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ABSTRACT
Recent measurements of hot and cold spots on the cosmic microwave background (CMB) sky suggest a

presence of super-structures on (> 100h−1Mpc) scales. We develop a new formalism to estimate the expected
amplitude of temperature fluctuations due to the integratedSachs-Wolfe (ISW) effect from prominent quasi-
linear structures. Applying the developed tools to the observed ISW signals from voids and clusters in catalogs
of galaxies at redshiftsz < 1, we find that they indeed imply a presence of quasi-linear super-structures with a
comoving radius 100∼ 300h−1Mpc and a density contrast|δ| ∼ O(0.1). We find that the observed ISW signals
are at odd with the concordantΛ cold dark matter (CDM) model that predicts Gaussian primordial perturbations
at& 3σ level. We also confirm that the mean temperature around the CMB cold spot in the southern Galactic
hemisphere filtered by a compensating top-hat filter deviates from a mean value at∼ 3σ level, implying that
a quasi-linear supervoid or an underdensity region surrounded by a massive wall may reside at low redshifts
z < 0.3 and the actual angular size (16◦ − 17◦) may be larger than the apparent size (4◦ − 10◦) discussed in
literature. Possible solutions are briefly discussed.
Subject headings: cosmic microwave background – cosmology – large scale structure of the universe

1. INTRODUCTION

Although theΛ cold dark matter (CDM) models have suc-
ceeded in explaining a number of observations, some unre-
solved problems still remain. One is a possible break of sta-
tistical isotropy in the large-angle cosmic microwave back-
ground (CMB) anisotropy (Tegmark et al. 2003; Eriksen
et al. 2004; Vielva et al. 2004). Another one is a possi-
ble discrepancy between observed and theoretically predicted
galaxy-CMB cross-correlation (Rassat et al. 2007; Ho et al.
2008). These observational results imply that structures on
scales larger than& 100 Mpc (super-structures) in our local
universe are more lumpy than expected (Afshordi et al. 2009).

As the origin of the large-angle CMB anomalies, many au-
thors have considered a possibility that the CMB is affectedby
local inhomogeneities (Moffat 2005; Tomita 2005a,b; Cooray
& Seto 2005; Rakic et al. 2006). Inoue & Silk (2006, 2007)
have shown that a particular configuration of compensated
quasi-linear supervoids can explain most of the features of
the anomalies. Subsequent theoretical analyses have shown
that the CMB temperature distribution for quasi-linear struc-
tures can be skewed toward low temperature due to the second
order integrated Sachs-Wolfe (ISW)(or Rees-Sciama) effect
(Tomita & Inoue 2007; Sakai & Inoue 2008).

In fact, Granett et al. (2008) found a significant ISW sig-
nal at the scale of 4◦ − 6◦ at redshifts aroundz ∼ 0.5 and a
weak signal of negatively skewed temperature distributionfor
distinct voids and clusters at redshifts 0.4< z < 0.75. More-
over, Francis & Peacock (2009) have shown that the ISW ef-
fect due to local structures at redshiftz < 0.3 significantly
affects the large-angle CMB anisotropies and that some of
the CMB anomalies no longer persist after subtraction of the
ISW contribution. These observations of galaxy-CMB cross-
correlation may suggest an existence of anomalously large
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perturbations or new physics on scales> 100 Mpc.
In order to evaluate the significance of the ISW signals

for prominent structures, N-body simulations on cosmolog-
ical scales seem to be suitable(Cai et al. 2010). However, the
computation time is relatively long and finding physical in-
terpretation from a number of numerical results is sometimes
difficult. In contrast, analytical methods are suitable foresti-
mating the order of significance in a relatively short time, and
physical interpretations are often simpler.

In this paper, we evaluate the statistical significance of the
ISW signals for prominent structures based on an analytic
method and try to construct simple models that are consis-
tent with the data. In section 2, we develop a formalism for
analytically calculating the ISW signal due to prominent non-
linear super-structures based on a spherically symmetric ho-
mogeneous collapse model and we study the effect of non-
linearity and inhomogeneity of such structures. In section3,
we apply the developed method to observed data and calcu-
late the statistical significance of the discrepancy between the
predicted and the observed ISW signals. In section 4, we
discuss the origin of the observed discrepancy. In section
5, we summarize our results and discuss some unresolved
issues. In the following, unless noted, we assume a con-
cordantΛCDM cosmology with (Ωm,0,ΩΛ,0,Ωb,0,h,σ8,n) =
(0.26,0.74,0.044,0.72,0.80,0.96), which agrees with the re-
cent CMB and large-scale structure data (Sánchez et al.
2009).

http://arxiv.org/abs/1005.4250v1
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2. CROSS CORRELATION FOR PROMINENT
QUASI-LINEAR STRUCTURES

2.1. Thin-shell approximation

For simplicity, in this section, we assume that super-
structures are modelled by spherically symmetric homo-
geneous compensated voids/clusters with an infinitesimally
thin-shell. The background spacetime is assumed to be a flat
FRW universe with matter and a cosmological constantΛ.

