
Viability of the matter bounce scenario in Loop Quantum Cosmology from BICEP2 last data

Jaume de Haro∗ and Jaume Amorós†
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The CMB map provided by the Planck project constrains the value of the ratio of tensor-to-scalar perturb-
ations, namely r, to be smaller than 0.11 (95 % CL). This bound rules out the simplest models of inflation.
However, recent data from BICEP2 is in strong tension with this constrain, as it finds a value r = 0.20+0.07

−0.05

with r = 0 disfavored at 7.0σ, which allows these simplest inflationary models to survive. The remarkable fact
is that, even though the BICEP2 experiment was conceived to search for evidence of inflation, its experimental
data matches correctly theoretical results coming from the matter bounce scenario (the alternative model to the
inflationary paradigm). More precisely, most bouncing cosmologies do not pass Planck’s constrains due to the
smallness of the value of the tensor/scalar ratio r ≤ 0.11, but with new BICEP2 data some of them fit well with
experimental data. This is the case with the matter bounce scenario in the teleparallel version of Loop Quantum
Cosmology.

PACS numbers: 04.80.Cc, 98.80.Bp, 98.80.Qc, 04.60.Pp

1. Introduction.— The latest Planck temperature data for
cosmic inflation constrains the spectral index for scalar per-
turbations to be ns = 0.9603± 0.0073, ruling out exact scale
invariance with over 5σ confidence, and establishes an upper
bound for tensor/scalar ratio given by r ≤ 0.11 (95 % CL)
[1]. Such data shrinks the set of allowed simplest inflation-
ary models: power law potentials in chaotic inflation [2], ex-
ponential potential models [3], inverse power law potentials
[4], are disfavored because they do not provide a good fit to
Planck’s data [1, 5]. In fact, this data set prefers a subclass of
inflationary models with plateau-like inflation potentials (see
for example [6]) and R2 gravity [7].

On the other hand, recent results from the BICEP2 experi-
ment [8], designed to look for the signal of gravitational waves
in the B-mode power spectrum, lead to the same constrain for
the spectral index, but constrain the ratio of tensor-to-scalar
perturbations to be r = 0.20+0.07

−0.05 with r = 0 disfavored at
7.0σ (see figure 13 of [8] to compare Planck’s with BICEP2
data). This higher value of r extends the set of compatible
inflationary models, allowing back some of the simplest infla-
tionary models cited above.

Dealing with the matter bounce scenario, the alternative to
the inflationary paradigm (see [9] for a report about boun-
cing cosmologies), one encounters a similar problem when
one tries to match Planck’s data with theoretical results: the-
oretical results provide, in general, values of r higher than
0.11 and, then, to sort out this problem some very complicated
mechanism has to be introduced to enhance the power spec-
trum of scalar perturbations [10], reducing the ratio r enough
to achieve the bound 0.11. However, the higher value of r
provided by BICEP2 allows the viability of some of boun-
cing models. In particular, it allows the viability of the matter
bounce scenario in Loop Quantum Cosmology (LQC) when
the potential chosen is the simplest one. More precisely: we
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will calculate, for matter bounce scenario, the spectral in-
dex and the tensor/scalar ratio coming from holonomy cor-
rected LQC (the perturbative theory obtained replacing the
Ashtekar connection by a suitable sinus function and insert-
ing counter-terms to preserve the algebra of constrains [11])
and teleparallel LQC (the perturbative F (T ) theory applied
to the model that, in flat Friedmann-Robertson-Walker geo-
metry, coincides with LQC [12]), and we will check that in the
case of teleparallel LQC they match correctly with BICEP2
data, and for holonomy corrected LQC they match correctly
with Planck’s data. However, results coming from holonomy
corrected LQC have to be taken with caution because the
way to calculate tensor perturbations in this theory is not un-
ambiguously defined [12], leading to different values for the
tensor/scalar ratio.

The units used in the letter are ~ = c = 8πG = 1.
Constrains on inflationy models from experimental data.—

Slow-roll inflation is essentially based in two parameters [13]:

ε = − Ḣ

H2
and η = 2ε− ε̇

2Hε
, (1)

which in the slow-roll phase, i.e., when the dynamics of the
system is given by equations

H2 ∼=
V (ϕ̄)

3
and 3H ˙̄ϕ+ Vϕ̄ ∼= 0, (2)

where ϕ̄(t) is the homogeneous part of the scalar field, are
given by

ε ∼=
1

2

(
Vϕ̄
V

)2

and η ∼=
Vϕ̄ϕ̄
V

. (3)

Using slow-roll parameters ε and η the spectral index for
scalar perturbations and the ratio of tensor-to-scalar perturba-
tions are given by

ns ∼= 1 + 2η − 6ε and r ∼= 16ε. (4)

To compare theoretical results with current observations we
need the number of e-folds during inflation, namely N , which
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in slow-roll approximation is given by

N =

∫ te

tb

Hdt ∼=
∫ ϕ̄b

ϕ̄e

V

Vϕ̄
dϕ̄, (5)

where the sub-index b (resp. e) refers to the beginning (resp.
end) of inflation.

