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1. INTRODUCTION

My intention in these lectures is to describe the practical business of actually doing

quantum cosmology. That is, I will describe how, in the context of particular models, one

determines the consequences for the late universe of a given theory of initial conditions.

What is the motivation for studying quantum cosmology? One possible motivation

comes from quantum gravity. Cosmological models are simple examples to which quantum

gravity ideas may be applied. Moreover, the very early universe is perhaps the only

laboratory in which quantum gravity may be tested. A second motivation, and the main

one for the purposes of these lectures, concerns initial conditions in cosmology. Although

the hot big bang model explains some of the features of the observed universe, there are a

number of features that it did not explain, such as its flatness, absence of horizons, and the

origin of the density fluctuations required to produce galaxies. The inflationary universe

scenario (Guth, 1981), which involves quantized matter fields on a classical gravitational

background, provided a possible solution to the horizon and flatness problems. Moreover,

by assuming that the matter fields start out in a particular quantum state, the desired

density fluctuation spectrum may be obtained.† However, in the inflationary universe

scenario, the question of initial conditions was largely ignored. Whilst it is certainly true

that, as a result of inflation, the observed universe could have arisen from a much larger

class of initial conditions than in the hot big bang model, it is certainly not true that it

could have arisen from any initial state – one could choose an initial quantum state for

the matter which did not lead to the correct density perturbation spectrum, and indeed,

one could choose initial conditions for which inflation does not occur. In order to have

a complete explanation of the presently observed state of the universe, therefore, it is

necessary to face up to the question of initial conditions.

Now, as the evolution of the universe is followed backwards in time, the curvatures

and densities approach the Planck scale, at which one would expect quantum gravitational

effects to become important. Quantum cosmology, in which both the matter and gravi-

tational fields are quantized, is therefore the natural framework in which to address the

question of initial conditions.

† For a review, see, for example, Brandenberger (1987, 1989).
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In a sentence, quantum cosmology is the application of quantum theory to the dy-

namical systems describing closed cosmologies. Historically, the earliest investigations

into quantum cosmology were primarily those of by DeWitt (1967), Misner (1969a, 1969b,

1969c, 1970, 1972, 1973) and Wheeler (1963, 1968) in the 1960’s. This body of work I shall

refer to as the “old” quantum cosmology, and will not be discussed here. It is discussed in

the articles by MacCallum (1975), Misner (1972) and Ryan (1972).

After the initial efforts by the above authors, quantum cosmology went

through a bit of a lull in the 1970’s. However, it was re-vitalized in the 1980’s, primarily

by Hartle and Hawking (Hartle and Hawking, 1983; Hawking, 1982, 1984a), by Vilenkin

(1984, 1986, 1988) and by Linde (1984a, 1984b, 1984c). There were two things that these

authors added to the old approach. Firstly, Hartle and Hawking introduced Euclidean

functional integrals, and used a blend of canonical and path integral methods. Secondly,

all of the above authors faced up squarely to the issue of boundary or initial conditions on

the wave function of the universe. It is this modern approach to quantum cosmology that

will be the subject of these lectures.

The central object of interest in quantum cosmology is the wave function of a closed

universe,

Ψ[hij(x),Φ(x), B] (1.1)

This is the amplitude that the universe contains a three-surface B on which the three-metric

is hij(x) and the matter field configuration is Φ(x). From such an amplitude one would

hope to extract various predictions concerning the outcome of large scale observations. To

fix the amplitude (1.1), one first needs a theory of dynamics, such as general relativity.

From this one can derive an equation analagous to the Schrodinger equation, called the

Wheeler-DeWitt equation, which the wave function of the universe must satisfy. The

Wheeler-DeWitt equation will have many solutions, so in order to have any predictive

power, it is necessary to propose a law of initial or boundary conditions to single out just

one solution. And fnally, one needs some kind of scheme to interpret the wave function. So

these are the three elements that go into quantum cosmology: dynamics, initial conditions,

interpretation.

One of the most basic observational facts about the universe we observe today is that

it is described by classical laws to a very high degree of precision. Since in quantum

cosmology the universe is taken to be fundamentally quantum mechanical in nature, one

3



of the most primitive predictions a quantum theory of initial conditions should make, is

that the universe is approximately classical when it is large. Indeed, what we will typically

find to be the case is that the wave function indicates the regions in which space-time

is essentially classical, and those in which it is not. In the regions where spacetime is

essentially classical, we will find that the wave function is peaked about a set of solutions

to the classical Einstein equations and, as a consequence of the boundary conditions on

the wave function, this set is a subset of the general solution. The boundary conditions,

through the wave function, therefore set initial conditions on the classical solutions. We

may then begin to ask whether or not the finer details of the universe we observe, such as the

existence of an inflationary era, are consequences of the chosen theory of initial conditions.

In addition, in the approximately classical region, we will recover from the Wheeler-DeWitt

equation the familiar quantum field theory for the matter fields on a classical curved

spacetime background. Moreover, we will find that the boundary conditions on the wave

function of the universe single out a particular choice of vacuum state for the matter fields.

We may then ask whether or not the chosen vacuum state is the appropriate one for the

subsequent emergence of large scale structure.

These remarks will hopefully become clearer as we progress, but in brief, the theme

of these lectures may be summarized as follows. The inflationary universe scenario – and

indeed most other cosmological scenarios – will always depend to some extent on initial

conditions. I would like to try and argue that, within the context of quantum cosmology,

there exist natural quantum theories of initial or boundary conditions from which the

appropriate initial conditions for inflation and the emergence of large scale structure follow.

Throughout the text I will give very few references. An extensive guide to the literature

is contained in Section 13.

2. A SIMPLE EXAMPLE

Rather than begin with the general formalism of quantum cosmology, I am going to

first consider a simple inflationary universe model. This will help clarify some of the rather

vague remarks made above concerning the need for initial conditions. The model will be

treated rather heuristically; the details will be attended to later.
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Consider a universe described by a homogeneous isotropic Robertson-Walker metric

ds2 = σ2
[

−N2(t)dt2 + e2α(t)dΩ2
3(k)

]

(2.1)

where σ2 = 2/(3πm2
p) and dΩ2

3(k) is the metric on the spatial sections which have constant

curvature k = −1, 0,+1. In quantum cosmology one is generally interested in closed

(k = +1) universes, but for the moment we will retain all three values of k. The metric

is described by a single scale factor, eα(t). As matter source we will use a homogeneous

minimally coupled scalar field
√

2πσφ(t) with potential 2π2σ2V (φ). The Einstein-scalar

action for this system is

S =
1

2

∫

dtNe3α

[

− α̇2

N2
+
φ̇2

N2
− V (φ) + ke−2α

]

(2.2)

(the full form of the Einstein-scalar action is given in the next section). By varying with

respect to α, φ and N , one may derive the field equations and constraint, which, after

some rearrangement, are conveniently written,

φ̈ = −3α̇φ̇− 1

2
V ′(φ) (2.3)

α̈ = −2φ̇2 − α̇2 + V (φ) (2.4)

−α̇2 + φ̇2 + V (φ) = ke−2α (2.5)

in the gauge N = 1. We will not assume a precise form for V (φ), except that it is

of the inflationary type; that is, that for some range of values of φ, V (φ) is large and

|V ′(φ)/V (φ)| << 1. This is satisfied, for example, for large φ in chaotic models, with

V (φ) = m2φ2 or λφ4, and for φ near the origin in models with a Coleman-Weinberg

potential. It is important to note that the general solution to the system (2.3)-(2.5) will

involve three arbitrary parameters.

For models in which the potential satisfies the above conditions, it is easily seen that

there exist solutions for which φ̇ ≈ 0 and the potential then acts like a cosmological

constant; thus the model undergoes inflation, eα ≈ eV
1

2 t. However, whether or not such

a solution arises is clearly a question of initial conditions: one needs to choose the initial

value of φ̇ to be small, and one needs to choose the initial value of φ to be in the region

for which |V ′(φ)/V (φ)| << 1. It is therefore pertinent to ask, to what extent is inflation

generic in a model of this type?
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To address this question, one needs a complete picture of the classical solutions. Clearly

it would be very difficult to solve the field equations exactly, even for very simple choices

of V (φ). However, one can often obtain useful information using the qualitative theory

of dynamical systems. The sort of differential equations one encounters in cosmology can

frequently be cast in the form

ẋ = f(x, y, z...), ẏ = g(x, y, z...), ż = ... (2.6)

Eq.(2.6) gives the direction of the solutions at every point (x, y, z...). By drawing arrows

at a selection of points one may thus construct a complete picture of the entire family of

trajectories which solve (2.6) without integrating explicitly.

This method may be applied to the field equations (2.3), (2.4) by writing x = φ̇, y = α̇,

z = φ (the constraint (2.5) is not normally used so that the three cases k = 0,−1,+1 may be

treated simultaneously). The resulting three-dimensional phase portrait is, however, rather

difficult to construct.† Let us therefore make a simplification, which is to go straightaway

to a region where the φ-dependence of V (φ) is negligible. This is like having a massless

scalar field and a cosmological constant. One then has a two-dimensional system,

ẋ = −3xy, ẏ = −2x2 − y2 + V (2.7)

The constraint equation

x2 − y2 + V = ke−2α (2.8)

simply indicates that the k = 0 solutions are the two curves y = ±
√
x2 + V , the k = +1

solutions lie between these curves and the k = −1 solutions lie outside these curves.

The phase portrait for this two-dimensional system is shown in Fig.1. The point of

particular interest is the point α̇ = V
1

2 , φ̇ = 0, on the k = 0 curve, because at this point

the model undergoes inflation. This point is an attractor for all the expanding k = 0 and

k = −1 solutions. The k = +1 solutions, however, with which one is primarily concerned

in quantum cosmology, do not all end up on the attractor: if they start out away from

the k = 0 curve with |φ̇| large they recollapse before getting anywhere near the attractor.

Inflation occurs, therefore, only for the subset of k = +1 solutions with reasonably small

† In the case k = 0, one can eliminate α̇ using the constraint, and the phase portrait becomes
two-dimensional. This has been constructed for various inflationary potentials by Belinsky
et al.(1985) and Piran and Williams (1985).
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initial φ̇. Furthermore, when V (φ) is allowed to vary with φ, there is also the issue of

sufficient inflation. In the massive scalar field model, for example, even if φ̇ ≈ 0 initially,

it is known that the universe inflates by the required factor e65 only for initial values of φ

greater than about 4 (in Planck units) (Hawking, 1984a; Page, 1986a).

So this simple model allows one to see quite clearly how the occurence of inflation

depends rather crucially on the initial values of φ and φ̇. Now let us consider the quan-

tization of this model, still proceeding heuristically, to see how quantum cosmology may

shed some light on this issue.

We wish to quantize the dynamical system described by the action (2.2), for the case

k = +1. We begin by finding the Hamiltonian of the theory. The momenta conjugate to

α and φ are defined in the usual way and are given by

πα = −e3α α̇
N
, πφ = e3α

φ̇

N
(2.9)

The canonical Hamiltonian is defined in the usual way and is given by

Hc =
1

2
Ne−3α

[

−π2
α + π2

φ + e6αV (φ) − e4α
]

≡ NH (2.10)

The Hamiltonian form of the action is given by

S =

∫

dt
[

α̇πα + φ̇πφ −NH
]

(2.11)

This form of the action exposes the fact that the lapse function N is a Lagrange multiplier

which enforces the constraint

H = 0 (2.12)

This is just the phase-space form of the constraint (2.5). The constraint indicates the

presence of a symmetry, in this case reparametrization invariance, about which we will

have more to say later.

Proceeding naively, we quantize this system by introducing a wave function Ψ(α, φ, t)

and asking that it satisfy a time-dependent Schrödinger equation constructed from the

canonical Hamiltonian (2.10):

i
∂Ψ

∂t
= HcΨ (2.13)
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To ensure that the symmetry corresponding to the constraint (2.12) be imposed at the

quantum level, we will also ask that the wave function is annihilated by the operator

version of (2.12):

HΨ =
1

2
e−3α

[

∂2

∂α2
− ∂2

∂φ2
+ e6αV (φ) − e4α

]

Ψ = 0 (2.14)

where the momenta in (2.12) have been replaced by operators using the usual substitutions.

However, since Hc = NH, it follows from (2.13) and (2.14) that the wave function is

independent of t; thus the entire dynamics of the wave function is in fact contained in

(2.14) with Ψ = Ψ(α, φ). The fact that the wave function does not depend on the time

parameter t explicitly is actually characteristic of parametrized theories such as general

relativity. (2.14) is called the Wheeler-DeWitt equation and is the central equation of

interest in quantum cosmology.

Let us find some simple solutions to this equation. Let us go to a region for which

|V ′(φ)/V (φ)| << 1 and look for solutions which do not depend very much on φ, so we may

ignore the φ derivative term in (2.14). The problem is then a standard one-dimensional

WKB problem in α with a potential U = e6αV (φ)− e4α. In the region U << 0, where the

scale factor is small, there are WKB solutions of the form

Ψ(α, φ) ≈ exp

(

± 1

3V (φ)
(1 − e2αV (φ))3/2

)

(2.15)

This region, in which the wave function is exponential, is normally regarded as some kind

of tunneling or classically forbidden region. In the region U >> 0, where the scale factor

is large, there are WKB solutions of the form

Ψ(α, φ) ≈ exp

(

± i

3V (φ)
(e2αV (φ) − 1)3/2

)

(2.16)

This region, in which the wave function is oscillatory, is usually thought of as a classically

allowed region. One can impose boundary conditions in either region, and then match the

solutions in the two regions using the usual WKB matching procedure.

Consider in a little more detail the oscillatory region, including the φ dependence. Let

us look for solutions of the form Ψ = eiS , where S is a rapidly varying function of α and

φ. Inserting this in the Wheeler-DeWitt equation, one finds that, to leading order, S must

obey the Hamilton-Jacobi equation

−
(

∂S

∂α

)2

+

(

∂S

∂φ

)2

+ U(α, φ) = 0 (2.17)
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We will assume that some set of boundary conditions are imposed on Ψ; thus a particular

solution of the Hamilton-Jacobi equation (2.17) will be picked out. Compare (2.17) with

the Hamiltonian constraint,

−π2
α + π2

φ + U(α, φ) = 0 (2.18)

It invites the identification

πα =
∂S

∂α
, πφ =

∂S

∂φ
(2.19)

More precisely, one can in fact show that a wave function of the form eiS predicts a strong

correlation between coordinates and momenta of the form (2.19). Furthermore, using the

relationship between velocities and momenta (2.9), and the fact that S obeys the Hamilton-

Jacobi equation (2.17), one may show that (2.19) defines a set of trajectories in the αφ

plane which are solutions to the classical field equations and constraint, (2.3)-(2.5). That

is, the wave function eiS is strongly peaked about a set of solutions to the classical field

equations.

For a given solution S of the Hamilton-Jacobi equation the first integral of the field

equations (2.19) about which the wave function is peaked involves just two arbitrary pa-

rameters. Recall, however, that the general solution to the full field equations (2.3)-(2.5) in-

volved three arbitrary parameters. For given S, therefore, the wave function eiS is strongly

peaked about the two-parameter subset of the three-parameter general solution. By imposing

boundary conditions on the wave function a particular solution Ψ to the Wheeler-DeWitt

equation is picked out, which in the WKB approximation picks out a particular solution

S to the Hamilton-Jacobi equation; this in turn defines a two-parameter subset of the

three-parameter general solutions. It is in this way that boundary conditions on the wave

function of the universe effectively imply initial conditions on the classical solutions.

Let us see how this works for the particular solution (2.16). For e2αV >> 1, it is of

the form eiS with S ≈ −1
3e

3αV
1

2 . According to the above analysis, this wave function is

peaked about the trajectories defined by

α̇ ≈ V
1

2 , φ̇ ≈ 0 (2.20)

(we could of course have taken the opposite sign for S – this leads to a set of contracting

solutions). Eq.(2.20) integrates to yield

eα ≈ eV
1

2 (t−t0), φ ≈ φ0 = constant (2.21)

9



Here t0 and φ0 are the two arbitrary constants parametrizing this set of solutions. The

constant t0 is in fact irrelevant, because it is just the origin of unobservable parameter

time. From (2.20) one may see that the wave function is peaked right on the inflationary

attractor in Fig.1. So this particular wave function picks out the inflationary solutions.

One can actually get a little more out of the wave function in addition to (2.20). The

wave function more generally is of the form C(α, φ)eiS . The eiS part, as we have discussed,

shows that the wave function is peaked about a set of trajectories. These trajectories may

be labeled by the value of the arbitrary constant φ0. The prefactor effectively provides a

measure on the set of possible values of φ0, and may therefore be used to assess the relative

likelihood of inflation. We will describe this in a lot more detail later.

From this simple model we have learned a few things that are in fact quite general.

They are as follows:

1) Classical cosmology needs initial conditions. This is illustrated rather clearly using

the phase-portrait of classical solutions, allowing one to see what sort of features are

generic, and what sort of features are dependent on a specific choice of initial conditions.

2) In the quantized model, there is a region in which the wave function is exponential,

indicating that this region is classically forbidden.†

3) There is a region in which the wave function is oscillatory, indicating that this region

classically allowed. To be precise, the wave function in the oscillatory region is strongly

peaked about a set of solutions to the classical field equations.

4) The set of solutions about which a given WKB wave function is peaked is a subset of the

general solution to the field equations. That is, a particular solution to the Wheeler-

DeWitt equation is peaked about a particular subset of the full set of solutions to

the field equations. Moreover, the wave function provides a measure on the classical

trajectories within this set. A general solution to the Wheeler-DeWitt equation would

be peaked about a general solution to the field equations, so by simply quantizing the

model one does not necessarily learn anything about initial conditions. One merely

† In this particular model, and for the particular solution to the Wheeler-DeWitt equation
we looked at, the classically forbidden region is at small values of the scale factor. This
is in accord with the general belief that “quantum gravity effects become important when
the universe is very small”. This is, however, dependent on boundary conditions. There
are other solutions to the Wheeler-DeWitt equation which are oscillatory for small scale
factors. We shall return to this point in Section 6.
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transfers the question of initial conditions on the classical solutions to the question of

boundary conditions on the wave function of the universe. To have complete predictive

power, therefore, one needs a quantum theory of boundary conditions.

In connection with the fourth point above, one might ask, have we really improved the

situation with regard to initial conditions by going to the quantum theory? The answer

is, I believe, yes, for at least two reasons. Firstly, as the simple model above indicates, a

classical description of cosmology is not always valid. In attempting to impose classical

initial conditions at small three-geometries, therefore, one might be imposing them in a

region in which, from the point of view of the quantum theory, a classical description is

not really appropriate. Secondly, a somewhat more aesthetic point. Classically, there is no

obvious reason for choosing one set of initial conditions over another. No one choice stands

out as being more natural or elegant than any other. In quantum cosmology, however, one

can argue that certain quantum states for the universe have considerably more appeal than

others on the grounds of simplicity or naturalness. I will leave this to the reader to judge

for themselves when we come to discuss particular proposals for quantum theories of initial

conditions.

This ends what has really been an introductory tour of quantum cosmology. In the

following sections, we will go over essentially the same points but in greater generality and

detail.

