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Loop quantum cosmology and slow roll inflation
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In loop quantum cosmology the big bang is replaced by a quantum bounce which

is followed by a robust phase of super-inflation. We show that this phase has an

unforeseen implication: in presence of suitable inflationary potentials it funnels all

dynamical trajectories to conditions which virtually guarantee a slow roll inflation

with more than 68 e-foldings, without any input from the pre-big bang regime. This

is in striking contrast to the situation in general relativity where it has been argued

that the a priori probability of obtaining a slow roll inflation with N e-foldings is

suppressed by a factor e−3N .

I. A PRIORI PROBABILITY OF INFLATION

The a priori likelihood of inflation in the early universe has drawn considerable attention
over the last two decades (for early papers see e.g. [1, 2, 3]). With the more recent successes
of inflationary models in providing a natural explanation of structure formation, it is all
the more interesting to inquire if a sufficiently long, slow roll inflation requires fine tuning
of initial conditions or if it occurs generically in a given theoretical paradigm (see e.g.
[4, 5, 6, 7]).

A mathematically natural approach to this analysis invokes Laplace’s principle of indif-
ference [8] to calculate the a priori probability of a slow roll inflation. Here, one uses the
canonical Liouville measure dµ L and a flat probability distribution P (s) = 1 on the space
of solutions of the theory under consideration [1]. Then the a priori probability is given by
the fractional Liouville volume occupied by the sub-space of solutions in which a sufficiently
long, slow roll inflation occurs. Further physical input can provide a sharper probability
distribution P (s) and a more reliable likelihood than the ‘bare’ a priori probability. How-
ever, a priori probabilities can be directly useful if they are very low or very high. In these
cases, it would be an especially heavy burden on the fundamental theory to come up with
the physical input that significantly alters them.

Calculating the a priori probability can be subtle because the total Liouville measure of
the space of all solutions is often infinite [3]. However, sometimes it is possible to introduce
physically motivated regularization schemes and show that the desired probability is insen-
sitive to the details of the scheme. Recently, this approach was used by Gibbons and Turok
[7] to argue that the probability of N e-folds of a slow roll, single field inflation is suppressed
by a factor of e−3N in general relativity. They concluded that, even if a fundamental the-
ory allows inflation, an extremely sharp probability distribution P (s) is needed in order to
explain why inflation actually occurred.

The purpose of this communication is to show that the situation is reversed in loop
quantum cosmology (LQC): Given suitable inflationary potentials every solution enjoys an
inflationary phase and the a priori probability of obtaining at least 68 e-foldings, desired
from phenomenological considerations, is extremely close to 1. Away from the Planck regime,
LQC is virtually indistinguishable from general relativity. However, in the Planck regime,
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there are huge differences [9, 10, 11, 12, 13, 14, 15, 16, 17] and these are crucial to our
analysis. In particular, the big-bang is replaced by a non-singular big bounce and initial
conditions can be specified at the bounce in a fully controlled fashion. There is a robust
phase of super-inflation immediately after the bounce [18, 19] which, surprisingly, shepherds
most of the LQC solutions to phase space regions from which a long, slow roll, exponential
expansion is almost inevitable. Although several phenomenological consequences of this
phase have been studied (see, e.g., [20, 21, 22, 23]), its implications to slow roll inflation had
not been noticed. In particular, super-inflation (as well as the bounce) was ignored in the
previous analysis [24] of the a priori likelihood of inflation in LQC.

II. LOOP QUANTUM COSMOLOGY

In the LQC treatment of simple cosmological models, the big bang and big crunch singu-
larities are naturally resolved [25]. The origin of this resolution lies in the quantum geometry

effects that are at the heart of loop quantum gravity [26, 27, 28]. Exotic matter is not needed;
indeed matter fields can satisfy all the standard energy conditions. Detailed analysis has
been carried out in a variety of models: the k=0, ±1 FRW space-times with or without
a cosmological constant [10, 11, 13]; Bianchi models [14, 15] which admit anisotropies and
gravitational waves; and Gowdy models [16] which admit inhomogeneities, and therefore an
infinite number of degrees of freedom. The FRW models have been studied most extensively,
using both analytical and numerical methods to solve the exact quantum equations of LQC
[10, 11, 12, 17]. In these models, the big bang and the big-crunch are replaced by a quantum
bounce, which is followed by a robust phase of super-inflation. Interestingly, full quantum
dynamics, including the bounce, is well-approximated by certain effective equations. (For a
recent review, see [29].)