As a first example to compare theoretical with experimental
results, we choose a power law potential V (ϕ̄) = λϕ̄n. For
this potential one has

ns ∼= 1− n(n+ 2)

ϕ̄2
b

, r ∼=
8n2

ϕ̄2
b

and N ∼=
2ϕ̄2

b − n2

4n
, (6)

where we have chosen as the end of inflation the condition
ε = 1, which is equivalent to ϕ̄2

e = n2

2 , and to calculate ns
and r we have evaluated ε and η at the beginning of inflation.

Removing ϕ̄2
b in (6), i.e., writing ns and r in terms of the

number of e-folds, one gets

ns ∼= 1− 2(n+ 2)

4N + n
, r ∼=

16n

4N + n
=⇒ ns ∼= 1− n+ 2

8n
r. (7)

In the case of a quadratic potential n = 2, for 60 e-folds,
the minimum needed to solve the horizon and flatness prob-
lems [14], one gets ns = 0.9669 and r = 0.132. When
one increases the number of e-folds, ns increases and r de-
creases. Then, for the maximal allowed value of the spectral
index ns = 0.9676 one has r = 0.1296, which means that the
model with a quadratic potential does not fit well neither with
Planck’s nor with BICEP2 data.

In the same way, since r increases as long as the para-
meter n increases, one can conclude that inflationary power
law models are disfavored by Planck ′s data.

However, using BICEP2 data, the model n = 4 with 70 e-
folds is acceptable because it satisfies ns = 0.9577 and r =
0.2253. To be more specific, from the third equation of (7) r
is constrained to belong in the interval(

8n

n+ 2
× 0.0324,

8n

n+ 2
× 0.047

)
.

Then, potentials with n = 3, 4 and 5 are allowed by BI-
CEP2 data, because r belongs in the interval (0.15, 0.27).

As a second example we consider R2 gravity, where one
has [7]

ns = 1− 2

N
, r =

12

N2
=⇒ ns = 1−

√
r

3
. (8)

Using the data ns = 0.9603± 0.0073 and equation (8) one
obtains the constrain

0.0031 ≤ r ≤ 0.0066,

what means that BICEP2 data disregards this model. How-
ever, the model matches correctly with Planck’s data. Effect-
ively, for 60 e-folds one has ns = 0.9666 and r = 0, 0033

which enters perferctly in the range of values obtained from
Planck’s temperature anisotropy mesurements.

Calculation of the power spectrum in LQC.— To calcu-
late the power spectrum of scalar perturbations for the matter
bounce scenario in LQC, first of all, one has to look for a po-
tential of the scalar field that, at early times when holonomy
corrections can be disregarded, leads to a matter dominated
universe. Solving the holonomy corrected Friedmann equa-
tion and the conservation equation for a matter dominated uni-
verse (see for instance [15])

H2 =
ρ

3

(
1− ρ

ρc

)
; ρ̇ = −3Hρ, (9)

where ρc is the so-called critical density, one obtains the fol-
lowing quantities [12]

a(t) =

(
3

4
ρct

2 + 1

)1/3

and ρ(t) =
ρc

3
4ρct

2 + 1
. (10)

To find one such potential, one can impose that the pres-
sure vanishes, i.e., P ≡ ˙̄ϕ2

2 − V (ϕ̄) = 0, which leads to the
equation

˙̄ϕ2(t) = ρ(t)⇐⇒ ˙̄ϕ2(t) =
ρc

3
4ρct

2 + 1
, (11)

where we have used the third equation of (10).
This equation has the particular solution

ϕ̄(t) =
2√
3

ln

(√
3

4
ρct+

√
3

4
ρct2 + 1

)
, (12)

which leads to the potential

V (ϕ̄) = 2ρc
e−
√

3ϕ̄(
1 + e−

√
3ϕ̄
)2 . (13)

It is important to realize that solution (12) is special in the
sense that it satisfies for all time ˙̄ϕ2(t)/2 = V (ϕ̄(t)), that is,
if the universe is described by this solution, it will be matter
dominated dominated all the time. However, the other solu-
tions, that is, the solutions of the conservation equation

ρ̇ = −3H±(ρ+ P )⇐⇒ ¨̄ϕ+ 3H± ˙̄ϕ+ Vϕ̄ = 0, (14)

where the Hubble parameter is equal to H− = −
√

ρ
3 (1− ρ

ρc
)

in the contracting phase and H+ =
√

ρ
3 (1− ρ

ρc
) in the ex-

panding one, do not lead to a matter-dominated universe. Only
at early and late times the universe is matter dominated be-
cause the solution (12) is a global repeller at early times and a
global attractor at late ones.