Let κ andξ be the curvature and the physical radius of a
void/cluster in unit of the Hubble radiusH−1, andδH as the
Hubble parameter contrast,t denotes the cosmological time.
We describe the angle between the normal vector of the shell
and the three dimensional momentum of the CMB photon that
leaves the shell byψ. We assume that the comoving radiusrv
of the void in the background coordinates satisfiesrv ∝ tβ,
whereβ is a constant.

Up to order O((rv/H−1)3) and O(κ2), the temperature
anisotropy of the CMB photons that pass through spherical
homogeneous compensated voids in the flat FRW universe
can be written as (Inoue & Silk 2007),

∆T
T

=
1
3

[

ξ3cosψ
(

−2δ2
H − δ3

H + (3+ 4δm)δHΩm

+ δmΩm(−6β/s + 1)+ (2δ2
H + δ3

H + δmΩm

+ (3+ 2δm)δHΩm)cos2ψ
)

]

, (1)

t = sH−1, s =
2

3
√

1−Ωm
ln

[√
1−Ωm + 1√

Ωm

]

, (2)

whereδm andΩm denote the matter density contrast of the
void and the matter density parameter, respectively. The vari-
ablesξ,ψ,δm, δH , andΩm are evaluated at the time the CMB
photon leaves the shell. It should be noted that the formula (1)
is valid even if|δm| or |δH | is somewhat large as long as the
normalized curvatureκ is sufficiently small. The formula (1)
can be also applied to spherical compensating clusters with
a density contrastδm > 0 corresponding to a homogeneous
spherical cluster with an infinitesimally thin “wall”. Thisap-
proximation holds only in weakly non-linear regime since the
amplitude of the density contrast corresponding to a negative
mass cannot exceed 1. We examine this approximation in sec-
tions 2-4 in detail.

Because we are mainly interested in linear|δm| ≪ 1 and
quasi-linear|δm| = O(0.1) regime, we expandδH in terms of
δm up to second order as

δH = Ωmδm(1+ 1/ f (w))/2− ǫδ2
m, (3)

wherew is an equation-of-state parameter,ǫ is a constant that
describes the non-linear effect and

f (w) = −
3
5

(1+ w)1/3
2F1

[

5
6
,
1
3
,
11
6
,−w

]

. (4)

ǫ can be estimated from numerical integration of the Fried-
mann equation inside the shell as we shall show later. In a
similar manner, for the shell expansion, we assume the fol-
lowing relation for the wall peculiar velocity normalized by
the background Hubble expansion,

ṽ = s−1β, β = −
f (Ωm)

6
δm + νδ2

m, (5)

whereν represents a constant that describes the non-linear
effect (Inoue & Silk 2007).f (Ωm) is written in terms of the

scale factora and the growth factorD as

f (Ωm) =
a
D

dD
da

∼ Ω
0.6
m . (6)

In quasi-linear regime, simplificationǫ = η = 0 can be veri-
fied, which will be shown in section 2-3 and section 2-4.

2.2. Homogeneous collapse

In order to describe the dynamics of local inhomogeneity,
we adopt a homogeneous collapse model which consists of
an inner FRW patch and a surrounding background flat FRW
spacetime (Lahav et al. 1991). The size of the inner patch is
assumed to be sufficiently smaller than the horizonH−1 in the
background spacetime.

We assume that both the regions have only dust and a cos-
mological constantΛ. The time evolution of either the inner
patch or the background spacetime is described by the Fried-
mann equation,

H2

H2
0

=
Ωm,0

a3
+ΩΛ,0 +

1−Ωtot

a2
, (7)

where a denotes the scale factor,Ωm,0,ΩΛ,0,Ωtot are the
present energy density parameters of non-relativistic matter, a
cosmological constantΛ, and the total energy density, respec-
tively. The scale factor at present for the background space-
time is set toa0 = 1. In what follows, we describe variables
in the inner patch by putting tilde ”∼” on top of the variables
and we consider only flat FRW universes with dusts and a
cosmological constantΛ.

First, we calculate matter density contrastδm of the inner
patch. Initially (zi ≫ 1), we assume that the fluctuation of the
matter perturbationδmi is so small that ˜ai ≈ ai, H̃i ≈ Hi. Then,
the Friedmann equation (7) yields,

H̃2

H2
0

=
Ωm,0(1+ δmi)

ã3
+ΩΛ,0 −

δmiΩm,0

ã2ãi
. (8)

In terms of physical radius of the patch̃R = ãr, wherer is
the comoving radius measured in the background spacetime,
equation (8) can be written as

(

dR̃
dt

)2

=H2
0

[

−Ωm,0(1+ zi)
3R̃2

i δmi +Ωm,0(1+ zi)
3

× (1+ δmi)
R̃3

i

R̃
+ΩΛ,0R̃2

]

, (9)

wheret is the cosmological time. The matter density contrast
δm can be written as a function of a ratio of the present and
the initial comoving radiusη ≡ r/ri as δm = η−3 − 1. From
equation (9),η as a function of redshiftz is given by solving

(

dη
dz

)

=−
[

−Ωm,0(1+ zi)δmi +Ωm,0(η/(1+ z))−1

+ΩΛ,0(η/(1+ z))2
]1/2

[Ωm,0(1+ z)3 +ΩΛ,0]−1/2

+
η

1+ z
. (10)

Note that right-hand-side in equation (10) does not depend on
R̃i. From numerical integration of equation(10), the matter
density contrastδm as a function of redshiftz is obtained by
setting initial density contrastδmi = δm(zi).