In this paper we restrict ourselves to the phenomenologically more interesting case of the
k=0 FRW model (although the method is applicable also to the k=1 case). The matter
source will be a scalar field with positive kinetic energy and a suitable potential. Since the
prior discussion of probabilities is based on general relativity, to facilitate comparison we
use effective equations rather than the full quantum theory. Finally, we will use the natural
Planck units c=~=G=1 (rather than 8πG=1, often employed in cosmology).

In LQC, spatial geometry is encoded in the volume of a fixed, fiducial cell, rather than
the scale factor a; v = (const)×a3. The conjugate momentum is denoted by b. On solutions
to Einstein’s equations b = γH [17], where H = ȧ/a is the standard Hubble parameter and
γ is the Barbero-Immirzi parameter of LQC whose value, γ ≈ 0.24, is fixed by the black
hole entropy calculation. However, LQC modifies Einstein dynamics and on solutions to the
LQC effective equations we have

H =
1

2γλ
sin 2λb ≈ 0.93

ℓPl
sin 2λb (2.1)

where λ2 ≈ 5.2ℓ2
Pl is the ‘area-gap’, the smallest non-zero eigenvalue of the area operator. In

LQC, b ranges over (0, π/λ) and general relativity is recovered in the limit λ → 0. Quantum
geometry effects modify the geometric, left side of Einstein’s equations. In particular, the
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Friedmann equation becomes

sin2 λb

γ2λ2
=

8πG

3
ρ =

8πG

3

( φ̇2

2
+ V (φ)

)

. (2.2)

To compare with the standard Friedmann equation (ȧ/a)2 = (8π/3)ρ, it is often convenient
to use (2.1) to write (2.2) as

(

ȧ

a

)2

=
8πG

3
ρ

(

1 − ρ

ρcrit

)

(2.3)

where ρcrit =
√

3/32π2γ3 ≈ 0.41ρPl. By inspection it is clear from Eqs (2.1) - (2.3) that,
away from the Planck regime —i.e., when λb ≪ 1 or, ρ ≪ ρcrit— we recover classical general
relativity. However, the modifications in the Planck regime are drastic. The main features
of this new physics can be summarized as follows.

I
¯
n general relativity, the Friedmann equation implies that if the matter density is positive,

ȧ cannot vanish. Thus the solution represents either a contracting universe or an expanding
one. By contrast, the LQC modified Friedmann equation (2.3) implies that at ρ = ρcrit,
ȧ vanishes. This is a quantum bounce. To its past, the solution represents a contracting
universe with ȧ < 0 and to its future, an expanding one with ȧ > 0.

A
¯

s is customary in the literature on probabilities, let us ignore the exceptional de Sitter
solutions with eternal inflation. On all other solutions b decreases monotonically from b =
π/λ to 0. Eqs (2.2) and (2.3) imply that b = π/2λ at the bounce. Thus, each solution
undergoes precisely one bounce. The Hubble parameter H = ȧ/a vanishes at the bounce
and Eq.(2.1) implies that it is bounded on the solution space; |H| . 0.93/ℓPl. By contrast,
in general relativity, H is large in the entire Planck regime and diverges at the singularity.

W
¯

hen the potential is bounded below, |Ḣ| is bounded above by 10.29/ℓ2
Pl. The Ricci

scalar —the only non-trivial curvature scalar in these models— is bounded above by 31/ℓ2
Pl.

Thus, physical quantities which diverge at the big bang of general relativity cannot exceed
certain finite, maximum values in LQC. One can also show that if v 6= 0 initially, it cannot
vanish in finite proper time along any solution. Thus, the LQC solutions are everywhere

regular irrespective of whether one focuses on matter density, curvature or the scale factor.

Next, the full set of space-time equations of motion can be written in terms of v(t), φ(t).
These variables are subject to the constraint (2.3) and evolve via:

v̈ =
24πv

ρcrit

[

(ρ − V (φ))2 + V (φ)(ρcrit − V (φ))
]

, φ̈ +
v̇

v
φ̇ + V,φ = 0 . (2.4)

Our task is to obtain the Liouville measure on the space S of solutions to these equations.
For this, we first construct the phase space Γ. It consists of quadruplets (v, b; φ, p(φ)),

with λb ∈ [0, π/2]. The Liouville measure on Γ is simply dµ L = dv db dφ dp(φ). The LQC
Friedmann equation implies that these variables must lie on a constraint surface Γ̄ defined
by

p2
(φ)

