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Abstract
The no-boundary wave function (NBWF) specifies a measure for prediction in cosmology that

selects inflationary histories and remains well behaved for spatially large or infinite universes. This

paper explores the predictions of the NBWF for linear scalar fluctuations about homogeneous and

isotropic backgrounds in models with a single scalar field moving in a quadratic potential. We treat

both the space-time geometry of the universe and the observers inhabiting it quantum mechanically.

We evaluate top-down probabilities for local observations that are conditioned on the NBWF and

on part of our data as observers of the universe. For models where the most probable histories do

not have a regime of eternal inflation, the NBWF predicts homogeneity on large scales, a specific

non-Gaussian spectrum of observable fluctuations, and a small amount of inflation in our past. By

contrast, for models where the dominant histories have a regime of eternal inflation, the NBWF

predicts significant inhomogeneity on scales much larger than the present horizon, a Gaussian

spectrum of observable fluctuations, and a long period of inflation in our past. The absence or

presence of local non-Gaussianity therefore provides information about the global structure of the

universe, assuming the NBWF.
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I. INTRODUCTION

Inflation tends to make the universe so large that we can at best observe only a tiny
part of it. Even for a closed universe it has been argued that when there is a regime
of eternal inflation, inhomogeneities can lead to an infinitely large reheating surface [1].
Bubble nucleation in false vacuum models, for instance, leads to inhomogeneous universes
that contain infinite open spatial slices of constant density inside the bubbles [2]. The issues
that arise for prediction as a consequence of large or infinite sized universes are loosely
referred to as the measure problem1.

This is one of a series of papers [4–6] devoted to the measure for prediction provided
by the no-boundary quantum state of the universe (NBWF) [7, 8]. If the universe is a
quantum mechanical system it has a quantum state. This state predicts probabilities for
alternative histories of the universe and everything in it, including the alternative histories of
its spacetime geometry. It seems inevitable that any discussion of prediction in fundamental
cosmology should take these probabilities into account. Indeed, it is plausible that, except
for an assumption of the typicality of our data, no measure beyond that supplied by the
NBWF is needed for any observational prediction.

Previous papers [4–6] considered the NBWF’s predictions in homogeneous, isotropic min-
isuperspace models. We showed how the no-boundary measure for observations is well de-
fined even in the limit of very large universes provided that the quantum nature of the
observer making the observation is taken into account. In this paper we extend this work to
consider linear fluctuations in matter and geometry away from homogeneity and isotropy.
This enables us to consider predictions for observable quantities such as those connected
with the cosmic microwave background (CMB). We continue to model the matter by a sin-
gle scalar field moving in a quadratic potential. We also continue with our simple model of
an observer as a physical system characterized by data D and a probability pE(D) to exist
in any one Hubble volume on spacelike surfaces specified by D.

We will describe our assumptions and procedures for calculation in Section II. But one
crucial distinction should be mentioned at the outset — the difference between top-down
(TD ) and bottom-up (BU ) probabilities [9].

By itself, the NBWF predicts the probabilities for the alternative, four-dimensional, clas-
sical histories that the universe may exhibit. We call these the BU probabilities for the
classical ensemble. However, we do not observe entire histories. Instead our observations
are restricted to a light cone located somewhere in the universe and extending over roughly
a Hubble volume. Predictions for observations in cosmology are necessarily conditioned on
a description of the local observational situation in addition to the NBWF. For instance an
observation of the CMB spectrum depends on when and where the observation is made in
the history of the universe. In general, probabilities for our observations are conditioned on
some part of our data D and predict other properties of the universe. Probabilities condi-
tioned on some part of our data are called TD probabilities. They can differ significantly
from the BU probabilities for the same alternatives as those for the number of efolds of
inflation discussed in [5]. The probabilities for perturbations that are within our current
horizon that will be calculated here provide another illustration of this difference.

1 Although it is usually discussed in the context of inflation (see e.g.[3] for recent work), the measure

problem is not specific to inflationary cosmology. Similar issues arise in any theory of cosmology that

predicts spatially infinite universes.
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After a brief statement of our assumptions and procedures in Section II the paper proceeds
to derive the TD probabilities for local observations related to fluctuations as follows: In
Sections III and IV we calculate the classical ensemble of four-dimensional, Lorentzian,
homogeneous and isotropic (homo/iso) histories with linear scalar fluctuations predicted by
the semiclassical approximation to the NBWF. The real part of the Euclidean action of
the complex saddle-points corresponding to the different histories in the ensemble provides
the BU NBWF probabilities of both the homo/iso backgrounds and their perturbations
viewed as global features of the universe. From these bottom-up probabilities one can
obtain predictions for local observations such as the CMB temperature anisotropies. This
is done in Sections V where we calculate the top-down probabilities for observing different
perturbations inside our current horizon. We find a slightly non-Gaussian spectrum of
perturbations on currently observable scales in models where the most probable histories do
not have a regime of eternal inflation. By contrast, for models where the dominant histories
have a regime of eternal inflation, we find the NBWF predicts a Gaussian spectrum of
observable fluctuations. In Section VI we comment on backreaction effects in the regime of
eternal inflation, and argue that these are unlikely to change the above results. Finally in
Section VII we present our conclusions.

II. FROM THE NBWF TO PROBABILITIES FOR OUR OBSERVATIONS

This section sets out our assumptions and procedures for calculating the probabilities
for our observations from a quantum state of the universe. These are then illustrated in a
simple model.

A. Framework

A quantum universe with a quantum state. We assume that the universe is a closed
quantum mechanical system with a particular quantum state. That state is taken to be
the NBWF. The state predicts probabilities for the individual members of decoherent sets
of alternative, coarse-grained, four-dimensional histories of the universe and its contents
according to the principles of generalized quantum theory [10]. We call these bottom-up
(BU) probabilities.

Bottom-up probabilities for the classical ensemble. In particular, the state predicts the
probabilities for the classical ensemble consisting of four-dimensional alternative histories
with high probabilities for correlations in time governed by classical equations of motion. In
[4, 5, 11] we described how to calculate a semiclassical approximation for the probabilities
of these histories from the semiclassical approximation to the NBWF assuming decoherence
in an appropriate coarse graining. In this paper we restrict attention to probabilities of
alternatives that can be defined in terms of these classical histories. Simple examples are
the probabilities for the number of inflationary efolds or for the size of fluctuations away
from homogeneity and isotropy.

Top-down probabilities for observations. Probabilities for our2 observations are not prob-
abilities for a four-dimensional history of the universe. Rather they are probabilities for

2 ‘We’, ‘us’, ‘our’ etc refer loosely to the collection of humans engaged in scientific research on cosmology.

We will not need a more precise definition.
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local alternatives at a particular time and place in a classical history. They are constructed
from the BU probabilities supplied by the NBWF by conditioning on at least that part of
our data that describes what we know of our location in spacetime. We call probabilities
conditioned on all or part of our data top-down (TD) probabilities.

Observers as quantum systems. As observers we are quantum systems within the uni-
verse characterized at an appropriate coarse-grained level by the data D that we possess —
including a physical description of ourselves. We arose from physical processes that occurred
over the universe’s history. We are therefore not certain to exist in the universe, Indeed,
there is only a very tiny probability pE(D) for an instance of the data D in any Hubble
volume. However, in a very large universe the probability becomes significant that the data
D are replicated elsewhere. All we know for sure about the universe is that it exhibits at
least one instance of the data D — a situation we abbreviate by D≥1. TD probabilities can
differ significantly from BU probabilities for the same alternatives when these facts about
observers are taken into account as we now illustrate in a very simple model.

B. Procedures Illustrated by a Simple Model

Consider a toy model universe consisting of a number of boxes — ‘Hubble volumes’.
We consider these at a single moment of time. There are K physical degrees of freedom
z1, · · · zK each constrained to be the same in all Hubble volumes. We denote them collectively
by z ≡ (z1, · · · , zK). The quantum state supplies BU probabilities3 p(z) for the values of
the zi. The fields zi are crudely analogous to the fluctuations away from homogeneity and
isotropy that we will consider later. The number of Hubble volumes Nh depends on z, Nh(z),
as it would for a fluctuation in geometry. Observers in the Hubble volumes can measure z.
The probability that there is an observer with data D in any Hubble volume is pE(D). With
this simple model we will be able to illustrate many of our procedures and results without
getting bogged down in the elegant but complex technology of cosmological perturbation
theory.

We distinguish between local and global predictions. Local predictions are for features of
the universe inside a Hubble volume — features that we could in principle observe in ours.
Examples are the CMB correlation functions. Global predictions are for features of our
universe that may extend outside our Hubble volume or beyond the present time. Examples
are predictions of the number of efolds of inflation in the past or inhomogeneities outside
the present horizon.

Probabilities for the results of our observations are for local features of the universe
conditioned on what we know about it — our data D. All we know for certain from our
data is that the universe exhibits at least one instance of it, D≥1. In the present model we
can consider the probabilities for the value of z in a Hubble volume given D≥1. But we are
not just interested in these probabilities in any Hubble volume; we are interested in them
in our Hubble volume. We discuss how to handle such first person questions generally in
Section II E. But in cases where there is a symmetry between Hubble volumes there is a
shortcut to the answer.

