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Loop Quantum Cosmology and Spin Foams
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Loop quantum cosmology (LQC) is used to provide concrete evidence in support of

the general paradigm underlying spin foam models (SFMs). Specifically, it is shown

that: i) the physical inner product in the timeless framework equals the transition

amplitude in the deparameterized theory; ii) this quantity admits a vertex expansion

a la SFMs in which the M -th term refers just to M volume transitions, without any

reference to the time at which the transition takes place; iii) the exact physical inner

product is obtained by summing over just the discrete geometries; no ‘continuum

limit’ is involved; and, iv) the vertex expansion can be interpreted as a perturbative

expansion in the spirit of group field theory. This sum over histories reformulation

of LQC also addresses certain other issues which are briefly summarized.

PACS numbers: 04.60.Kz,04.60Pp,98.80Qc,03.65.Sq

I. INTRODUCTION

In his celebrated Ph.D. work Feynman [1] began with the Hilbert space formulation of
non-relativistic quantum mechanics and reformulated the unitary evolution generated by the
Hamiltonian as a sum over histories. By mimicking the spirit of that procedure, Reisenberger
and Rovelli [2] obtained a sum over histories formulation of loop quantum gravity (LQG).
Through contributions of many researchers it has become an active research area that goes
under the name ‘spin foam models’ (SFMs) (see, e.g., [3]). In LQG, spin network states can
be used to construct a convenient orthonormal basis in the kinematical Hilbert space. A key
challenge is to extract physical states from them by imposing constraints. Formally this can
be accomplished by the group averaging procedure which also provides the physical inner
product between the resulting states. A primary goal of SFMs is to provide a path integral
to realize this idea.

Heuristically, the main idea behind this construction can be summarized as follows. Con-
sider a 4-manifold M bounded by two 3-surfaces, S1 and S2, and a simplicial decomposition
thereof. One can think of S1 as an ‘initial’ surface and S2 as a ‘final’ surface. Fixing a spin
network on each of these surfaces specifies an ‘initial’ and a ‘final’ quantum geometry. A
quantum 4-geometry interpolating between the two can be constructed by considering the
dual triangulation of M and coloring its surfaces with half integers j and edges with suit-
able intertwiners. The idea is to obtain the physical inner product between the two states
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by summing first over all the colorings for a given triangulation, and then over triangula-
tions keeping the boundary states fixed. (The second sum is often referred to as ‘vertex
expansion’ because the M-th term in the series corresponds to a dual triangulation with M
vertices.) Since each triangulation with a coloring specifies a quantum geometry, the sum
is regarded as a path integral over physically appropriate 4-geometries. In ordinary quan-
tum mechanics and Minkowskian field theories where we have a fixed background geometry,
such a path integral provides the (dynamically determined) transition amplitude for the
first state, specified at initial time, to evolve to the second state at the final time. In the
background independent context of quantum gravity, a priori one does not have access to a
time variable and dynamics is encoded in constraints. Therefore the notion of a transition
in a pre-specified time interval fails to be meaningful unless the constraints are solved via
deparametrization, using a relational time variable. Rather, the sum over histories now gives
the physical inner product between solutions to quantum constraints.

Over the last two years there have been significant advances in SFMs. In particular,
relation to the kinematics underlying LQG has now been clearly established [4–7]. How-
ever, while the path integral is well-motivated by exploiting an interplay between general
relativity and the well-understood BF theory, it requires a new key ingredient —the vertex
amplitude. While this amplitude is severely constrained by several requirements, it has
not been systematically derived following procedures used in well-understood field theories,
or, starting from a well-understood Hamiltonian dynamics. Therefore a number of issues
still remain. For example, the final ‘vertex expansion’ is a discrete sum in which each term
is a sum over colorings, for a fixed triangulation. A priori it is somewhat surprising that
the answer can be written as a discrete sum. Would one not have to take a continuum
limit at the end as in Minkowskian field theories? The physical inner product resembles the
transition amplitude used in standard quantum field theories. Is there a deeper meaning
in this resemblance? Loop quantum cosmology (LQC) provides a physically interesting yet
technically simple context to explore such open issues because one can arrive at a sum over
histories starting from a fully controlled Hamiltonian theory [8]. The goal of this commu-
nication is to show that a detailed analysis of this example provides strong support for the
general paradigm that underlies SFMs and also sharpens the discussion of some open issues.
We will sketch the general ideas and summarize results, leaving the detailed derivations and
discussions to a longer article [9].