2v2
+ 4π2γ2V (φ) =

3π

2λ2
sin2 λb . (2.5)
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They evolve via

v̇ =
3v

2γ

sin 2λb

λ
, ḃ = −

p2
(φ)

πγv2
, φ̇ =

p(φ)

2πγv
, and ṗ(φ) = −2πγ|v| V,φ . (2.6)

As is well-known, the space of solutions S is naturally isomorphic to a gauge fixed surface,
i.e., a 2-dimensional surface Γ̂ of Γ̄ which is intersected by each dynamical trajectory once
and only once. Since b is monotonic in each solution, an obvious strategy is to choose
for Γ̂ a 2-dimensional surface b = bo (a fixed constant) within Γ̄. Symplectic geometry

considerations unambiguously equip Γ̂ —and hence the solution space S— with an induced
Liouville measure dµ̂ L. Since the dynamical flow preserves the Liouville measure, dµ̂ L on S

is independent of the choice of bo. The most natural choice in LQC is to set bo = π/2λ so
that Γ̄ is just the ‘bounce surface’. We will make this choice because it also turns out to be
convenient for calculations.

Then Γ̂ is naturally coordinatized by (φB, vB), the scalar field and the volume at the

bounce. Since b = π/2λ, the constraint (2.5) determines p(φ) (or, equivalently, φ̇) up to sign
which, without loss of generality, will be taken to be non-negative. The induced measure on
S can be written explicitly as:

dµ̂ L =

√
3π

λ

[

1 − FB

]
1

2 dφB dvB (2.7)

where FB = V (φB)/ρcrit is the fraction of the total density that is in the potential energy
at the bounce. The total Liouville volume of Γ̄ ≡ S is infinite because, although φB is
bounded for suitable potentials such as m2φ2, vB is not. However, this non-compact direction
represents gauge on the space of solutions S: If (φ(t), v(t)) is a solution to (2.2) and (2.4),
so is (φ(t), αv(t)) and this rescaling by a constant α simply corresponds to a rescaling of
spatial coordinates (or of the fiducial cell) under which physics does not change. Therefore,
as discussed in section IV, there is a natural prescription to calculate fractional volumes of
physically relevant sub-regions of Γ̂.

III. SUPER-INFLATION AND INFLATION

For our purposes it suffices to focus just on the post bounce part of solutions. The key
question now is: What is the fractional Liouville volume in S occupied by solutions that
exhibit a sufficiently long inflation? To answer it in detail we will use V (φ) = (1/2)m2φ2.
Then (2.5) implies that mφB ∈ [−0.90, 0.90] and we are led to set m = 6 × 10−7MPl by
phenomenological considerations, [30] (recall that we have set G=1 rather than 8πG=1).

Let us first focus on the part S
+ of solutions on which φ is non-negative at the bounce

surface Γ̂. Then, the problem can be divided into three parts using the fraction FB. In each
part, one can introduce suitable approximations to analyze dynamics.

(i) FB < 10−4: Kinetic energy dominated bounce. At the bounce the Hubble parameter
H vanishes. However, there is a short phase of super-inflation lasting a fraction of a Planck
second during which H increases very rapidly to its maximum value Hmax = 0.93. At this
point Ḣ vanishes and then H starts decreasing and continues to decrease during the rest
of the evolution. Since φ̇ > 0, the inflaton climbs up the potential during super-inflation
and continues to do so afterward super-inflation till it reaches a turn-around point at φ̇ = 0.
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Then it starts descending. Very soon after that, φ̈ vanishes. This is the onset of slow roll
inflation during which Ḣ/H2 is in the range 1.6 × 10−2 − 3.3 × 10−10. The time required to
reach this onset from the bounce is in the range of 106 − 102 spl where sPl denotes Planck
seconds. The number of e-foldings during inflation is given approximately by

N ≈ 2π
(

1 − φ2
o

φ2
max

)

φ2
o ln φo (3.1)

where φo is the value of the scalar field at the onset of inflation. φo increases monotonically
with φB (and is always larger than φB). For φB = 0.99, we have φo = 3.24 and N = 68.
Thus, for a kinetic energy dominated bounce, there is a slow roll inflation with over 68
e-foldings for all φB > 1, i.e., FB > 4.4 × 10−13.