The linearly perturbed matter density contrastδL
m in the

FRW background spacetime is given by

δL
m(z) =

3δmiH(z)
5

∫

∞

z
du

u + 1
H3(1/u − 1)

, (11)
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FIG. 1.— Density contrastδm as a function of linear density contrastδL
m for

voids (left) and clusters (right).

-1.0 -0.8 -0.6 -0.4 -0.2
-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

∆m

Ε

0.2 0.4 0.6 0.8 1.0
-0.070

-0.065

-0.060

-0.055

-0.050

-0.045

-0.040

∆m

Ε

FIG. 2.— Non-linear parameterǫ as a function of density contrastδm in the
EdS model.

FIG. 3.— Non-linear parameterǫ as a function of density contrastδm in the
flat-Λ model withΩm,0 = 0.26.

whereH2(z) =Ωm,0(1+ z)3 +ΩΛ,0 (Heath 1977). Constant 3/5
comes from our choice of initial condition that the peculiar
velocity inside the initial patch is zero. The relation between
δm andδL

m is shown in figure 1. Because the relation does not
change so much even if one varies the cosmological parame-
ters of the background spacetime, non-linear isolated homo-
geneous spherical patches can be solely calculated from cor-
responding linear perturbations (Friedmann & Piran 2001).It
should be noted, however, that the relation is valid only if
δm & δv,cut = −0.8 because of shell-crossing (Furlanetto & Pi-
ran 2006).

Next, we calculate the Hubble parameter contrastδH =
H̃/H − 1 in non-linear regime. Pluggingη = R(1+ z)/(Ri(1+
zi)) into equation (8), we have

H̃2(Ωm,0(1+ z)3 +ΩΛ,0)

=H2(Ωm,0(1+ δmi)(1+ z)3η−3 +ΩΛ,0

− δmiΩm,0(1+ zi)(1+ z)2η−2), (12)

whereη is given by solving equation (10). From equation (3)
and (12), one can estimate the contribution from non-linear
terms.

2.3. Effect of non-linear dynamics

In previous section, we have seen that the non-linear density
contrastδm for a spherically symmetric homogeneous patch
can be written in terms of corresponding linear density con-
trastδL

m. In order to calculate the ISW effect, we need to es-
timate the Hubble parameter contrastδH and the peculiar ve-
locity ṽ of the wall. The non-linear corrections toδH and ṽ
can be characterized by two parametersǫ andν, respectively.

First, we consider the non-linear correction to the Hubble
contrastδH . As one can see in figure 2 and 3,ǫ is always
negative and the amplitude is|ǫ| < 0.16 for |δm| < 1.0. This
represents a slight enhancement in the expansion speed within
the inner patch due to non-linearity. In low-density universes
(Ωm,0 < 1), |ǫ| is smaller than that in high-density universes.
In the Einstein-de Sitter (EdS) universe,ǫ depends only onδm
(figure 2). In contrast, in low-density universes,ǫ depends on
the amplitude of the initial epoch as well (figure 3). This is
because the expansion speed inside the patch is suppressed
when the energy component of the background universe is
dominated by a cosmological constantΛ. We have found that
the non-linear contribution toδH is less than 10 per cent for
|δm|< 0.2 andΩm > 0.26.

Second, we consider the effect of non-linear correction to
peculiar velocity of the wall. In the thin-shell limit, the mo-
tion of the spherically symmetric wall can be obtained by nu-
merically solving a set of ordinary differential equationsusing
Israel’s method(Isarel 1966, Maeda & Sato 1983). If the in-
ner region and the outer region are described by the FLRW
spacetime, the fitting formula for the peculiar velocity of an
expanding wall normalized by the background Hubble expan-
sion can be written as (Maeda, Sakai, & Triay 2010)

ṽ =
Ω

0.56
m

6
(|δm|+ 0.1δ2

m + 0.07|δm|3), (13)

for Ωm +ΩΛ = 1. We have confirmed that the accuracy of the
fitting formula is within one percent for 0<Ωm ≤ 1 and|δm|<
1 using numerically computed values. From equation (13),
we find that the contribution of non-linear effect is less than
5 percent for|δm|< 0.3. Thus an approximationδH ∝ δm ∝ ṽ
can be validated in the quasi-linear regime.

2.4. Effect of non-linearity and inhomogeneity on the ISW
signal

In literature, the thin-shell approximation has been often
used to describe almost empty voids withδ ∼ −1 (Maeda &
Sato 1983). In quasi-linear regime, however, we also need to
consider the effect of thickness of the wall and the inhomo-
geneity of the matter distribution because quasi-linear voids
are not in the asymptotic regime. Non-linearity of the wall
may significantly affect the CMB photons that pass through
it. Moreover, it seems not realistic to apply the approximation
to spherically symmetric clusters since the mass of the wall
cannot be negative.