3. THE HAMILTONIAN FORMULATION

OF GENERAL RELATIVITY

We now procede to the general formalism of quantum cosmology. This begins with

the Hamiltonian formulation of general relativity (Hanson et al., 1976; Misner et al.,1970;

Teitelboim, 1990). One considers a three-surface on which the three-metric is hij , with

some matter field configuration. We will take the three-surface to be compact, since we

are considering only closed universes. The three-surface is embedded in a four-manifold

on which the four-metric is gµν . This embedding is described by the standard (3+1) form

of the four-metric,

ds2 = gµνdx
µdxν = −

(

N2 −NiN
i
)

dt2 + 2Nidx
idt+ hijdx

idxj (3.1)
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where N and Ni are the lapse and shift functions. (Our conventions are µ, ν = 0, 1, 2, 3 and

i, j = 1, 2, 3). They describe the way in which the choice of coordinates on one three-surface

is related to the choice on an adjacent three-surface, and are therefore arbitrary.

The action will be taken to be the standard Einstein-Hilbert action coupled to matter,

S =
m2
p

16π

[
∫

M
d4x(−g) 1

2 (R− 2Λ) + 2

∫

∂M
d3xh

1

2K

]

+ Smatter (3.2)

whereK is the trace of the extrinsic curvatureKij at the boundary ∂M of the four-manifold

M , and is given by

Kij =
1

2N

[

−
∂hij
∂t

+ 2D(iNj)

]

(3.3)

Here, Di is the covariant derivative in the three-surface. For a scalar field Φ, the matter

action is

Smatter = −1

2

∫

d4x(−g) 1

2

[

gµν∂µΦ∂νΦ + V (Φ)
]

(3.4)

In terms of the (3+1) variables, the action takes the form

S =
m2
p

16π

∫

d3xdtNh
1

2

[

KijK
ij −K2 + 3R− 2Λ

]

+ Smatter (3.5)

In a perfectly standard way, one may derive the Hamiltonian form of the action,

S =

∫

d3xdt
[

ḣijπ
ij + Φ̇πΦ −NH−N iHi

]

(3.6)

where πij and πΦ are the momenta conjugate to hij and Φ respectively. The Hamiltonian is

a sum of constraints, with the lapse N and shift N i playing the role of lagrange multipliers.

There is the momentum constraint,

Hi = −2Djπ
j
i + Hmatter

i = 0 (3.7)

and the Hamiltonian constraint

H =
16π

m2
p
Gijklπ

ijπkl −
m2
p

16π
h

1

2 (3R − 2Λ) + Hmatter = 0 (3.8)

where Gijkl is the DeWitt metric and is given by

Gijkl =
1

2
h−

1

2

(

hikhjl + hilhjk − hijhkl
)

(3.9)
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These constraints are equivalent, respectively, to the time-space and time-time components

of the classical Einstein equations. The constraints play a central role in the canonical

quantization procedure, as we shall see.

The arena in which the classical dynamics takes place is called superspace, the space of

all three-metrics and matter field configurations (hij(x),Φ(x)) on a three-surface†. Super-

space is infinite dimensional, with a finite number of coordinates (hij(x),Φ(x)) at every

point x of the three-surface. The DeWitt metric (plus some suitable metric on the matter

fields) provides a metric on superspace. It has the important property that its signature

is hyperbolic at every point x in the three-surface. The signature of the DeWitt metric is

independent of the signature of spacetime.

4. QUANTIZATION

In the canonical quantization procedure, the quantum state of the system is represented

by a wave functional Ψ[hij ,Φ], a functional on superspace. An important feature of this

wave function is that is does not depend explicitly on the coordinate time label t. This

is because the three-surfaces are compact, and thus their intrinsic geometry, specified by

the three-metric, fixes more-or-less uniquely their relative location in the four-manifold.

Another way of saying essentially the same thing, is to say that general relativity is an

example of a parametrized theory, which means that “time” is already contained amongst

the dynamical variables describing it, hij ,Φ.

According to the Dirac quantization procedure, the wave function is annihilated by the

operator versions of the classical constraints. That is, if one makes the usual substitutions

for momenta

πij → −i δ

δhij
πΦ → −i δ

δΦ
(4.1)

one obtains the following equations for Ψ. There is the momentum constraint

HiΨ = 2iDj
δΨ

δhij
+ Hmatter

i Ψ = 0 (4.2)

† This superspace has nothing to do with the superspace of supersymmetry. Also, earlier au-
thors in quantum cosmology used a different definition of superspace: they defined it to be
the space of all three-metrics, but factored out by the three-dimensional diffeomorphisms.
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and the Wheeler-DeWitt equation

HΨ =

[

−Gijkl
δ

δhij

δ

δhkl
− h

1

2 (3R − 2Λ) + Hmatter
]

Ψ = 0 (4.3)

where we have ignored operator ordering problems.

The momentum constraint implies that the wave function is the same for configurations

(hij(x),Φ(x)) that are related by coordinate transformations in the three-surface. To see

this, let us restrict attention to the case of no matter, and consider the effect of shifting

the argument of the wave function by a diffeomorphism in the three-surface, xi → xi− ξi.

One has

Ψ[hij +D(iξj)] = Ψ[hij ] +

∫

d3xD(iξj)
δΨ

δhij
(4.4)

Integrating by parts in the last term, and dropping the boundary term (since the three-

manifold is compact), one finds that the change in Ψ is given by

δΨ = −
∫

d3xξjDi

(

δΨ

δhij

)

=
1

2i

∫

d3xξiHiΨ (4.5)

showing that wave functions satisfying (4.2) are unchanged. The momentum constraint

(4.2) is therefore the quantum mechanical expression of the invariance of the theory under

three-dimensional diffeomorphisms.∗ Similarly, the Wheeler-DeWitt equation (4.3) is con-

nected with the reparametrization invariance of the theory. This is a lot harder to show

and we will not go into it here†.

The Wheeler-DeWitt equation is a second order hyperbolic functional differential equa-

tion describing the dynamical evolution of the wave function in superspace. The part of

the three-metric corresponding to the minus sign in the hyperbolic signature, and so to

the “time” part, is the volume of the three-metric, h
1

2 . The Wheeler-DeWitt equation will

in general have a vast number of solutions, so in order to have any predictive power we

need boundary conditions to pick out just one solution. This might involve, for example,

giving the value of the wave function at the boundary of superspace.

∗ This was first shown by Higgs (1958).
† The difficulty is essentially due to the fact that although wave functions Ψ[hij ] carry a

representation of the three-dimensional diffeomorphism group, they do not carry a repre-
sentation of the four-dimensional diffeomorphisms. A closely related fact is that the Poisson
bracket algebra of the constraints is not that of the four-dimensional diffeomorphsims. For
a discussion of these issues and their resolution, see Isham and Kuchař (1985a, 1985b),
Kuchař (1986).
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As an alternative to the canonical quantization procedure, one can construct the wave

function using a path integral. In the path integral method, the wave function (or more

precisely, some kind of propagator) is represented by a Euclidean functional integral over

a certain class of four-metrics and matter fields, weighted by e−I , where I is the Euclidean

action of the gravity plus matter system. Formally, one writes

Ψ[h̃ij , Φ̃, B] =
∑

M

∫

DgµνDΦe−I . (4.6)

The sum is taken over some class of manifolds M for which B is part of their boundary,

and over some class of four-metrics gµν and matter fields Φ which induce the three-metric

h̃ij and matter field configuration Φ̃ on the three-surface B (see Fig.2.). The sum over

four-manifolds is actually very difficult to define in practice, so one normally considers each

admissable four-manifold separately. The path integral permits one to construct far more

complicated amplitudes than the wave function for a single three-surface (Hartle, 1990),

but this is the simplest and most frequently used amplitude, and it is the only one that

will be discussed here.

When the four-manifold has topology IR×B, the path integral has the explicit form

Ψ[h̃ij , Φ̃, B] =

∫

DNµ
∫

DhijDΦδ[Ṅµ − χµ]∆χ exp(−I[gµν ,Φ]) (4.7)

Here, the delta-functional enforces the gauge-fixing condition Ṅµ = χµ and ∆χ is the as-

sociated Faddeev-Popov determinant. The lapse and shift Nµ are unrestricted at the end-

points. The three-metric and matter field are integrated over a class of paths (hij(x, τ),Φ(x, τ))

with the restriction that they match the argument of the wave function on the three-surface

B, which may be taken to be the surface τ = 1. That is,

hij(x, 1) = h̃ij(x), Φ(x, 1) = Φ̃(x) (4.8)

To complete the specification of the class of paths one also needs to specify the conditions

satisfied at the initial point, τ = 0 say.

The expression, “Euclidean path integral” should be taken with a very large grain

of salt for the case of gravitational systems. One needs to work rather hard to give

the expression (4.6) a sensible meaning. In particular, in addition to the usual issues

associated with defining a functional integral over fields, one has to deal with the fact that
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the gravitational action is not bounded from below. This means that the path integral

will not converge if one integrates over real Euclidean metrics. Convergence is achieved

only by integrating along a complex contour in the space of complex four-metrics. The

sum is therefore over complex metrics and is not even equivalent to a sum over Euclidean

metrics in any sense. Furthermore, there is generally no unique contour and the outcome

of evaluating the path integral could depend rather crucially on which complex contour

one chooses. We will have more to say about this later on.

As we have already noted, the Wheeler-DeWitt equation and momentum constraints,

(4.2), (4.3) are normally thought of as a quantum expression of invariance under four-

dimensional diffeomorphisms. One ought to be able to see the analagous thing in the

path integral, and in fact one can. The wave functions generated by the path integral

(4.7) may formally be shown to satisfy the Wheeler-DeWitt equation and momentum

constraints, providing that the path integral is constructed in an invariant manner. This

means that the action, measure, and class of paths summed over should be invariant under

diffeomorphisms (Halliwell and Hartle, 1990).

Which solution to the Wheeler-DeWitt equation is generated by the path integral will

depend on how the initial conditions on the paths summed over are chosen, and how the

contour of integration is chosen; thus the question of boundary conditions on the wave

function in canonical quantization appears in the path integral as the question of choosing

a contour and choosing a class of paths. No precise relationship is known, however.

Interpretation

To complete this discussion of the general formalism of quantum cosmology, a few words

on interpretation are in order. Hartle has covered the basic ideas involved in interpreting

the wave function. Here, I am just going to tell you how I am going to interpret the wave

function without trying to justify it. The basic idea is that we are going to regard a strong

peak in the wave function, or in a distribution constructed from the wave function, as a

prediction. If no such peaks may be found, then we make no prediction. This will be

sufficient for our purposes. References to the vast literature on this subject are given in

Section 13.
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5. MINISUPERSPACE – GENERAL THEORY

Since superspace, the configuration space one deals with in quantum cosmology, is

infinite dimensional, the full formalism of quantum cosmology is very difficult to deal with

in practice. In classical cosmology, because the universe appears to be homogeneous and

isotropic on very large scales, one’s considerations are largely restricted to the region of

superspace in the immediate vicinity of homogeneity and isotropy. That is, one begins by

studying homogeneous isotropic (or sometimes anisotropic) metrics and then goes on to

consider small inhomogeneous perturbations about them. In quantum cosmology one does

the same. To be precise, one generally begins by considering a class of models in which all

but a finite number of degrees of freedom of the metric and matter fields are “frozen” or

“suspended”. This is most commonly achieved by restricting the fields to be homogeneous.

Such models are known as “minisuperspace” models and are characterized by the fact that

their configuration space, minisuperspace, is finite dimensional. One is thus dealing with

a problem of quantum mechanics, not of field theory. A very large proportion of the work

done in quantum cosmology has concentrated on models of this type.

Clearly in the quantum theory there are considerable difficulties associated with the

restriction to minisuperspace. Setting most of the field modes and their momenta to zero

identically violates the uncertainty principle. Moreover, the restriction to minisuperspace

is not known to be part of a systematic approximation to the full theory. At the humblest

level, one can think of minisuperspace models not as some kind of approximation, but

rather, as toy models which retain certain aspects of the full theory, whilst avoiding others,

thereby allowing one to study certain features of the full theory in isolation from the rest.

However, in these lectures we are interested in cosmological predictions. I am therefore

going to take the stronger point of view that these models do have something to do with the

full theory. In what follows I will therefore try to emphasize what aspects of minisuperspace

models may be argued to transcend the restrictions to minisuperspace. We will return to

the question of the validity of the minisuperspace “approximation” later on.

The simple model of the previous section was of course a minisuperspace model, in

that we restricted the metric and matter field to be homogeneous and isotropic. More

generally, minisuperspace usually involves the following: in the four-metric (3.1), the lapse

is taken to be homogeneous, N = N(t), and the shift is set to zero, N i = 0, so that one
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has

ds2 = −N2(t)dt2 + hij(x, t)dx
idxj (5.1)

Most importantly, the three-metric hij is restricted to be homogeneous, so that it is de-

scribed by a finite number of functions of t, qα(t) say, where α = 0, 1, 2 · · · (n− 1). Some

examples of possible ways in which the three-metric may be restricted are given below.

One could take a Roberston-Walker metric as we did in Section 2,

hij(x, t)dx
idxj = a2(t)dΩ2

3 (5.2)

Here, dΩ2
3 is the metric on the three-sphere, and qα = a. One could take an anisotropic

metric with spatial sections of topology S1 × S2,

hij(x, t)dx
idxj = a2(t)dr2 + b2(t)dΩ2

2 (5.3)

Here, dΩ2
2 is the metric on the two-sphere, r is periodically identified, and qα = (a, b).

More generally, one could consider Bianchi-type metrics,

hij(x, t)dx
idxj = a2(t)(eβ)ijσ

iσj (5.4)

Here, the σi are a basis of one-forms and the qα consist of the scale factor a and the various

components of the matrix β, which describe the degree of anisotropy. Many more models

are cited in Section 13.

In terms of the variables describing the (3+1) decomposition of the four-metric, (3.1),

the Einstein action with cosmological constant (3.2) is

S[hij, N,N
i] =

m2
p

16π

∫

dtd3xNh
1

2

[

KijK
ij −K2 + 3R − 2Λ

]

(5.5)

On inserting the restricted form of the metric described above one generally obtains a

result of the form

S[qα(t), N(t)] =

∫ 1

0
dtN

[

1

2N2
fαβ(q)q̇

αq̇β − U(q)

]

≡
∫

Ldt (5.6)

Here, fαβ(q) is the reduced version of the DeWitt metric, (3.6), and has indefinite signature,

(−,+,+,+...). The range of the t integration may be taken to be from 0 to 1 by shifting

t and by scaling the lapse function. The inclusion of matter variables, restricted in some

way, also leads to an action of this form, so that the qα may include matter variables
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as well as three-metric components. The (−) part of the signature in the metric always

corresponds to a gravitational variable, however.

Restricting to a metric of the form (5.1) is not the only way of obtaining a minisu-

perspace model. Sometimes it will be convenient to scale the lapse by functions of the

three-metric. Alternatively, one may wish to consider not homogeneous metrics, but in-

homogeneous metrics of a restricted type, such as spherically symmetric metrics. Or, one

may wish to use a higher-derivative action in place of (5.5). In that case, the action can

always be reduced to first order form by the introduction of extra variables (e.g. Q = ä,

etc.). One way or another, one always obtains an action of the form (5.6). We will there-

fore take this action to be the defining feature of minisuperspace models. So from here

onwards, our task is to consider the quantization of systems described by an action of the

form (5.6).

The action (5.6) has the form of that for a relativistic point particle moving in a curved

space-time of n dimensions with a potential. Varying with respect to qα one obtains the

field equations
1

N

d

dt

(

q̇α

N

)

+
1

N2
Γαβγ q̇

β q̇γ + fαβ
∂U

∂qβ
= 0 (5.7)

where Γαβγ is the usual Christoffel connection constructed from the metric fαβ . Varying

with respect to N one obtains the constraint

1

2N2
fαβ q̇

αq̇β + U(q) = 0 (5.8)

These equations describe geodesic motion in minisuperspace with a forcing term.

It is important to note that the general solution to (5.7), (5.8) will involve (2n − 1)

arbitrary parameters.†

For consistency, (5.7) and (5.8) ought to be equivalent, respectively, to the 00 and ij

components of the full Einstein equations,

Rµν −
1

2
Rgµν + Λgµν =

8π

m2
p
Tµν (5.9)

This is not, however, guaranteed. Inserting an ansatz for the metric into the action and

then taking variations to derive the minisuperspace field equations does not necessarily

† As in the model of Section 2, one of the parameters will be t0, the origin of unobservable
parameter time, so effectively one has (2n− 2) physically relevant parameters.
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yield the same field equations as are obtained by inserting the minisuperspace ansatz

directly into (5.9). Our analysis is therefore restricted to minisuperspace models for which

these two paths to the field equation give the same result. This excludes, for example,

metrics in Bianchi Class B, but does include a sufficent number of interesting examples.

When studying minisuperspace models, one should always check that the acts of taking

variations and inserting an ansatz commute (and also that the 0j components of (5.9) are

trivially satisfied).

The Hamiltonian is found in the usual way. One first defines canonical momenta

pα =
∂L

∂q̇α
= fαβ

q̇β

N
(5.10)

and the canonical Hamiltonian is

Hc = pαq̇
α − L = N

[

1

2
fαβpαpβ + U(q)

]

≡ NH (5.11)

where fαβ(q) is the inverse metric on minisuperspace. The Hamiltonian form of the action

is

S =

∫ 1

0
dt [pαq̇

α −NH] (5.12)

This indicates that the lapse function N is a Lagrange multiplier enforcing the Hamiltonian

constraint

H(qα, pα) =
1

2
fαβpαpβ + U(q) = 0 (5.13)

This is equivalent to the Hamiltonian constraint of the full theory (3.8), integrated over

the spatial hypersurfaces. The momentum constraint, (3.7), is usually satisfied identically

by the minisuperspace ansatz (modulo the above reservations).

Canonical Quantization

Canonical quantization involves the introduction of a time-independent wave function

Ψ(qα) and demanding that it is annihilated by the operator corresponding to the classical

constraint (5.13). This yields the Wheeler-DeWitt equation,

Ĥ(qα,−i ∂
∂qα

)Ψ(qα) = 0 (5.14)
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Because the metric fαβ depends on q there is a non-trivial operator ordering issue in (5.14).

This may be partially resolved by demanding that the quantization procedure is covariant

in minisuperspace; i.e. that is is unaffected by field redefinitions of the three-metric and

matter fields, qα → q̃α(qα). This narrows down the possible operator orderings to

Ĥ = −1

2
∇2 + ξIR+ U(q) (5.15)

where ∇2 and IR are the Laplacian and curvature of the minisuperspace metric fαβ and ξ

is an arbitrary constant.

The constant ξ may be fixed once one recognises that the minisuperspace metric (and

indeed, the full superspace metric (3.9)) is not uniquely defined by the form of the action

or the Hamiltonian, but is fixed only up to a conformal factor. Classically the constraint

(5.13) may be multiplied by an arbitrary function of q, Ω−2(q) say, and the constraint is

identical in form but has metric f̃αβ = Ω2fαβ and potential Ũ = Ω−2U . The same is true

in the action (5.6) or (5.12) if, in addition to the above rescalings, one also rescales the

laspe function, N → Ñ = Ω−2N . Clearly the quantum theory should also be insensitive

to such rescalings. This is achieved if the metric dependent part of the operator (5.15) is

conformally covariant; i.e. if the coefficient ξ is taken to be the conformal coupling

ξ = − (n− 2)

8(n− 1)
(5.16)

for n ≥ 2 (Halliwell, 1988a; Moss, 1988; Misner, 1970). In what follows, we will be

working almost exclusively in the lowest order semi-classical approximation, for which

these issues of operator ordering are in fact irrelevant. However, I have mentioned this

partially for completeness, but also because one often studies models in which considerable

simplifications arise by suitable lapse function rescalings and field redefinitions, and one

might wonder whether or not these changes of variables affect the final results.