II. LQC DYNAMICS AS A SUM OVER HISTORIES

In this communication we will focus on the simplest LQC model that has been ana-
lyzed in detail [10–13]: the k=0, Λ=0 Friedmann model with a massless scalar field as a
source. However, it is rather straightforward to extend this analysis to allow for a non-zero
cosmological constant or anisotropies or to the spatially compact k=1 case.

In the Hamiltonian theory one begins by fixing a (spatial) manifold S, topologically R
3,

cartesian coordinates xi thereon, and a fiducial metric qo
ab given by qo

abdxadxb = dx2
1 +dx2

2 +
dx2

3. The physical 3-metric qab is then determined by a scale factor a; qab = a2qo
ab. For the

Hamiltonian analysis one fixes a cubical fiducial cell V whose volume with respect to qab is
given by V = a3Vo. The quantity ν defined by V = 2πγℓ2

Pl |ν| turns out to be a convenient
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configuration variable, where γ is the Barbero-Immirzi parameter [13].1

The kinematical quantum states are functions Ψ(ν, φ) with finite norm ||Ψ||2 :=
∑

ν

∫
dφ |Ψ(ν, φ)|2. Thus, Ψ can have support only on a countable number of points on

the ν-axis and a (generalized) orthonormal basis in the kinematical Hilbert space Hkin is
given by |ν, φ〉 with

〈ν ′, φ′ | ν, φ〉kin = δν′, ν δ(φ′, φ) . (2.1)

To obtain the physical Hilbert space, one first notes that the quantum constraint can be
written as ∂2

φΨ(ν, φ) = −ΘΨ(ν, φ) where Θ is a second order difference operator

(
ΘΨ

)
(ν) := −3πG

4ℓ2
o

[ √

|ν(ν + 4ℓo)| (ν + 2ℓo) Ψ(ν + 4ℓo) − 2ν2Ψ(ν)

+
√

|ν(ν − 4ℓo)| (ν − 2ℓo) Ψ(ν − 4ℓo)
]

(2.2)

where ℓo is related to the ‘area gap’ ∆ = 4
√

3πγ ℓ2
Pl via ℓ2

o = ∆. Θ turns out to be a
positive and self-adjoint operator on the gravitational part of the kinematic Hilbert space.
The form of Θ shows that the space of solutions to the quantum constraint can be naturally
decomposed into sectors in which the wave functions have support on specific ‘ν-lattices’
[12]. For definiteness, we will restrict ourselves to the lattice ν = 4nℓo where n is an integer.
Details of the expression of Θ will not be needed in this analysis.

The similarity of the form of the quantum constraint to the Klein-Gordon equation sug-
gests that we use φ as relational time to deparameterize the quantum theory. As in the
Klein-Gordon theory, one can perform a group averaging procedure to arrive at the physical
Hilbert space Hphy [11]. Elements Ψ(ν, φ) of Hphy are solutions to the ‘positive frequency’
quantum constraint equation

−i∂φ Ψ(ν, φ) =
√

ΘΨ(ν, φ) ≡ HΨ(ν, φ) (2.3)

with a finite norm
||Ψ||2phys =

∑

ν=4nℓo

|Ψ(ν, φ = φ0)|2 . (2.4)

Thanks to (2.3) the norm is independent of the ‘time instant’ φ0 at which it is evaluated. Note
that, because of deparametrization, the quantum constraint can be regarded as ‘evolving
the state in relational time φ’.