Once we have introduced the simplest potential for the mat-
ter bounce scenario in LQC, we deal with perturbations. In
this scenario the power spectrum for scalar perturbations is
given by [12]

P(k) =
3ρ2
c

ρpl

(∫ ∞
−∞

dt

a(t)z2(t)

)2

, (15)
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provided that a(t) ∼=
(

3
4ρct

2
)1/3

at early times, where we
have introduced Planck’s energy density ρpl = 64π2 in our
units.

In the case of holonomy corrected LQC, whose equations
are obtained from the classical perturbation equations [16]
replacing, like in isotropic models, the Ashtekar connection
by suitable sinus functions and adding some counter-terms to
avoid anomalies coming from the no preservation of the al-
gebra of constrains [11], one has z = a ˙̄ϕ

H which for the ana-

lytic solution (12) is given by 2a5/2(t)√
ρct

[17], and which leads,
after a simple calculation, to

P(k) =
π2

9

ρc
ρpl

. (16)

On the other hand, in teleparallel LQC, whose perturba-
tion equations are the ones of F (T ) gravity [18] applied to a
model (see eq. (2.12) and (2.23) of [12]) whose teleparallel
Friedmann equation coincides with the holonomy corrected

one (9), one has z =
a
√
|Ω| ˙̄ϕ

csH
where Ω = 1 − 2ρ

ρc
and the

square of the velocity of sound is given by [12]

c2s ≡ |Ω|
arcsin

(
2
√

3
ρc
H
)

2
√

3
ρc
H

. (17)

For the particular solution (12) one has

z(t) = 2

(
3

ρc

)1/4
a(t)|t|1/2

t

√
arcsin

(√
3ρc|t|
a3(t)

) , (18)

giving as a power spectrum

P(k) =
16

9

ρc
ρpl
C2, (19)

where C ∼= 0.9159 is Catalan’s constant.
This result has to be compared with the seven-year data of

WMAP [19], which constrains the value of the power spec-
trum for scalar perturbations to be P(k) ∼= 2 × 10−9, which
means that, in both cases (holonomy corrected and teleparal-
lel LQC), when one considers the solution (12), the value of
the critical density has to be of the order ρc ∼ 10−9ρpl.

The ratio of tensor-to-scalar perturbations in LQC is given
by

r ∼=
1

6

(∫∞
−∞

1
az2T

dt∫∞
−∞

1
az2 dt

)2

, (20)

where zT = a√
Ω

in holonomy corrected LQC and zT =
acs√
2|Ω|

in the teleparallel version.

Remark .1. A little bit of caution is needed when one deals
with with tensor perturbation in LQC, because zT is imagin-
ary in the super-infaltionary phase (ρc/2 < ρ ≤ ρc), leading

to an abnormally small value of r. Moveover its correspond-
ing Mukhanov-Sasaki equation (eq. 31 of [20]) is singular
at ρ = ρc/2, meaning that this equation has infinitely many
solutions, and consequently, in holonomy corrected LQC, the
power spectrum of tensor perturbations and the tensor/scalar
ratio are not unambiguously defined (see for details [12]).

For the analytical solution (12), in holonomy corrected
LQC one has r = 0 which is an abnormally small value,
and in teleparallel LQC we have obtained the following very

high value r = 6
(
Si(π/2)
C

)2 ∼= 13.4381, where Si(x) ≡∫ x
0

sin y
y dy is the Sine integral function.

However, these results do not mean that the matter bounce
scenario has to be disregarded. What they mean is that, for
orbits (solutions of (14)) near the solution (12), the theoretical
results do not match with the current experimental data. But
there will be other orbits that fit welll with data obtained from
Planck or BICEP2.