Path Integral Quantization

The wave function may also be obtained using a path integral. To discuss the path

integral, we first need to discuss the symmetry of the action. The Hamiltonian constraint,

(5.13), indicates the presence of a symmetry, namely reparametrization invariance. This
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is the left-over of the general covariance of the full theory, after the restriction to minisu-

perspace. More precisely, under the transformations

δǫq
α = ǫ(t){qα, H}, δǫpα = ǫ(t){pα, H}, δǫN = ǫ̇(t) (5.17)

it is not difficult to show that the action changes by an amount

δS =

[

ǫ(t)

(

pα
∂H

∂pα
−H

)]1

0
(5.18)

The action is therefore unchanged if the parameter ǫ(t) satisfies the boundary conditions

ǫ(0) = 0 = ǫ(1). This symmetry may be completey broken by imposing a gauge-fixing

condition of the form

G ≡ Ṅ − χ(pα, q
α, N) = 0 (5.19)

where χ is an arbitrary function of pα, q
α, N .

We may now write down the path integral. It has the form

Ψ(qα′′) =

∫

DpαDqαDNδ[G]∆Ge
iS[p,q,N ] (5.20)

where S[p, q, N ] is the Hamiltonian form of the action (5.12) and ∆G is the Faddeev-Popov

measure associated with the gauge-fixing condition (5.19), and guarantees that the path

integral is independent of the choice of gauge-fixing function G. The integral is taken over

a set of paths (qα(t), pα(t), N(t)) satisfying the boundary condition qα(1) = qα′′ at t = 1

with pα and N free, and some yet to be specified conditions at t = 0.

The only really practical gauge to work in is the gauge Ṅ = 0. Then it may be shown

that ∆G = constant.† The functional integral over N then reduces to a single ordinary

integration over the constant N . One thus has

Ψ(qα′′) =

∫

dN

∫

DpαDqαeiS[p,q,N ] (5.21)

Eq.(5.21) has a familiar form: it is the integral over all times N of an ordinary quantum

mechanical propagator, or wave function,

Ψ(qα′′) =

∫

dNψ(qα′′, N) (5.22)

† This is easily seen: ∆G is basically the determinant of the operator δǫG/δǫ. In the gauge

Ṅ = 0, this is the operator d2/dt2, which has constant determinant.
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where ψ(qα′′, N) satisfies the time-dependent Schrödinger equation with time coordinate

N . From Eq.(5.22), it is readily shown that the wave function generated by the path

integral satisfies the Wheeler-DeWitt equation. Suppose we operate on (5.22) with the

Wheeler-DeWitt operator at qα′′. Then, using the fact that the integrand satisfies the

Schrödinger equation, one has

Ĥ ′′Ψ(qα′′) =

∫

dNi
∂ψ

∂N
= i

[

ψ(qα′′, N)
]N2

N1

(5.23)

where N1, N2 are the end-points of the N integral, about which we have so far said nothing.

Clearly for the wave function to satisfy the Wheeler-DeWitt equation we have to choose

the end-points so that the right-hand side of (5.23) vanishes. N is generally integrated

along a contour in the complex plane. This contour is usually taken to be infinite, with

ψ(qα′′, N) going to zero at the ends, or closed i.e. N1 = N2. In both of these cases,

the right-hand side of (5.23) vanishes and the wave function so generated satisfies the

Wheeler-DeWitt equation. (In the closed contour case, attention to branch cuts may be

needed.) Note that these ranges are invariant under reparametrizations of N . They would

not be if the contour had finite end-points and the right-hand side would then not be zero.

This is an illustration of the remarks in Section 4 concering the relationship between the

Wheeler-DeWitt equation and the invariance properties of the path integral.

The representation (5.21) of the wave function is of considerable practical value in

that it can actually be used to evaluate the wave function directly. But first, one normally

rotates to Euclidean time, τ = it. After integrating out the momenta, the resulting

Euclidean functional integral has the form

Ψ(qα′′) =

∫

dN

∫

Dqα exp (−I[qα(τ), N ]) (5.24)

Here, I is the minisuperspace Euclidean action

I[qα(τ), N ] =

∫ 1

0
dτN

[

1

2N2
fαβ(q)q̇αq̇β + U(q)

]

(5.25)

Although the part of this action which corresponds to the matter modes is always positive

definite, the gravitational part is not. Recall that the minisuperspace metric has indefinite

signature, the (−) part corresponding to the conformal part of the three-metric, so the

kinetic term is indefinite. Also, the potential, which is the integral of 2Λ − 3R, is not

positive definite. So complex integration contours are necessary to give meaning to (5.24).
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Here, however, we will work largely in the lowest order semi-classical approximation,

which involves taking the wave function to be (a sum of terms) of the form e−Icl , where

Icl is the action of the classical solution (qα(τ), N) satisfying the prescribed boundary

conditions. This solution may in fact be complex, and indeed will need to be if the wave

function is to be oscillatory. Similarly, when working with the Wheeler-DeWitt equation,

we will work largely in the WKB approximation, in which solutions of the above type are

sought.

We are now in a position to comment on the validity of the minisuperspace “approx-

imation”. Providing we are sufficiently careful in making our minisuperspace ansatz, the

classical solutions (qα(τ), N) will be solutions to the full field equations, and thus Icl will

be the action of a solution to the full Einstein equations. The lowest order semi-classical

approximation to the minisuperspace wave function therefore coincides with the lowest

order semi-classical approximation to the wave function of the full theory. This means

that minisuperspace does give some indication as to what is going on in the full theory as

long as we remain close to the lowest order semi-classical approximation.

The Probability Measure

Given a wave function Ψ(qα) for a minisuperspace model we need to construct from it

a probability measure with which to make predictions. The question is, which probability

measure do we use? The Wheeler-DeWitt equation is a Klein-Gordon type equation. It

therefore has associated with it a conserved current

J =
i

2
(Ψ∗∇Ψ − Ψ∇Ψ∗) (5.26)

It satisfies

∇ · J = 0 (5.27)

by virtue of the Wheeler-DeWitt equation. Like the Klein-Gordon equation, however, the

probability measure constructed from the conserved current can suffer from difficulties

with negative probabilities. For this reason, some authors have suggested that the correct

measure to use is

dP = |Ψ(qα)|2dV (5.28)
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where dV is a volume element of minisuperspace. However, this is also problematic, in that

one of the coordinates qα is, in some crude sense, “time”, so that (5.28) is the analogue

of interpreting |Ψ(x, t)|2 in ordinary quantum mechanics as the probability of finding the

particle in the space-time interval dxdt. One could conceivably make sense out of (5.28),

but not before a careful discussion of the nature of time in ordinary quantum mechanics.†

For the moment we will not commit ourselves to either of these possibilities, but will

keep each one in mind. We will just look for peaks in the wave function itself when asking

for predictions. If the peak is sufficiently strong, one would expect any sensible measure

constructed from the wave function to have the same peak.

6. CLASSICAL SPACETIME

We have described in the previous section two ways of calculating the wave function

for minisuperspace models: the Wheeler-DeWitt equation and the path integral. Before

going on to the evaluation of the wave function, it is appropriate to ask what sort of wave

functions we are hoping to find. If the wave function is to correctly describe the late

universe, then it must predict that spacetime is classical when the universe is large. The

first question to ask, therefore, is “What, in the context of quantum cosmology, constitutes

a prediction of classical spacetime?”.

There are at least two requirements that must be satisfied before a quantum system

may be regarded as classical:

1. The wave function must predict that the canonical variables are strongly correlated

according to classical laws; i.e. the wave function (or some distribution constructed

from it) must be strongly peaked about one or more classical configurations

2. The quantum mechanical interference between distinct such configurations should be

negligible; i.e. they should decohere.

To exemplify both of these requirements, let us first consider a simple example from or-

dinary quantum mechanics. There, the most familiar wave functions for which the first

† This line of thought has been pursued by numerous authors, including Caves (1986, 1987),
Hartle (1988b) and Page(1989b).
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requirement is satisfied are coherent states. These are single wave packets strongly peaked

about a single classical trajectory, x̄(t), say. For example, for the simple harmonic oscilla-

tor, the coherent states are of the form

ψ(x, t) = eipx exp

(

−(x− x̄(t))2

σ2

)

(6.1)

On being presented with a solution to the Schrodinger equation of this type, one might be

tempted to say that it predicts classical behaviour, in that on measuring the position of

the particle at a sequence of times, one would find it to be following the trajectory x̄(t).

Suppose, however, one is presented with a solution to the Schrödinger equation which is a

superposition of many such states:

ψ(x, t) =
∑

n

cne
ipnx exp

(

−(x− x̄n(t))
2

σ2

)

(6.2)

where the x̄n(t) are a set of distinct classical solutions. One might be tempted to say that

this wave function corresponds to classical behaviour, and that one would find the particle

to be following the classical trajectory x̄n(t) with probability |cn|2. The problem, however,

is that these wave packets may meet up at some stage in the future and interfere. One

could not then say that the particle was following a definite classical trajectory. To ascribe

a definite classical history to the particle, the interference between distinct states has to

be destroyed. The way in which this may be achieved is a fascinating subject in itself, but

we will say little about it here. We will concentrate mainly on the first requirement for

classical behaviour.

Turn now to quantum cosmology. One might at first think that, in the search for the

emergence of classical behaviour, the natural thing to do there is to try and construct the

analogue of coherent states. This is rather hard to do, but has been achieved for certain

simple models. Because the wave function does not depend on time explicitly, the analogue

of coherent states are wave functions of the form

Ψ(qα) = eiφ(qα) exp
(

−f2(qα)
)

(6.3)

where f(qα) = 0 is the equation of a single classical trajectory in minisuperspace. So in

a two-dimensional model, for example, the wave function will consist of a sharply peaked

ridge in minisuperspace along a single classical trajectory.
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Wave functions of this type do not arise very naturally in quantum cosmology because

they need very special boundary conditions. However, they do highlight a particular

feature typical of wave functions in quantum cosmology that predict classical spacetime:

they are peaked about an entire history. Moreover, although the original wave function

does not carry a particular label playing the role of time, a notion of time may emerge for

certain types of wave functions, such as (6.3): it is basically the affine parameter along

the histories about which the wave function is peaked (i.e. the distance along the ridge in

the case of (6.3)). So time, and indeed spacetime, are only derived concepts appropriate

to certain regions of configuration spacetime and contingent upon initial conditions. The

decoherence requirement may also be achieved in quantum cosmology, but this is rather

complicated and will not be covered here.

As we have seen in the simple model of Section 2, the sort of wave functions most

commonly arising in quantum cosmology are not of wavepacket form, but are of WKB

form, and may be broadly classified as oscillatory, of the form eiS, or exponential, of the

form e−I . It is the oscillatory wave functions that correspond to classical spacetime, whilst

the exponential ones do not. Let us discuss why this is so.

Recall that the way we are interpreting the wave function is to regard a strong peak

in the wave function, or in a distribution constructed from it, as a prediction. Classical

spacetime, therefore, is predicted when the wave function, or some distribution constructed

from it, becomes strongly peaked about one or more classical configurations. How do we

identify such peaks? In the most general case, the wave function will be peaked not about

some region of configuration space – eiS is most certainly not – but about some correlation

between coordinates and momenta. Perhaps the most transparent way of identifying such

correlations is to introduce a quantum mechanical distribution function which depends on

both coordinates and momenta, F (p, q). The Wigner function is such a distribution func-

tion, and turns out to be very useful in quantum cosmology for identifying the correlations

present in a given wave function. However, this would take rather a long time to explain.

Here I will just report the result that the Wigner function shows that (i) a wave function

of the form e−I predicts no correlation between coordinates and momenta, and so cannot

correspond to classical behaviour; and (ii) a wave function of the form eiS predicts a strong

correlation between p and q of the form

pα =
∂S

∂qα
(6.4)

27



S is generally a solution to the Hamilton-Jacobi equation and, as we will demonstrate in

detail below, (6.4) is then a first integral of the equations of motion. It thus defines a set

of solutions to the field equations. A wave function of the form eiS , therefore, is normally

thought of a being peaked about not a single classical solution, but about a set of solutions

to the field equations. It is in this sense that it corresponds to classical spacetime.

Given the peak about the correlation (6.4) for wave functions of the form eiS , it may

now be explicitly verified using a canonical transformation. For simplicity consider the

one-dimensional case. A canonical transformation from (p, q) to (p̃, q̃) may be generated

by a generating function G0(q, p̃):

p =
∂G0

∂q
, q̃ =

∂G0

∂p̃
(6.5)

In quantum mechanics, the transformation from the wave function Ψ(q) to a new wave

function Ψ̃(p̃) is given by

Ψ̃(p̃) =

∫

dqe−iG(q,p̃)Ψ(q) (6.6)

Here, the generating function G(q, p̃) is not actually quite the same as G0(q, p̃) above,

but agrees with it to leading order in Planck’s constant. Suppose Ψ(q) = eiS(q). Then a

transformation to new variables

p̃ = p− ∂S

∂q
, q̃ = q (6.7)

may be achieved using the generating function G0(q, p̃) = qp̃+S(q). Inserting this in (6.6),

it is easily seen that the wave function as a function of p̃ is of the form

Ψ̃(p̃) = δ(p̃) (6.8)

to leading order. As advertised, it is therefore strongly peaked about the configuration

(6.4).

It is sometimes stated that wave functions of the form e−I are not classical because

they correpond to a Euclidean spacetime. It is certainly true that they are not classical,

and it is certainly true that, if the wave function is a WKB solution, then I is the action

of a classical Euclidean solution. However, this does not mean that they correspond to

a Euclidean spacetime. In contrast to a wave function of the form eiS , which is peaked

about a set of classical Lorentzian solutions, a wave function e−I is not peaked about a set
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of Euclidean solutions. It is not classical quite simply because it fails to predict classical

correlations between the Lorentzian momentum p and its conjugate q.

A much better way of discussing peaks in the wave function, or more generally, of

discussing predictions arising from a given theory of initial conditions, is to use the path

integral methods described by Hartle in his lectures (Hartle, 1990). Although conceptually

much more satisfactory, they are somewhat cumbersome to use in practice. Moreover,

they have not as yet been applied to any simple examples in quantum cosmology. For

the moment it is therefore not inappropriate to employ the rather heuristic but quicker

methods outlined above.

The General Behaviour of the Solutions

Having argued that classical spacetime is predicted, loosely speaking, when the wave

function is oscillatory, our next task is to determine the regions of configuration space for

which the wave function is oscillatory, and those for which the wave function is exponential.

This will depend to some extent on boundary conditions, which we have not yet discussed,

but one can get broad indications about the behaviour of the wave function by looking at

the potential in the Wheeler-DeWitt equation So we are considering the Wheeler-DeWitt

equation
[

−1

2
∇2 + U(q)

]

Ψ(q) = 0 (6.9)

Here, we have assumed that the curvature term has been absorbed into the potential.

Compare (6.9) with the one-dimensional quantum mechanical problem
[

d2

dx2
+ U(x)

]

Ψ(x) = 0 (6.10)

In this case, one immediately sees that the wave function is exponential in the region

U << 0 and oscillatory in the region U >> 0. The case of (6.9) is more complicated,

however, in that there are n independent variables, and the metric has indefinite signature.

To investigate this in a little more detail, let us divide the minisuperspace coordinates

qα into a single “timelike” coordinate q0 and n−1 “spacelike” coordinates q. Then locally,

the Wheeler-DeWitt equation will have the form
[

∂2

∂q0
2
− ∂2

∂q2
+ U(q0,q)

]

Ψ(q) = 0. (6.11)
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The point now, is that the broad behaviour of the solution will depend not only on the

sign of U , but also, loosely speaking, on whether it is the q0-dependence of U or the q-

dependence of U that is most significant. More precisely, one has the following. Consider

the surfaces of constant U in minisuperspace. They may be timelike or spacelike in a

given region. First of all suppose that they are spacelike. Then in that local region, one

can always perform a “Lorentz” rotation to new coordinates such that U depends only on

the timelike coordinate in that region, U ≈ U(q0). One can then solve approximately by

separation of variables and, assuming one can go sufficiently far into the regions U > 0,

U < 0 for the potential to dominate the separation constant, the solution will be oscillatory

for U >> 0, exponential for U << 0. Similarly, in regions where the constant U surfaces

are timelike, one may Lorentz-rotate to coordinates for which the potential depends only

on the spacelike coordinates. The wave function is then oscillatory in the region U << 0

and exponential in the region U >> 0.

The above is only a rather crude way of getting an idea of the behaviour of the solu-

tions. In particular, the assumptions about the separation constant need to be checked in

particular cases, given the boundary conditions.

One may also determine the broad behaviour of the wave function by studying the path

integral. In the Euclidean path integral representation of the wave function (5.24), one

considers the propagation amplitude to a final configuration determined by the argument

of the wave function, from an initial configuration determined by the boundary conditions.

In the saddle-point approximation, the wave function is of the form e−Icl , where Icl is

the Euclidean action of the classical solution satisfying the above boundary conditions.

Finding Icl therefore involves the mathematical question of solving the Einstein equations

as a boundary value problem. If the solution is real, it will have real action, and the wave

function will be exponential. However, it appears to be most commonly the case for generic

boundary data that no real Euclidean solution exists, and the only solutions are complex,

with complex action. The wave function will then be oscillatory. The boundary value

problem for the Einstein equations is actually a rather difficult mathematical problem

about which very little appears to be known, in the general case.

In the minisuperspace case, qualitative information about the nature of the solution

to the boundary value problem is readily obtained by inspecting the Euclidean version

of the constraint equation (5.8). So for example, when looking for a solution between

fixed values of qα that are reasonably close together, one can see that the nature of the
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solution depends not only on the sign of the potential, but also on whether the connecting

trajectory is timelike or spacelike in minisuperspace.

The saddle-point appoximation to the path integral perhaps gives a more reliable indi-

cation than the Wheeler-DeWitt equation as to the broad behaviour of the wave function,

in that the dependence on boundary conditions is more apparent.

At this stage it is appropriate to emphasize an important distinction between the

above discussion and tunneling processes in ordinary quantum mechanics or field theory.

In ordinary quantum mechanics or field theory, when considering tunneling at fixed energy,

one has a constraint equation similar to (5.8), but with the important difference that its

metric is positive definite. This has the consequence that at fixed energy, the configuration

space is divided up into classically allowed and classically forbidden regions, and one can

see immediately where they are by inspection of the potential in the constraint.

By contrast, for gravitational systems, the constraint (5.8) (or more generally, the

Hamiltonian constraint (3.8)) has a metric of indefinite signature. This has the consequence

that configuration space is not divided up into classically allowed and classically forbidden

regions – the constraint alone does not rule out the existence of real Euclidean or real

Lorentzian solutions in a given region of configuration space. One can only determine the

nature of the solution (i.e. real Euclidean, real Lorentzian or complex) by solving the

boundary value problem.

Further discussion of complex solutions and related issues may be found in Gibbons

and Hartle (1989), Halliwell and Hartle (1989) and Halliwell and Louko (1989a, 1989b,

1990).