In order to estimate the validity of the thin-shell approxima-
tion, we have compared the ISW signal with those obtained
by using second order perturbation theory (Tomita & Inoue
2008) and by using the Lemaitre-Tolman-Bondi (LTB) solu-
tion (Sakai & Inoue 2008), which yields exact results without
recourse to the cosmological Newtonian approximation. We
have assumed top-hat type matter distribution (for linear mat-
ter perturbation) for void/cluster for calculation using second
order perturbation theory and a smooth distribution specified
by a certain polynomial function for calculation using the LTB
solution. The voids/clusters are assumed to be compensated
so that the gravitational potential outside the cut-off radius (r1
for the perturbative analysis androut for the LTB-based anal-
ysis) is constant. For detail, see appendix A and B.

As an example, we have computed temperature fluctua-
tions ∆T generated from a compensated void/cluster using
the three types of method. The density contrast, the comov-
ing radius and the redshift of the center of a void/cluster are
set to|δm| = 0.1, rv = 200h−1Mpc, r1 = rout = 210h−1Mpc, and
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FIG. 4.— Temperature fluctuation∆T due to a compensating cluster (left
panels)/a void (right panels) centered at redshiftz = 0.2 as a function of an
angular radius from the center. We used three methods for deriving the ISW
signal: the thin-shell approximation (thick curve), the second order perturba-
tion theory (dotted curve) and the LTB solution (dashed curve). We set the
comoving (outer) radius of the cluster/voidrv = 200h−1Mpc for the thin-shell
approximation,rout = 210h−1Mpc for the second order and the LTB calcula-
tions with wall width about tenth of the outer radius. The density parameter
is Ωm0 = 0.26. For detail, see the text.

first
total

second
0 5 10 15 20

0
1
2
3
4
5
6

degree

µ
K

total
first

second

0 5 10 15 20
-8

-6

-4

-2

0

degree

µ
K

FIG. 5.— The first and the second order contributions to temperature fluctu-
ation∆T due to a compensating cluster (left)/void (right) centeredat redshift
z = 0.2 as a function of an angular radius from the center. We set theouter
comoving radiusrout = 210h−1Mpc, the inner comoving radiusrin = 0.93rout ,
the density parameterΩm0 = 0.6, and the density contrast at the center of the
cluster/void|δm(z = 0.2)| = 0.1.

z = 0.2, respectively. The width of the wall is assumed to be
1/10 of the cut-off radius. As one can see in figure 4, the
three methods agree well for low density universes in which
the linear effect is dominant. In contrast, the discrepancybe-
comes apparent for high density universes in which the non-
linear effect is dominant. This discrepancy is partially due to
a slight difference in the assumed density profile (top-hat type
for the perturbative analysis, polynomial type for the LTB). In
order to demonstrate the role of non-linearity, we have plotted
first order (linear ISW effect) and second order (RS effect mi-
nus linear ISW effect) contributions to the ISW signal (figure
5). The first order effect makes the CMB temperature neg-
ative(positive) for a void(cluster) but the second order effect
make the CMB temperature negative near the center and pos-
itive near the boundary regardless of the sign of the density

FIG. 6.— The effect of thickness of the wall forΩm0 = 0.6 r1 = 210h−1Mpc,
and δm(z = 0.2) = 0.2 (left) andδm(z = 0.2) = −0.2 (right) for top-hat type
density perturbations (see appendix A).
contrast. As a result, the amplitude of temperature fluctuation
for a void(cluster) is enhanced(suppressed) in the direction
near the center but it is suppressed(enhanced) in the direction
near the boundary. These non-linear effects become much ap-
parent for models with higher background density because the
linear ISW effect becomes less effective. In theΛ-dominated
universe, a quasi-linear compensated void can be recognized
as a cold spot surrounded by a very weak hot ring, whereas
a quasi-linear compensated cluster can be recognized as a hot
spot possibly with a dip at the center of it. In the EdS uni-
verse, either a compensated quasi-linear void or cluster can
be identified as a cold spot surrounded by a hot ring.

2.5. ISW effect from prominent quasi-linear structures

In order to fully utilize information of the three dimensional
distribution, we consider a temperature anisotropy∆T/T ob-
tained from stacked images on the CMB sky that corresponds
to most prominent voids/clusters in a galaxy catalog. First,
we fix an angular radiusθout of a circular region on the CMB
sky that will be used in the stacking analysis. Then, the cor-
responding smoothing scalers in comoving coordinate for the
corresponding fluctuation atz is rs = (1+ z)DA(z)θout , where
DA(z) is the angular diameter distance to the galaxy. The cor-
responding initial smoothing scale isri

s = η−1rs.
We assume that the probability distribution function (PDF)

of linear density contrastδL
m at redshiftz is given by a Gaus-

sian distribution function,

PL(δL
m;σ(ri

s,z)) =
1√

2πσ(ri
s,z)

exp

[

−
(δL

m)2

2σ2(ri
s,z)

]

(14)

whereσ2(ri
s,z) is the variance of the linearly extrapolated den-

sity contrast at redshiftz smoothed by a spherically symmet-
ric top-hat type window function with an initial comoving ra-
diusri

s. Note thatσ(ri
s,z) depends on cosmological parameters

such asΩm,0,σ8 and the spectrum indexn. Then, the PDF of
non-linear density contrast of the inner patchδm is given by