Because of the close similarity of (2.3) with the Schrödinger equation, we can now pass to
a sum over histories formulation of quantum dynamics a la Feynman. The object of interest
is the transition amplitude A(νf , φf ; νi, φi) to go from the configuration νi at an initial time
φi to νf at the final time φf . It is immediate from the form of (2.3) that this amplitude
depends only on the difference φf − φi. Therefore, without loss of generality we will set
φi = 0 and φf = ϕ and refer to this time interval as I. Let us divide I into N parts each of

1 In LQG the basic geometric variable is an orthonormal triad and the physical metric qab is constructed

from it. If the triad has the same orientation as the fiducial one, given by the coordinates xi, the

configuration variable ν is positive and if the orientations are opposite, ν is negative. Physics of the

model is insensitive to the triad orientation and hence to the sign of ν. In particular quantum states

satisfy Ψ(ν, φ) = Ψ(−v, φ).
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length ǫ = ϕ/N and write the transition amplitude as

A(νf , ϕ; νi, 0) := 〈νf |eiHϕ|νi〉 =
∑

ν̄N−1,...,ν̄1

〈ν̄N |eiǫH|ν̄N−1〉〈ν̄N−1|eiǫH|ν̄N−2〉 . . . 〈ν̄1|eiǫH|ν̄0〉

=
∑

ν̄N−1,...,ν̄1

Uν̄N ν̄N−1
Uν̄N−1ν̄N−2

. . . Uν̄1ν̄0
, (2.5)

where we have introduced a decomposition of the identity operator at each intermediate
time φ = nǫ, n = 1, 2, . . . , N − 1; denoted the matrix element 〈ν̄n| exp iHǫ|ν̄n−1〉 by Uν̄nν̄n−1

;
and, for notational simplicity, set νf = ν̄N and νi = ν̄0. The division of I provides a
skeletonization of the time interval. An assignment σN = (ν̄N , . . . , ν̄0) of volumes to the
N + 1 time instants φ = ǫn can be regarded as a discrete history associated with this
skeletonization since one can envision the system as hopping from ν̄n−1 to ν̄n. The transition
amplitude is thus given by a sum of amplitudes over these discrete histories, a la Feynman:

A(νf , ϕ; νi, 0) =
∑

σN

A(σN ) with A(σN ) = Uν̄N ν̄N−1
Uν̄N−1ν̄N−2

. . . Uν̄2ν̄1
Uν̄1ν̄0

. (2.6)

III. VERTEX EXPANSION: REORGANIZING THE SUM OVER HISTORIES

In this section we will reorganize the sum (2.6) in the spirit of SFMs and cast it as a
‘vertex expansion’. First note that along a path σN , the volume ν̄ is allowed to remain
constant along a number of time steps, then jump to another value, where it could again
remain constant for a certain number of time steps, and so on. The first key idea is to group
paths according to the number of volume transitions rather than time steps. Let us then
consider a path σM

N which involves M volume transitions (clearly, M ≤ N):

σM
N = ( νM , . . . , νM ; νM−1, . . . , νM−1; . . . . . . , ν2;

N2
︷ ︸︸ ︷
ν1, . . . , ν1; ν0, . . . , ν0

︸ ︷︷ ︸

N1

) . (3.1)

Thus, the volume changes from νm−1 to νm at time φ = Nmǫ and remains νm till time
φ = Nm+1 ǫ. (Note that νm is distinct from ν̄m used in section II: while νm is the volume
after the m-th volume transition along the given discrete path, ν̄m is the volume at the end
of the m-th time interval, i.e., at φ = mǫ.)