7. THE WKB APPROXIMATION

Having considered the general behaviour of the solutions to the Wheeler-DeWitt equa-

tion, we now go on to find the solutions more explicitly in the oscillatory region, using the

WKB approximation. This will allow us to be more explicit in showing that, as we have

already hinted a few times, the correlation (6.4) about which the wave function is peaked

in the oscillatory region defines a set of solutions to the classical field equations.
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We are interested in solving the Wheeler-DeWitt equation,
[

− 1

2m2
p
∇2 +m2

pU(q)

]

Ψ(q) = 0 (7.1)

For convenience, the Planck mass mp has been reinstated, because we are going to use it as

a large parameter in terms of which to do the WKB expansion. (If there is a cosmological

constant in the problem one can sometimes use Λm−4
p as a small parameter to control the

WKB expansion, which has the advantage of being dimensionless.) Normally in the WKB

approximation one looks for solutions that are strictly exponential or oscillatory, of the form

e−I or eiS . However, in quantum cosmology one often uses the Wheeler-DeWitt equation

hand-in-hand with the path integral. As noted above, in the saddle-point approximation

to the path integral, one generally finds that the dominating saddle-points are four-metrics

that are not real Euclidean, or real Lorentzian, but complex, with complex action. It is

therefore most appropriate to look for WKB solutions to (7.1) of the form

Ψ(q) = C(q)e−m
2

pI(q) +O(m−2
p ) (7.2)

where I and C are complex. Inserting (7.2) into (7.1) and equating powers of mp, one

obtains

−1

2
(∇I)2 + U(q) = 0 (7.3)

2∇I · ∇C + C∇2I = 0 (7.4)

Here, ∇ denotes the covariant derivative with respect to qα in the metric fαβ , and the

dot product is with respect to this metric. Let us split I into real and imaginary parts,

I(q) = IR(q) − iS(q). Then the real and imaginary parts of (7.3) are

−1

2
(∇IR)2 +

1

2
(∇S)2 + U(q) = 0 (7.5)

∇IR · ∇S = 0 (7.6)

Consider (7.5). We will return later to (7.4) and (7.6). We are interested in wave

functions which correspond to classical spacetime. As we have discussed, to correspond to

classical spacetime, the wave function should be of the form eiS where S is a solution to

the Lorentzian Hamilton-Jacobi equation,

1

2
(∇S)2 + U(q) = 0 (7.7)
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for then S defines an ensemble of classical trajectories, as will be shown in detail below.

Evidently from (7.5) this is generally not the case for the S appearing in the wave function

(7.2). However, if the imaginary part of I varies with q much more rapidly than the real

part, i.e. if

|∇S| >> |∇IR| (7.8)

then it follows from (7.5) that S will be an approximate solution to the Lorentzian Hamilton-

Jacobi equation, (7.7). Furthermore, the wave function (7.2) will then be predominantly

of the form eiS and, as we have already argued, it therefore indicates a strong correlation

between coordinates and momenta of the form

pα = m2
p
∂S

∂qα
(7.9)

Now we are in a position to show explicitly that (7.9) defines a first integral to the

field equations. Clearly the momenta pα defined by (7.9) satisfy the constraint (5.13), by

virtue of the Hamilton-Jacobi equation, (7.7). To obtain the second order field equation,

differentiate (7.7) with respect to qγ. One obtains

1

2
f
αβ
,γ

∂S

∂qα
∂S

∂qβ
+ fαβ

∂S

∂qα
∂2S

∂qβ∂qγ
+
∂U

∂qγ
= 0 (7.10)

The form of the second term in (7.10) invites the introduction of a vector

d

ds
= fαβ

∂S

∂qα
∂

∂qβ
(7.11)

When operated on qγ it implies, via (7.9), the usual relationship between velocities and

momenta, (5.10), provided that s is identified with the proper time, ds = Ndt. Using

(7.11) and (7.9), (7.10) may now be written

dpγ
ds

+
1

2m2
p
f
αβ
,γ pαpβ +m2

p
∂U

∂qγ
= 0 (7.12)

The field equation (5.7) is obtained after use of (5.10) and after raising the indices using

the minisuperspace metric. We have therefore shown that the wave function (7.12), if

it satisfies the condition (7.8), is strongly peaked about a set of solutions to the field

equations, namely the set defined by the first integral (7.9).

Now we come to the most important point. For a given Hamilton-Jacobi function S,

the solution to the first integral (7.9) will involve n arbitrary parameters. Recall, however,
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that the general solution to the full field equations (5.7), (5.8) will involve (2n−1) arbitrary

parameters. The wave function is therefore strongly peaked about an n-parameter subset

of the (2n − 1)-parameter general solution. By imposing boundary conditions on the

Wheeler-DeWitt equation a particular wave function is singled out. In the oscillatory

region, this picks out a particular Hamilton-Jacobi function S. This in turn defines defines

an n-parameter subset of the (2n − 1) parameter general solution. It is in this way that

boundary conditions on the wave function of the universe effectively imply initial conditions

on the classical solutions.

The Measure on the Set of Classical Trajectories

Suppose one now chooses an (n − 1)-dimensional surface in minisuperspace as the

beginning of classical evolution. Through (7.9), the wave function then effectively fixes the

initial velocities on that surface. However, the wave function contains yet more information

than just the initial velocities: it provides a probability measure on the set of classical

trajectories about which the wave function is peaked. To see how this comes about,

consider the remaining parts of the wave function, C and IR. From the assumption, (7.8),

(7.4) may be written

∇ ·
(

|C|2∇S
)

= 0 (7.13)

Moreover, we can combine this with (7.6) and write

∇ ·
(

exp(−2m2
pIR)|C|2∇S

)

= 0 (7.14)

This is a current conservation law,

∇ · J = 0 (7.15)

where

J ≡ exp(−2m2
pIR)|C|2∇S (7.16)

Loosely speaking, (7.15) implies that that the coefficient of ∇S in (7.16) provides a con-

served measure on the set of classical trajectories about which the WKB wave function is

peaked.

Eq.(7.16) is of course a special case of the Wheeler-DeWitt current

J =
i

2
(Ψ∗∇Ψ − Ψ∇Ψ∗) (7.17)
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which is conserved by virtue of the Wheeler-DeWitt equation (7.1), independently of any

approximation. In suggesting that part of (7.16) provides a conserved probability measure

on the set of classical trajectories, we are therefore aiming at using the conserved current as

our probability measure. So now it is time to be precise about how the conserved current

may successfully used, avoiding the difficulties with negative probabilities. The point is

that it may be made to work only in the WKB approximation, although this is probably

sufficient for all practical purposes. The following is based primarily on Vilenkin (1989)

(see also Hawking and Page (1986) and Misner (1970, 1972)).

First we show how to construct a conserved measure. Consider a pencil B of the

congruence of classical trajectories with tangent (co)vector ∇S, about which the wave

function is peaked. Suppose it intersects an (n− 1)-dimensional surface Σ1 in B ∩Σ1, and

subsequently intersects a second surface Σ2, in B ∩ Σ2. Now consider the volume V of

minisuperspace swept out by the pencil of classical trajectories between the surfaces Σ1

and Σ2. Because ∇ · J = 0, one may write

0 =

∫

V
dV∇ · J =

∫

∂V
J · dA (7.18)

where dA is the element of area normal to the boundary of V . Since J ·dA is non-zero only

on the parts of the boundary of V consisting of the “ends”, where the pencil B intersects

Σ1 and Σ2, it follows that
∫

B∩Σ1

J · dA =

∫

B∩Σ2

J · dA (7.19)

This means that the flux of the pencil of trajectories across a hypersurface is in fact

independent of the hypersurface. It suggests that we may use the quantity

dP = J · dΣ (7.20)

as a conserved probability measure on the set of classical trajectories with tangent vector

∇S, where Σ is some hypersurface that cuts across the flow.

Now we need to consider whether or not this definition of the probability measure

gives positive probabilities. An intimately related problem is the choice of the surface Σ

in (7.20).

In the case of the Klein-Gordon equation, one takes the surfaces Σ to be surfaces

of constant physical time, X0 = constant, and thus attempts to use J0, the time-like
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component of the current as a probability density. As is well-known, however, this may be

negative. This is very significant in relativistic quantum mechanics, because it opens the

way to the notion of antiparticles and second quantization.

The analagous thing to do in quantum cosmology would be to take the surfaces Σ

to be surfaces of constant q0, the timelike coordinate on minisuperspace. These would

be surfaces for which the conformal part of the three-metric is constant. Once again one

would find that the timelike component of J may be negative. However, this does not

have the same significance as the Klein-Gordon case. It corresponds to the fact that in

the classical theory one may have both expanding and collapsing universes. It is merely

due to a bad choice of surfaces Σ, and does not oblige one to go to third quantization (the

analogue of second quantization). For classical solutions which expand and recollapse, the

flow will intersect a surface of constant conformal factor twice, in a different direction each

time. What one really needs is a set of surfaces Σ which the flow intersects once and only

once. For then the flux will pass through these surfaces always in the same direction and

the probability (7.20) will be positive.

For a typical system in minisuperspace, the trajectories will generally go backwards

and forwards in all coordinates qα. However, merely by inspection of a typical congruence

of classical paths, it is easy to see that one can always find a set of surfaces which the

trajectories cross only once and in the same direction. The probability measure (7.20) will

then remain of the same sign all along the congruence of classical trajectories (see Fig.3.).

One particularly simple choice that one might at first think of are the surfaces of

constant S, which are clearly orthogonal to the congruence of classical trajectories. These

do indeed provide a good set of surfaces for substantial regions of minisuperspace. However,

this choice breaks down when the trajectories approach the surface U(q) = 0. Since both

J and dΣ are proportional to ∇S, dP is proportional to (∇S)2, which vanishes at U = 0

by virtue of the Hamilton-Jacobi equation. But apart from this restriction there is still

considerable freedom in the choice of surfaces Σ.

So we have seen that a sensible probability measure can be constructed from the

conserved current, by suitable choice of the surfaces Σ. The important point to note,

however, is that it works only in the semi-classical regime, when the wave function is of

WKB form (7.2), subject to the condition (7.8).

Some words are in order on how the probability density (7.20) is to be used. It should
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not be thought of as an absolute probability on the entire surface Σ. That is, it cannot be

used to find the absolute probability that the universe will start out at some part of the

surface Σ. Indeed, it is not clear that it is normalizable over a surface Σ stretching right

out to the boundary of superspace; i.e. one would not expect to be able to write
∫

Σ
J · dA = 1 (7.21)

unless very special boundary conditions were imposed on the wave function. Rather,

(7.20) should be used to compute conditional probabilities. Such probabilities are used

when answering questions of the type, “Given that the universe starts out in some finite

subset s1 of Σ, what is the probabilility that it will start out in the subset s0 of s1?”. This

conditional probability would be given by an expression of the form

P (s0|s1) =

∫

s0
J · dA

∫

s1
J · dA (7.22)

Each integral is finite because the domains of integration s0, s1 are finite, and the inte-

grand will typically be bounded on these domains. The theory makes a prediction when

conditional probabilities of this type are close to zero or one.

Finally, it should be noted that there is a certain element of circularity in our use

of the conserved current as the probability measure. We have shown that the conserved

current can provide a sensible probability measure in the semi-classical approximation.

Beyond that it seems unlikely that it can be made to work. The problem, however, is that

strictly speaking one really needs a probability measure in the first place to say what one

means by “semi-classical”, and to say that a given wave function is peaked about a given

configuration. The resolution to this apparent dilemma is to use the measure |Ψ|2 dV from

the very beginning, without any kind of approximations, and it is in terms of this that

one dicusses the notion of semiclassical, and the peaking about classical trajectories. One

may then apply this measure to non-zero volume regions consisting of slightly “thickened”

(n − 1)-dimensional hypersurfaces intersecting the classical flow. With care, it is then in

fact possible to recover the probability measure J · dΣ discussed above, but only in the

semi-classical approximation.

Let me now summarize this rather lengthy discussion of classical spacetime and the

WKB approximation. In certain regions of minisuperspace, and for certain boundary

conditions, the Wheeler-DeWitt equation will have solutions of the WKB form (7.2), for

37



which (7.8) holds. These solutions correspond to classical spacetime in that they are

peaked about the set of solutions to the classical field equations satisfying the first integral

(7.9). These classical solutions consist of a congruence of trajectories in minisuperspace

with tangent vector ∇S. One may think of the wave function as imposing initial conditions

on the velocities on some hypersurface Σ cutting across the flow of S. In addition, the

quantity J · dΣ may be used as a probability measure on this surface; that is, it may be

used to compute conditional probabilities that the universe will start out in some region

of the surface Σ.

We will see how this works in detail in an example in the following sections.

8. BOUNDARY CONDITION PROPOSALS

Throughout the course of these lectures I have tried to emphasize the importance of

boundary or initial conditions in quantum cosmology, although nothing we have done so far

depends on a particular choice of boundary conditions. Now we come to discuss particular

proposals and investigate their consequences.

A quantum theory of initial conditions involves selecting just one wave function of

the universe from amongst the many that the dynamics allows; i.e. choosing a particular

solution to the Wheeler-DeWitt equation. Numerous proposals have been made over the

years. As long ago as 1967, DeWitt expressed a hope that mathematical consistency

alone would lead to a unique solution to the Wheeler-DeWitt equation (DeWitt, 1967).

Regretfully such a hope does not appear to have been realized. More recently, workers in

the field have contented themselves with offering proposals motivated by considerations of

simplicity, naturalness, analogies with simple quantum mechanical sytems etc. Here, we

will concentrate on just two recent proposals that are the most comprehensive and the most

studied. These are the “no-boundary” proposal of Hartle and Hawking (Hawking 1982,

1984a; Hartle and Hawking, 1983) and the “tunneling” boundary condition due primarily

to Vilenkin and to Linde (Vilenkin, 1982, 1983, 1984, 1985a, 1985b, 1986, 1988; Linde,

1984a, 1984b, 1984c).

It should be stated at the outset that all known proposals for boundary conditions

in quantum cosmology may be criticised on the grounds of lack of generality of lack of
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precision, and these two are no exception. The issue of proposing a sensible theory of

initial conditions which completely specifies a unique wave function of the universe for all

conceivable situations, is to my mind still an open one.

The No-Boundary Proposal

The no-boundary proposal of Hartle and Hawking is expressed in terms of a Euclidean

path integral. Before stating it, recall that a wave function Ψ[h̃ij , Φ̃, B] satisfying the

Wheeler-DeWitt equation and the momentum constraint may be generated by a path

integral of the form

Ψ[h̃ij , Φ̃, B] =
∑

M

∫

DgµνDΦ exp(−I[gµν ,Φ]) (8.1)

The sum is over manifolds M which have B as part of their boundary, and over metrics

and matter fields (gµν ,Φ) on M matching the arguments of the wave function on the

three-surface B. When M has topology IR×B, this path integral has the form

Ψ[h̃ij , Φ̃, S] =

∫

DNµ
∫

DhijDΦδ[Ṅµ − χµ]∆χ exp(−I[gµν ,Φ]) (8.2)

The lapse and shift Nµ are unrestricted at the end-points. The three-metric and matter

field are integrated over a class of paths (hij(x, τ),Φ(x, τ)) with the restriction that they

match the argument of the wave function on the three-surface B, which may be taken to

be the surface τ = 1. That is,

hij(x, 1) = h̃ij(x), Φ(x, 1) = Φ̃(x) (8.3)

To complete the specification of the class of paths one also needs to specify the conditions

satisfied at the initial point, τ = 0 say.

The no-boundary proposal of Hartle and Hawking is an essentially toplogical statement

about the class of histories summed over. To calculate the no-boundary wave function,

ΨNB [h̃ij, Φ̃, B], we are instructed to regard the three-surface B as the only boundary of a

compact four-manifold M , on which the four-metric is gµν and induces h̃ij on S, and the

matter field configuration is Φ and matches the value Φ̃ on S. We are then instructed to

peform a path integral of the form (8.1) over all such gµν and Φ and over all such M (see

Fig.4.).
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For manifolds of the form IR×B, the no-boundary proposal in principle tells us what

conditions to impose on the histories (hij(x, τ),Φ(x, τ)) at the initial point τ = 0 in the

path integral (8.2). Loosely speaking, one is to choose initial condition ensuring the closure

of the four-geometry. However, although the four-dimensional geometric picture of what

is going on here is intuitively very clear, the initial conditions one needs to impose on the

histories in the (3+1) picture are rather subtle. They basically involve setting the initial

three-surface volume, h
1

2 , to zero, but also involve conditions on the derivatives of the

remaining components of the three-metric and the matter fields, which have only been

given in certain special cases.†

There is a further issue concerning the contour of integration. As discussed earlier a

complex contour of integration is necessary if the path integral is to converge. Although

convergent contours are readily found, convergence alone does not lead one automatically to

a unique contour, and the value of the wave function may depend, possibly quite crucially,

on which contour one chooses. The no-boundary proposal does not obviously offer any

guidelines as to which contour one should take.

Because of these difficulties of precision in defining the no-boundary wave function, I

am going to allow myself considerable license in my interpretation of what this proposal

actually implies for practical calculations.

As far as the closure conditions goes, the following is, I think, a reasonable approach

to take for practical purposes. The point to note is that one rarely goes beyond the

lowest order semi-classical approximation in quantum cosmology. That is, for all practical

purposes, one works with a wave function of the form Ψ = e−Icl, where Icl is the action of

a (possibly complex) solution to the Euclidean field equations. The reason one does this is

partly because of the difficulty of computing higher order corrections; but primarily, it is

because our present understanding of quantum gravity is rather poor and if these models

have any range of validity at all, they are unlikely to be valid beyond the lowest order semi-

classical approximation. What this means is that in attempting to apply the no-boundary

proposal, one need only concern oneself with the question of finding initial conditions

† Some earlier statements of the Hartle-Hawking proposal also used the word “regular”, i.e.
demanded that the sum be over regular geometries and matter fields. This is surely inap-
propriate because in a functional integral over fields, most of the configurations included
in the sum are not even continuous, let alone differentiable. They may, however, be regular
at the saddle-points, and we will exploit this fact below.
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that correspond to the no-boundary proposal at the classical level. In particular, we are

allowed to impose regularity conditions on the metric and matter fields. To be precise,

we will impose initial conditions on the histories which ensure that (i) the four-geometry

closes, and (ii) the saddle-points of the functional integral correspond to metrics and matter

fields which are regular solutions to the classical field equations matching the prescribed

data on the bounding three-surface B. There is a lot more one could say about this, but

these conditions will be sufficient for our purposes. For a more detailed discussion of these

issues see Halliwell and Louko (1990) and Louko (1988b).

Consider next the contour of integration. Because we will only be working in the

semiclassical approximation, we do not have to worry about finding convergent contours.

Nevertheless, the contour becomes an issue for us if the solution to the Einstein equations

satisfying the above boundary conditions is not unique. For then the path integral will

have a number of saddle-points, each of which may contribute to the integral an amount

of order e−I
k
cl , where Ikcl is the action of the solution corresponding to saddle-point k.

Without choosing a contour and performing a detailed contour analysis it is unfortunately

not possible to say which saddle-points will generally provide the dominant contributions.

We therefore have no general guidelines to offer here.

We will see how exactly these issues arise in the simple example discussed below.

We now calculate the no-boundary wave function explicitly for the scalar field model

described in Section 2. In the gauge Ṅ = 0, the minisuperspace path integral for the

no-boundary wave function is

ΨNB(ã, φ̃) =

∫

dN

∫

DaDφ exp (−I[a(τ), φ(τ), N ])

where I is the Euclidean action for the scalar field model,

I =
1

2

∫ 1

0
dτN

[

− a

N2

(

da

dτ

)2

+
a3

N2

(

dφ

dτ

)2

− a+ a3V (φ)

]

(8.4)

The Euclidean field equations may be written,†

1

N2a

d2a

dτ2
= − 2

N2

(

dφ

dτ

)2

− V (φ) (8.5)

† Because the path integral representation of the wave function involves an ordinary integral
over N , not a functional integral, the constraint (8.7) does not immediately follow from
extremizing the action (8.4) with respect to the variables integrated over. Rather, the
saddle-point condition is ∂I/∂N = 0, and one actually obtains the integral over time of
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1

N2

d2φ

dτ2
+

3

Na

da

dτ

dφ

dτ
− 1

2
V ′(φ) = 0 (8.6)

1

N2

(

da

dτ

)2

− a2

N2

(

dφ

dτ

)2

− 1 + a2V (φ) = 0 (8.7)

The integral (8.4) is taken over a class of paths (a(τ), φ(τ), N) satisfying the final

condition

a(1) = ã, φ(1) = φ̃ (8.8)

and a set of initial conditions determined by the no-boundary proposal, discussed below.