PNL(δm;σ(ri
s,z)) = αPL(δL

m(δm);σ(ri
s,z))

dδL
m

dδm
, (15)

whereα is a constant that normalizes the PDF. As shown in
figure, the PDF ofδm is positively skewed in comparison with
the PDF ofδL

m because of non-linearity. For a sample re-
gion at redshiftz with a total comoving volumeV , the total
number of voids or clusters with a radiusrs is approximately
Nt ≈ 3V/(4πr3

s ). In what follows we assume that the num-
ber of prominent voids/clusters (Nv/Nc) determines the corre-
sponding threshold of density contrastδm,th(z), which is given
by

Nv/Nt =
∫ δm,th

δv,cut

PNL(δm;σ(ri
s,z))dδm, (16)
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and

Nc/Nt =
∫ δc,cut

δm,th

PNL(δm;σ(ri
s,z))dδm, (17)

respectively. From equations (1), (16), and (17) the mean
temperature fluctuation within an angular radiusθout for a
stackedNv or Nc images corresponding to prominent quasi-
linear voids/clusters at redshift∼ z can be approximately writ-
ten as

〈∆T〉=

∫∫

W(θ;θin)∆T(δm,ψ(θ))PNL(δm;σ)d2
θdδm

πθ2
th

∫

PNL(δm;σ)dδm
, (18)

where 0≤ θ≤ θout , W (θ;θin) is a compensating window func-
tion that satisfies

∫ θin

0
2πθW (θ;θin)dθ = −

∫ θout

θin

2πθW (θ;θin)dθ (19)

and

ψ(θ) = θ + arcsin

[

h−1cosθsinθ −
√

sin2θ − h−2sin4θ

]

, (20)

whereh = rs(1+ z)/DA(z).

3. APPLICATION TO OBSERVATIONS

3.1. SDSS-WMAP cross correlation

A cross correlation analysis using a stacked image built
by averaging the CMB surrounding distinct voids/clusters has
been done by Granett et al. (2008). They have used 1.1 mil-
lion Luminous Red Galaxies (LRGs) from the SDSS catalog
covering 7500 square degrees. The range of redshifts of the
LRGs is 0.4< z< 0.75, with a median of∼ 0.5. The total vol-
ume is∼ 5h−3Gpc3. They used so-called the ZOBOV (ZOnes
Bordering On Voidness; Neyrinck 2008) algorithm to find su-
pervoids and superclusters in the LRG catalog and made a
stacked image from an inversely variance weighted WMAP
5-year (Q,V, and W) map. In order to reduce contribution
from CMB fluctuations on scales larger than the objects, they
used a top-hat type compensating filter

Wth(θ;θin) =

{

1 (θ < θin)
−1 (θin ≤ θ ≤ θout),

(21)

whereθout = cos−1 (2cosθin − 1).
First, using the developed tools based on thin-shell approx-

imation and homogeneous collapse model in section 2, we
estimate the expected amplitude of the ISW signal for promi-
nent structures in a concordantΛCDM model with Gaus-
sian primordial fluctuations and compare with the observed
values obtained from the SDSS-LRG catalog. The num-
ber of most distinct voids or clustersN and the cut-off ra-
dius θin are chosen as free parameters. At redshiftz = 0.5
, the mean density contrast filtered by a top-hat type func-
tion with radiusr = 130h−1Mpc corresponding toθout ∼ 5.6◦

is just 〈δL
m〉 = 0.046 and the background density parameter is

Ωm(z = 0.5) = 0.54. Because the influence of non-linear ISW
effect is weaker than that of the linear ISW effect in this set-
ting, we expect that details of non-linear calculations will not
much affect the result. In what follows, we use an approxima-
tion δH ∝ δm ∝ ṽ, whereδm is determined from the homoge-
neous collapse model in section 2.

As shown in table 1, it turned out that the expected val-
ues of the ISW(Rees-Sciama) signal are typically of the or-
der of O(10−7)K. As expected, the amplitude gets larger as

TABLE 1
EXPECTED AND OBSERVED AMPLITUDE OF MEAN

TEMPERATURE FOR A COMPENSATING FILTERθin = 4◦

N cluster (µK) void (µK) average(µK)

1 0.98 -1.2 1.07
5 0.82 -0.94 0.88
10 0.73 -0.83 0.78
30 0.57 -0.64 0.61 (11.1±2.8)a

50 0.48 (7.9±3.1)a -0.53 (-11.3±3.1)a 0.51 (9.6±2.2)a

70 0.42 -0.46 0.42 (5.4±1.9)a

aTaken from Granett et al. (2008).

the number of stacked image decreases, and the amplitude for
voids systematically becomes larger than those for clusters by
5− 10 percent(Tomita & Inoue 2008; Sakai & Inoue 2008).
On the other hand, the order of the observed amplitudes are
extremely large asO(10−6)K. It turns out that the discrepancy
remains at 3− 4σ level forN = 30 andN = 50.