This simple model has such a symmetry — all the Hubble volumes are the same. The
probability for a value of z in our Hubble volume given D≥1 is therefore the same as the

3 Here and throughout we do not distinguish notationally between probabilities and probability densities.
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probability that the universe exhibits a value of z in any Hubble volume given D≥1. And
since z is constant over the universe that is the same as the probability p(z|D≥1) that the
universe has a value of z given D≥1.

This can can be efficiently computed by starting from the relation

p(z|D≥1) =
p(z,D≥1)

p(D≥1)
=
p(D≥1|z)p(z)
p(D≥1)

. (2.1)

The probability p(D≥1|z) that there is at least one instance of D in the universe given z is
1 minus the probability that there are no instances in any Hubble volume. This is

p(D≥1|z) = 1− (1− pE(D))Nh(z). (2.2)

Combining (2.1) and (2.2) gives

p(z|D≥1) =
[1− (1− pE(D))Nh(z)]p(z)

∫

dz[1− (1− pE(D))Nh(z)]p(z)
. (2.3)

This is the probability for our observations of z in this very simple model.

C. Gaussianity and Non-Gaussianity

Eq (2.3) for the probability of our observations of z simplifies in two important limits.
First, it simplifies when pE(D)Nh(z) ≪ 1 for the whole range of z, that is, in the limit in
which we are rare in the universe. Then we have

p(z|D≥1) ≈ Nh(z)p(z)
∫

dzNh(z)p(z)
. (2.4)

The difficult to estimate4 probability pE(D) has cancelled out. Nh(z) would also cancel
were it independent of z leaving the probability for observation of a value z equal to the BU
probability that the universe has that value.

But if Nh(z) depends on z the probabilities for observation will differ from the bottom-up
probabilities. In particular suppose the bottom-up probabilities p(z) are Gaussian, that is
a product of terms of the form exp(−const z2i ). Then the probabilities for observing z will
not be Gaussian. The TD probabilities for values of z that make the universe larger are
enhanced over their BU values because in a larger universe there are more places for our
data D to be.

The second limit in which p(z|D≥1) is independent of pE(D) is when pE(D)Nh(z) ≫ 1
for the whole range of z. This is the limit where our universe is so large that our data are
common. Then,

p(z|D≥1) ≈ p(z), (2.5)

that is, TD probabilities equal BU probabilities. As a consequence, Gaussian BU probabil-
ities imply a Gaussian distribution for the probabilities of observing z.

Thus, from local measurement of the zi an observer confident of the validity of this
simple model could infer something about the size of the universe Nh. That does not violate

4 For a discussion of ways to bound pE(D) see [6].

5



causality. The data D may be assumed to be within our past light cone. But the quantum
state predicts non-local correlations between the properties of different Hubble volumes.
These can be exploited to make predictions outside our Hubble volume from data inside it.
This is not qualitatively different from assuming that the universe is homogeneous and then
inferring the mean density outside our Hubble volume from observations inside.

The common limit (2.5) shows that predictions for observations can be defined even
when there are an infinite number of Hubble volumes provided that the BU probabilities
are normalized. No ‘measure’ beyond that provided by the quantum state is needed to deal
with infinite volumes in these simple models.

D. Detecting Gaussianity

Suppose that the BU probabilities for the z’s are Gaussian. That is, suppose specifically
that,

p(z) =
∏

i

(2πσ2)−1/2 exp(−z2i /2σ2). (2.6)

As (2.4) shows, Gaussian BU probabilities do not necessarily imply Gaussian TD probabili-
ties for observation. But to understand a little more about the tests for non-Gaussianity let
us first consider the common limit (2.5) where the TD probabilities are Gaussian.

A complete description of our universe will generally require variables other than those we
observe directly. In the absence of observation we may only have probabilities for these vari-
ables and the resulting TD probabilities for observation may not have the simple Gaussian
form. But, if a Gaussian distribution is predicted for all values of the unknown variables,
Gaussian statistics for observation will still be predicted. This elementary but important
point can be illustrated with a modest extension of our simple model.

Suppose that in addition to the z’s the widths of the Gaussian distributions in (2.6)
depend on a variable φ0 so that σ = σ(φ0). Then the TD probabilities for observation will
be given by

p(z|D≥1) =

∫

dφ0 p(z|D≥1, φ0)p(D
≥1|φ0)p(φ0) (2.7)

where p(φ0) is the BU probability for the unobserved φ0. Even if p(z|D≥1, φ0) is a Gaussian
distribution of form (2.6) with φ0 dependent σ’s, the sum of them in (2.7) will not be.
Consider functions of the zi’s whose expected value vanishes for Gaussian distributions and
thus test Gaussianity. An example is the correlation function

Bkj ≡
1

ℓ

∑

i

zizi+kzi+j. (2.8)

If the expected value of such functions vanish for each φ0 it will also vanish for the sum.
The point is that our universe is characterized by some value of φ0 even if we have not
determined what it is. If Gaussianity is predicted for all values of φ0 we predict Gaussianity
for our observations of the z’s despite our ignorance of φ0’s value.

E. From 3rd Person to 1st Person

The derivation of the probabilities for observation in our simple model relied on a sym-
metry — the equivalence of all Hubble volumes. That symmetry allowed us to ignore all the
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other instances of our data D that a large universe might exhibit and focus on our own. We
will rely on an analogous underlying symmetry in our discussion of the fluctuations away
from homogeneity and isotropy in Section V. But lest the reader believe that a symmetry is
essential to calculating probabilities for observations we present in this section a derivation
in the simple model that does not require a symmetry and explicitly takes into account the
instances of D beyond our own.

To begin let us calculate the probability p(z, n) that the universe has the value z and n
Hubble volumes with the data D. This evidently is

p(z, n) =

(

Nh(z)

n

)

(pE(D))n (1− pE(D))Nh(z)−n p(z). (2.9)

Since all the Hubble volumes are the same, the sum over locations of the n instances has
reduced to the binomial coefficient giving the number of ways of picking n Hubble volumes
with observers out of Nh(z) total Hubble volumes. The probability p(z, n) is an example of a
third person probability — a probability for a feature the universe may exhibit independently
of any relation to us. But we are interested in the first person probability of what value of z
we will observe. The theory, by itself, doesn’t predict such probabilities. We are one of the
instances of D but the theory doesn’t say which one. Indeed, it has no notion of ‘we’.

To connect first person probabilities for what we observe with third person probabilities
of what the universe exhibits a further assumption is needed. This assumption — called a
xerographic distribution [12] — specifies the probability that we are any one of the instances
of D. The simplest and least informative assumption is that we are equally likely to be any
one of the instances of D that the universe exhibits. Put differently, it is the assumption
that we are typical of those instances. This assumption is made throughout this paper5.

First person probabilities for what we observe are necessarily conditioned on the existence
of at least one instance of our data D in the universe — us! Thus we write p(1p)(z|D≥1)
for the probability that we observe z. To calculate this, first calculate the joint probability
p(1p)(z,D≥1) as follows: Suppose the universe exhibits n instances of D. Use an index A
running from 1 to n to distinguish these. Assuming typicality the xerographic distribution
is ξA = 1/n. Multiply this by the probability (2.9) for n instances and sum over A. Finally
sum over the number of instances from n = 1 (at least one instance) to n = Nh(z). The
factor of n from the sum over A cancels with the xerographic distribution to give

p(1p)(z,D≥1) =

Nh(z)
∑

n=1

(

Nh(z)

n

)

(pE(D))n (1− pE(D))Nh(z)−n p(z), (2.10a)

=[1− (1− pE(D))Nh(z)]p(z). (2.10b)

The conditional probability p(1p)(z|D≥1) is this joint probability divided by the probability
just for D≥1:

p(1p)(z|D≥1) =
[1− (1− pE(D))Nh(z)]p(z)

∫

dz[1− (1− pE(D))Nh(z)]p(z)
. (2.11)

This is the probability that we observe z, and it is exactly the same as (2.3) derived with
the aid of the symmetry.

5 However sometimes assumptions of atypicality yield more predictive theories [12, 13].
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III. QUANTUM AND CLASSICAL NBWF FLUCTUATIONS

The NBWF Ψ is defined on the superspace of three-geometries and spatial matter field
configurations. Here, we consider minisuperspace models defined by linearized perturba-
tions away from closed, homogeneous and isotropic three-geometries and field configurations.
Minisuperspace is spanned by the scale factor b of the homogeneous three-geometries, the
homogeneous value of the scalar field χ and the parameters defining the modes of perturba-
tion. We denote the latter collectively by z = (z1, z2, ...) and define these precisely in Section
IV. Thus, Ψ = Ψ(b, χ, z)

The NBWF is an integral of the exponential of minus the Euclidean action I over com-
plex four-geometries and field configurations that are regular on a four-disk with a three-
sphere boundary on which the four-dimensional histories take the real values (b, χ, z) [7, 8].
Schematically we can write

Ψ(b, χ, z) =

∫

C

δaδφδζ exp(−I[a(τ), φ(τ), ζ(τ)]/h̄). (3.1)

Here, a(τ) and φ(τ) are (complex) histories of scale factor and scalar field defining a homo-
geneous, isotropic background. The quantities ζ(τ) = (ζ1(τ), ζ2(τ), · · · ) denote histories of
modes of fluctuation away from homogeneity and isotropy in both metric and matter field.
I[a(τ), φ(τ), ζ(τ)] is the Euclidean action. The integral is over geometries and matter fields
that are regular on a disk with only one boundary at which a(τ), φ(τ) and ζ(τ) take the
values b, χ, and z. The integration is carried out along a suitable complex contour C which
ensures the convergence of (3.1) and the reality of the result [14].