These discrete histories can be labelled more transparently by two ordered sequences

σM
N = { (νM , νM−1, . . . , ν1, ν0); (NM , NM−1, . . . , N2, N1) }, νm 6= νm−1, Nm > Nm−1. (3.2)

Note that while no two consecutive volume values can be equal, a given volume value can
repeat in the sequence; νm can equal some νn if n 6= m ± 1. The probability amplitude for
such a history σM

N is given by:

A(σM
N ) = [UνM νM

]N−NM−1 UνMνM−1
. . . [Uν1ν1

]N2−N1−1 Uν1ν0
[Uν0ν0

]N1−1 (3.3)

The second key idea is to carry out the sum over all these amplitudes in three steps. First
we keep the ordered set of volumes (νM , . . . , ν0) fixed, but allow the volume transitions to
occur at any value φ = nǫ in the interval I, subject only to the constraint that the m-th
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transition occurs before the (m+1)-th for all m. The sum of amplitudes over this group of
histories is given by

AN (νM , . . . , ν0) =

N−1∑

NM=M

NM−1∑

NM−1=M−1

. . .

N2−1∑

N1=1

A(σM
N ). (3.4)

Next we sum over all possible intermediate values of νm such that νm 6= νm−1, keeping
ν0 = νi, νM = νf to obtain the amplitude A(M) associated with the set of all paths in which
there are precisely M volume transitions:

AN(M) =
∑

νM−1,...,ν1

νm 6=νm+1

AN(νM , . . . , ν0) (3.5)

Finally the total amplitude A(νf , φ; νi, 0) is obtained by summing over all volume transitions
that are permissible within our initially fixed skeletonization with N time steps:

A(νf , ϕ; νi, 0) =
N∑

M=0

AN (M) ≡
N∑

M=0

[ ∑

νM−1,...,ν1

νm 6=νm+1

AN(νM , . . . , ν0)
]

. (3.6)

Recall, however, that the Hamiltonian theory implies A(νf , ϕ; νi, 0) = 〈νf |eiHϕ|νi〉. Hence
the value of the amplitude (3.6) does not depend on N at all; the skeletanization was
introduced just to express this well-defined amplitude as a sum over histories. Thus, while
the range of M in the sum and the amplitude AN(M) in (3.6) both depend on N , the sum
does not.

The third key idea is to get rid of the skeletonization altogether by taking the limit as
N goes to infinity, to express the total transition amplitude as a vertex expansion in the
spirit of the timeless framework of spin-foams. To carry out this step, we first note that a
straightforward but non-trivial calculation [9] shows that limN→∞ AN(νM , . . . , ν0) exists and
is given by:

A(νM , . . . , ν0) := lim
N→∞

AN (νM , . . . , ν0)

=

∫ ϕ

0

dφM

∫ φM

0

dφM−1 . . .

∫ φ2

0

dφ1 A(νM , . . . , ν0; φM , . . . , φ1) , (3.7)

where,

A(νM , . . . , ν0; φM , . . . , φ1) := ei(ϕ−φM )HνM νM (iHνMνM1
) ei(φM−φM−1)HνM−1νM−1 ×

. . . ei(φ2−φ1)Hν1ν1 (iHν1ν0
) eiφ1Hν0ν0 (3.8)

The structure of these equations can be understood as follows. In the limit N → ∞, the
length ǫ = ϕ/N of the elementary time intervals goes to zero and discrete sums in (3.4) are
replaced by continuous integrals. Eq (3.7) says that the final, i.e., M-th volume transition
can occur anywhere in the interval I, the (M-1)-th transition can occur anywhere before
the M-th, and so on. In passing from (3.4) to (3.8), factors like [UνM νM

]NM−NM−1 = [1 +
i((NM − NM−1)ǫ)HνMνM

+ . . .] go over to ei(φM−φM−1)HνM νM while factors like UνM νM−1
=
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iǫHνM νM−1
+ O(ǫ2) go over to iHνMνM−1

.
It is trivial to carry out the integrations over φm in (3.7) and express A(νM , . . . , ν0)

just in terms of matrix elements of H . For simplicity, let us consider the case when all of
(νM , . . . , ν0) are distinct. Then, we have:

A(νM , . . . , ν0) = HνMνM−1
. . . Hν1,ν0

M∑

m=0

eiϕ Hνmνm

∏M
j=0
j 6=m

(Hνmνm
− Hνjνj

)
. (3.9)

All matrix elements Hνm,νn
can be computed explicitly [9]. Finally, since

limN→∞ AN (νM , . . . , ν0) exists, in the limit (3.6) becomes simply

A(νf , ϕ; νi, 0) =
∞∑

M=0

A(M) where, A(M) =
∑

νM−1,...,ν1

νm 6=νm+1

A(νM , . . . , ν0) . (3.10)

Eq (3.10) mimics the vertex expansion of SFMs. More precisely, the parallels are as
follows. The analog of the manifold M with boundaries Si, Sf in SFMs is the manifold
V × I, where V is the elementary cell in LQC and I the closed interval bounded by φ = 0
and φ = ϕ. The analog of the dual-triangulation in SFMs is just a ‘vertical’ line in V×I with
M marked points or ‘vertices’ (not including the two end-points of I). What matters is the
number M ; the precise location of vertices is irrelevant. Coloring of the dual-triangulation
in SFMs corresponds to an ordered assignment (νM , νM−1, . . . ν1, ν0) of volumes to edges
bounded by these marked points (subject only to the constraints νM = νf , ν0 = νi and
νm 6= νm−1). Each vertex signals a change in the physical volume along the quantum
history. The probability amplitude associated with the given coloring is A(νM , . . . , ν0) and
a sum over colorings yields the amplitude A(M) associated with the triangulation with M
‘vertices’. The total amplitude A(νf , ϕ; νi, 0) is given by a sum (3.10) over these M-vertex
amplitudes.

To conclude this section, we emphasize that the result was derived from a Hamiltonian
theory. We did not postulate that the left side of (3.10) is given by a formal path integral.
Rather, a rigorously developed Hamiltonian theory guaranteed that the left side is well-
defined and provided the expression (2.5) for it. We simply recast this expression as a
vertex expansion.

IV. VERTEX EXPANSION AS A PERTURBATION SERIES

We will now show that the expression (3.10) of the transition amplitude can also be
obtained using a specific perturbative expansion. Structurally, this derivation of the vertex
expansion is reminiscent of the perturbative strategy used in group field theory (see, e.g.,
[14, 15]).

Let us begin by considering the diagonal and off-diagonal parts D and K of the ‘Hamil-
tonian’ H in the basis |ν = 4nℓo〉, defined by their matrix elements:

Dν′ν = Hνν δν′ν , Kν′ν =

{
Hν′ν ν ′ 6= ν
0 ν ′ = ν

(4.1)
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Clearly H = D + K. The idea is to think of D as the main part of H and K as a
perturbation. To implement it, introduce a 1-parameter family of operators Hλ = D + λK
as an intermediate mathematical step. The parameter λ will simply serve as a marker to
keep track of powers of K in the perturbative expansion; we will have to set λ = 1 at the
end of the calculation.

Following the textbook procedure, let us define the ‘interaction Hamiltonian’ as

HI(φ) = e−iDφ λK eiDφ. (4.2)

Then the evolution in the interaction picture is dictated by the operator

Ũλ(φ) = e−iDφeiHλ φ , satisfying
dŨλ(φ)

dφ
= iHI(φ)Ũλ(φ) , (4.3)

whose solution is given by a time-ordered exponential:

Ũλ(ϕ) = T ei
R ϕ

0
HI (φ)dφ

=

∞∑

M=0

∫ ϕ

0

dφM

∫ φM

0

dφM−1 . . .