Second, we reconstruct the mean density profile from the
observed ISW signal for the SDSS-LRG catalog using our
LTB model. From figure 7, one can notice a hot ring around
a cold spot for the stacked image of voids and a dip at the
center of a hot spot for the stacked image of clusters. Al-
though the amplitude of the hot-ring cannot be reproduced
well, the observed dip at the center of the hot spot can be qual-
itatively reproduced in our LTB models. We have found that
the dip at the center of a compensated cluster can be gener-
ated only if the linear ISW effect balances the non-linear ISW
effect in a limited parameter region. Thus the observed fea-
tures in stacked images strongly imply that the corresponding
super-structures are not linear but quasi-linear or non-linear
objects. The density fluctuations which are necessary to pro-
duce the observed ISW signals are found to be tremendously
large. In figure 7, we plot the ISW signal from a compen-
sated cluster withδm ∼ 7σ and that from a compensated void
with |δm| ∼ 10σ at z = 10 (see the radial density profiles at
figure A1 in appendix A). Even for these very rare objects,
the amplitudes of ISW signals in our LTB models are much
smaller than the observed ones. In fact, the mean tempera-
tures for a compensating filterθin = 4◦ are 3.6µK(1.4σ) and
−3.1µK(2.6σ) for the cluster and the void, respectively. On
the other hand, the probability of generating these fluctuations
is as extremely small as 10−12 in standard inflationary models
that predict primordial gaussianity.

Thus, the observed large ISW signals for the stacked
image strongly suggest a presence of super-structures on
scales O(100h−1Mpc) with anomalously large density con-
trast O(0.1) which can not be produced in the concordant
LCDM model.

3.2. 2MASS-WMAP cross correlation

Francis & Peacock (2009) estimated the local density field
in redshift shells using photometric redshifts for the 2MASS
galaxy catalogue. They reconstructed the CMB anisotropies
due to the ISW effect from the local density field. There are
two prominent spots in the reconstructed CMB anisotropy.
One is a hot spot due to a supercluster around the Shapley
concentration at redshifts 0.1 ≤ z ≤ 0.2. Another one is a
cold spot due to a supervoid at redshifts 0.2≤ z ≤ 0.3 in the
direction to (l,b) ∼ (0,−30◦). The angular radii of both struc-
tures areθ = 20◦ − 30◦. The temperatures near the center of
both structures are∼ 20µK. The position of the supervoid
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FIG. 7.— Observed mean CMB temperature radial profiles for a stack
image of 50 clusters (left) and that of 50 voids (right) (fullcurves) in
the SDSS-LRG catalog (Granett et al 2008) and theoretical radial pro-
files for compensated spherical clusters (left)/void (right) based on the
LTB solution (see appendix B). The LTB parameters for a cluster are
(rout ,rin,δm,zc) = (0.055H−1

0 ,0.022H−1
0 ,1.0,0.5)(dashed curve) and those for

a void are (0.050H−1
0 ,0.015H−1

0 ,−0.55,0.5)(dashed curve). The effective
radii of the inner patch at a redshiftz = 10 and the mean filtered tempera-
ture with θin = 4◦ are (0.029H−1

0 ,3.6µK) (cluster) and (0.023H−1
0 ,−3.1µK)

(void), respectively.

TABLE 2
EXPECTED AND OBSERVED DENSITY CONTRAST FOR
SUPER-STRUCTURES IN2MASSGALAXY CATALOG

radiusa expected observed radiusa expected observed

230 0.037 0.20 370 -0.013 -0.049
150 0.094 0.69 250 -0.037 -0.15
aThe unit of the radii ish−1 Mpc.

FIG. 8.— Left: modeled temperature profiles for an observed (full curves)
and an expected (dotted curves) supercluster. Right: modeled temperature
profiles for an observed (full curves) and an expected supervoid (dotted
curves). These superstructures reside at redshiftsz = 0.1− 0.3. We have plot-
ted two possible profiles for each structure since there is anambiguity in the
angular size due to errors (∆z ∼ 0.03) in photometric redshifts in the 2MASS
galaxy catalog (Francis & Peacock 2009).

is very close to the one predicted in Inoue & Silk (2007),
(l,b) ∼ (330◦,−30◦).

Based on developed methods in section 2, we have esti-
mated the expected density contrastδm and the correspond-
ing temperature profile (figure 8) due to a most prominent
object in the shell. We have assumed the same cosmologi-
cal parameters and primordial gaussianity as those discussed
in section 3. In order to compute the temperature profile,
we have used a homogeneous thin-shell model. As shown
in table 2, the observed density contrasts are larger by 4-7
times the expected values. if the comoving radius of the struc-
ture is∼ 200h−1Mpc, the absolute value of the density con-
trast should be|δm| = 0.2− 0.3, which implies a presence of
anomalous quasi-linear super-structures. Our result is consis-
tent with the power spectrum analysis in Francis & Peacock
(2009) where a noticeable excess of the observed power at
low multipoles 2≤ l ≤ 4 was reported.

FIG. 9.— Left: the WMAP7 ILC temperature map (40◦ ×40◦) smoothed
at 1◦ scale. Right: the averaged radial profile of the ILC map as a function of
inclination angleθ from the center of the cold spot (l,b) = (207.8◦,−56.3◦).
A peak atθ ∼ 15◦ corresponds to a hot ring.