The constant N is integrated along a closed or infinite contour in the complex plane and

is not restricted by the boundary conditions. We are interested only in the semi-classical

approximation to the above path integral, in which the wave function is taken to be of the

form

Ψ(ã, φ̃) = exp(−Icl(ã, φ̃)) (8.9)

(or possibly a sum of wave functions of this form). Here Icl(ã, φ̃) is the action of the

solution to the Euclidean field equations (a(τ), φ(τ), N), which satisfies the final condition

(8.5) and, in accordance with the above interpretation of the no-boundary proposal, is

regular and respects the closure condition.

Consider, then, the important issue of determining the initial conditions on the paths

that correspond to the closure condition and ensure that the solution is regular. Consider

first a(τ). The Euclidean four-metric is

ds2 = N2dτ2 + a2(τ)dΩ2
3 (8.10)

We want the four-geometry to close off in a regular way. Imagine making the three-sphere

boundary smaller and smaller. Then eventually we will be able to smoothly close it off with

flat space. Compare, therefore, (8.10) with the metric on flat space in spherical coordinates

ds2 = dr2 + r2dΩ2
3 (8.11)

(8.7). The form of (8.7) as written is obtained once one realizes that the integrand is
in fact constant, by virtue of the other two field equations, hence the integral sign may
be dropped. However, writing the constraint with the integral over time highlights the
fact that the field equations and constraint contain two functions and one constants worth
of information. This is precisely the right amount of information to determine the two
functions (a(τ), φ(τ)) and the constant N in terms of the boundary data.
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From this, one may see that for (8.10) to close off in a regular way as a→ 0, we must have

a(τ) ∼ Nτ, as τ → 0 (8.12)

This suggests that the conditions that must be satisfied at τ = 0 are

a(0) = 0,
1

N

da

dτ
(0) = 1 (8.13)

(8.13) are the conditions that are often stated in the literature. However, this is in

general too many conditions. In general, we would not expect to be able to find a classical

solution satisfying the boundary data of fixed a on the final surface, fixed a on the initial

surface and and fixed da/dτ on the initial surface. We might of course be able to do this at

the classical level, for certain special choices of boundary data, but such conditions could

not be elevated to quantum boundary conditions on the full path integral. One of these

condition must be dropped. Since the main requirement is that the geometry closes, let us

drop the condition on the derivative and keep the condition that a(0) = 0. On the face of

it, this seems to allow the possibility that the four-geometry may not close off in a regular

fashion. Consider, however, the constraint equation (8.7). It implies that if the solution is

to be regular, then da/dτ → ±1 as a→ 0. The regularity condition is therefore recovered

when the constraint equation holds. This guarantees that the saddle-points will indeed be

regular four-geometries, if we only impose a(0) = 0.

Now consider the scalar field φ(τ). Consider the equation it satisfies, (8.6). It is not

difficult to see that if the solution is to be regular as a → 0, then φ(τ) must satisfy the

initial condition
dφ

dτ
(0) = 0 (8.14)

So the sole content of the no-boundary proposal, for this model, is the initial condition

(8.14) and the condition a(0) = 0.

Our task is now to solve the field equations (8.5)-(8.7) for the solution (a(τ), φ(τ),

N), subject to the boundary conditions (8.9), (8.14) and a(0) = 0, and then calculate the

action† of the solution.

† The action (8.4) is the appropriate one when a and φ are fixed on both boundaries. If
one wants to fix instead derivatives of the fields on the boundary, as (8.14) requires, then
(8.4) must have the appropriate boundary terms added. The correct boundary term does
in fact vanish in the case under consideration here, although this is a point that generally
needs to be treated quite carefully.
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For definiteness, let us assume that the potential V (φ) is of the chaotic type (i.e. U-

shaped) and let us go to the large φ region at which |V ′/V | << 1. It is not difficult to see

that the approximate solution to the scalar field equation (8.6), subject to the boundary

conditions (8.8), (8.14), is

φ(τ) ≈ φ̃ (8.15)

Similarly, the approximate solution to the second order equation for a(τ), (8.5), satisfying

the boundary conditions a(0) = 0, a(1) = ã, is

a(τ) ≈ ã sin(V
1

2Nτ)

sin(V
1

2N)
(8.16)

Finally, we insert (8.15), (8.16) into the constraint (8.7) to obtain a purely algebraic equa-

tion for the lapse, N . It is

sin2(V
1

2N) = ã2V (8.17)

There are an infinite number of solutions to this equation. If ã2V < 1, they are real, and

are conveniently written

N = N±
n ≡ 1

V
1

2

[

(n+
1

2
)π ± cos−1(ãV

1

2 )

]

(8.18)

where n = 0,±1,±2, ... and cos−1(ãV
1

2 ) lies in its principal range, (0, π/2). For the

moment, we set n = 0. We will return later to the significance of the other values of n.

With n = 0, the solution for the lapse inserted into the solution for a(τ), (8.16), now

reads

a(τ) ≈ 1

V
1

2

sin
[(π

2
± cos−1(ãV

1

2 )
)

τ
]

(8.19)

We now have the complete solution to the field equations subject to the above boundary

conditions. It is (8.15), (8.19), together with the solution for the lapse (8.18). The action

of the solution is readily calculated. It is

I± = − 1

3V (φ̃)

[

1 ±
(

1 − ã2V (φ̃)
)3/2

]

(8.20)

It is not difficult to see that these two solutions represent the three-sphere boundary being

closed off with sections of four-sphere. As expected, the action is negative. The (−)/(+)

sign corresponds to the three-sphere being closed of by less than/more than half of a

four-sphere. The classical solution is therefore not unique.
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Because the classical solution is not unique, we are faced with the problem of which

solution to take in the semi-classical approximation to the wave function. Naively, one

might note that the (+) saddle-point has most negative action, and will therefore provide

the dominant contribution. However, as briefly mentioned earlier, this depends on the

contour of integration. One can only say that the (+) saddle-point provides the dominant

contribution if the chosen integration contour in the path integral may be distorted into

a steepest-descent contour along which the (+) saddle-point is the global maximum. In

their original paper, Hartle and Hawking (1983) gave heuristic arguments, based on the

conformal rotation, which suggest that the contour was such that it could not be distorted

to pass through the (+) saddle-point and was in fact dominated by the (-) saddle-point. For

the moment let us accept these arguments. They thus obtained the following semi-classical

expression for the no-boundary wave function:

ΨNB(a, φ) ≈ exp

(

1

3V (φ)

[

1 −
(

1 − a2V (φ)
)3/2

])

(8.21)

(where we have dropped the tildes, to avoid the notation becoming too cumbersome).

(8.21) is indeed an approximate solution to the Wheeler-DeWitt equation for the model,

(2.14), in the region a2V (φ) < 1. Using the WKB matching procedure, it is readily shown

that the corresponding solution in the region a2V (φ) > 1 is

ΨNB(a, φ) ≈ exp

(

1

3V (φ)

)

cos

[

1

3V (φ)

(

a2V (φ) − 1
)3/2

− π

4

]

(8.22)

This completes the calculation of the no-boundary wave function.†

Some further remarks are in order. First, the contour of integration. The path integral

for the no-boundary wave function as discussed above has two saddle-points, and Hartle

and Hawking argued that it is the saddle-point corresponding to less than half a four-

sphere that provides the dominant contribution. However, their heuristic argument is not,

in my opinion, totally convincing.

A more detailed analysis of this situation by myself and Jorma Louko exposed the as-

sumptions that Hartle and Hawking implicitly made to arrive at the above answer (Halliwell

and Louko, 1989a). By a suitable choice of variables, and by working with a cosmological

† The reader familiar with the literature will note that this is not the derivation given by
Hartle and Hawking (1983). However, I have presented it in this way to emphasize certain
points which will be discussed in what follows.
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constant instead of a scalar field, we were able to evaluate the minisuperspace path inte-

gral for this model exactly. In particular, we were able to determine convergent contours

explicitly for the model, and thus see whether or not certain saddle-points did or did not

yield the dominant contribution to the path integral. What we found is that there are a

number of inequivalent contours along which the path integral converges, each dominated

by different saddle-points, and thus leading to different forms for the wave function. No one

contour was obviously preferred. In particular, the no-boundary proposal did not indicate

which contour one was supposed to take. A contour yielding the above form for the wave

function could be found, but it was not obvious why one should take that particular one.

So the essential conclusion here is that the no-boundary proposal as it stands does not fix

the wave function uniquely. There are, so to speak, many no-boundary wave functions,

each corresponding to a different choice of contour. The wave function is therefore only

fixed uniquely after one has put in some extra information fixing the contour.

As an example, in the simple model above one could define the no-boundary wave

function to be as defined by Hartle and Hawking, with the additional piece of information

that one is to take the contour dominated by the less-than-half saddle-point. A more

general statement is however not currently available. A possible approach to this problem

is that of Halliwell and Hartle (1989), which involved restricting the possible contours on

the grounds of mathematical consistency and physical predictions.

The second issue that deserves further comment is the equation for the lapse, (8.17),

and there are a number of points to be made here. Firstly, we considered only ã2V (φ̃) < 1,

so that the solution was real. One may allow ã2V (φ̃) > 1, in which case N , the scale

factor (8.16) and the action become complex – the action is essentially (8.20) with ã2V (φ̃)

continued into the range ã2V (φ̃) > 1. Complex saddle-points are generally expected in

this sort of problem. Indeed, they are essential if the wave function is to be oscillatory,

and thus predict classical spacetime. Secondly, we restricted to the solutions with n = 0.

What is the significance of the other solutions? Consider first the case of n positive.

It is not difficult to see that for values of n > 0, the solution (8.16) undergoes many

oscillations. More precisely, a2, which appears in the metric, expands to a maximum size

and then “bounces” each time it reaches zero. The geometric picture of these saddle-points

is therefore of linear chains of contiguous spheres (Halliwell and Myers, 1989; Klebanov et

al., 1989).

What about the saddle-points with n < 0? These saddle-points have negative lapse.
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Because the action changes sign under N → −N , the action of these saddle-points has

the “wrong” sign. However, these saddle-points are otherwise identical to the ones with

positive lapse – their four-metrics are the same. Moreover, they have a perfectly legitimate

place as saddle-points of the path integral. They are not artefacts of this model. They

arise because the action, by virtue of the presence of the
√
g factor, is double-valued in

the space of complex four-metrics. Carrying the metric once around the branch point

returns one to a physically identical solution to the Einstein equations, but with action

of the opposite sign. So to every physically significant solution there corresponds two

saddle-points. Because one has to integrate over complex metrics for convergence, both

saddle-points are candidate contributants to the path integral.

So finally it seems sensible to ask, why did we not include any of these extra saddle-

points, i.e. n = ±1,±2, ..., in the calculation of the no-boundary wave function? The

answer is that one can, by a suitable choice of contour. However, the saddle-points with N

negative (or more generally, with Re(
√
g) negative), lead to difficulties with the recovery

of quantum field theory in curved spacetime if they dominate the path integral, because

a normally positive matter action will become negative definite on the gravitational back-

ground corresponding to such a saddle-point. For this reason, the contour should not be

chosen in such a way that it is dominated by a negative N saddle-point (Halliwell and

Hartle, 1989). This leaves the saddle-points with n = 0, 1, 2, 3... The saddle-points corre-

sponding to the linear chains of spheres, n = 1, 2, .. may contribute with a suitable choice

of contour, but one could exclude them by taking the definition of the no-boundary wave

function offered above (i.e demand that the contour be dominated by the saddle-point

corresponding to less than half of a four-sphere).

These issue involving the contour are still very much up in the air, and I would regard

the question of choosing a sensible contour for the no-boundary wave function as at this

moment an open one.

The Tunneling Boundary Condition

The other proposal we will consider here is the so-called “tunneling” boundary con-

dition advocated primarily by Vilenkin (1982, 1983, 1984, 1985a, 1985b, 1986, 1988) and

Linde (1984a, 1984b, 1984c). I will concentrate on Vilenkin’s formulation, which is the
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most comprehensive. The tunneling boundary condition attempts to draw most strongly

the analogy between the quantum creation of the universe and tunneling in ordinary quan-

tum mechanics. Vilenkin has offered various formulations of this boundary condition, not

all of which are obviously equivalent. The most detailed is the “outgoing modes” formu-

lation, which we now discuss (Vilenkin, 1988).

The outgoing modes statement of the tunneling boundary condition proposal is a state-

ment about the behaviour of the solutions to the Wheeler-DeWitt equation at the boundary

of superspace. In brief, the idea is as follows. In a manner analagous to that in which

solutions to the Klein-Gordon equation are classified as positive or negative frequency,

Vilenkin attempts to classify the solutions to the Wheeler-DeWitt equation as “ingoing”

or “outgoing” at the boundary. The proposal is then that the wave function should consist

solely of outgoing modes at the parts of the boundary of superspace which correspond to

singular four-geometries. A regularity condition, that Ψ be everywhere bounded, is also

imposed.

This is perhaps a little vague, so let us discuss it more carefully. First, consider the

nature of the boundary of superspace. The boundary of superspace will generally consist

of configurations which are in some sense singular, e.g. h
1

2 will be zero or infinite, or

quantities such as Φ, or (∂iΦ)2 may be infinite. However, this does not necessarily mean

that a four-geometry which has that three-geometry as a slice is singular. For example, h
1

2

vanishes at the north and south pole of a four-sphere, but the four-geometry is perfectly

regular. Let us therefore divide the boundary of superspace into two regions. The first

region consists of three-geometries having singularities attributable to the slicing of a

regular four-geometry. That is, there exists a regular Euclidean† four-geometry of which

the singular three-geometry is a slice. Call these parts of the boundary non-singular.

The second part of the boundary is what remains, and will be referred to as the singular

boundary. This part of the boundary does correspond to singularities of the four-geometry.

A more detailed mathematical discussion of this point can be given, using Morse theory,

but the above is sufficient for our purposes.

Now let us discuss the notion of ingoing and outgoing modes. Solutions to the Klein-

Gordon equation of relativistic quantum mechanics may be expanded in terms of mode

† The description “Euclidean” was not given explicitly in Vilenkin (1988), but it appears to
have been tacitly assumed there and elsewhere

48



functions eip·x, and these modes may be classified as positive or negative frequency, with

respect to the timelike Killing vector −i∂/∂t. More precisely, the mode solutions are

eigenfunctions of this Killing vector and the classification depends on the sign of the

eigenvalue. The positive and negative frequency modes may also be characterized by the

sign of J0, the timelike component of the conserved current

J =
i

2
(Ψ∗∇Ψ − Ψ∇Ψ∗) , ∇ · J = 0 (8.23)

One might hope to do an analagous thing for the Wheeler-DeWitt equation. In the

general case, one meets with an immediate difficulty. This is that to say what one means

by positive and negative frequency on the whole of superspace, one needs a timelike Killing

vector. However, it is a mathematical property of superspace that it has has no Killing

vectors at all, so positive and negative frequency modes cannot in general be defined

(Kuchař, 1981).

Despite this obstruction, one can still make considerable progress by restricting at-

tention to certain approximate forms for the wave function, or by restricting attention to

certain regions of superspace, such as close to the boundary. One is, for example, primar-

ily interested in the solution in the oscillatory region. There, one expects solutions to the

Wheeler-DeWitt equation of the form

Ψ =
∑

n

Cne
iSn (8.24)

where the Sn are solutions to the Hamilton-Jacobi equation. The current for the mode

Cne
iSn is

Jn = −|Cn|2∇Sn (8.26)

This mode is thus defined to be outgoing at the boundary if −∇Sn points outward there.

If the wave function is not oscillatory in the neighbourhood of the boundary, then the

definition of outgoing modes is more problematic, if not impossible.

Now let us give a more precise statement of Vilenkin’s outgoing modes proposal for

the tunneling wave function, ΨT :

ΨT is the solution to the Wheeler-DeWitt equation that is everywhere bounded and

consists solely of outgoing modes at singular boundaries of superspace.
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Despite the apparent vagueness in its definition, and the obstruction of principle to

making it more general, the Vilenkin outgoing modes form of the tunneling boundary

condition appears in simple minisuperspace models to be intuitively reasonably clear, and

it has been quite successful in defining a unique solution to the Wheeler-DeWitt equation.

Now let us calculate the tunneling wave function, using the above proposal, for the

scalar field model. The Wheeler-DeWitt equation may be written

[

∂2

∂a2
− 1

a2

∂2

∂φ2
+ a4V (φ) − a2

]

Ψ(a, φ) = 0 (8.27)

The minisuperspace for this model is the two-dimensional space with coordinates (a, φ),

with 0 < a < ∞, −∞ < φ < ∞. The only non-singular part of the boundary is a = 0

with φ finite. The rest is singular, and consists of configurations with one or both of a

and φ infinite. Writing a = eα, minisuperspace, which is now just flat two-dimensional

Minkowski space, is conveniently represented on the usual conformal diagram. The non-

singular boundary is mapped to the single point i−, past timelike infinity. The remaining

singular part of the boundary is mapped to I±, future and past null infinity, and i0, i+,

spacelike and future timelike infinity (see Fig.5.). The basic idea of the outgoing modes

prescription is that probability flux is injected into superspace at i− with finite φ and

a = 0, and flows out of superspace across the singular boundaries.

We will again work in the region for which the scalar field potential depends only

very slowly on φ. So provisionally we impose the restriction |V ′/V | << 1, although this

condition will be revised below. Next, note that as a goes to zero, the coefficient of

the second derivative with respect to φ in (8.27) blows up. If, as the boundary conditions

demand, we are to get a regular solution, it seems reasonable to insist that Ψ(a, φ) becomes

independent of φ for small a. We will therefore neglect the second derivative with respect

to φ in (8.27).

Consider first the solution in the oscillatory region, a2V (φ) > 1. The WKB solutions

are proportional to eiS , or e−iS , where S = (a2V (φ) − 1)3/2/3V (φ). The first has proba-

bility flux J ∼ −∇S, pointing back towards i−, the second has J ∼ ∇S, pointing outwards

away from i−. The latter, if evolved in the forward direction would eventually reach the

singular boundary at which it would be outgoing. The former, however, corresponds to

the time reverse of this so is ingoing at the boundary. This means that the outgoing

modes prescription implies that only an outgoing wave should be present in the classically
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allowed region, so the wave function should be proportional to e−iS. This implies that the

tunneling wave function in the oscillatory region is of the form

ΨT (a, φ) ≈ A(φ) exp

(

− i

3V (φ)

(

a2V (φ) − 1
)3/2

)

(8.30)

Here we have included, as we may, the slowly varying φ-dependent factor A(φ). It turns

out that this needs to be included to ensure that the solution is regular.

By the WKB matching procedure, one may determine the solution corresponding to

(8.30) in the exponential region, a2V (φ) < 1. It is

ΨT (a, φ) ≈ A(φ) exp

(

1

3V (φ)

(

1 − a2V (φ)
)3/2

)

−iA(φ) exp

(

− 1

3V (φ)

(

1 − a2V (φ)
)3/2

)

(8.31)

The second term is exponentially smaller than the first, so may be neglected. Now consider

what happens to the solution as a goes to zero. For regularity, we need ∂Ψ/∂φ → 0 as

a→ 0. This can only be achieved by choosing the function A(φ) to be

A(φ) = exp

(

− 1

3V (φ)

)

(8.32)

With this choice, ΨT ∼ e−
1

2
a2

for small a, which is regular for all values of φ.