∫ φ2

0

dφ1 [iHI(φM)] ... [iHI(φ1)] . (4.4)

Next, let us express the evolution operator as Uλ(ϕ) = eiDϕŨλ(ϕ), with Ũλ(ϕ) given by
(4.4), take matrix element between initial and final states, |νi ≡ ν0〉 and |νf ≡ νM 〉, and
write out explicitly the product of the HI ’s. The result is

Aλ(νf , ϕ; νi, 0) =

∞∑

M=0

∫ ϕ

0

dφM ...

∫ φ2

0

dφ1

∑

νM−1, ..., ν1

[ei(ϕ−φM )DνM νM ] (iλKνMνM−1
) ×

[ei(φM−φM−1)DνM−1νM−1 ] . . . (iλKν1ν0
) [eiφ1Dν0ν0 ] . (4.5)

We can now replace D and K by their definition (4.1). Because K has no diagonal matrix
elements, only the terms with νm 6= νm+1 contribute to the sum and the sum becomes

Aλ(νf , ϕ; νi, 0) =
∞∑

M=0

λM
[ ∑

νM−1,...,ν1

νm 6=νm+1

A(νM , . . . , ν0)
]

, (4.6)

where A(νM , . . . , ν0) is defined in (3.9). If we now set λ = 1, Eq. (4.6) reduces to Eq. (3.10)
obtained independently in section III.

Thus, by formally regarding the off-diagonal piece of the Hamiltonian as a perturbation
of the diagonal piece we have obtained an independent derivation of the vertex expansion
of the amplitude Aλ(νf , ϕ; νi, 0) as a power series expansion in λ, the power of λ serving as
a book-keeping device to keep track of the order in the vertex expansion. In this sense this
alternate derivation is analogous to the vertex expansion obtained using group field theory.
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V. GROUP AVERAGING

We began our discussion by carrying out a deparametrization (using φ as the relational
time variable) because this is the procedure used in LQC to extract physics from the quantum
theory. Spin foams on the other hand are based on a timeless framework. Furthermore, a
convenient deparametrization is not always available even in cosmology if we allow the
scalar field to have general potentials or the gravitational field to admit inhomogeneities. In
this case we have to return to the full constraint and construct the physical Hilbert space
differently. Then the basic object of interest is not a transition amplitude but the physical
inner product. In LQC, it is given by the well-known group averaging procedure:

〈νf , φf |νi, φi〉phys =
[
(νf , φf |

∫ ∞

−∞
dα eiα C

]
|νi, φi〉 (5.1)

where C = p2
φ/~

2 − Θ is the constraint operator and the round bracket on the right side
of the equation denotes a ‘generalized bra’, an element of the algebraic dual (called Cyl⋆ in
the literature) of a suitable dense subspace of Hkin.

2 Formally, integration over the ‘lapse’
α introduces the factor δ(C) that is necessary to extract physical states from kinematical
ones and also yields the physical inner product between the resulting physical states. This
procedure can be carried out in detail [11]. If we restrict ourselves to the positive part of
the spectrum of p̂φ —or, to ‘positive frequency’ physical states— as in LQC, the physical

inner product is given precisely by the transition amplitude A(νf , φf ; νi, φi) we focused on in
the last three sections (which, in turn, reproduces (2.4)). On the ‘negative frequency’ solu-
tions it is given by the complex conjugate, [A(νf , φf ; νi, φi)]

⋆ (because the matrix elements
Hνm,νn

and Θνm,νn
are all real.) If we allow both, then the inner product is always real:

〈νf , φf |νi, φi〉phys = A(νf , φf ; νi, φi) + [A(νf , φf ; νi, φi)]
⋆. Thus, the physical inner product,

the key object in the timeless framework, can be readily constructed from the transition
amplitude, the key object in the deparameterized framework.