We restrict to linear fluctuations when only up to quadratic terms in ζ are retained in
the action in (3.1):

I = I(0)[a(τ), φ(τ)] + I(2)[a(τ), φ(τ), ζ(τ)]. (3.2)

(There is no linear term for the models considered in this paper.) Then I(0) describes the
homogeneous isotropic background and I(2) describes the linear and quadratic perturbations
away from that background.

Suppose that in some region of superspace the integral in (3.1) over a(τ) and φ(τ) defining
the homogeneous background can be approximated by the method of steepest descents. Then
the wave function Ψ will be a sum of terms of the form

Ψ(b, χ, z) ≈ exp{[−I(0)R (b, χ) + iS(0)(b, χ)]/h̄}ψ(b, χ, z), (3.3)

one such term for each history (a(τ), φ(τ)) that extremizes the action I(0), matches (b, χ)

at the boundary of the disk, and is regular elsewhere. For each contribution I
(0)
R (b, χ) is the

real part of the action I(0)[a(τ), φ(τ)] evaluated at the extremizing history and −S(0)(b, χ)
is the imaginary part. The wave function ψ is defined by the remaining integral over ζ

ψ(b, χ, z) ≡
∫

C

δζ exp(−I(2)[a(τ), φ(τ), ζ(τ)]/h̄). (3.4)

As we showed6 in [5], classical Lorentzian histories are predicted in regions of superspace
where S(0)(b, χ) varies rapidly when compared with I(0)(b, χ). Specifically, then Ψ predicts

6 And as we intend to show in more detail in [11].

8



an ensemble of suitably coarse-grained Lorentzian histories (b(t), χ(t)) that with high prob-
ability lie along the integral curves of S(0)(b, χ). Their relative probabilities are given by
exp[−2IR(b, χ)], which is preserved along each history [5].

When evaluated on one of these classical histories the wave function (3.4) becomes a
function of time,

ψ(z, t) ≡ ψ(b(t), χ(t), z). (3.5)

As shown in a variety of ways [15] the Wheeler-DeWitt equation implies a Schrödinger
equation for ψ(z, t)

ih̄dψ(z, t)/dt = H(t)ψ(z, t). (3.6)

The time dependent Hamiltonian describes the evolution of the state of the fluctuations
in the background (b(t), χ(t)). An inner product is induced from the generalized quantum
mechanics on the full superspace [10]. Equation and product define the quantum mechanics
of the fluctuation field z in the homogeneous, isotropic background.

In this way, the fluctuation fields can be thought of as quantum fields on the possible
background classical spacetimes. The state of the fields is determined by the NBWF through
(3.4). There is no independent assumption of a “vacuum” state. However, the Euclidean
integral defining the NBWF is analogous to the Euclidean integral defining the ground state.
It is therefore reasonable to expect the NBWF to imply that fluctuations are in something
like a quantum field theory ground state early in the universe. This was shown explicitly
in [16] and we will show it explicitly for our model in the next section7. Hence the NBWF
provides a unified treatment of both classical homogeneous and isotropic backgrounds and
the quantum fluctuations away from them.

The integral defining the wave function in (3.4) may itself be approximated by the method
of steepest descents. Indeed, since the action is quadratic in ζ we expect that it can be
evaluated exactly when the measure is suitable. Either way, the result for a particular
extremum a(τ), φ(τ) of I(0) is

ψ(b, χ, z) = A(2)(b, χ) exp{[−I(2)R (b, χ, z) + iS(2)(b, χ, z)]/h̄}. (3.7)

The extremizing history ζ(τ) is regular on the manifold of integration and matches z at its

one boundary. I
(2)
R (b, χ, z) and −S(2)(b, χ, z) are the real and imaginary parts of the action

I(2) evaluated on this history and A(2) is a prefactor.
This fully quantum mechanical theory of fluctuations around a classical background uni-

verse will predict their classical behavior in regions of superspace where S(2)(b(t), χ(t), z)
varies rapidly in z compared to I(2)(b(t), χ(t), z). The detailed conditions for this are
called the ‘classicality conditions’ [5]. Specifically when they are satisfied the wave func-
tion (3.7) predicts an ensemble of suitably coarse grained, classical, Lorentzian histories z(t)
that with high probability lie along the integral curves of S(2)(b(t), χ(t), z). The probabil-
ities of the classical fluctuations in a given homo/iso background are then proportional to
exp[−2I(2)[b(t), χ(t), z(t)]. In general we can expect the regions of superspace where pertur-
bation modes behave classically to be different for different modes8 and we will see this in
detail in what follows.

7 This also opens the possibility that the NBWF can predict corrections to popular assumptions about the

vacuum of the fluctuation fields.
8 In inflationary cosmology it is sometimes said that the modes ‘become classical’ at a certain time as

though there were a transition between quantum and classical physics. This is incorrect. Classical physics
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With these techniques we will be able to treat both the quantum mechanics of fluctuations
of the universe and their classical approximation.

IV. BOTTOM-UP PROBABILITIES FOR PERTURBATIONS

In this section we describe the calculation of the bottom-up probabilities for alternative
four-dimensional classical histories of the universe that include linear fluctuations away from
homogeneity and isotropy. These are the probabilities for classical behavior conditioned
on the NBWF alone. They are the input to the calculation of top-down probabilities for
observation described in the next section.

A. Homogeneous Isotropic Histories

We first review the bottom-up probabilities of the homogeneous isotropic histories pre-
dicted by the semiclassical NBWF (3.3). These were calculated in [4, 5], in a simple model
consisting of a single scalar field moving in a quadratic potential. It was found that there is
a one-parameter family of extremizing complex histories – fuzzy instantons – which obey the
classicality conditions at the boundary where one evaluates the wave function and therefore
predict a Lorentzian history. The different histories can be labeled by the magnitude of
the complex scalar field φ0 ≡ |φ(0)| at the ‘South Pole’ (SP) of the corresponding fuzzy
instanton. It was found [4] that the classicality conditions require φ0 ≥ φc

0 ≈ 1. The relative
probabilities of the different histories are given by exp[−2IR(φ0)], where IR(φ0) is the real
part of the Euclidean action of the fuzzy instanton.

A striking feature of the ensemble of classical histories in this model is the close connection
it reveals between classicality and inflation [5]. Specifically the histories have values of
H ≡ (db/dt)/b and χ, which all lie within a very narrow band around H = mχ characteristic
of Lorentzian slow roll inflationary solutions. It follows that a classical, homogeneous and
isotropic universe must have an early inflationary state if the universe is in the no-boundary
state.

For sufficiently large φ0 there is an approximate analytic solution [17] for the fuzzy in-
stanton,

φ(τ) ≈ φ(0) + i
mτ

3
, a(τ) ≈ i

2mφ(0)
e−imφ(0)τ+m2τ2/6. (4.1)

These solutions are the complex analogs of the standard ‘slow roll’ inflationary solutions.
They are valid in the region of the complex τ = x+ it plane where t is not so large that the
slow roll assumption breaks down, and where |a(τ)| ≫ 1 so that the spatial curvature is ex-
ponentially negligible9. By tuning the phase of φ0 at the SP so that Im[φ(0)] = −π/6Re[φ(0)]
vertical lines given by τ = π/2mRe[φ(0)] + it are obtained along which both a and φ are

is not an alternative to quantum theory; it is an approximation to it. The modes are always quantum

mechanical but a classical approximation only holds in certain regimes. It would be better to say that

the modes enter a region where a classical approximation holds with a suitable coarse graining. But we

will use the less accurate terminology with this understanding.
9 The constant multiplicative normalization of the scale factor is determined by matching these solutions

to the ‘no-roll’ solutions φ(τ) ≈ φ(0), a(τ) ≈ sin[mφ(0)τ ]/mφ(0) that are regular at the origin.
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approximately real and describe Lorentzian inflating universes with the scalar field approx-
imately equal to φ0 at the start of inflation.

The real part of the action of the fuzzy instantons in this approximation is

IR(φ0) ≈ − π

2(mφ0)2
≈ − 2π

(3m2N(φ0))
(4.2)

where N(φ0) ≈ 3φ2
0/2 is the number of inflationary efolds in the classical history labeled φ0.

Hence the bottom-up probabilities conditioned only on the NBWF are largest for classical
histories with a small amount of inflation.

B. Semiclassical Wave Function for Quantum Fluctuations

Following the analysis of [16, 18] we now calculate the wave function (3.4) for linear
scalar fluctuations around the homogeneous isotropic histories predicted by the NBWF.
We restrict attention to scalar perturbations, since these turn out to matter most for the
top-down effects we are interested in here. We write the perturbed metric as

ds2 = (1 + 2ϕ)dτ 2 + 2a(τ)B|idx
idτ + a2(τ)[(1− 2ψ)γij + 2E|ij ]dx

idxj (4.3)

where γij is the metric of the unit radius three-sphere, xi are the coordinates on the three-
sphere and a vertical bar denotes covariant differentiation with respect to γij. Expanding
the perturbations in the standard, normalized scalar harmonics Qn

lm(x
i) on S3 gives the

definitions

ϕ =
1√
6

∑

nlm

gnlmQ
n
lm, ψ =

−1√
6

∑

nlm

(anlm + bnlm)Q
n
lm, (4.4)

B =
1√
6

∑

nlm

knlmQ
n
lm

(n2 − 1)
, E =

1√
6

∑

nlm

3bnlmQ
n
lm

(n2 − 1)
(4.5)

and the scalar field perturbation

δφ(τ, x) =
1√
6

∑

nlm

fnlmQ
n
lm. (4.6)

From here onwards we denote the labels n, l, m collectively by (n). The expansion coeffi-
cients a(n), b(n), f(n), g(n), k(n) are functions of time only.