We should now check that all this is consistent with the approximation of neglecting

the second derivative with respect to φ in the Wheeler-DeWitt equation. Inserting the

approximate solution with A(φ) given by (8.32) into (8.27), it may be shown that the

solution is valid in the region for which |V ′(φ)| << a−2. If a2V (φ) < 1, this is actually

an improvement on the original condition, |V ′/V | << 1. In particular, it means that the

solution is valid for arbitrarily rapid dependence of the potential on φ as a goes to zero.

This would not have been true had we not multiplied the wave function by (8.32). So the

revised restriction under which our approximations are valid is

|V ′(φ)| << max
[

|V (φ)|, a−2
]

(8.33)

The final expression for the tunneling wave function is given by

ΨT (a, φ) ≈ exp

(

− 1

3V (φ)

[

1 −
(

1 − a2V (φ)
)3/2

])

for a2V (φ) < 1 (8.34)
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ΨT (a, φ) ≈ exp

(

− 1

3V (φ)

)

exp

(

− i

3V (φ)

(

a2V (φ) − 1
)3/2

)

for a2V (φ) > 1 (8.35)

This completes the calculation of the tunneling wave function.

Mention should also be made of an alternative, not so well-known version of the tun-

neling boundary condition, also due to Vilenkin. This is that the wave function is given

by a Lorentzian path integral over geometries which close off in the past,

ΨT =

∫

DgµνeiS (8.36)

where S is the Lorentzian action. The phrase “close off in the past” is taken to mean

that the histories summed over have vanishing initial three-volume, and also that the lapse

function in the path integral (4.7) (or (5.21)) is integrated not over an infinite range, but

over a half-infinite range, from 0 to ∞. The wave function thus calculated is then not

quite a solution to the Wheeler-DeWitt equation, but is a Green function of the Wheeler-

DeWitt operator; i.e. one obtains a delta-function on the right-hand side of Eq.(5.23),

although this delta-function is pushed to the boundary of superspace where h
1

2 = 0. This

is in keeping with the idea that the tunneling wave function involves probability flux being

injected into superspace at the non-singular boundary. It seems reasonable to interpret this

proposal as being essentially the same as the no-boundary proposal, in which a particular

choice for the contour is made. Namely, that the contour is chosen to be the complex

contour which may be distorted to lie along the real Lorentzian axis. It is not obviously

equivalent to the outgoing modes version of the tunneling proposal, however, and actually

fails to coincide precisely in some models (Halliwell and Louko, 1990).

Linde’s version of the tunneling proposal (Linde, 1984a, 1984b, 1984c) also appears to

involve a Lorentzian path integral as a starting point. Because the usual Wick rotation to

Euclidean time leads to a minus sign in front of the kinetic term for the scale factor in the

action, Linde proposed that the Wick rotation should be performed in the “wrong” direc-

tion. It may be argued that this involves choosing the lapse contour to be the distortion

into the region Re(N) < 0 of the contour running up the positive imaginary axis (Halliwell

and Louko, 1989a, 1990). This proposal is therefore identical to Vilenkin’s path integral

version of the tunneling proposal.

Finally, an interesting point. Vilenkin observed that the full Wheeler-DeWitt equation

is invariant under the transformation

hij → eiπhij , V (Φ) → e−iπV (Φ) (8.37)
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That is, given a solution Ψ[hij ,Φ], a second solution may be generated from it using the

above transformation. In particular, Vilenkin noticed that the no-boundary and tunneling

wave functions for the scalar field minisuperspace model are related by this transformation:

ΨNB = ΨT (V → e−iπV, a→ eiπ/2a) (8.38)

(to see this explicitly one has to use the Airy functions of which (8.34) and (8.35) are

asymptotic forms). The possible significance of this observation is the following: as I have

tried to emphasize, there are considerable difficulties of precision and generality in the

definitions of the no-boundary and tunneling wave functions. If, however, one succeeded

in defining one of these wave functions in a much more precise, more general way, then the

other could be defined by the transformation (8.37).

9. NO-BOUNDARY VS. TUNNELING

Let us now compare the no-boundary and tunneling wave functions. For convenience

we record their explicit forms in the oscillatory region, in a range of φ for which V (φ)

is slowly varying. To be definite, let us take the potential V (φ) to be of the chaotic

inflationary type. Let us introduce

S =
1

3V (φ)

(

a2V (φ) − 1
)3/2

− π

4
(9.1)

The tunneling wave function is

ΨT ≈ exp

(

− 1

3V (φ)

)

e−iS (9.2)

The no-boundary wave function is

ΨNB ≈ exp

(

+
1

3V (φ)

)

[

e−iS + eiS
]

(9.3)

There are two differences. The first is that the no-boundary wave function is real, being

a sum of a WKB component and its complex conjugate, whilst the Vilenkin wave func-

tion consists of just one WKB component.† If one component corresponds to expanding

† The fact that the no-boundary wave function is real corresponds to the fact that it is in a
sense CPT invariant, and has implications for the arrow of time in cosmology (Hawking,
1985; Page, 1985).
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solutions, then the other corresponds to collapsing solutions, although it is not possible to

say which one is which. It may be argued that these components have negligible interfer-

ence, so each component may be considered separately (Halliwell, 1989b). One may thus

compare a single component of the no-boundary wave function with the Vilenkin wave

function.

The second, and more important difference, is the sign difference in the prefactor.

Both wave functions are peaked about the same set of solutions to the field equations,

namely those satisfying the first integral p = ∇S, with S given by (9.1). As we have

shown, these solutions are initially inflationary, with a(t) ≈ eV
1

2 t, φ(t) ≈ φ0 = constant.

These solutions may be labeled by their initial values of φ, φ0. Although all the solutions

undergo some inflation, the amount by which they inflate depends on φ0. For example, if

the potential is V (φ) = m2φ2, then sufficient inflation is obtained only for values of φ0 in

excess of about 4 (in Planck units) (Hawking, 1984a; Page, 1986a).

To see which initial values of φ are most favoured by each wave function, we need to

study the measure on the set of paths, J · dΣ. Because the trajectories have φ̇ ≈ 0, J

points largely in the a direction. A suitable choice of surfaces Σ is therefore surfaces of

constant a, at least locally. The probability measure is thus given by

dP = J · dΣ ≈ exp

(

± 2

3V (φ)

)

dφ (9.4)

(with (+) for the no-boundary wave function, (−) for the tunneling wave function). With

this measure, we now have to ask the right questions. As discussed previously, we cannot

take this to be an absolute measure on the initial values of φ. Rather, it should be thought

of as a conditional probability measure. So we must first decide what conditions to impose;

that is, in what range of values of φ are we to ask for predictions?

First of all consider what happens if φ is very small initially, close to zero (for conve-

nience, we restrict attention to positive φ in what follows). Universes starting out with a

very small initial value of φ will very rapidly reach a small maximum size and then rec-

ollapse in a short period of time. One would not expect large scale structure and indeed,

observers, to exist in such universes. It therefore seems reasonable to impose the condition

that the universe expands out to a “reasonable” size. This is somewhat vague, but what

it means is that we restrict attention to initial values of φ greater than some exceedingly

small value φmin, say. This restriction has the consequence that the no-boundary (+)
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measure (9.4) is now bounded (it was previously unbounded at φ = 0) and it is peaked

about φmin.

Now consider very large values of φ. For a chaotic potential at least, as φ becomes

very large the scalar field energy density V (φ) will approach the Planck energy density,

V (φ) ∼ 1. If minisuperspace models are to have any validity at all, it seems unlikely that

they can be trusted in the range of φ for which V (φ) > 1. So our second condition is

to ask for predictions only in the region φ < φp, where V (φp) = 1. For the potential

V (φ) = m2φ2, m is normally taken to be about 10−4, so φp ∼ 104.

Our task is now to ask for predictions with the condition that the initial value of φ

lies in the range φmin < φ < φp. For a chaotic potential, there will be a value of φ in this

range, larger than φmin, call it φsuf , for which sufficient inflation is achieved if φ0 > φsuf ,

and it is not achieved if φ0 < φsuf . For the massive scalar field, φsuf ∼ 4. A pertinent

question to ask, therefore is this: “What is the probability that φ0 > φsuf , given that

φmin < φ0 < φp?” It is given, using (9.4), by the following expression.

P (φ0 > φsuf |φmin < φ0 < φp) =

∫ φp

φsuf
dφ exp

(

± 2
3V (φ)

)

∫ φp

φmin
dφ exp

(

± 2
3V (φ)

) (9.5)

This is effectively the probability of sufficient inflation.

It is reasonably easy to see the result of evaluating (9.5) by merely looking at the plot of

the two probability distributions, exp
(

± 2
3V (φ)

)

(see Fig.6.). Consider first the tunneling

wave function (−). The integrand becomes very small as φ approaches φmin and it is clear

that by far the largest contribution to the integral in the denominator comes from the

region φ > φsuf . One therefore has P ≈ 1, and sufficient inflation is a prediction of the

tunneling wave function.

Now consider the no-boundary wave function (+). The integrand diverges as φ ap-

proaches zero, but is cut off by φmin. If, as we are assuming, φmin is very small, the

main contribution to the integral in the denominator will come from the region very close

to φmin. One therefore has P << 1 for the no-boundary wave function, and sufficient

inflation is not a prediction.

The above conclusion about the no-boundary wave function is not the one reached

by Hawking and Page in their analysis (Hawking and Page, 1986). They concluded that
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sufficient inflation has probability unity. The difference with the analysis given here (which

is based on that of Vilenkin (1989)), is that Hawking and Page did not restrict to φ < φp.

For φ > φp, the integrands in (9.4) level off to 1; thus although in the range φmin < φ <∞
the integrands in the denominator are strongly peaked at φmin, the contribution to the

integral from this region is overwhelmingly outweighed by that from very large values of

φ. (9.4) would therefore yield the value 1 for both wave functions.

A new aspect to the no-boundary/tunneling debate was recently exposed by Grishchuk

and Rozhansky (1989) (see also Grishchuk and Rozhansky (1988)). They asked whether

the above calculation of the no-boundary wave function, which involves the approximate

solutions to the classical Euclidean field equations for the scalar field model, is really valid

down to φ close to zero. The conclusion they came to is that they are not, and that the

above expression for the no-boundary wave function makes sense only in the range φ > φ∗,
for some critical value of φ, φ∗ which they estimated. Although less than φsuf , φ∗ is much

greater than φmin, the lower bound we imposed to ensure that the universe expanded to a

“reasonable” size. The value of φ∗ is model-dependent. For the massive scalar field model

φ∗ ≈ 1.

Their conclusion was reached by giving a more careful treatment of the motion of the

scalar field, which was taken to be approximately constant in the above analysis. For large

φ, |V ′/V | << 1, and the Euclidean solution for a(τ) is given approximately by (8.19).

The trajectories start at a = 0 with some value of φ, expand, and then turn around and

recollapse. In particular, along the curve a2V (φ) = 1, neighbouring Euclidean trajectories

intersect – they form a caustic. Because the real Euclidean trajectories dominating the

path cannot reach immediately beyond the caustic, i.e. into the region a2V (φ) > 1, a

complex solution is necessary in order to get there. This means that the wave function

becomes oscillatory in this region. Suppose however, one follows the caustic to smaller

values of φ. It departs from the curve a2V (φ) = 1, and in fact has a singularity at φ = φ∗,
breaking into two branches there. This seems to invalidate the form of the wave function

used above, and in fact, Grishchuk and Rozhansky claimed that it implies that the wave

function fails to predict the emergence of any real Lorentzian trajectories for φ < φ∗.
Moreover, their analysis also applies, they claim, to the tunneling wave function.

What this all means is that the conditions used above in the calculation of the prob-

ability of sufficient inflation should be replaced by the conditions φ∗ < φ < φp. Most

importantly the region very close to φ = φmin, in which the no-boundary and tunneling
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wave function differ most severely, is excised. This has the consequence that the predic-

tions of these two wave functions are not as different as previously believed. Although

the predictions of the tunneling wavefunction are little affected by this result, for the no-

boundary wave function it is now not so obvious that P << 1. In particular, what one

would hope to find is that φ∗ > φsuf . This would have the consequence that all the clas-

sical Lorentzian solutions the wave function corresponds to have sufficient inflation; thus

sufficient inflation would be predicted with probability 1, irrespective of whether an upper

cut-off is imposed. The value of φ∗ is, however, model dependent, and a model for which

φ∗ > φsuf is yet to be found.†

This is an interesting development which deserves further study.

10. BEYOND MINISUPERSPACE

For most of these lectures, we have largely concentrated on the application of the

formalism of quantum cosmology to minisuperspace models. These models, with the ap-

propriate boundary conditions, have been reasonably successful – in predicting inflation,

for example. However, the universe we see today is not exactly described by the homoge-

neous metrics of the type considered in minisuperspace models. There are local deviations

from homogeneity because matter is clumped into galaxies and other large scale struc-

tures. In conventional galaxy formation scenarios, this large scale structure can arise as a

result of small density perturbations δρ/ρ ∼ 10−4 in an otherwise homogeneous universe

at very early times. The hot big bang model offered no explanation as to the origin of

these perturbations, but had to assume them as initial conditions. The inflationary uni-

verse scenario shed considerable light on the situation by showing that they could have

arisen from pre-inflationary quantum fluctuations in the scalar field hugely amplified by

inflation. To be more precise, the density fluctuations in inflationary universe models are

calculated from a quantity of the form 〈0|Φ2|0〉, using standard methods of quantum field

theory in a curved (usually de Sitter-like) spacetime. However, a point that was not em-

phasized in the early studies of this problem is that the form and magnitude of the density

† More detailed calculations with the massive scalar field model, for which φ∗ ∼ 1 and
φsuf ∼ 4 indicate that the previous conclusions (i.e. pre-Grishchuk-Rozhansky) concering
the probability of inflation are in fact largely unaffected (J.Fort, private communication).
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fluctuations calculated in this way depend rather crucially on the particular vacuum state

|0〉 one uses, and in most curved spacetimes, there is no unique natural choice. Since this

is clearly a question of initial conditions, one would expect to gain new insight into this

issue from the perspective of quantum cosmology. It is therefore of considerable interest to

go beyond minisuperspace to the full, infinite dimensional superspace. It would of course

be very difficult to do this in full generality, but for the purposes of describing density

fluctuations and gravitational waves, it is sufficient consider linearized fluctuations about

a homogeneous isotropic minisuperspace background. This is the subject of this section.

We will find that there are two things that come out of this. Firstly, we will see that in

the semi-classical limit, quantum cosmology reduces to the familiar formalism of quantum

field theory for the fluctuations on a classical minisuperspace background. Secondly, the

boundary conditions on the wave function of the universe imply a particular choice of

vacuum state for the quantum fields.

Quantum Field Theory in Curved Spacetime

Before going on to study perturbations about minisuperspace in quantum cosmology,

let us begin by reviewing some basic aspects of quantum field theory in curved spacetime

(see, for example, Birrell and Davies (1982)). For definiteness, let us consider scalar field

theory described by the action

Sm = −1

2

∫

d4x
√−g

[

(∂Φ)2 +m2Φ2)
]

(10.1)

This theory is normally quantized in the Heisenberg picture in a given background by

introducing a set of mode functions uk(x, t) satisfying a wave equation of the form
(

−m2
)

uk(x, t) = 0 (10.2)

The field operator Φ̂ is then expanded in terms of these mode functions

Φ̂(x, t) =
∑

k

(

âkuk(x, t) + â
†
ku

∗
k(x, t)

)

(10.3)

where â
†
k and âk are the usual creation and annihilation operators. The vacuum state is

then defined to be the state |0〉 for which

âk|0〉 = 0 (10.4)
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The vacuum state is determined by the choice of mode functions uk.

In Minkowski space, there is a unique vacuum state which is invariant under the

Poincare group, and so is the agreed vacuum state for all inertial observers. However,

in an arbitrary curved spacetime, there is no unique vacuum state. Any expectation value

will generally depend rather crucially on the particular choice of state.

There is another perhaps less familiar way of doing quantum field theory in curved

spacetime which is closer to quantum cosmology than the Heisenberg picture outlined

above. This is the functional Schrodinger picture (Brandenberger, 1984; Burges, 1984;,

Floreanini et al., 1987; Freese et al., 1985; Guth and Pi, 1985; Ratra, 1985). This picture

is based very much on the (3 + 1) decomposition we also used for quantum cosmology

earlier. The (3 + 1) form of the scalar field action (10.1) (in the gauge N i = 0) is

Sm =
1

2

∫

d3xdtNh
1

2

[

Φ̇2

N2
− hij∂iΦ∂jΦ −m2Φ2

]

(10.5)

Defining canonical momenta πΦ in the usual way, one readily derives the Hamiltonian

Hm =
1

2

∫

d3xNh
1

2

[

h−1π2
Φ + hij∂iΦ∂jΦ +m2Φ2

]

(10.6)

In the functional Scrödinger quantization, the quantum state of the scalar field is repre-

sented by a wave functional Ψm[Φ(x), t], a functional of the field configuration Φ(x) on the

surface t = constant. The evolution of the quantum state is governed by the functional

Schrödinger equation

i
∂Ψm

∂t
= HmΨm (10.7)

where the operator appearing on the right-hand side is the Hamiltonian (10.6) with the

momenta replaced by operators in the usual way,

πΦ(x) → −i δ

δΦ(x)
(10.8)

There are two differences between the representation of states in the two picture out-

lined above. Firstly, Heisenberg picture states are time-independent, whereas Schrödinger

picture states are not (at least, in the flat space case – in curved backgrounds Heisenberg

states may acquire time-dependence through the gravitational field). They are related by

|ΨS(t)〉 = exp

(

−i
∫ t

dt′Hm(t′)
)

|ΨH〉 (10.9)
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Secondly, the Schrödinger picture states are represented at each moment of time by wave

functionals Ψ[Φ(x)] rather than abstract Hilbert space elements |Ψ〉. The relationship

between these two is found by introducing a complete set of field states |Φ(x)〉, defined to

be the eigenstates of the field operator Φ̂ at a moment of time

Φ̂|Φ(x)〉 = Φ(x)|Φ(x)〉 (10.10)

The wave functionals Ψ[Φ(x)] are then defined to be the coefficients in the expansion of

the abstract Hilbert space elements in terms of the complete set of field states:

|ΨS〉 =

∫

DΦ(x)|Φ(x)〉〈Φ(x)|ΨS〉

≡
∫

DΦ(x)|Φ(x)〉ΨS [Φ(x)] (10.11)

The question of choosing a vacuum state |0〉 in the Heisenberg picture becomes the

question of choosing a solution to the functional Schrödinger equation (10.7) in the func-

tional Schrödinger picture.

With these preliminaries in mind, let us now turn to perturbations about minisuper-

space.

Inhomogeneous Perturbations about Minisuperspace

Now we will study inhomogeneous perturbations about minisuperspace. We primarily

follow Halliwell (1987b), Halliwell and Hawking (1985), and Hartle (1986), but many more

references are given in Section 13. To see how this works, it is simplest to consider a

particular example. Namely, we will consider perturbations about the scalar field model

considered earlier. There, the minisuperspace ansatz involved writing

hij = e2αΩij , Φ(x, t) = φ(t)

N(x, t) = N0(t), N i(x, t) = 0 (10.12)

where Ωij is the metric on the unit three-sphere. To go beyond this perturbatively we

write

hij = e2α
(

Ωij + ǫij
)

,Φ(x, t) = φ(t) + δφ(x, t)
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N(x, t) = N0(t) + δN(x, t) (10.13)

and in addition, we allow non-zero N i(x, t), which is regarded as a small perturbation.

