solutions with respect to the resulting dµ̂L is infinite. But this infinity is physically
spurious: It occurs because S is acted upon by a gauge group G and the length of 1-
dimensional orbits of G is infinite. For a large class of potentials the space S/G of physically
distinct solutions is in fact a bounded interval of the real line. Furthermore there is a natural
1-form ωα on S (constructed from the symplectic structure and the gauge vector field Ga)
which is everywhere orthogonal to Gα. So it is a natural candidate to induce a volume
element on the 1-dimensional space S/G. Unfortunately, it does not project down to S/G
(because LG ωα = ωα 6= 0). Therefore one is led, instead, to ‘fix a gauge’, i.e., lift S/G to
a suitable 1-dimensional cross-section in S and carry out integration there. The problem in
general relativity is that there is no natural family of lifts and the volume element on S/G
depends heavily on one’s choice. Thus, there is an inherent ambiguity in the calculation
of probabilities. Thanks to the existence of the bounce surface, in LQC one does have a
natural family of lifts and the probability of occurrence of physical events is independent of
the choice.8 We used this choice to calculate the a priori probability of realizing the desired
slow roll, compatible with the WMAP data. We found that the probability is greater than

0.999997 in LQC. As emphasized in section I, these are just ‘bare probabilities’ and better
estimates of this occurrence will require astutely chosen physical inputs. This will require
not only a more complete theory [3], but a deep understanding of that theory to separate
essential inputs from non-essential ones. However, since the ‘bare probability’ is so close to
1, it is a huge burden on any theory to come up with new inputs that significantly change
the answer.

We emphasize, however, that our results should not be interpreted to mean that suffi-
ciently long slow roll inflation is inevitable in LQC: it is inevitable only under the additional
assumption that there is a phase in which matter density is dominated by that of a scalar
field in a suitable potential. So far LQC has not provided a mechanism to create either the
scalar field or the potential. Although there have been intriguing suggestions that this may
naturally occur if one promotes the Barbero Immirzi parameter γ of loop quantum gravity

8 In this construction, the analog of the bounce surface in general relativity would be the singularity itself.

It is far from obvious how to work at the singularity although ideas proposed in [35] may provide a

natural mathematical construction. However, a priori, the physical meaning of such a construction would

be obscure because one would have to assumes that Einstein’s equations, without quantum corrections,

are valid all the way to the singularity.
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to a dynamical field [36], very substantial work is needed to have confidence that they can
be transformed into a concrete, internally complete and viable scenario.

The primary purpose of our analysis was to understand what LQC has to say about
inflationary scenarios in the early universe. But it is instructive to compare and contrast
the predictions of LQC with those of general relativity, discussed in the literature. This
leads us to several distinct points. First, there is some controversy as to which ‘problems’
inflation solves and which it does not [1–3]. Our analysis does not shed any new light
on these issues. Rather, as mentioned above, our focus is on the likelihood of the desired
slow roll inflation. Second, while some of the literature [4, 7–9] uses the Liouville measure
on the space of solutions to compute the a priori probability, in [2] (and in the earlier
literature cited therein) a different measure is used. The likelihood, of course, can and does
depend sensitively on the choice of the measure. In addition, since the choice made in [2]
is not preserved by the Hamiltonian flow, a choice of time slice is made. Therefore, there is
some discussion in the literature on the dependence of the final results on the choice of the
measure and the time slice used in the evaluation of probabilities (see, e.g., [1, 3, 4]). The
Liouville measure is ‘canonical’ and, furthermore, preserved under time evolution. However,
as explained above, the total measure on the space of solutions S is infinite and, to extract
meaningful probabilities, one must introduce an additional structure, a suitable lift of S/G
into S. Conceptually, this is equivalent to fixing a ‘time gauge,’ e.g. by working with the
initial data of the solution at the instant at which the matter density is a given constant,
ρo. In this sense, there is a common limitation. In [2] (and in earlier works dating back
to [32]) one uses the time slice at Planck time (but still works with equations of general
relativity), while in [4] it is argued that one should use a slice corresponding to a much

later time. Even if one were to decide to use the Liouville measure, a priori probabilities
do depend sensitively on this choice because of the nature of inflationary dynamics [10].
From our perspective, since there is no ‘canonical’ choice of time slice in general relativity,
calculations of probabilities have an inherent ambiguity.9 In LQC, by contrast, since the
bounce surface provides a canonical ‘time slice’ the ambiguity can be naturally resolved.
Finally, recently there have been several interesting discussions of inflationary scenarios in
LQC (see, e.g., [37–42]). However, the primary focus of all but one of these papers is
on phenomenological and observational issues rather than on measures and calculations of
probabilities. The one exception is [37]. However, in that reference, super-inflation (as well
as the bounce) was ignored.

We will conclude with an observation on dynamics immediately following the bounce. In
the standard inflationary scenarios, matter density is some 11-12 orders of magnitude smaller
than ρPl at the onset of inflation and from the quantum equations of full LQC we know
that the use of quantum field theory in curved space-times is fully justified in this regime.
However, there are several conceptually important issues which require an understanding of
dynamics before this era is reached. Perhaps the most important among them is the issue
of the initial state of quantum fields representing perturbations. As explained in section I,
currently the state is simply postulated to be the Bunch-Davis vacuum for the relevant modes
(which have co-moving wave numbers in the range (ko, ∼ 200ko)). While this assumption

9 There is another difference between references [2] and [4]: while [2] focuses on the (phenomenologically

favored) k=0 model, [4] focuses on the (spatially closed) k=1 model. However, since the strategy used

in [4] to ‘regularize’ the Liuoville measure is strongly motivated by the gauge considerations in the k=0

case, this difference is less significant for the drastic disparity in the final results.
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is physically motivated, it is nonetheless important to arrive at this state starting from
more fundamental initial conditions. In general relativity, these conditions would have to be
specified on the singularity and furthermore we know that we cannot reliably use equations
of general relativity in the Planck regime. LQC on the other hand is based on loop quantum
gravity, a candidate theory of full quantum gravity. Therefore, not only is there a basis to
trust its quantum equations but, as we saw in section II, they have already provided us a
wealth of new information on physics at the Planck scale. Therefore, there is good motivation
to use quantum field theory on the cosmological quantum space-times of LQC [43] to study
the initial conditions and evolution of quantum fields representing perturbations from the big
bounce until the onset of inflation. Is there perhaps a natural initial condition we can impose
on the quantum state of these perturbations at the bounce using e.g., ideas developed in [44]
and/or exploiting the fact that the Hubble parameter vanishes there? What would such an
initial state evolve to at the onset of slow roll? Would it be sufficiently close to the Bunch-
Davis vacuum (for the modes of interest) to be phenomenologically viable, or, would it be so
different that it is already ruled out observationally? If it close, is it perhaps too close to be
observationally indistinguishable from the Bunch-Davis vacuum or is it sufficiently different
to lead to an observational test of LQC? These questions are being currently analyzed using
the detailed dynamics of the LQC inflationary space-times presented in section IVB [17].

Finally, because almost all LQC solutions are compatible with the WMAP data, one
might first think that the chances of constraining quantum gravity from observations of
the early universe are very small. However this is not correct: to make contact with these
observations one needs not only the ‘background’ space-time but also quantum fields repre-
senting perturbations off this background. Considerations of the previous paragraph suggest
a concrete direction to confront quantum field theory on the LQC quantum space-times with
observations. Such a confrontation could well lead to interesting, testable predictions of loop
quantum gravity and/or constraints on this theory.
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