From the above expansions we see there are five scalar degrees of freedom. However, the
functions g(n) and k(n) appear as Lagrange multipliers in the action. Variations of the action
with respect to g(n) and k(n) result in the linear Hamiltonian and momentum constraints. In
quantum cosmology the NBWF satisfies the operator forms of these constraints [19]. The
wave function therefore depends only on the background variables b and χ and on a single
linear combination of the (boundary values of the) perturbation variables a(n), b(n), f(n) –
the three functions that describe the perturbed three geometry. One can take this linear
combination to be the following (Appendix A),

ζ(n) = a(n) + b(n) −
HE

φ̇
f(n) (4.7)
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where HE ≡ ȧ/a and the subscript E refers to quantities constructed with Euclidean time.
Hence one has ψ(b, χ, z), where z ≡ (z(1), z(2), ...) are the real values of ζ = (ζ(1), ζ(2), ...)
at the boundary. The variables z are invariant under linear gauge transformations and
approximately conserved outside the horizon [20, 21].

The wave function ψ(b, χ, z) can be found explicitly in the semiclassical approximation.
To first order in perturbation theory (3.7) takes the form

ψ(b, χ, z) =
∏

(n)

ψ(n)(b, χ, z(n)). (4.8)

The action I
(2)
(n)[b, χ, z(n)] of each mode is generally a positive quadratic function of z(n).

Thus, in a regime where the perturbations are small and behave classically the bottom-
up probabilities from (3.7) will favor vanishing perturbations and homogeneous classical
histories.

An analytic approximation to the wave function (4.8) was obtained in [18], by solving
the complex perturbation equations in the slow roll backgrounds (4.1). In Appendix A we
summarize this calculation and verify its accuracy by numerically calculating the perturba-
tions around several representative members of the ensemble of exact complex extremizing
geometries found in [4, 5]. We concentrate on perturbation modes that leave the Hubble
radius during inflation. As we will see, these are the modes that are amplified by the time-
dependent background, become classical and, ultimately, lead to the large-scale structures
we observe today.

The no-boundary condition of regularity at the SP requires f(n) and a(n) to vanish there.
If τ → 0 labels the SP then the field equations imply that to leading order in τ one has
ζ(n) = ζ(n)(0)τ

n, where ζ(n)(0) ≡ |ζ(n)(0)|eiθ ≡ ζ(n)0e
iθ is a complex constant. Its phase

θ should be fine-tuned such that ζ(n) is real at the boundary, and its amplitude ζ(n)0 is
determined by the value of the boundary perturbation z(n).

At small τ the modulus of the complex ‘wavelength’ a/n of a perturbation mode will
be shorter than the horizon size since |aHE| → 1 when τ → 0. In this regime we find
the complex solution for ζ(n) oscillates and is independent of the nature of the potential.
On the other hand we show in Appendix A that at larger τ , when n ≪ |aHE|, the general
perturbation solution is a combination of a constant and a decaying mode. Hence one expects
the wave function ψ(n)(b, χ, z(n)) depends only on the behavior of the potential for values of
φ near the value taken by φ(τ) at the time the perturbation leaves the horizon. At horizon
crossing the perturbation ζ(n) generally has an imaginary component. The requirement that
ζ(n) be real at the boundary therefore means that the phase θ of ζ(n)(0) at the SP should be
tuned such that the imaginary component of the subhorizon mode function matches onto
the decaying mode when the perturbation leaves the horizon. It turns out that this implies
that a perturbation mode will become classical when its physical wavelength becomes much
larger than the Hubble radius, as is evident from Fig 4 in Appendix A.

As a consequence of the decay of the imaginary component of the perturbation the real

part of the Euclidean action I
(2)
(n)(b, χ, z(n)) tends to a constant when the mode leaves the

horizon. This determines the bottom-up probabilities of the different classical perturbed
histories predicted by the NBWF. Substituting the perturbation solutions (A5) in the action
(A6) and normalizing one obtains, for all wavenumbers n < exp(3φ2

0/2),

p(z(n)|φ0) ≈
√

ǫ∗n3

2πH2
∗

exp

[

− ǫ∗
2H2

∗

n3z2(n)

]

(4.9)
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where ǫ ≡ χ̇2/H2 is the usual slow-roll parameter. The subscript ∗ on a quantity in (4.9)
means it is evaluated at horizon crossing during inflation. Equation (4.9) specifies the
bottom-up probabilities of linear, classical perturbations around the homogeneous isotropic
histories predicted by the NBWF. One sees the probabilities of z(n)n

3 are Gaussian, with
variance H2

∗/ǫ∗ characteristic of inflationary perturbations.
Although (4.9) was derived using the slow roll approximation for the fuzzy instantons, we

have numerically verified (Appendix A) that this result is accurate over most of the range
of φ0 except near its lower bound φc

0, and for all modes that become classical except those
that leave the horizon towards the very end of inflation10.

C. Perturbed Classical Histories

The evolution of perturbations in a classical background universe (b(t), χ(t)) is in gen-
eral given by a Schrödinger equation (3.6). However in regions of superspace where
S(2)(b(t), χ(t), z) varies rapidly in z compared to I(2)(b(t), χ(t), z) the semiclassical wave
function (4.8) predicts an ensemble of suitably coarse grained, classical, Lorentzian histo-
ries z(t) that with high probability lie along the integral curves of S(2)(b(t), χ(t), z). Their
relative probabilities are given by (4.9), which is preserved along each history [5].

We have seen that in inflationary histories, perturbation modes behave classically when
their physical wavelength is larger than the Hubble radius. Since the modes that left the
horizon during inflation are responsible for the large-scale structure we observe today, it is
appropriate to evaluate the wave function of perturbations on a surface towards the end of
inflation and to coarse-grain over modes that are inside the horizon at that time11. The
values of the perturbation modes at the boundary, together with their derivatives, provide
Cauchy data for their future classical evolution12. The members of the classical ensemble of
perturbation histories obtained in this way can be labeled by (φ0, ζ0).

Just after inflation ends the general solution for classical, long-wavelength (n≪ bH) per-
turbations (see e.g.[21]) implies the scalar metric perturbations remain essentially constant,
with a small oscillatory component due to the oscillations of the background scalar field.
The matter perturbation starts oscillating again when the Hubble radius becomes larger
than the scalar field Compton wavelength ∼ 1/mb. This behavior can also be seen in Fig
3 (for m2 = .05), where inflation ends around y ∼ O(60). In realistic models the energy
of the inflaton is then converted in ordinary matter and radiation, reheating the universe.
Hence the solutions for the scalar matter and metric perturbations are not directly related
to observations of the present universe. Fortunately, reheating occurs when the perturbation
modes that are relevant for current observations are well outside the horizon, so that the
variable z(n) is conserved. Hence the wave function ψ(z, t) provides initial conditions for the
classical evolution of perturbation modes after they re-enter the horizon at late times.

To first approximation reheating takes place at a definite value of χ. Hence one expects

10 These corrections to (4.9) can in principle be calculated systematically, opening up the way to study the

small deviations from the Bunch-Davis vacuum implied by the NBWF as discussed in Section III.
11 The histories obtained by evolving forward Cauchy data taken at an earlier time, involving fewer modes,

can be viewed as a coarse-graining of these.
12 The evolution of perturbations backwards in time, towards the initial singularity or the bounce [5], is

generally not classical everywhere and can be obtained using (3.6). This will be discussed elsewhere.
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surfaces of constant scalar field during inflation to evolve to surfaces of constant temperature
after reheating. The surface of last scattering will be such a surface. Variations in the
observed temperature of the CMB arise e.g. from variations in the gravitational redshift
of the surface of last scattering in different directions of observation, which are themselves
determined by the perturbation z(t). Quantities of particular interest in cosmology are
averages over a particular pattern of perturbations at the surface of last scattering. The
simplest examples are the multipole coefficients Cl that characterize the average of a product
of two temperature fluctuations in two different directions. Expressed in terms of z(n) the
Cl’s involve a sum over the wavenumber n. However for l ≫ 1 the dominant contribution
to this sum comes from perturbations with wavenumber n̄ ≈ l/rL, where rL is the radial
distance from us to the surface of last scattering in the Robertson-Walker geometry (see
e.g. [21]). This means there is a direct relation between the Cl’s and the variance of the
probability distributions (4.9). In particular CMB correlations on a certain angular scale at
the present time provide information about the inflaton potential at the time of horizon exit
of the relevant modes during inflation. For 10 ≤ l ≤ 50 the CMB anisotropies are dominated
by the Sachs-Wolfe effect. In this range the Cl’s are to a good approximation given by [21]

Cl ≈ 〈z2(n)〉n3 =
8π2T 2

0H
2
∗

9ǫ∗l(l + 1)
(4.10)

where T 2
0 is the present mean value of the temperature of the CMB. In the model we

have considered H2
∗/ǫ∗ ≈ m2χ4

∗. Since galactic scales correspond to χ2
∗ ∼ O(50) and since

observations require the gravitational potential to be ∼ 10−5 on these scales, the mass of
the scalar field should be about ∼ 10−6 in Planck units. Larger scales leave the horizon
earlier during inflation. During inflation one has χ∗ ∼ ln(be/b∗) ∼ ln(λph(n)H∗) where be is
the scale factor at the end of inflation and λph = b/n. Since H is approximately constant
during inflation this leads to a slightly red spectrum. Whereas this is a small effect on the
range of currently observable scales, this has significant consequences on very large scales as
we discuss below.