(ii) 10−4 < FB < 0.5: The intermediate case. The LQC departures from general relativity
are now increasingly significant. The super-inflation era is similar to case (i). However, now

φB is higher and φ̇B lower while, as before, H is very high at the end of super-inflation.
Therefore, the coefficient of friction, H/m2, is large and one arrives at the slow roll conditions
within 10-100 sPl after the bounce. Consequently, now the change (φo − φB) is negligible,
a key feature not shared by regime (i). At the onset of slow roll inflation, the Hubble
parameter is now given to an excellent approximation by

Ho ≈
[ 8π

3
ρcrit FB(1 − FB)

]1/2 ≈ 1.9
[

FB(1 − FB)
]1/2

(3.2)

and decreases very slowly with Ḣ/H2 < 3.5 × 10−10. Thus, the Hubble parameter is es-
sentially frozen to the value (3.2). This value is very high, in the range 1.9 × 10−2 s−1

Pl to
9.3×10−1 s−1

Pl . The Hubble freezing is an LQC phenomenon: It relies on the fact that H ac-
quires its largest value Hmax = 0.93 s−1

Pl at the end of super-inflation (and, in the case under

consideration, φ̇B is not large enough to decrease H more than two orders of magnitude).
Eq. (3.1) implies that throughout this range of FB there are more than 68 e-foldings.

(iii) 0.5 < FB < 1: Potential energy dominated bounce. Now the LQC effects dominate.

Again, because φ̇ > 0, the inflaton climbs up the potential but now the turn around (φ̇ = 0)
occurs during super-inflation! The change (φo − φB) is even more negligible because the
kinetic energy at the bounce is lower than that in case (ii). The Hubble parameter again
freezes at the onset of inflation to the value given in (3.2). The slow roll conditions are

easily met as Ḣ/H2 is less than 1 × 10−11 when φ̈ = 0 (or soon thereafter). A difference
from the slow roll inflation of (i) and (ii) above is that H continues to grow during the slow
roll because we are in the super-inflation phase. There are many more than 68 e-foldings
already in the deep Planck regime where the matter density is greater than half the critical
density.

Finally, let us consider the part S
− of the solution space on which φB < 0. The main

difference now is that the inflaton starts rolling down the potential immediately after the
bounce. As before, in case (ii) the Hubble freezing occurs soon after the end of super-
inflation and in (iii) during super-inflation. The value of Ho is again given by (3.2). In
case (i), differences can arise from S

+ because now the kinetic energy is very large at the
bounce point so the inflaton can transit from a negative to a positive value before the onset
of inflation. But after the onset, the situation is the same as in (ii). In this case, there are
more than 68 e-foldings if FB > 1.4 × 10−11 or φB 6∈ [−5.7, 0].
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FB = V (φB)/ρcrit Sign[φB] t φ φ̇ H Ḣ

0 +/- 1.6 ∗ 106 2.3 −9.7 ∗ 10−8 2.8 ∗ 10−6 −1.2 ∗ 10−13

4.4 ∗ 10−13 + 1.2 ∗ 106 3.2 −9.7 ∗ 10−8 4.0 ∗ 10−6 −1.2 ∗ 10−13

- 2.1 ∗ 106 1.3 9.6 ∗ 10−8 1.6 ∗ 10−6 −1.2 ∗ 10−13

1 ∗ 10−4 + 7.6 ∗ 102 1.5 ∗ 104 −9.8 ∗ 10−8 1.9 ∗ 10−2 −1.2 ∗ 10−13

- 6.6 ∗ 102 −1.5 ∗ 104 9.8 ∗ 10−8 1.9 ∗ 10−2 −1.2 ∗ 10−13

0.5 + 1.6 ∗ 101 1.1 ∗ 106 −1.4 ∗ 10−7 9.3 ∗ 10−1 1.4 ∗ 10−19

- 1.5 ∗ 101 −1.1 ∗ 106 1.4 ∗ 10−7 9.3 ∗ 10−1 −1.4 ∗ 10−19

0.8 + 2.0 ∗ 101 1.3 ∗ 106 −2.2 ∗ 10−7 7.4 ∗ 10−1 3.6 ∗ 10−13

- 1.8 ∗ 101 −1.3 ∗ 106 2.2 ∗ 10−7 7.4 ∗ 10−1 3.6 ∗ 10−13

TABLE I: Values of the proper time, the Hubble parameter, the scalar field and their time deriva-

tives at onset of slow roll (where φ̈ = 0). FB = V (φB)/ρcrit is the ratio of the potential energy

density to the total energy density at the bounce. If the value φB of the scalar field is positive, the

inflaton rises up the potential after the bounce while if φB is negative it descends down the potential

(because φ̇B is assumed to be positive). For φB > 0, there are 68 e-foldings if FB = 4.4 × 10−13.