The easiest way to deal with the inhomogeneous perturbations is to expand in harmonics

on the three-sphere. So, for example, one writes the scalar field perturbation as

δφ(x, t) =
∑

nlm

fnlm(t)Qnlm(x) (10.14)

where Qnlm are three-sphere harmonics. They satisfy

(3)∆Qnlm = −(n2 − 1)Qnlm (10.15)

where (3)∆ is the Laplacian on the three-sphere. The sum in (10.14) excludes the homoge-

neous mode, n = 1. The details of this expansion are not important in what follows, and

may be found in Halliwell and Hawking (1985).

Inserting the above ansatz into the Einstein-scalar action, and expanding to quadratic

order in the perturbations, one obtains a result of the form

S[gµν,Φ] = S0[q
α, N0] + S2[q

α, N0, ǫij, δφ, δN,N
i] (10.16)

where as before, we use qα to denote the minisuperspace coordinates. S0 is the original

minisuperspace action and S2 is the action of the perturbations, and is quadratic in them.

The total Hamiltonian following from (10.16) is then found to be of the form

HT = N0

(

H0 +

∫

d3xH(2)

)

+

∫

d3xδN(x)H(1)(x) +

∫

d3xN i(x)Hi(x) (10.17)

From this one may see that first of all, there is a non-trivial momentum constraint at every

point x in the three-surface

Hi(x) = 0 (10.18)

It is linear in the perturbations. Secondly, the Hamiltonian constraint has split into two

parts. There is a part linear in the perturbations, at each point x of the three-surface,

H(1)(x) = 0 (10.19)
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and there is a part consisting of the original minisuperspace Hamiltonian plus a term

quadratic in the perturbations integrated over the three-surface:

H0 +

∫

d3xH(2) ≡ H0 +H2 = 0 (10.20)

Quantization procedes by introducing a wave function Ψ(qα, ǫij, δΦ) and insisting that

it be annihilated by the operator versions of the constraints, (10.18)-(10.20). The procedure

is complicated by the fact that, in addition to the invariance under reparametrizations

present in the minisuperspace case, the perturbations involve gauge degree of freedom.

There are numerous ways of dealing with this. For example, the gauge degrees of freedom

for the perturbations generated by (10.18) and (10.19) may be fixed classically, and the

constraints solved for the physical degrees of freedom of the perturbations. This then

leaves only the constraint (10.20), which now depends only on the minisuperspace variable

and the unconstrained physical degrees of freedom of the metric and matter perturbations.

One way or another, (10.20) ends up being the most important equation, and it is this

that we now concentrate on.

A useful example to bear in mind is the case of purely scalar field perturbations about a

purely gravitational background consisting of a Robertson-Walker metric with scale factor

eα. Then the Hamiltonian H2 is given by

H2 =
∑

nlm

1

2
e−3α

[

− ∂2

∂f2
nlm

+ (m2e6α + (n2 − 1)e4α)f2
nlm

]

(10.21)

after expansion in harmonics.

The Wheeler-DeWitt equation resulting from (10.20) is of the form
[

− 1

2m2
p
∇2 +m2

pU(q) +H2

]

Ψ(q,Φ) = 0 (10.22)

For convenience, we will consider only scalar field perturbations Φ, but what follows is

equally applicable to the case of gravitational wave perturbations. The operator ∇ operates

only on qα, not on the perturbations. We are interested in the solution to the Wheeler-

DeWitt equation in the region of superspace where the minisuperspace variables qα are

approximately classical, but the perturbations may be quantum mechanical. We therefore

look for solutions of the form

Ψ(q,Φ) = exp
(

im2
pS0(q) + iS1(q)

)

ψ(q,Φ) +O(m−2
p ) (10.23)
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where S0(q) is real,† but S1 and ψ may be complex. Inserting (10.23) into (10.22), and

equating powers of the Planck mass, one obtains the following. At lowest order, once again

one gets the Hamilton-Jacobi equation for S0,

1

2
(∇S0)

2 + U(q) = 0. (10.24)

This shows that, to lowest order in m2
p, the wave function (10.23) is, as in the minisu-

perspace case, peaked about the ensemble of solutions to the classical field equations with

Hamilton-Jacobi function S0. It is convenient to introduce the tangent vector to these

classical solutions,
∂

∂t
= ∇S0 · ∇ (10.25)

At the next order, one obtains the equation:

ψ

[

∇S0 · ∇S1 −
i

2
∇2S0

]

= i∇S0 · ∇ψ −H2ψ (10.26)

This is one equation for the two unknowns S1 and ψ, so there is the freedom to impose

some restrictions on them. We are anticipating that the ψ will be matter wave functionals

for the scalar field Φ. Let us therefore introduce an inner product between matter wave

functionals, at each point of minisuperspace, qα:

(ψ1, ψ2) =

∫

DΦ(x)ψ∗
1(q,Φ(x))ψ2(q,Φ(x)) (10.27)

Note that this involves an integral only over Φ(x) and not over the minisuperspace variables

qα. This is acceptable because we expect the appropriate matter wave functionals to be

normalizable in the matter modes. We do not, however, expect any part of the wave

function to be normalizable in the large, minisuperspace modes, so we do not attempt to

introduce an inner product involving an integral over qα. Using the freedom available in

ψ, let us demand that
d

dt
(ψ, ψ) = 0 (10.28)

That is, the norm of ψ is preserved along the classical minisuperspace trajectories. This

seems like a reasonable restriction if we are to recover quantum field theory for matter.

We may therefore take (ψ, ψ) = 1. Differentiating out (10.28), it is readily seen that
(

i
∂ψ

∂t
, ψ

)

=

(

ψ, i
∂ψ

∂t

)

(10.29)

† As in Section 7, we could also allow a slowly varying exponential prefactor, but this may
be absorbed into the definition of S1
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and hence that this quantity is real.

Armed with this information, let us now return to (10.26). Taking the inner product of

(10.26) with ψ, and making the reasonable assumption that the perturbation Hamiltonian

H2 is hermitian in the above inner product, we quickly discover that, apart from the ψ,

the left-hand side must be real. Its imaginary part must therefore vanish,

∇S0 · ∇(ImS1) −
1

2
∇2S0 = 0 (10.30)

If we write C = exp(−ImS1), then C is the usual real minisuperspace WKB prefactor,

obeying (6.26), and is unaffected by the perturbations.

Subtracting (10.30) from (10.26), and using the definition (10.25), one obtains the

following equation for ψ:

i
∂ψ

∂t
=

[

H2 +
∂

∂t
(ReS1)

]

ψ (10.31)

Finally, by writing ψ̃ = eiReS1ψ, we discover that ψ̃ obeys the functional

Schrödinger equation along the classical trajectories in minisuperspace about which the

wave function is peaked:

i
∂ψ̃

∂t
= H2ψ̃ (10.32)

This derivation may be concisely summarized as follows: the WKB solution to the

Wheeler-DeWitt equation (10.22) is of the form

Ψ(q,Φ) = C(q)eim
2

pS0(q)ψ̃(q,Φ) (10.33)

where S0(q) is a solution to the Hamilton-Jacobi equation, indicating that the wave func-

tion to leading order is peaked about a set of classical trajectories, C(q) is the usual

unperturbed WKB prefactor, and ψ̃ satisfies the functional Schödinger equation (10.32)

along the classical trajectories about which the wave function is peaked.

What we have shown, therefore, is that the Wheeler-DeWitt equation reduces, in the

semi-classical limit, to the familiar formalism of quantum field theory for the fluctuations

Φ in a fixed classical background. This shows that quantum cosmology is consistent with

the standard approach, which involves quantum field theory on a fixed background. See

Section 13 for references to the large number of papers on this issue.
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11. VACUUM STATES FROM QUANTUM COSMOLOGY

We have shown that quantum cosmology reduces, in the semi-classical limit, to the

formalism of quantum field theory for the matter modes in a fixed curved spacetime back-

ground. So far we have therefore done little new, except to demonstrate consistency with

that we already know. However, there is a bonus. Boundary conditions on the wave func-

tion define a particular solution to the Wheeler-DeWitt equation of the form (10.33), where

ψ̃ is a solution to the functional Schrödinger equation for the perturbations. This means

that boundary conditions on the wave function of the universe will pick out a particular

solution to the functional Schrödinger equation; that is, they define a particular vaccum

state for matter, with which to do quantum field theory.

The natural question to ask now, is what is the nature of the vacuum state picked

out by the no-boundary and tunneling boundary conditions in a given background? The

background of particular interest as far as inflation is concerned is de Sitter space, or

spacetimes that are very nearly de Sitter. For that background it may be shown that

the vacuum state defined by both of these proposals is a vacuum state known as the

“Euclidean” or “Bunch-Davies” vacuum. This is the vacuum state that is often assumed

when calculating density fluctuations, and leads to a reasonable spectrum for the emergence

of large scale structure.

Before seeing exactly how the above proposals define this vacuum state, let us first

explain how it is defined.†

De Sitter-Invariant Vacua

Minkowski space has as its isometry group the 10 parameter Poincare group. There

is a vacuum which is invariant under this group, and thus is the agreed vacuum for all

inertial observers. It is unique, up to trivial Bogoliubov transformations. The isometry

group of de Sitter space, which also has 10 parameters, is the de Sitter group, SO(4, 1).

In choosing vacuum states with which to do quantum field theory in de Sitter space, it is

therefore natural to seek vacua invariant under the de Sitter group.

† For a useful discussion of de Sitter-invariant vacua, see Allen (1985), and references therein.
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A convenient way of characterizing vacua is through the symmetric two-point function

in a state |λ〉:
Gλ(x, y) = 〈λ|(Φ(x)Φ(y) + Φ(y)Φ(x))|λ (11.1)

The state |λ〉 is then said to be de Sitter invariant if the two-point function depends on x

and y only through µ(x, y), the geodesic distance between x and y:

Gλ(x, y) = fλ(µ) (11.2)

Using the fact that Φ obeys the Klein-Gordon equation, a second order ordinary differential

equation for fλ(µ) is readily derived. From it, it may be shown that there is not just one

de Sitter-invariant vacuum, but there is a one-parameter family of inequivalent de Sitter-

invariant vacua.

For this one-parameter family, the function fλ(µ) generally has two poles: one when y

is on the light-cone of x, the other when y is on the light cone of x̄, the point in de Sitter

space antipodal to x. However, amongst the one-parameter family, there is one member

for which fλ(µ) has just one pole, when y is on the light-cone of x. This member is called

the “Euclidean” or “Bunch-Davies” vacuum, and has the nicest analytic properties. As

mentioned above, it is this one that is always used in calculations of density fluctations in

inflationary universe models.

There is another equivalent way of characterizing the Euclidean vacuum that will be

most convenient for our purposes. This is a definition in terms of a particular choice of

mode functions. Suppose we expand the scalar field operator in terms of a set of modes

functions {unlm(x, t)}, say,

Φ̂(x, t) =
∑

nlm

(

unlm(x, t)ânlm + u∗nlm(x, t)â
†
nlm

)

(11.3)

The vacuum state |0〉 corresponding to this particular choice of mode functions is defined

by

ânlm|0〉 = 0 (11.4)

To define the Euclidean vacuum, one first chooses the mode functions

unlm(x, t) = yn(t)Q
n
lm(x) (11.5)

where the Qnlm(x) are three-sphere harmonics, and the yn(t) satisfy the equation

ÿn + 3
ȧ

a
ẏn +

(

n2 − 1

a2
+m2

)

yn = 0 (11.6)
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Here, a(t) = H−1 cosh(Ht) is the scale factor for de Sitter space. The normalization of

the yn(t) is fixed through the Wronskian condition

ynẏ
∗
n − y∗nẏn =

i

a3
(11.7)

The Euclidean section of de Sitter space is the four-sphere, and may be obtained by

writing t = −i(τ − π
2H ), which turns a(t) = H−1 cosh(Ht) into a(τ) = H−1 sin(Hτ). The

Euclidean vacuum is then defined by the requirement that the yn(t) are regular on the

Euclidean section. The yn(t) actually become real on the Euclidean section, so one may

equivalently demand that the y∗n(t) are regular there.

There is a third possible way of dicussing de Sitter-invariant vacua, which is conceptu-

ally the most transparent way. This is to explicitly construct the de Sitter generators and

demand that the state be annihilated by them, but we will not consider this here (Burges,

1984; Floreanini et al., 1986).

The No-Boundary Vacuum State

Now let us explicitly calculate the matter state wave functional for a massive minimally

coupled scalar field in a de Sitter background, using the no-boundary proposal. We follow

Laflamme (1987a). We regard all the modes of the scalar field, including the homogeneous

mode, as perturbations on a homogeneous isotropic background with scale factor a(t),

driven by a cosmological constant. The no-boundary wave function is given by a path

integral of the form

ΨNB(ã, Φ̃) =

∫

DgµνDΦ exp
(

−Ig[gµν] − Im[gµν ,Φ]
)

(11.8)

In the saddle-point approximation to the integral over metrics, this leads to an expression

of the form

ΨNB(ã, Φ̃) ≈ exp
(

−Ig[ḡµν ]
)

∫

DΦ exp
(

−Im[ḡµν ,Φ]
)

(11.9)

where ḡµν is the saddle-point metric. When aH < 1, ḡµν is real and is the metric on the

section of four-sphere closing off a three-sphere of radius a. When aH > 1, ḡµν is complex,

and corresponds to a section of de Sitter space with minimum radius a matched onto half

a four-sphere at its maximum radius.
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Comparing (11.9) with (10.23), one may see that the matter wave functionals are given

by the path integral

ψ[ã, Φ̃] =

∫

DΦ exp
(

−Im[ḡµν,Φ]
)

(11.10)

The no-boundary proposal implies that the integral over matter modes is over fields Φ(x, τ)

that match Φ̃(x) on the three-sphere boundary. As in Section 8, we shall demand that the

saddle-point of the functional integral over Φ in (11.10) corresponds to a regular solution

to the scalar field equation on the given background geometry.

The scalar field is most easily handled by expanding in three-sphere harmonics

Φ(x, τ) =
∑

nlm

fnlm(τ)Qnlm(x) (11.11)

In terms of the coefficients fnlm(τ), the Euclidean action is

Im[a(τ),Φ] =
1

2

∑

nlm

∫ 1

0
dτNa3

[

1

N2

(

dfnlm
dτ

)2

+

(

n2 − 1

a2
+m2

)

f2
nlm

]

≡
∑

nlm

Inlm[a(τ), fnlm] (11.12)

The Euclidean field equations are

d2fnlm
dτ2

+
3

a

da

dτ

dfnlm
dτ

−N2
(

n2 − 1

a2
+m2

)

fnlm = 0 (11.13)

Here, a(τ), N is the solution to the field equation and constraint for the background sat-

sifying a(0) = 0, a(1) = ã. Explicitly,

a(τ) =
1

H
sin(NHτ), N =

1

H

(π

2
− cos−1(ãH)

)

(11.14)

The solutions to (11.13) may be written down explicitly in terms of hypergeometric

functions, although this is not necessary for our purposes. They are regular everywhere,

with the possible exception of the region near τ = 0. In this region, a(τ) ∼ Nτ , and it is

easily shown that the solutions to (11.13) behave like τ−n−1, or τn−1. Clearly only one of

these is regular. It may be picked out by imposing the initial condition

fnlm(0) = 0, for n = 2, 3, ..., and
dfnlm
dτ

(0) = 0, for n = 1. (11.15)
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These are the initial conditions on the histories implied by the no-boundary proposal. The

histories also satisfy the final condition

fnlm(1) = f̃nlm (11.16)

Because the modes decouple, we may write

ψ[ã, Φ̃(x)] =
∏

nlm

ψnlm(ã, f̃nlm) (11.17)

From (11.10) it then follows that

ψ(ã, f̃nlm) =

∫

Dfnlme−Inlm (11.18)

Because Inlm is quadratic in the scalar field modes, the path integral (11.18) may be

evaluated exactly to yield an expression of the form

ψ(ã, f̃nlm) = Anlm(ã) exp
(

−Īnlm(ã, f̃nlm)
)

(11.19)

Here, Īnlm(ã, f̃nlm) is the action of the solution to the Euclidean field equations satisfying

the boundary conditions (11.15), (11.16). Let us denote this solution by gn(τ). It is

independent of l,m, because the field and equations and boundary conditions are. Then

it is readily shown that

Inlm(ã, f̃nlm) =
1

2

[

a3(τ)gn(τ)
dgn(τ)

dτ

]1

0
=

1

2
ã3f̃2

nlm

[

1

gn

dgn
dτ

]

τ=1
(11.20)

The matter wave functional defined by the no-boundary proposal is therefore given by

(11.18), with

ψnlm(ã, f̃nlm) = Anlm(ã) exp

(

−1

2
ã3f̃2

nlm

[

1

gn

dgn
dτ

]

τ=1

)

(11.21)

The key point to note is that it involves the expression ġn/gn, evaluated at the upper

end-point, where the gn(τ) are solutions to the field equations which are regular on the

Euclidean section.

We now need to show that this matter wave functional corresponds to the Euclidean

vacuum state defined above. This basically involves determining what the vacuum state

|0〉 defined by (11.4) looks like in the functional Schrödinger picture. To this end, first
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compare the expansions (11.3) and (11.11) of the scalar field. Turning (11.11) into an

operator, one may therefore write

f̂nlm(t) = yn(t)ânlm + y∗n(t)â
†
nlm (11.22)

The momentum operator conjugate to this is

π̂nlm(t) = a3 ˙̂
fnlm = a3ẏn(t)ânlm + a3ẏ∗n(t)â

†
nlm (11.23)

(11.22) and (11.33) are readily inverted to yield

ânlm = −iy∗n
(

a3 ẏ
∗
n

y∗n
f̂nlm − π̂nlm

)

(11.24)

By inserting a complete set of field states {|fnlm〉} in (11.4), we thus obtain the following

equation for the vacuum state ψnlm(fnlm) ≡ 〈fnlm|0〉:
(

a3 ẏ
∗
n

y∗n
fnlm + i

∂

∂fnlm

)

ψnlm(fnlm) = 0 (11.25)

It is readily solved to yield

ψnlm = exp

(

i

2
a3 ẏ

∗
n

y∗n
f2
nlm

)

(11.26)

This, therefore, is the Euclidean vacuum in the functional Schrödinger picture. Going to

the Euclidean section, one thus obtains

ψnlm = exp

(

−1

2
a3 1

y∗n

dy∗n
dτ

f2
nlm

)

(11.27)

The equivalence of (11.27) and (11.21) immediately follows from the definition of the

Euclidean vacuum, which is that the yn, and hence the y∗n, are solutions to the field

equations which are regular on the Euclidean section. This completes the demonstration

that the vacuum state defined by the no-boundary proposal is the de Sitter-invariant

Euclidean vacuum.

A more heuristic argument for the de Sitter invariance of the no-boundary matter wave

functionals may also be given. This argument shows that the de Sitter invariance is an

inevitable consequence of the very geometrical nature of the no-boundary proposal, and is

therefore true of most types of matter fields (D’Eath and Halliwell, 1987).

Suppose one asks for the quantum state of the matter field on a three-sphere of radius

a < H−1. The no-boundary state is defined by a path integral of the form (11.10). One
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sums over all matter fields regular on the section of four-sphere interior to the three-sphere

which match the prescribed data on the three-sphere boundary. The resulting state will

depend on the geometry only through the radius of the three-sphere, and not on its intrinsic

location or orientation on the four-sphere. One thus has the freedom to move the three-

sphere around on the four-sphere without changing the quantum state – at each location

one is summing over exactly the same field configurations to define it. These different

locations are related to each other by the isometry group of the four-sphere, SO(5). It

follows that the state is SO(5)-invariant on the Euclidean section. On continuation back

to the Lorentzian section, one thus finds that the state is invariant under SO(4, 1), the

de Sitter group; that is, the state is de Sitter invariant. This argument may be made

mathematically precise, although we will not go into that here.