V. TOP-DOWN PROBABILITIES FOR PERTURBATIONS

In this section we calculate the top-down probabilities p(z(n)|D≥1) for perturbation modes
z(n) that are relevant for observation of the CMB. The Gaussian bottom-up probabilities
(4.9) are an input to this calculation. Our particular aim is to determine in what models
and under what conditions the top-down corrections can lead to observable effects. We will
find that this may be the case when the potential is such as to not allow a regime of eternal
inflation.

We begin by reviewing the connection between bottom-up and top-down probabilities.
This is the same as the connection derived in Section II but written out here with the full
machinery necessary to describe perturbations.

A. Top-Down from Bottom-Up

From the bottom-up probabilities (4.9) we seek to construct the (top-down) probabilities
p(z|D) for the present amplitudes of fluctuation observables z = (z1, z2, · · · ) conditioned
on a subset D of our total data. Suppose that D can be divided into two parts: First,
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a part Ds consisting of large scale observations that place the data D on one or more
surfaces of homogeneity ti(Ds, φ0) in each classical spacetime. Observations of the present
Hubble constant H0 and local average energy density are an example. For simplicity we
restrict attention to a single surface that we denote by t. The generalization to more is
straightforward.

The second part, Dh, consists of local observations that are largely independent of the
large scale features of the spacetimes. Thus D = (Ds, Dh). For each φ0 divide the surface
labeled by Ds into Hubble volumes and denote their total number by Nh(Ds, φ0, ζ0). Finally,
denote by pE(D) the probability that the data D occur in any one of the Hubble volumes on
the surface t and assume that the probability of more than one occurrence in any one volume
is negligible. We can now follow the model in Section II to derive the TD probabilities for
our observations of fluctuations.

All we know from our local observations is that there is at least one occurrence of Dh

(abbreviated D≥1
h ) in one of the Hubble volumes (ours). The probability that there is at

least one instance of Dh in the classical spacetime labeled by (φ0, ζ0) is [cf. (2.2)]

p(D≥1
h |Ds, φ0, ζ0) = 1− [1− pE(D)]Nh(t,φ0,ζ0). (5.1)

Neither φ0 or ζ0 is directly observable. But in each classical spacetime we can determine
the values of z on the surfaces specified byDs: z = z(Ds, t, φ0, ζ0). Conversely, given z and φ0

we can determine13 the amplitude of the fluctuations at the South Pole ζs(z) ≡ ζ0(z,Ds, φ0)
necessary to produce z on the surface t. Thus we can write for the (top-down) probabilities
p(z|D≥1)

p(z|D≥1) =

∫

dφ0p(φ0, ζs(z))|D≥1). (5.2)

This can be cast into a more useable form by using the joint probability [cf (2.1)]

p(φ0, ζ0, D
≥1
h |Ds) = p(D≥1

h |Ds, φ0, ζ0)p(φ0, ζ0|Ds) (5.3a)

= p(D≥1
h |Ds, φ0, ζ0)p(ζ0|Ds, φ0)p(φ0|Ds) (5.3b)

Combining (5.2), (5.3), and (5.1) we find the following formula for the top-down probabilities
for fluctuations given at least one instance of the data D [cf (2.3)]

p(z|D≥1) ≈
∫

dφ0 p(ζs(z)|Ds, φ0){1− [1− pE(D)]Nh(Ds,φ0,ζs(z))}p(φ0|Ds)
∫

dφ0dζ0 p(ζ0|Ds, φ0){1− [1− pE(D)]Nh(Ds,φ0,ζ0)}p(φ0|Ds)
(5.4)

In (5.4) we expect the dependence of the probabilities p(ζ0|Ds, φ0) and p(φ0|Ds) on Ds to
be weak. They will be approximately proportional to p(ζ0|φ0) and p(φ0) respectively except
when the spacetime specified by φ0 does not contain a surface with data Ds. Then they are
proportional to zero.

The probabilities p(z|D≥1) are for the values of the fluctuations the universe may exhibit
given D≥1. (In the language of Section II E they are third person probabilities.) But we
are interested in the (first person) probabilities for fluctuations in a particular history and
inside our Hubble volume, where our specific instance of D is located. For each φ0, the
underlying homogeneity is a symmetry that means that all predictions for observation will
be the same in all Hubble volumes. The probability for any quantities derived from the z’s
in our Hubble volume is the same as that derived from p(z|D≥1) for any Hubble volume.

13 To compress the notation we will not always write out the dependence of ζs(z) on Ds and φ0.
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B. Non-Gaussianity from Volume Weighting

We now evaluate the TD probabilities p(z(n̄)|D≥1) for different values of perturbation
modes z(n̄) in the classical ensemble of homo/iso histories with linearized perturbations. We
are interested in particular in the modes that contribute to the CMB. As reviewed at the
end of the last section these are modes with approximately the same wavenumber that left
the horizon the same number of efolds before the end of inflation in all members of the
ensemble. We denote the value of the relevant wavenumber in each history by n̄. This
depends on the duration of inflation and therefore on φ0. In terms of the angular scale
this is given by n̄ ≈ l/rL, where rL is the radial distance to the surface of last scattering
in the Robertson-Walker geometry (see e.g. [21]). To calculate the top-down probability
p(z(n̄)|D≥1) for the CMB relevant modes requires summing (coarse-graining) (5.4) over all
other modes.

As before we assume part of our data locate us on a surface of constant density in each
member of the classical ensemble. The top-down probabilities (5.4) then involve the volume
Nh of this surface. This is most easily calculated in the f(n) = b(n) = 0 gauge, where surfaces
of constant density are constant time surfaces with volume [cf.(4.3)]

V = V0 + δV = b3
∫

d3x
√
γ(1− 2ψ)3/2. (5.5)

The leading correction to V0 averages to zero over the surface, but the second order term
leads to a change in volume. In terms of the gauge invariant variable z(n̄) one has δV/V0 =
∑

(n) z
2
(n)/8π

2. Hence the number of present Hubble volumes in the different histories of the
ensemble is given by

Nh(Ds, φ0, z) = N0
h(Ds, φ0)

(

1 +
∑

(n)

z2(n)
8π2

)

exp

(

9

2
φ2
0

)

, (5.6)

where N0
h(Ds, φ0) varies slowly with φ0 and depends on the present Hubble constant, the

details of reheating etc. The range of n in the sum encompasses all modes that left the
horizon during inflation and are therefore classical. Its upper limit nm therefore depends
on φ0 and is approximately given by nm ≈ exp (3φ2

0/2). Using the BU distribution (4.9) of
zn the expected value of the sum in (5.6) can be bounded by the variance of the longest
wavelength perturbations in each history — with n = nm — yielding 〈∑(n) z

2
(n)〉 ≤ m2φ4

0.

The TD distribution is of the form (5.4). Using the analytic approximations (4.2) and
(4.9) of the BU probabilities of homo/iso histories with linearized perturbations one finds
for the top-down probability of the CMB relevant modes14

p(z(n̄)|D≥1) ∝
∫

dφ0





∏

(n) 6=(n̄)

dζ(n)0 exp

(

−
z2(n)
2σ2

n

)





[

1− (1− pE)
Nh

)

] exp

(

−
z2(n̄)
2σ2

n̄

)

exp

(

4π

3m2N

)

.

(5.7)

14 In (5.7) we have not taken in account the Jacobian that arises when one changes the integration measure

from dζ(n)0 to dzn, because this is polynomial in φ0 (see Appendix and also [18]) and therefore hardly

affects the TD probabilities.
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Here σ2
n(φ0) ≡ H2

∗/2ǫ∗n
3 and the product is taken over all wavenumbers n up to nm. The

integrals over ζ(n)0 can be evaluated analytically without further approximations. This yields

p(z(n̄)|D≥1) ∝
∫

dφ0





∏

(n) 6=(n̄)

√

2πσ2
n − (1− pE)

N̄h

∏

(n) 6=(n̄)

√

2πσ2
n

√

1− (σ2
n/4π

2)N0
he

3N log(1− pE)





× exp

(

−
z2(n̄)
2σ2

n̄

)

exp

(

4π

3m2N

)

(5.8)

where N̄h ≡ N0
h(N)(1 + z2(n̄)/8π

2) exp(3N).