We can also use the procedure followed in section III or IV to carry out group averaging
directly, without any reference to φ as relational time, to express the physical inner product
as a vertex expansion. The two procedures yield the same result which is of course equivalent
to (3.10). However, somewhat surprisingly, order by order, it is distinct from (3.10). For
definiteness, let us use the perturbative method of section IV. The key object now is
the operator eiαC . As before, let us introduce a 1-parameter family of operators C(λ) =
p2

φ/~
2 − Θ(λ) as follows. Set Θ(λ) = D + λK where D is the diagonal part of Θ and K the

off-diagonal part. Then, using the interaction picture one can again expand out the operator
eiα C(λ) and take its matrix elements to obtain the λ-physical inner product to obtain

〈νf , φf |νi, φi〉phy, λ =
∞∑

M=0

λM
[ ∑

νM−1,...,ν1

A(νM , . . . , ν0)
]

, (5.2)

2 There is some freedom in the definition of the action of elements of Cyl⋆. In LQC, this freedom is used to

simplify the expression of the physical inner product [11] and the subsequent action of Dirac observables

on Hphy. We will use the same conventions here.
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where

A(νM , . . . , ν0) = ΘνMνM−1
. . . Θν1,ν0

M∑

m=0

ei(φf−φi)
√

Θνmνm

∏M
j=0
j 6=m

(Θνmνm
− Θνjνj

)
. (5.3)

(As before, for simplicity we have assumed that (νM , . . . , ν0) are distinct.) Again, λ is only
a book-keeping device for the intermediate perturbative expansion and the physical inner
product is obtained by setting λ = 1 in the final result.

Note that Eq (5.2) is identical to Eq (4.6) (except for underbars) and Eq (5.3) has the
same form as Eq (3.9). However, while Eq (3.9) contains matrix elements of H , Eq (5.3)
contains matrix elements of Θ = H2. This fact leads to two important differences. First
√

Θνmνm
, the square root of the matrix element of Θ, is distinct from Hνmνm

, the matrix
element of the square root of Θ. Second, because the off diagonal elements Θνmνn

in Eq (5.3)
are non-zero only if νm = νn ± 4ℓo, consecutive νm in second sum in Eq (5.2) can differ only
by ±4ℓo. There is no such simplification in Eq (4.6). Because of these differences, although
the physical inner product obtained by group averaging is related in a simple manner to the
transition amplitude, the vertex expansion obtained in this section is completely different
from that obtained in the last two sections. If we were to terminate the sum at any finite
order, the results would not be simply related.

VI. DISCUSSION

Let us start with a brief summary. In section II we began with Hamiltonian LQC, divided
the time interval into N segments and expressed the transition amplitude A(νf , φf ; vi, φi)
as a sum (2.6) over discrete histories. In section III we reorganized this sum emphasizing
volume transitions and took the N → ∞ limit to get rid of the skeletonization of the time
interval. This led us to the expression (4.6) of the transition amplitude. The M-th term in
this expansion corresponds to a sum over all histories in which there are precisely M volume
transitions, allowed to occur at any time in the interval (φf , φi). Therefore the expansion
resembles the vertex expansion of SFMs. In section IV we showed that the same vertex
expansion can be arrived at by formally splitting the Hamiltonian H into a main part D and
a ‘perturbation’ λK and expanding the transition amplitude using standard perturbation
theory in the interaction picture. (Here the ‘coupling constant’ λ was introduced just as a
mathematical label to keep track of the number of vertices in various terms and we have to
set λ = 1 at the end to recover the physical transition amplitude). This expansion in powers
of λ resembles the vertex expansion in group field theory. Finally in section V we returned
to the expression of the physical inner product that one begins with in the group averaging
procedure. This features the exponential of the constraint operator C ≡ p2

φ − Θ, where

Θ = H2. One can carry out a perturbative expansion as in section IV by formally writing
Θ into a main part D and a perturbation λK to arrive at an expression (5.2) of the inner
product as a perturbation series in λ. The standard group averaging procedure implies
that (for ‘positive frequency’ physical states) the physical inner product in the timeless
framework equals the transition amplitude in the deparameterized framework used in LQC
[11]. But whereas the perturbative expansion (4.6) involves the matrix elements of H , (5.2)
involves the matrix elements of Θ (and their square-roots). Thus, while the sum yields the
same quantity, if we were to truncate the perturbation series to any finite order one would
obtain distinct results. Thus, somewhat surprisingly there are two distinct natural vertex
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expansions, one descending from the deparameterized theory and the other from the timeless
framework of group averaging.