3.3. The CMB cold spot

The most striking CMB anomaly is the presence of an
apparent cold spot in the Wilkinson Microwave Anisotropy
Probe (WMAP) data in the Galactic southern hemisphere
(Vielva et al. 2004; Cruz et al. 2005) (see figure 9). The
cold spot has a less than 2 per cent probability of being gen-
erated as random gaussian fluctuations (Cruz et al. 2007a), if
one uses spherical mexican-hat type wavelets as filter func-
tions (see also Zhang & Huterer 2009).

Assuming that it is not a statistical artifact, a variety of
theoretical explanations have been proposed, such as galactic
foreground(Cruz et al. 2006), texture (Cruz et al. 2007b), and
Sunyaev-Zeldovich (SZ) effect. However, these models failed
to explain other large-angle anomalies by the same mecha-
nism.

Inoue & Silk (2006,2007) proposed that the cold spot may
be produced by a supervoid atz< 1 in the line-of-sight due to
the ISW effect and have shown that another pair of supervoids
that are tangential to the Shapley concentration can explain
the alignment between the quadrupole and the octopole in the
CMB. Subsequently, Rudnick et al. (2007) found a depression
in source counts in the NRAO VLA Sky Survey(NVSS) in the
direction to the cold spot, although the statistical significance
has been questioned (Smith & Huterer 2008). Recent optical
observations (Granett et al. 2009, Bremer et al. 2010), how-
ever, revealed that any noticeable supervoids at 0.35< z < 1
in the line-of-sight are ruled out. These observations suggest
that the angular size of the supervoid may be larger or smaller
than expected and that it resides at low redshiftsz < 0.35 or
at high redshiftsz > 1.

In order to test such a possibility, we have calculated the av-
eraged temperature around the cold spot (see figure 10) using
a spherical top-hat compensating filterWth(θ;θin).

Interestingly, we have discovered two peaks in the plot of
the filtered mean temperature around the cold spot as a func-
tion of inner radius of the filter (figure 11). The inner and the
outer peaks are observed atθin = 4◦ − 5◦(θout = 6◦ − 7◦) and
θin = 12◦ − 13◦ (θout = 16◦ − 17◦). The outer peak corresponds
to a hot ring, which is visible by eyes (see figure 9).

In order to estimate the statistical significance of the peaks,
we have used a WMAP 7-year internal linear combination
(ILC) map smoothed at 1◦ scale with a Galactic skycut|b|<
20◦ and a combination of the Q, V, and W band frequency
maps smoothed at 1◦ scale averaged with weights inversely
proportional to the noise variances with a “standard” Galactic
skycut made by the WMAP team. In order to reduce possi-
ble residual contamination from the Galactic foreground, we
further cut a region|b| < 35◦ for the Q+V+W map. In or-
der to estimate the errors, firstly, we generated 1000 random
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FIG. 10.— Left: 1σ of the filterd mean temperature as a function of an inner
radiusθin for the Q+V+W map (dashed curve) and that derived fromCl ’s
(thin curve) and from pseudo-Cl ’s (thick curve). Right: 1σ for the ILC map
(dashed curve) and corresponding theoretical values (thincurve and thick
curve) as shown in the left figure.
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FIG. 11.— Left: mean temperature around the center of the cold spot for
a compensating top-hat filter (full curve) and for an uncompensated top-hat
filter without a ring (dashed curve) as a function of the innerradiusθin. Right:
mean temperature around the center of the cold spot divided by the standard
deviation for the ILC map (dashed curve) and the Q+V+W map (full curve)
as a function ofθin

positions on the ILC(|b| > 20◦) and the Q+V+W(|b| > 35◦)
maps, and then computed variancesσ2 for the filtered mean
temperatures. Second, we have calculated expectedσ2 for the
filtered temperature using the angular power spectrumCl for
the WMAP 7-year data obtained by the WMAP team (see ap-
pendix A). Note that we have computed pseudo-Cl’s from the
Cl ’ for each skymap. As shown in figure 10, the observed
standard deviations are 1σ = 19∼ 20µK for θin = 4◦ and 1σ =
14∼ 16µK for θin = 14◦. Our result forθin = 4◦ is roughly
consistent with the values for stacked images in Granett et
al. (2008) assuming no correlation between voids/clustersin
a particular configuration. In the Q+V+W map, a slight sup-
pression inσ is observed atθin > 8◦. Theoretically calculated
values are found to be systematically lager than the observed
values by 4−16 per cent for 4◦ < θin < 14◦. These discrepan-
cies represent an uncertainty due to the Galactic foreground
emission.

As one can see in figure 11, the deviation corresponding to
the inner peak is roughly 4σ and that corresponding to the
outer peak is 4∼ 4.5σ. Assuming that the filtered mean tem-
perature obeys Gaussian statistics, the statistical significances
areP(> 4σ) = 6× 10−3 andP(> 4.5σ) = 7× 10−4 per cent.
The total solid angle of the ILC map (|b| > 20◦) is 8.27 sr
and that of the Q+V+W map (|b| > 35◦)is 5.36 sr. The total
number of the independent patch is roughly given by the ratio
between the solid angle of the map and the area of the spher-
ical patch with angular radiusθout . Therefore, forθout = 7◦,
we have∼ 180 samples for the ILC and∼ 110 samples for
Q+V+W map, yielding (110− 180)×P(> 4σ) = 0.7− 1 per
cent. In a similar manner, forθout = 17◦, one can easily show
that the statistical significance is∼ 0.01− 0.2 per cent corre-
sponding to∼ 3σ if the likelihood function is a Gaussian one.