In [4, 6] we have argued that for realistic values15 of pE, volume weighting applies in
the ensemble of homogeneous isotropic histories even in models where the potential ad-
mits inflationary solutions all the way up to the Planck scale, corresponding to values
φpl
0 ∼ 1/m. This is because one can easily find data D for which pE ≪ 1/Npl

h , where

log(Npl
h ) ≈ 3N(φpl

0 ) = 9/2m2 ≈ 1012. In this regime the top-down factor reduces to pENh

and the probability pE cancels out, as discussed in Section II. A single perturbation mode
on currently observable scales hardly changes the volume Nh. Hence the factor (1 − pE)

N̄h

in (5.8) is approximately given by 1− N̄hpE for realistic values of pE.
The product in the second, non-Gaussian term in (5.8) further simplifies in histories

where

pE <

[

(

∑

(n)

σ2
n/4π

2
)

N0
he

9φ2
0/2

]−1

. (5.9)

When φ0 < 1/
√
m this condition automatically holds when the data are rare in the back-

ground history because the sum over σn is smaller than one. In contrast, in eternally inflating
histories this is a stronger condition than the requirement used above that the data be rare
in the homo/iso background. Indeed, in histories with a regime of eternal inflation and hence
φ0 > 1/

√
m one finds (

∑

(n) σ
2
n/8π

2) ≈ m2φ4
0 ≫ 1, due to long wavelength perturbations

that leave the horizon when χ(t) > 1/
√
m. This reflects the fact that in eternal inflation,

perturbations can significantly change the volume of surfaces of constant scalar field and
therefore the possible locations where our data can be. However, based on the arguments
in [6] it appears plausible that the condition (5.9) holds with realistic values of pE(D) even
in eternally inflating histories. Hence the TD probabilities p(z(n̄)|D≥1) are approximately
given by

p(z(n̄)|D≥1) ∝
∫

dφ0





∏

(n) 6=(n̄)

√

2πσ2
n







1− 1− pEN̄h
√

1 + pE(
∑

(n) 6=(n̄) σ
2
n/4π

2)N0
he

3N





× exp

(

−
z2(n̄)
2σ2

n̄

)

exp

(

4π

3m2N

)

(5.10)

15 That is, assuming we are a typical instance of D and conditioning on our actual observational situation.

Top-down probabilities conditioned on fewer or altogether different data can be calculated as well and

may be of interest. When pE > 1/Nh, the first term in (5.8) provides the dominant contribution to such

TD probabilities which are therefore Gaussian
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Expanding the square root and including the normalization factor in (5.4) yields

p(z(n̄)|D≥1) =

∫

dφ0

(

∏
√

2πσ2
n

)

N0
h

(

1 +
∑ σ2

n

8π2 +
z2
(n̄)

8π2

)

exp

[

− z2
(n̄)

2σ2
n̄

]

exp
[

3N + 4π
3m2N

]

∫

dφ0

∏

(n)

√

2πσ2
nN

0
h

(

1 +
∑

(n) σ
2
n/8π

2
)

exp
[

3N + 4π
3m2N

]

(5.11)
where the product and sum in the numerator are taken over all classical modes except the
mode labeled by (n̄). The probability pE has cancelled out. In models with a regime of
eternal inflation, the volume weighting exp(3N) implies that the dominant contribution to
the integrals in (5.11) comes from histories with the largest values16 of φ0 and hence a long
period of inflation. In histories of this kind

∑

(n) σ
2
n/8π

2 ≫ 1. Hence the normalizing factor
in the denominator makes the non-Gaussian TD corrections in z(n̄) extremely small, yielding

p(z(n̄)|D≥1) ≈ p(z(n̄)|D≥1, φpl
o ) ≈

1
√

2πσ2
n

exp

(

− ǫ∗
H2

∗

n̄3z2(n̄)

)

(5.12)

Even in the context of quadratic potentials it is possible to construct models without a
regime of eternal inflation for instance by restricting the physically allowed range of φ. In
such models, where all histories have φ0 < 1/

√
m, the integral over the other perturbation

modes has little effect and the non-Gaussian TD corrections in z(n̄) remain relevant in con-
trast to the result above. On the other hand, in this case the volume weighting does not
significantly change the BU distribution of histories with different φ0 [6], so that the integral
over φ0 is dominated by histories with the smallest amount of inflation compatible with the
data D. The TD distribution in a background of this kind is approximately given by

p(z(n̄)|D≥1) ≈ 1
√

2πσ2
n̄

1 + z2(n̄)/8π
2

1 + σ2
n̄/8π2

exp

(

− ǫ∗
H2

∗

n̄3z2(n̄)

)

. (5.13)

Hence in models without a regime of eternal inflation the NBWF predicts we should observe
a slightly non-Gaussian spectrum of perturbations even though their BU distribution is
Gaussian.

It is possible to calculate the BU probabilities for the fluctuations pertaining to the CMB
by focussing only on the relevant modes and ignoring all others in a restricted minisuperspace
model. At the BU level all modes are independent in the linear approximation. However, we
have seen here that this is not possible for the TD probabilities for CMB observations. The
observations may only probe the wavelengths characteristic of only a few modes, but the
top-down weighting depends on all of them. In a minisuperspace approximation consisting
of homo/iso histories with a single perturbation mode z(n̄), we would have predicted non-
Gaussianity even in models of eternal inflation. When we include all modes in our analysis
the answer is qualitatively different. Quantum mechanics then instructs us to coarse-grain
over perturbations we do not observe. In eternally inflating histories this reduces the non-
Gaussianity as in eq (5.11).

As discussed earlier, CMB temperature correlations on a given angular scale provide
an excellent probe of the TD distribution for zn̄ especially at large l, where cosmic vari-
ance is limited and where the dominant contribution comes from modes with a particular

16 What these are depends on the model, i.e. where V becomes too steep for inflation to occur. Below we

assume for simplicity this only happens at the Planck scale, corresponding to φpl
0 ≈ 1/m.
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wavenumber n. Hence the prediction of non-Gaussianity with a specific shape in models
without eternal inflation leads to the possibility of determining whether or not eternal in-
flation took place. The fact that we can learn something about the global structure of the
universe from local observations conditioned on local data D can be traced to the quantum
state which predicts non-local correlations. The predicted level of non-Gaussianity in models
without a regime of eternal inflation is small on currently observable scales. However even a
small departure from a Gaussian spectrum may be detectable with future observations. We
will therefore return in future work to a more detailed analysis of top-down corrections in
the CMB anisotropies.

VI. BACKREACTION IN THE REGIME OF ETERNAL INFLATION

The expected amplitude of long wavelength perturbations that leave the horizon in the
regime of eternal inflation is large. Indeed, it follows from (4.9) that H2

∗ ≥ ǫ∗ when χ∗ ≥
√
m

and hence 〈z2(n)〉n3 > 1. Since in models of eternal inflation histories with φ0 > 1/
√
m

dominate the TD probabilities [4, 6], this means there is a significant probability for our
universe to be strongly inhomogeneous on the largest scales in models of this kind.

This inhomogeneity has important implications for the possible locations of our data,
because these typically confine us to one or several surfaces of constant density. A calculation
in perturbation theory of the expected fractional change in the volume V (t) of a surface of
constant scalar field, due to combined effect of all fluctuations outside the horizon yields,
from (5.5) and using (4.10),

〈δV
V0

(t)〉 = 1

8π2

∫ nm(t)

d3n〈z2n〉 ≈
1

8π2

H2(t)

ǫ(t)
(6.1)

where nm(t) = Hb(t) and V0(t) = 2π2b3(t) is the volume of a surface which is at time t in the
unperturbed geometry. Hence, for instance, the expected volume of the reheating surface in
perturbed histories with φ0 > 1/

√
m can differ significantly from the reheating volume in the

homogeneous isotropic background. This indicates perturbation theory may be inadequate
to calculate the precise shape of the reheating surface in eternally inflating histories. In
fact, it has been argued (see e.g. [1, 22, 23]) – albeit in part based on perturbation theory –
that starting with a finite inflationary volume in the regime of eternal inflation, backreaction
effects give rise to a significant probability for developing constant scalar field surfaces of
arbitrarily large or even infinite volume17.

This implies that in models of eternal inflation it may not be correct to assume that
our data is rare in every history of the ensemble18. Instead in a subset of histories the
more general weighting (5.4), or even its common limit, may apply in the calculation of TD
probabilities rather than volume weighting.

However this more general weighting is unlikely to change our results for the TD prob-
abilities p(z(n̄)|D≥1) obtained in Section VB, as we now explain. Let us assume, as before,

17 Numerical simulations of perturbed classical universes in this regime using stochastic techniques [24–27]

provide some support for this.
18 We note however that the connection between the volume of the reheating surface and that of the surface

of constant present matter density is rather complicated, since large-scale perturbations are large. This

is a caveat in the analysis of top-down probabilities in this model.
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that the data are rare in all background histories, i.e. pE ≪ 1/Npl
h . The top-down weighting

then implies that eternally inflating histories with large φ0 provide the dominant contribu-
tion to the TD distribution [4]. Volume weighting will apply in approximately homogeneous
and isotropic histories of this kind, yielding the Gaussian contribution to the TD distri-
bution given in (5.12). However, if backreaction leads to a significant probability for the
reheating surface to be infinite then the main contribution to the TD distribution will come
from significantly perturbed histories where our data are common because Nh is large or
infinite. But in such histories the TD weighting in (5.7) equals one. Hence predictions
for observations are given by the bottom-up probabilities. One expects BU probabilities of
observable fluctuations not to be affected by backreaction effects, since perturbation modes
on currently observable scales leave the horizon well outside the regime of eternal inflation
where these effects are negligible. Hence we expect the result (5.12) remains unchanged
when backreaction is taken in account.