While our final result yields vertex expansions in the spirit of SFMs, we did not begin
with a SFM and arrive at the vertex expansion by a symmetry reduction, e.g., by summing
over the degrees of freedom other than the total volume. Our procedure is much more
modest: As is usual in LQC, we carried out the symmetry reduction at the classical level
by partial gauge fixing, constructed the Hamiltonian quantum theory and used it to obtain
vertex expansions. Also, so far, vertex expansions have been discussed in SFMs only for
source-free gravity, while the presence of a scalar field played a key role in LQC. Nonetheless
our results provide strong support for the paradigm underlying SFMs. In addition, since
we have an exactly soluble, concrete example, we can use it to analyze the status of open
issues.

First, as hoped in SFMs, the physical inner product can indeed be expressed as a vertex
expansion. The inner product is defined independently and this well-defined quantity is
merely expanded out as a convenient series. Second, the expectation that the expansion
should be derivable from a suitable Hamiltonian theory has been realized. In addition, as
one would expect from [2], each vertex can be thought of as emerging from the action of the
Hamiltonian operator. Finally, in our decomposition H = D + λK (or Θ = D + λK) one
can think of D as the free part of the Hamiltonian because it does not change the volume
and K as the interaction part because it does. Thus, as in group field theory, the factors
of λ are associated with ‘interaction’ piece of the Hamiltonian (which is responsible for the
volume transitions in LQC).

An issue that is often raised in the literature on SFMs is whether the physical inner
product is really given by just summing over triangulations, each with a finite number of
vertices, or if one should take a “continuum” limit at the end as in, e.g., lattice QCD. If one
defines the inner product as a discretized path integral, the answer is not a priori obvious.
However, since we began with a well-controlled Hamiltonian theory, in the LQC example,
the answer is clear. We did not have to take the limit; the discrete sum provided the exact
answer. It is also instructive to note that we were led to two natural vertex expansions. As
we remarked in section I, in SFMs one has to introduce a vertex amplitude and, while it is
constrained by several requirements, we do not have a statement of uniqueness. In LQC we
were able to obtain two distinct expansions, one using the deparameterized theory and the
other using the timeless framework. Are there perhaps similar inequivalent vertex expansions
in more complicated models —or even the full theory— each tailored to making an aspect of
the theory more transparent? Next, we saw that the inner product between physical states
extracted from the kinematic basis vectors |ν, φ〉 are in general complex (as is generally
true for constrained systems). However, if we were to enlarge the physical Hilbert space
allowing for both ‘positive and negative frequency’ solutions, they become real. In SFMs
the obvious analog of the LQC ‘positive frequency’ restriction is a choice of an orientation.
Currently, the sum involves both orientations and the inner products between the physical
states extracted from spin network states are all real. The LQC analysis naturally raises a
question: Should one also impose a suitable restriction allowing, e.g., only those histories
with only one orientation [16]? Or, does correct quantum physics require us to have only real
physical scalar products in this basis? If so, why is there a qualitative difference in LQC?
Finally, if one regards group field theory as fundamental, rather than just a convenient
computational tool to arrive at the spin foam vertex expansion, then one is led to take
the coupling constant λ as a physical parameter which can run with the renormalization
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group flow. However, its interpretation has been elusive. A detailed examination of the
LQC example shows that it is naturally tied with the cosmological constant. If this were to
hold also in the full theory, one may have a dynamical tool to analyze why the cosmological
constant is so small in the low energy regime. These and several other issues will be discussed
in detail in [9].
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