Dealing with the spectral index, the matter bounce scenario
provides a power spectrum exactly scale invariant, i.e., ns = 1
not agreeing with current data, which states that is nearly scale
invariant with a slight red tilt. The problem is easily solved
if one assume that at early times, in the contracting phase,
the universe has an state equation of the form P = ωρ with
|ω| � 1. In LQC a potential that leads to this kind of universe
is [17]

V (ϕ̄) = 2ρc(1− ω)
e−
√

3(1+ω)ϕ̄(
1 + e−

√
3(1+ω)ϕ̄

)2 . (21)

In fact, this potential provides an analytic orbit (an analytic
solution of (14)) that depicts an universe whose equation of
state is P = ωρ all the time. Moreover, at early times this
orbit is a repeller and at late times an attractor, meaning that
all the orbits represent a universe that at early and late times
has as equation of state P = ωρ. As a consequence, for all
the orbits of the system the spectral index is given by [17]
ns = 1 + 12ω. Then, to match with observational data one
only has to choose ω = −0.0033± 0.0006.

Finally, is important to stress that for these small values of
ω the corresponding formulae for the power spectrum and the
tensor/scalar ratio do not change significatively, i.e., we can
continue using formulae (15) and (20).

Numerical results.— Our numerical study is based in the
numerical resolution of equation (14). To perform this calcu-
lation, one has to take into account that in LQC the orbits start
at early times in the contracting phase (H < 0), and when its
energy density reaches the critical density ρ = ρc the universe
bounces and enters in the expanding phase (H > 0). Then, to
obtain the phase portrait of the system in the plane (ϕ̄, ˙̄ϕ), for
any initial condition (ϕ̄0, ˙̄ϕ0) one has to integrate numerically
equation (14) withH = H− forward in time, and when the or-
bit reaches the curve ρ = ρc at some point (ϕ̄1, ˙̄ϕ1), one has
to integrate numerically forward in time equation (14) with
H = H+ for the new initial condition (ϕ̄1, ˙̄ϕ1). The phase
portrait is pictured in figure 1.
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Figure 1: Phase portrait: the black curves are defined by ρ = ρc,
and depict the points where the universe bounces. The point (0, 0)
is a saddle point, red (resp. green) curves are the invariant curves
in the contracting (resp. expanding) phase. The blue curve corres-
ponds to an orbit different from the analytically one (12). Note that,
before (resp. after) the bounce the blue curve does not cut the red
(resp. green) curves. It is important to realize that the allowed orbits
are those that catch the black curve in the region delimited by an un-
stable red curve and an stable green curve, because for orbits that do
not satisfy this condition, ˙̄ϕ vanishes at some time, meaning that its
corresponding power spectrum diverges.

For a wide range of the orbits calculated numerically, we
have obtained for the power spectrum of scalar perturbations,
which, in the case of potential (13), is proportional to the ra-
tio ρc/ρpl for all the orbits of the system (14), the following
results:

1. In holonomy corrected LQC, the minimum value of
P(k) is obtained for the orbit that at bouncing time sat-
isfies ϕ̄ ∼= −0.9870, for that orbit we have obtained
P(k) ∼= 23× 10−3 ρc

ρpl
.

2. In teleparallel LQC the orbit which gives the minimum
value of the power spectrum satisfies, at bouncing time,
ϕ̄ ∼= −0.9892 and the value of the power spectrum is
approximately the same as in holonomy corrected LQC
P(k) ∼= 40× 10−3 ρc

ρpl
.

Then for those orbits, in order to match with the current ex-
perimental result P(k) ∼= 2 × 10−9, in both theories one has
to choose ρc ∼ 10−5ρpl which is 4 orders greater than the
value needed using the analytic solution. This result does not
favour holonomy corrected LQC because the current value of
the critical density, obtained relating the black hole entropy
with the Bekenstein-Hawking entropy formula, is approxim-
ately 0.4ρpl [21]. However, it does not affect teleparellel LQC
where ρc is merely a parameter whose value has to be obtained
from observations.

We have also calculated the ratio of tensor-to-scalar per-
turbations, which is independent on the parameter ρc, for the

potential (13) in teleparallel LQC using formula (20). Its value
in admissible solutions (those with ˙̄ϕ 6= 0 at all times) ranges
continuously from a minimal value r ∼= 0.1243, attained by
the orbit with the universe bouncing at ϕ̄ ∼= −1.18, to the
maximal value r ∼= 13.4381, attained by the solution (12)
bouncing at ϕ̄ = 0. The confidence interval r = 0.20+0.07

−0.05

derived from BICEP2 data is realized by solutions boun-
cing when ϕ̄ ∈ [−1.174,−1.162], with the expected value
r = 0.20 realized by bouncing at ϕ̄ = −1.169.

On the other hand, in holonomy corrected LQC, numerical
results show that the allowed orbits provide values of r in the
interval [0, 0.06], matching correctly with Planck’s constrain
r ≤ 0.11.
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