Roughly speaking, one could say that in these models, by selecting histories with a large
number of efolds, the top down weighting also makes it likely for there to be a Hubble volume
with any given local perturbation on surfaces of constant density. Indeed in a sufficiently
large universe anything will happen somewhere. Hence the probability that a typical observer
sees a particular fluctuation is determined by the relative frequency with which different
fluctuations occur. But this is precisely what is given by the BU probabilities. This is an
example where the quantum state specifies a measure for local prediction in cosmology that
is well behaved for spatially large or infinite universes.

VII. CONCLUSION

The approach of this paper to cosmology in the regime of eternal inflation is significantly
different from many others [3]. We have started from the fundamental assumption that
the universe, including all its contents, is a closed quantum mechanical system. We have
explored the consequences of this for prediction in the regime of eternal inflation in simplified
models in the context of the low-energy approximate quantum theory of gravity.

Like any other closed quantum system the universe has a quantum state. The NBWF is
the model for this state used here. Bottom-up probabilities for the different, coarse-grained
histories of the universe and its contents follow from this state and not from a further posited
measure. Classical behavior of spacetime geometry is not assumed. Rather the ensemble of
possible classical histories of the universe is derived from its quantum state.

Observers are not assumed to necessarily exist, nor to be unique, nor to be essentially
classical systems outside the reach of quantum mechanics. Rather they are quantum sub-
systems of the universe described by certain data with a probability to exist in any Hubble
volume and a probability to be exactly replicated elsewhere in the universe.

Probabilities relevant for observations are top-down probabilities that take in account
the observing system as a quantum subsystem of the universe. The starting point for the
calculation of top-down probabilities are the bottom up probabilities for four-dimensional
histories conditioned on just the NBWF — the universe sub specie aeternitatis.

The NBWF predicts a particular ensemble of classical, inflationary histories with a char-
acteristic set of perturbations that emerge from quantum fluctuations. The bottom-up
probabilities favor histories with a small number of efolds [4]. The perturbations are Gaus-
sian with variance V (χ)/ǫ evaluated at horizon crossing, where ǫ is the slow-roll parameter
(eq. (4.9)). Therefore in histories with a regime where V (χ) > ǫ, significant probabilities
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are predicted for large fluctuations that left the horizon while this condition holds. This is
called the regime eternal inflation. The NBWF thus predicts that histories of this kind are
inhomogeneous on the large scales that left the horizon during such a regime. In particular
it predicts that any constant χ surface, such as the reheating surface, can differ significantly
from the same surface in the homo/iso background. This result resonates well with other
discussions of eternal inflation as well as numerical simulations using stochastic techniques
[24–27].

Top-down probabilities are constructed from bottom-up probabilities by further condi-
tioning on some part of our data that includes a description of the observational situation
within the universe. If one conditions on data D that localize the observer on one or several
surfaces in each history then the general weighting (5.4) connects top-down probabilities
to bottom-up ones. This weighting is not a choice, or a postulate, or a proposal. Instead
it arises necessarily from four considerations: 1) Our data D occur within a given Hubble
volume only with some quantum probability pE. 2) In a large universe our data may occur
elsewhere with significant probability. 3) All we know about the universe is that our history
exhibits at least one instance of it. 4) An assumption that we are equally likely to be any
of the instances of D that our universe exhibits.

Volume weighting arises as an approximation to (5.4) only when our data are rare in all
histories in the ensemble that are predicted with any significant probability. For realistic
values of pE [6] we find this implies that top-down probabilities favor histories with a large
number of efolds in models that have a parameter regime where V > ǫ, with ǫ the slow-roll
parameter [4, 5]. Unlike this approximation, the general weighting (5.4) is well behaved even
when spatial volumes become infinite. In fact for very large volumes, the quantum nature of
the observational situation implies that the top-down probabilities for observations converge
to the bottom-up probabilities19. This is an important difference with other discussions of
eternal inflation, usually not based on quantum cosmology. There the infinite volume limit
instead leads to ambiguities. In those cases, to predict the outcome of our observations
unambiguously, a measure must be introduced that regularizes the infinitely large spatial
volumes that arise in the regime of eternal inflation. By contrast, in quantum cosmology the
wave function provides the only measure needed for unambiguous prediction20. Furthermore,
it does this as part of a unified framework that also explains the origin of inflation and of
classical spacetime itself.

In this paper we have calculated the top-down probabilities for different fluctuations in
models with a single scalar field χ with a quadratic potential m2χ2. We find that the
NBWF predicts a significantly inhomogeneous universe on very large scales and a Gaussian
spectrum of small perturbations on currently observable scales when there is a regime of
eternal inflation, i.e. χ > 1/

√
m in the early universe. The inclusion of backreaction effects

of perturbations may give rise to histories with a truly infinite reheating surface, but we have
no indications this leads to a breakdown of the calculational framework nor do we expect
this to change this specific result.

19 This resonates with [28] where it is argued that the total number of locally distinguishable FRW universes

generated by eternal inflation is finite. Here we have seen that the top-down probabilities for different

values of local perturbations become indistinguishable in very large universes.
20 It would be of interest to compare top-down probabilities calculated from the NBWF with the predictions

of other measures employed in the study of eternal inflation.
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By contrast, in models where the scalar field takes values only in a restricted range21

that does not include a regime where V > ǫ, we find the top-down probabilities predict
large-scale homogeneity and a slightly non-Gaussian spectrum of observable fluctuations,
for realistic values of pE. The predicted level of non-Gaussianity is small on observable
scales but potentially detectable with future experiments. More generally we expect it to
be true that the top-down weighting leads to some non-Gaussianity only in models without
eternal inflation, and therefore to the possibility to test whether our universe exhibits a
regime of eternal inflation.

The differences between the TD and BU probabilities are striking. Bottom up probabili-
ties favor past inflation but only in small amounts. In contrast, top-down probabilities favor
a large number of efolds of past inflation. Bottom up probabilities favor a homogeneous
universe. Top-down probabilities predict a universe that is significantly inhomogeneous on
scales much larger than the present horizon in models with eternal inflation.

The top-down probabilities for prediction exemplified by (5.4) depend only on data D
within our past light cone. (In the present models this data is approximated by data on
a spacelike surface in our Hubble volume.) But they also depend on the implications of
the theory for the structure of the universe on scales much larger than the present horizon.
That is because top-down probabilities depend not only on what the data are on our past
light cone, but also on where light cones with that data may be located in spacetime. This
is determined in part by the quantum state, which predicts non-local correlations and in
particular specifies what the allowed classical spacetimes are.

Turning this connection around we see that from local observations we may draw infer-
ences about the structure of our universe outside the present horizon, assuming of course
that the theoretical framework behind these predictions is secure. The TD predictions for
the spectrum of primordial perturbations provide a striking example of this. These predict
a specific form of non-Gaussianity, but only in histories where we are rare. Any observation
of this non-Gaussianity would therefore provide valuable information about the possible lo-
cations of our data and place an upper bound on the size of our universe. If by contrast this
non-Gaussianity turns out to be absent in the perturbation spectrum this would be evidence
for a much larger, eternally inflating and therefore possibly infinite universe.

Thus if the values of the top-down probabilities depend on the large scale structure of
the universe then the results of the observations they predict offer the opportunity to probe
this structure. This striking connection between global structure and local observation is
ultimately traceable to the NBWF which, like any quantum state, is defined globally not
locally.

The underlying homo/iso symmetry has of course greatly simplified the calculation of
TD probabilities in this paper. The symmetry means all Hubble volumes on the surface
where the data D occur are equivalent, which essentially allows one to ignore all other
instances of our data and focus on our own. In particular, the probabilities for different
values of a perturbation mode z(n) in our own Hubble volume given D≥1 are the same as the
probabilities that the universe exhibits different values of perturbations z(n) in any Hubble
volume given D≥1. The symmetry therefore automatically ‘organizes’ the different Hubble
volumes, even when D occurs on infinitely large surfaces.

To apply the top-down approach to string theory which, it has been argued, at low

21 Or models where quantum corrections render the potential too steep so that the regime of eternal inflation

sets in only at the Planck scale.
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energies predicts a potential landscape with finitely many vacua with different physics, one
must generalize the calculations in this paper to models where the possible locations of D
are not all connected by symmetry22. In models of this kind, one expects the NBWF to
select inflating histories that roll down from flat patches in the landscape where the slow roll
conditions hold. However it appears plausible that besides histories where the background
is homogeneous and isotropic, the ensemble also includes histories where our data occur on
homogeneous surfaces in open FRW universes that are bubbles inside de Sitter space. This
is because one can get histories of this kind from complex Coleman-De Luccia instantons
that obey the no-boundary condition of regularity [2]. If one neglects collisions between
bubbles then all locations inside bubbles of the same type are equivalent, and only one
‘representative’ location enters in the calculation of TD probabilities. By contrast, the
relative probability of finding our data in bubbles of different types (or in histories without
bubbles) is important. In the NBWF this is given by the ratio of the real part of the actions
of the corresponding instantons, yielding a well-defined prediction. Thus, at the present
moment, we see no obstacle of theory or practice to extending the results of this paper to
more general and realistic models of the implications of a quantum universe.
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Appendix A: Semiclassical Wave Function of Linear Perturbations

In this Appendix we calculate the wave function of linearized perturbations around the
homogeneous isotropic saddle point histories discussed in Section IVA.