It may be shown that the tunneling wave function picks out the same vacuum state.

This follows essentially from the imposition of a regularity requirement on the matter wave

functionals (Vachaspati, 1989; Vachaspati and Vilenkin, 1988; Vilenkin, 1988).

12. SUMMARY

The purpose of these lectures has been to describe the route from a quantum theory

of cosmological boundary conditions to a classical universe with the potential for evolving

into one similar to that in which we live.

We began in Section 2 with a brief introductory tour of quantum cosmology by way of

a simple example. This simple model illustrated the need for a quantum theory of initial

conditions. The general formalism of quantum cosmology was briefly outlined in Sections 3

and 4. The full theory is very difficult to handle in practice, so in Section 5, we restricted to

the case of minisuperspace models. The canonical and path integral formalism for minisu-

perspace models was described. In Section 6, we discussed the most important prediction

a quantum theory of cosmology should make – the emergence of classical spacetime. The

emergence of classical spacetime is very much contingent on boundary conditions on the

wave function, and occurs only in particular regions of configuration space. These ideas

were further developed in Section 7, in which the WKB approximation was described.

Wave functions of oscillatory WKB form correspond to classical spacetime in that they
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are peaked about a set of classical solutions to the Einstein equations. Moreover, this

set of solutions is a subset of the general solution; thus boundary conditions on the wave

function of the universe effectively imply initial conditions on the set of classical solutions.

We discussed the way in which the wave function may be used to construct a measure on

this set of classical solutions.

In Section 8, certain boundary condition proposals were described – the no-boundary

proposal of Hartle and Hawking, and the tunneling boundary condition of Linde and of

Vilenkin. Each of these proposals suffers from imprecision or lack of generality, although

with a certain amount of license, each may be successfully used to calculate wave functions

in simple models. We calculated the no-boundary and tunneling wave functions for the

scalar field model introduced in Section 2. These wave functions were compared in Section

9. The two wave functions are peaked about the same set of classical solutions, but they

give rather different measures on this set of solutions. In particular, they may give very

different values for the likelihood of sufficient inflation. The comparison of these two wave

functions was inconclusive, but this merely reflects the fact that no consensus of opinion

has yet emerged.

In Sections 10 and 11 we described how one goes beyond minisuperspace by considering

inhomogeneous perturbations. There are two things that come out of this. First, one finds

that in the limit in which gravity becomes classical, one recovers quantum field theory

for the perturbations in a fixed classical gravitational background. Secondly, boundary

conditions on the wave function of the universe are found to imply a particular choice of

vacuum state for the perturbations. In particular, in the case of a de Sitter background, the

no-boundary and tunneling proposals pick out the de Sitter-invariant Euclidean vacuum.

The density perturbations arising from this particular choice are of the correct form for

the subsequent emergence of large scale structure.

Finally, I would like to emphasize the rather open-ended nature of many of the issues in

quantum cosmology covered in these lectures. One might get the impression from reading

the literature on the subject that certain aspects of the field are complete and neatly

tied up beyond criticism. In my opinion this is most certainly not the case, and I have

tried to indicate areas of difficulty at the appropriate points throughout the text. There

is, I believe, considerable scope for development and improvement in many parts of the

field. For example, the methods used in quantum cosmology to extract predictions from

the wave function, as described in Section 6, are rather crude, and it would be much more
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satisfying to apply methods such as those described by Hartle in his lectures (Hartle, 1990).

Another example concerns the use of the path integral in quantum cosmology. Although

the role it plays is supposedly very central, especially in the formulation of the no-boundary

proposal, it is I think reasonable to say that, with but a few exceptions, its use in quantum

cosmology has been for the most part rather heuristic. A more careful approach using the

path integral in a serious way would very desirable. Furture investigation of these and

other issues is likely to be very profitable.
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13. A GUIDE TO THE LITERATURE

General

Some of the earlier works in the field of quantum cosmology include those of DeWitt

(1967), Misner (1969a, 1969b, 1969c, 1970, 1972, 1973) and Wheeler (1963, 1968). Early

reviews are those of MacCallum (1975), Misner (1972) and Ryan (1972). More recent

introductory or review accounts are those of Fang and Ruffini (1987), Fang and Wu (1986),

Halliwell (1988b), Hartle (1985d, 1986), Hawking (1984b), Linde (1989a, 1989b), Narlikar

and Padmanabhan (1986) and Page (1986a).
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Minisuperspace Models

The literature contains a vast number of papers on minisuperspace. Models with scalar

fields have been considerd by Blyth and Isham (1975), del Campo and Vilenkin (1989b),

Carow and Watamura (1985), Christodoulakis and Zanelli (1984b), Esposito and Platania

(1988), Fakir (1989), Gibbons and Grishchuk (1988), Gonzalez-Diaz (1985), Hartle and

Hawking (1983), Hawking (1984a), Hawking and Wu (1985), Moss and Wright (1984),

Page (1989a), Poletti (1989), Pollock (1988a), Yokoyama et al. (1988) and Zhuk (1988).

The scalar field model of Section 2 is described in, for example, Hawking (1984a) and Page

(1986a).

Anisotropic minisuperspace models are considered in the papers by Amsterdamski

(1985), Ashtekar and Pullin (1990), Berger (1975, 1982, 1984, 1985, 1988, 1989), Berger

and Vogeli (1985), Bergamini and Giampieri (1989), del Campo and Vilenkin (1989a),

Duncan and Jensen (1988), Fang and Mo (1987), Furusawa (1986), Halliwell and Louko

(1990), Hawking and Luttrell (1984), Hussain (1987, 1988), Kodama (1988b), Laflamme

(1987b), Laflamme and Shellard (1987), Louko (1987a, 1987b, 1988a), Louko and Ruback

(1989), Louko and Vachaspati (1988), Matsuki and Berger (1989), Misner (1969c, 1973),

Moss and Wright (1985) and Schleich (1988).

The extension to Kaluza-Klein theories has been considered by Beciu (1985), Bleyer

at al. (1989), Carow-Watamura et al. (1987), Halliwell (1986, 1987a), Hu and Wu (1984,

1985, 1986), Ivashchuk et al.(1989), Lonsdale (1986), Matzner and Mezzacappa (1986),

Okada and Yoshimura (1986), Pollock (1986), Shen (1989a), Wu (1984, 1985a, 1985b,

1985c) and Wudka (1987a).

In these lectures we concentrated on Einstein gravity. Minisuperspace models involving

higher derivative actions have been studied by Coule and Mijić (1988), Hawking (1987a),

Hawking and Luttrell (1984b), Horowitz (1985), Hosoya (1989), Mijić et al. (1989), Pollock

(1986, 1988b, 1989b) and Vilenkin (1985a).

Other minisuperspace models not obviously falling into any of the above categories

include those of Brown (1989), Li and Feng (1987), Liu and Huang (1988), Mo and Fang

(1988) and Wudka (1987b).

The question of the validity of minisuperspace, when considered as an approximation

to the full theory, has been addressed by Kuchař and Ryan (1986, 1989).
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Inhomogeneous Peturbations about Minisuperspace

Perturbative models of the type described in Section 10 have been studied by Anini

(1989a, 1989b), Banks et al.(1985), D’Eath and Halliwell (1987), Fischler et al. (1985),

Halliwell and Hawking (1985), Morris (1988), Ratra (1989), Rubakov (1984), Shirai and

Wada (1988), Vachaspati and Vilenkin (1988), Vilenkin (1988) and Wada (1986, 1986c,

1987).

An important feature of this type of model is the derivation of the

Schrödinger equation from the Wheeler-DeWitt equation and the emergence of quan-

tum field theory in curved spacetime This sort of issue has been considered by Banks

(1985), Brout (1987), Brout et al. (1987), Brout and Venturi (1989), DeWitt (1967), Hal-

liwell (1987c), Halliwell and Hawking (1985), Laflamme (1987a), Lapchinsky and Rubakov

(1979), Vachaspati (1989) and Wada (1987).

In Section 10 we only derived the dynamics of the perturbation modes on a minisu-

perspace background. However, one can go one step further than that and ask how the

perturbation modes react back on the minisuperspace background. In principle, one may

thus attempt to derive the semi-classical Einstein equations. This area seems to be

somewhat confused, and no completely clear derivation has yet been given. The rele-

vant papers are those of Brout (1987), Brout et al. (1987), Brout and Venturi (1989),

Castagnino et al. (1988), Halliwell (1987b), Hartle (1986), Padmanabhan (1989a), Pad-

manabhan (1989c), Padmanabhan and Singh (1988) and Singh and Padmanabhan (1989).

Black Holes and Spherically Symmetric Systems

One is normally interested in cosmological models, but spherically symmetric systems,

including black holes have been studied by Allen (1987), Fang and Li (1986), Laflamme

(1987b), Nagai (1989), Nambu and Sasaki (1988) and Rodrigues et al. (1989). The

connection between the path integral for the no-boundary wave function and that for

the partition function for a black hole in a box is discussed by Halliwell and Louko (1990).
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Quantum Cosmology and String Theory

String-inspired models have been studied by Enqvist et al. (1987, 1989), Gonzalez-Diaz

(1988), Lonsdale and Moss (1987) and Pollock (1989a, 1989b). The formal resemblances

between quantum cosmology and string theory have been explored by Birmingham and

Torre (1987), Luckock et al. (1988) and Matsuki and Berger (1989).

Fermionic Matter and Supersymmety

Most papers involve bosonic matter sources, but the inclusion of fermions and su-

persymmetric aspects have been studied by Christodoulakis and Papadopoulos (1988),

Christodoulakis and Zanelli (1984b), D’Eath and Halliwell (1987), D’Eath and Hughes

(1988), Elitzur et al. (1986), Furlong and Pagels (1987), Isham and Nelson (1974), Macias

et al. (1987), Shen (1989b) and Shen and Tan (1989).

Interpretation

The rather basic interpretation mentioned in Section 4 (that we regard a strong peak

in the wave function as a prediction) comes from Hartle (1986), Geroch (1984) and Wada

(1988a). Other relevant papers include those of Barbour and Smolin (1989), Barrow and

Tipler (1986), DeWitt and Graham (1973), Drees (1987), Ellis et al. (1989), Everett (1957),

Gell-Mann and Hartle (1989), Halliwell (1987b, 1989b), Hartle (1988a, 1988b, 1988c, 1990),

Kazama and Nakayama (1985), Markov and Mukhanov (1988), Tipler (1986, 1987), Wald

and Unruh (1988), Vilenkin (1989) and Wada (1986a, 1988b).

The decoherence requirement discussed in Section 6, for quantum cosmology, has

been considered by Calzetta (1989), Fukuyama and Morikawa (1989), Gell-Mann and

Hartle (1989), Halliwell (1989b), Joos (1986), Kiefer (1987, 1988, 1989a, 1989c), Mellor

(1989), Padmanabhan (1989b), Morikawa (1989) and Zeh (1986, 1988, 1989a, 1989b).

Further discussions of this and related issues are those of Hu (1989) (which also includes

extensive references on statistical effects) and Kandrup (1988).

Decoherence as considered in the above references involves the notion of diagonaliza-

tion of a reduced density matrix. Density matrices in quantum cosmology have been
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considered in a somewhat different context by Hawking (1987b), Page (1986b).

For more general discussions of decoherence in quantum mechanics, see Gell-Mann and

Hartle (1990), Joos and Zeh (1985), Unruh and Zurek (1989) and Zurek (1981, 1982).

In an attempt to see how classical behaviour emerges, some authors have constructed

wavepacket solutions to the Wheeler-DeWitt equation, including Kiefer (1988, 1989d),

Kazama and Nakayama (1985) and Wada (1985).

The first requirement for classical behaviour discussed in Section 6 (peaking about

classical configurations) was discussed using the Wigner function by Halliwell (1987b),

Kodama (1988a) and Singh and Padmanabhan (1989). Use of the Wigner function in this

way has been criticised by Anderson (1990). A somewhat different approach using the

Wigner function is that of Calzetta and Hu (1989).

The Issue of Time

Various authors have addressed the issue of time in quantum cosmology and quantum

gravity more generally. The sorts of question one is interested in are along the following

lines: Does the theory possess an intrinsic time? If it does not, can one quantize it?

Does time emerge from a theory that has no time in it to start with ? Many of these

questions are discussed by Banks (1985), Brout (1987), Brout et al. (1987), Brout and

Venturi (1989), Brown and York (1989), Castagnino (1989), Englert (1989), Fukuyama and

Kamimura (1988), Fukuyama and Morikawa (1989), Greensite (1989a, 1989b), Halliwell

(1989a), Hartle (1988a, 1988b, 1988c, 1990), Jacobson (1989), Kuchař (1989), Sorkin (1987,

1989) and Unruh and Wald (1988).

A related issue is the connection of the cosmological arrow of time with the thermo-

dynamic arrow in quantum cosmology. This has been studied by Fukuyama and Morikawa

(1989), Hawking (1985), Page (1984, 1985), Qadir (1987), Wada (1989) and Zeh (1986,

1988, 1989a, 1989b).

Path Integrals and the Wheeler-DeWitt Equation

The explicit construction of the path integral for the wave function of the universe

and the derivation of the associated Wheeler-DeWitt equation have been considered by
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Barvinsky (1986), Barvinsky and Ponomariov (1986), Barvinsky (1987), Halliwell (1988),

Halliwell and Hartle (1990), Teitelboim (1980, 1982, 1983a, 1983b, 1983c) and Woodard

(1989). The detailed construction of the path integral described in Section 4 (Eq. (4.7)) is

described by Teitelboim (1982, 1983a). The discussion of the minisuperspace path integral

in Section 5 is based on Halliwell (1988).

The issue of finding complex contours to make the Euclidean path integral converge

has been studied by Gibbons, Hawking and Perry (1978), Halliwell and Hartle (1989),

Halliwell and Louko (1989a, 1989b, 1990), Halliwell and Myers (1989), Hartle (1984, 1989),

Hartle and Schleich (1987), Mazur and Mottola (1989) and Schleich (1985, 1987, 1989).

Other papers involving path integrals are those of Arisue et al. (1987), Berger (1985),

Berger and Vogeli (1985), Duncan and Jensen (1988), Farhi (1989), Giddings (1990), Ha-

jicek (1986a, 1986b), Hartle (1984, 1988a, 1988b, 1988c), Louko (1988a, 1988b, 1988c,

1988d), Narlikar and Padmanabhan (1983) and Suen and Young (1989).

Quantization Methods and Superspace

One most commonly uses the Dirac quantization procedure in quantum cosmology,

in which one takes the wave function to be annihilated by the operator versions of the

constraints. However, one could in principle use the ADM (or reduction) method, in

which one solves the constraints classical before quantizing. The connections between

these methods for systems like gravity has been considered by Ashtekar and Horowitz

(1982), Gotay (1986), Gotay and Demaret (1983), Gotay and Isenberg (1980), Hajicek

(1989), Isenberg and Gotay (1981) and Kaup and Vitello (1974).

The properties of superspace and quantization methods in it have been discussed

by DeWitt (1970), Fisher (1970), Giulini (1989), Isham (1976), and Kuchař (1981). The

article by Kuchař also contains a useful guide to the literature on canonical quantization.

Topological Aspects

Goncharov and Bytsenko (1985, 1987), Gurzadyan and Kocharyan (1989), Li Miao

(1986), Mkrtchyan (1986), and Starobinsky and Zel’dovich (1984), considered the possi-

bilities of non-trivial topologies in quantum creation of the universe. Other interesting
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toplogical aspects of the no-boundary proposal have been considered by Hartle and Witt

(1988) (see also Louko and Ruback (1989)).

Singularities

Numerous authors have been interested in singularities in quantum cosmology and

their possible avoidance, including Laflamme and Shellard (1987), Lemos (1987), Louko

(1987a), Narlikar (1983, 1984) and Smith and Bergman (1988).

Boundary Condition Proposals

We concentrated exclusively on the boundary condition proposals of Hartle and Hawk-

ing (Hartle and Hawking, 1983; Hawking 1982, 1984a), Linde (1984a, 1984b, 1984c) and

Vilenkin (1982, 1983, 1984, 1985b, 1986, 1988), but there are others (see for example, Suen

and Young (1989)).

Quantum Creation of the Universe

Some of the older papers on quantum creation of the universe are those of Atkatz and

Pagels (1982), Brout, Englert and Gunzig (1978, 1979), Brout, Englert and Spindel (1979),

Casher and Englert (1981), Gott (1982) and Tryon (1973). Various aspects of the quantum

creation of the universe as a tunneling event have been explored by Goncharov et al. (1987),

Grishchuk (1987), Grishchuk and Sidorov (1988, 1989), Grishchuk and Zel’dovich (1982),

Lavrelashvili, Rubakov, Serebryakov and Tinyakov (1989), Lavrelashvili, Rubakov, and

Tinyakov (1985), Rubakov (1984) and Rubakov and Tinyakov (1988).

Measures

The measure coming from quantum cosmology on sets of inflationary solutions, and

also classical measures, have been studied Gibbons et al. (1987) and Hawking and Page

(1986, 1988). Gibbons and Grishchuk (1988) introduced a measure on the set of solutions

to the Wheeler-DeWitt equation.
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Operator Ordering

The issue of operator ordering in the Wheeler-DeWitt equation has been studied in

minisuperspace by Halliwell (1988), Misner (1972) and Moss (1988). More generally, see

Christodoulakis and Zanelli (1986a, 1986b, 1987), Friedman and Jack (1988), Hawking

and Page (1986) and Tsamis and Woodard (1987).

Creating a Universe in the Laboratory

The possibility of quantum creation of an inflationary universe in the laboratory has

bee studied by Farhi et al. (1989) and Fischler et al. (1989). See also Hiscock (1987) and

Sato et al. (1982).

Miscellaneous

Regge calculus minisuperspace models have been studied by Hartle (1985a, 1985b,

1985c, 1989). In (2+1) dimensions, gravity becomes essentially quantum mechanical. This

has been studied from a quantum cosmology viewpoint by Hosoya and Nakao (1989) and

Martinec (1984). Considerable simplifications appear to occur in general relativity using

the Ashtekar variables (Ashtekar, 1987). Their application to cosmologies has been

considerd by Ashtekar and Pullin (1990), Hussain and Smolin (1989) and Kodama (1988b).

The relationship between the wave function of the universe and the stochastic approach

to inflation have been studied by Goncharov et al. (1987), Goncharov and Linde (1986)

and Mijić (1988a, 1988b, 1989). Many classical cosmologies exhibit chaos. Quantization of

such cosmologies has been studied by Berger (1989) and Furusawa (1986). Finally, mention

should be made of the extensive contributions of Narlikar, Padmanabhan and collaborators,

much of which concentrates on quantization of the conformal part of the metric, including

Narlikar (1981, 1983, 1984), Padmanabhan (1981, 1982a, 1982b, 1983a, 1983b, 1983c,

1983d, 1983e, 1983f, 1984a, 1984b, 1985a, 1985b, 1986, 1987, 1988), Padmanabhan and

Narlikar (1981, 1982), Padmanabhan et al. (1989), Singh and Padmanabhan (1987).
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Kuchař, K.V. (1986), Found.Phys. 16, 193.
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Kuchař, K.V. and Ryan, M.P. (1986), in Yamada Conference XIV, eds. H.Sato and

T.Nakamura (World Scientific). Can minisuperspace quantization be justified?
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