The bounce is taken to occur at t = 0.

These general features of LQC dynamics emerge from analytical calculations based on
approximations that are tailored to the three cases considered above. They were confirmed
by detailed numerical simulations performed in MATLAB using a Runge Kutta (4,5) algo-
rithm (ode45) to solve the set of coupled ODEs. Both relative and absolute tolerances were
set at 3 × 10−14 and the preservation of the Hamiltonian constraint (2.5) to this order was
verified on each solution. To ensure numerical accuracy, the natural logarithm of volume
was treated as fundamental in the simulations. As noted above, the Immirzi parameter was
set at 0.24 and inflaton mass 6× 10−7 (in units c=~=G=1). A large number of simulations
were performed. Table 1 summarizes a few illustrative results.

IV. MEASURE AND PROBABILITIES

As explained in section II, the space S of solutions can be coordinatized by pairs (φB, vB).
However, physics does not change under (φB, vB) → (φB, αvB), where α is a constant. In
particular, the number of slow-roll e-foldings is insensitive to this rescaling of vB. Therefore,
physically relevant regions R in S are those that contain complete gauge orbits: R = I×R

+

where I is a closed interval in [−φmax, φmax] and R
+ denotes the vB axis. To calculate

fractional volumes PR of such regions it is natural to factor out by the ‘volume of the gauge
orbits’. This suggests an obvious strategy, commonly used in the physics literature:

PR = lim
v0→0

Liouville Volume of [I × Iv0
]

Liouville Volume of [Itotal × Iv0
]

=

∫

I
dφB [1 − FB]

1

2

∫ φmax

−φmax
dφB [1 − FB]

1

2

(4.1)

where Iv0
= [v0, 1/v0] (with v0 > 0). This physical idea can be mathematically justified by

the ‘group averaging technique’ [31] to obtain a physical measure on S by averaging dµ̂ L
over the orbit of the ‘gauge group.’

Let us now apply this strategy to calculate the probability that, prior to re-heating, there
are at least 68 e-foldings of slow roll inflation or super-inflation in LQC. Since FB ranges
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over [0, 1] and there are requisite number of e-foldings if FB > 1.4 × 10−11, it follows from
(4.1) that the required probability is greater than 0.99999. Moreover, numerical simulations
show that even when FB ≤ 1.4×10−11 there are at least 6.1 e-foldings. Thus the probability
of obtaining at least 6.1 e-foldings is 1. By contrast, in general relativity this probability
is suppressed by a factor of e−18.3 ≈ 1.1 × 10−8 [7]. The minimum number of e-foldings is
sensitive to the mass m of the inflaton we used. By contrast, the probability of getting at
least 68 e-foldings is robust: it grows slightly if m is decreased and remains greater than
0.99 even if m increased by two orders of magnitude.

Thus, the situation in LQC is dramatically different from that in general relativity. Note
that we used the same potential that is generally employed in the detailed calculations
of probabilities [5, 7]. Furthermore, as in [7] (and unlike in [5]) we used the Liouville
measure which is preserved by dynamics. The procedure we used to handle the fact that
the total Liouville volume is infinite is physically and mathematically well motivated and it
also constituted the basis of the regularization scheme used in [7]. Yet there is a striking
contrast in the final outcome.

This can be traced back to the salient differences between LQC and general relativity
at the Planck scale. Since LQC has its basis in LQG, a candidate fundamental theory
of quantum gravity, it has, in particular, precise predictions in the Planck regime of the
simple cosmological models that are used in the probability considerations. Consequently,
we do not have to worry about setting judicious initial conditions at the singular big-bang.
The bounce is regular and we considered all possible initial conditions there. The LQC
dynamics are such that for FB > 10−4 the robust super-inflation phase either suffices to
yield a large number of e-foldings (case (iii)) or funnels the dynamical trajectories to the
phase space region from which a sufficiently long slow roll inflation is almost inevitable (case
(ii)). In fact, the second of these features persists so long as FB ≥ 1.4 × 10−11 (case (i))
although the funneling mechanism is somewhat more involved. Thus, in LQC a long slow
roll inflation may not result only if FB < 1.4 × 10−11. Since by definition F ∈ [0, 1] for all
initial conditions, (4.1) implies that the probability of a sufficiently long slow roll inflation
is very close to 1. Note however that this is a prediction of LQC only in presence of suitable
potentials; if there is no potential at all, there is still a period of accelerated expansion due
to super inflation but it does not yield a sufficient number of e-foldings.
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