As discussed in Section IVB, the wave function of linear perturbations depends on the
background variables b and χ, and on a single linear combination of the perturbation vari-
ables a(n), b(n) and f(n) that describe the perturbed complex extremizing four geometry. We
work with the following gauge-invariant linear combination (see also [18, 29]),

ζ̃(n) = a3[φ̇(a(n) + b(n))−HEf(n)], (A1)

where ζ̃ tends to a real value z̃ at the boundary. To calculate Ψ(b, χ, z̃) it is convenient
to return to the original perturbation variables (4.3) and to choose a particular gauge to
find the solutions that extremize the action. One can then rewrite the result in terms of z̃n
and therefore express the wave function in a gauge invariant way. (In Section IV we have

written the wave function in terms of z = z̃/a3φ̇, which is conserved outside the horizon and
therefore closely related to physical (observable) quantities.)

A general linear scalar gauge transformation allows one to set E = B = 0 in (4.3), or
b(n) = k(n) = 0 in terms of perturbation modes. This is the Newtonian gauge in which
g(n) = −a(n), and the equations that govern the fluctuations read [18]

ä(n) + 4HE ȧ(n) − (3m2φ2 − 2/a2)a(n) = −3φ̇ḟ(n) − 3m2φf(n) (A2a)

22 The range of possible locations depends on the set of histories involved and therefore on the coarse-graining.

The latter is in turn determined by the question one asks.
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FIG. 1: The real part of the scale factor (left) and the scalar field (right) of the complex homoge-

neous isotropic slow-roll solution labeled by φ0 = 4, with m2 = .05. This is shown here along the

vertical part of a contour in the complex τ -plane that first runs from the origin to X ≈ π/2mφR(0)

and then upward along the y-axis. The turning point X and the phase of φ(0) have been fine-tuned

so that a and φ tend to real functions along the vertical part of the contour. This happens very

rapidly, so that the solution behaves classically already at y ≥ O(1).

f̈(n) + 3HE ḟ(n) − (m2 + (n2 − 1)/a2)f(n) = −4φ̇ȧ(n) − 2m2φa(n) (A2b)

ȧ(n) +HEa(n) = −3φ̇f(n) (A2c)

We consider a coarse-graining in which we concentrate on perturbation modes that leave
the Hubble radius during inflation. These are the modes that get amplified by the time-
dependent background and, ultimately, lead to the large-scale structures we observe today.

The no-boundary condition selects solutions of (A2) that are regular at the SP. This
means f(n) and a(n) must vanish as τ → 0. From eqs (A2) and regularity of the background
it follows that near the SP, the leading order term in τ is given by

f(n) = ζ(n)(0)τ
n−1, a(n) = −3m2φ(0)

4(n+ 2)
ζ(n)(0)τ

n+1 (A3)

where ζ(n)(0) ≡ |ζ(n)(0)|eiθ ≡ ζ(n)0e
iθ is a complex constant. The phase θ should be fine-

tuned such that ζ(n) is real at the endpoint υ. The amplitude ζ(n)0 in turn is determined
by z(n). At the SP ζ(n)0 is thus a free parameter which can be used to label the different
histories. The ensemble of perturbed histories can therefore be labeled by (φ0, ζ0).

At early times, when the physical wavelength a/n of the perturbation mode is smaller
than the Hubble radius H−1

E , the metric perturbation a(n) does not significantly affect the
evolution of the matter perturbation f(n). Specifically the terms on the right-hand side in
(A2b) are negligible in slow-roll backgrounds (4.1) when n ≫ |HEa|, so that for n ≫ 1 the
matter perturbation equation reduces to

f ′′
(n) + 2HEf

′
(n) − (n2 − 1)f(n) = 0. (A4)

Here prime denotes the derivative with respect to conformal Euclidean time ηE and HE ≡
a′/a. In this regime the solutions that are regular at the SP take the approximate analytic
form

f(n) =
ζ(n)(0)

a
enηE , a(n) = −3φ′ζ(n)(0)

na
enηE , (A5)
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FIG. 2: Left panel: When the perturbation mode is inside the horizon the complex scalar field

fluctuation oscillates with amplitude ∝ a−1, as illustrated here for the real part of the n = 20 mode

in the background of Figure 1.

Right panel: As a consequence of this, the Euclidean action of a perturbation mode that is inside

the horizon oscillates with an approximately constant amplitude.

where the constraint (A2c) was used to find the metric perturbation. These solutions are
valid in the complex η-plane in the regime n≫ Ha. From (A1) it follows that in this regime,

ζ̃(n) ≈ −Ha3f(n).
One can verify whether the analytic approximations (A5) are accurate by solving nu-

merically for the perturbations simultaneously with the complex background. This can be
done e.g. by integrating the field equations along a broken contour CB(X) in the complex
τ -plane that runs along the real axis to a point X, and then up the imaginary y-axis. When
φ0 ≥ φc

0 one can adjust both the turning point X and the phase angle γ of φ(0) so that a
and φ tend to real functions b(y) and χ(y) along the vertical line given by τ = X + iy in
the complex τ -plane [5]. These are the scale factor and scalar field of a classical Lorentzian
solution. An example of an exact complex background that tends to a classical history is
shown in Figure 1, for φ0 = 4 and m2 = .05.

In Figure 2 (left panel) we plot the evolution of the n = 20 matter perturbation along
the vertical part of the contour in this background. The range of y shown here corresponds
to the regime where the mode is inside the horizon. One sees it oscillates rapidly with
decreasing amplitude ∝ a−1, in good agreement with the analytic approximation (A5). The
Euclidean action of a solution to the equations (A2) is just a boundary term [18],

I(n) =Mz̃(n)z̃
′
(n) −Nz̃2(n) (A6)

where

M ≡ (n2 − 4)

2[(n2 − 4)a′2 + 3a2φ′2]
(A7)

and

N ≡ 1

4MUa3

[

Kn

(

2a4 − 3a6m2φ2 + 3
n2 − 1

n2 − 4
a4φ′2

)

+ a12m4φ2 + 3a9φφ′a′
]

(A8)

with U = Knaa
′ + a8m2φφ′ and Kn ≡ 1

3
[(n2 − 4)a′2 − (n2 + 5)a4φ′2 − (n2 − 4)a6m2φ2].

All quantities here are evaluated on the boundary surface where one calculates the wave
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FIG. 3: Numerical solution of the perturbation modes a(n) and f(n) for n = 20 in the exact complex

φ0 = 4 background shown in Figure 1. The modes are complex and oscillate when the absolute value

of their wavelength is smaller than the Hubble radius, or n > |aHE |. When the wavelength crosses

the Hubble radius around y ∼ 5 both the matter - and metric perturbation start slowly growing

until the end of inflation around y ∼ 60. The imaginary part of the gauge invariant combination

ζ(n) decays away in this regime. After inflation ends the metric perturbation is essentially real and

constant, with small oscillations due to the oscillating background scalar field. These primordial

metric perturbations provide the seeds for structure formation in the corresponding Lorentzian

cosmology.

function. In the complex τ -plane this surface is given by a certain value τf = X + iyf where

the variables take real values a(τf ) = b, φ(τf ) = χ and ζ̃(τf ) = z̃.
When the absolute value of the wavelength a/n of a complex perturbation mode becomes

larger than the Hubble radius, both the scalar field and metric perturbations stop oscillating
and start slowly growing. This transition can be clearly seen in the numerical solutions shown
in Figure 3. It can also be understood analytically: Outside the horizon the gradient term is
unimportant in the equations of motion (A2), which therefore admit growing and decaying
solutions for a(n) and f(n). The growing solutions are given by

f g
(n) ∼

1

φ
, a(n) =

1

φ
f g
(n) (A9)

and the decaying modes are

fd
(n) ∼

1

a3
, a(n) = − m

2H
fd
(n). (A10)

The general solution for ζ̃(n) in this regime is a combination of a growing and decaying
mode. The (complex) proportionality constants multiplying each term can be approximately
determined in terms of ζ(n)(0) by matching the solution on subhorizon scales at horizon
crossing n = a∗H∗. Here the subscript star means the quantity is to be evaluated at the time
of horizon crossing of modes with wavenumber n. At horizon crossing ζ̃(n) generally has an
imaginary component, since the scalar field and metric perturbation are not simultaneously
real. The requirement that ζ̃(n) be real at the boundary essentially means that the phase
θ of ζ(n)(0) at the SP should be tuned so that the imaginary component of the subhorizon
mode function matches onto the decaying mode when the perturbation leaves the horizon.

This also means perturbations behave classically when their wavelength exceeds the Hub-
ble radius, since the information on their phase decays away. We illustrate this in Figure 4
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FIG. 4: Left panel: The phase of the perturbation mode at the SP should be tuned so that zn is

real at the boundary. This is illustrated here for the numerical perturbation solution z20 along the

vertical part of a contour in the complex τ -plane, in the complex φ0 = 4 background.

Right panel: The ratio of the gradients of the real part of the Euclidean action to the imaginary

part tends to zero when the wavelength of a perturbation mode becomes larger than the Hubble

radius.

where θ is fine-tuned so that the numerical solution ζ̃(n), for n = 20, tends to a real function
z(n) along the vertical part of the broken contour CB(X) in the φ0 = 4 background and with
m2 = .05. One sees the ratio of the gradients of the real part of the Euclidean action to the
imaginary part tends to zero.

The real part of the action (A6) tends to a constant23, which is approximately given by
its value when the mode leaves the horizon. Hence for the approximate analytic solutions
(A5) we obtain

I
(n)
R →

nz̃2(n)(y∗)

2b4∗H
2
∗

(A11)
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