Thus, the cold spot surrounded by a hot ring at scale∼ 17◦

is more peculiar than the cold spot at scale∼ 7◦. Therefore,
the real size of the supervoid is expected to be larger than the
apparent size of the cold region. Because 1σ deviation (corre-

sponding to 15− 20µK) due to a supervoid is enough to make
the signal non-Gaussian, it is reasonable to assume that the
contribution from a supervoid is less important than that from
other effects due to acoustic oscillation or Doppler shift at the
last scattering surface. For instance, a supervoid with a den-
sity contrastδm = −0.3 with a comoving radiusr = 200h−1Mpc
at a redshiftz = 0.2 corresponding to an angular radiusθ = 20◦

would yield a temperature decrease∆T ∼ 20µK in the direc-
tion to the center. Moreover, if the supervoid is not compen-
sating, a wall surrounding the supervoid could generate the
observed hot ring. It may consist of just an ordinary under-
dense region surrounded by massive superclusters. Further
observational study is necessary for checking the validityof
the “local supervoid with a massive wall” scenario.

4. POSSIBLE SOLUTIONS

Why the observed ISW signals for prominent structures are
so large?

One possible systematic effect may come from a deviation
from spherically symmetric density profile that we have not
considered. Indeed, gravitational instability causes pan-cake
or needle like structures in high density regions. However,as
we have seen, order of the density contrast of relevant promi-
nent super-structures isδm = O[0.1]. Therefore, we expect
that the effect of anisotropic collapse plays just a minor role.
Moreover, in the case of supervoids, a deviation from spheri-
cal symmetry is suppressed as the void expands in comoving
coordinates. Thus, it is difficult to attribute the major cause to
the deviation from spherical symmetry.

Another possible systematic effect is our neglect of fluc-
tuations on larger scales. For instance, we may have ob-
served just a tip of fluctuations whose real scale extends tor>
1000h−1Mpc. Indeed, the amplitude of ISW effect is roughly
proportional to the scale of fluctuations, i.e.∆T/T ∝ r for
r > 100h−1Mpc (Inoue & Silk 2007). Therefore, the large
amplitude of ISW signal can be naturally explained. How-
ever, the angular sizes of the observed hot and cold spots from
the stacked images are just 4◦ −6◦ atz ∼ 0.5 corresponding to
r = 100−140h−1Mpc. It is difficult to explain why the angular
sizes are so small since contributions from the ordinary Sachs-
Wolfe effect and the early ISW effect generated near the last
scattering surface are significantly suppressed by stacking a
number of images.

Then what are the possible mechanisms that can explain the
anomalously large ISW signals?

One intriguing possibility is that the primordial fluctuations
are non-Gaussian. Our results suggest that the number of
both supervoids and superclusters is significantly enhanced
in comparison with the standard Gaussian predictions. There-
fore, the effect of deviation from Gaussianity may appear in
the statistics of 4-point correlations in real space or trispec-
trum in harmonic space. It can be also measured by the
Minkowski functionals that contain information of 4-pointor
higher order correlations. At the last scattering surface,the
comoving scale of 300h−1Mpc corresponds to angular scale
∼ 2◦. If the background universe is homogeneous, such a
non-Gaussian feature must appear at the CMB anisotropy at
multiple l ∼ 100 corresponding to angular scale∼ 2◦ as well.
However, so far no such a noticeable deviation from Gaus-
sianity in the CMB anisotropies has been observed (Vielva &
Sanz 2010). Therefore, it is difficult to explain the observed
signals by a simple non-Gaussian scenario unless one gives
up the cosmological Copernican principle (Tomita 2001).

Another possibility is a certain feature on the power spec-
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trum of primordial fluctuation (Ichiki et al. 2009). Spike-
like features in the primordial power spectrum appear in some
inflationary scenarios that produce primordial black holes
(Ivanov et al. 1994, Juan et al. 1996, Yokoyama 1998). Al-
though there is no natural reason to have a feature only on the
scale of super-structures (l ∼ 100), observational constraints
are not stringent since one needs to increase the number of
samples if one abandons the assumption of the smoothness of
the primordial power.

Some cosmological models containing time evolving dark
energy/quintessence or those based on scalar-tensor gravity
predict an enhancement in the ISW effect due to an enhance-
ment in the acceleration of the cosmological expansion or
non-trivial time evolution of dark energy or scalar field that
may couple to matter or metric (Amendola 2001, Nagata et al.
2003). This may help to explain the anomalously large ISW
signal. However, at the same time, we need to suppress the
ISW contribution on large angular scales since the observed
angular power of the CMB anisotropy at very large angular
scalesl ∼ 2 is relatively low. Models based on some alterna-
tive gravity might be helpful for realizing these observational
features (Afshordi et al. 2009).

5. CONCLUSION

In this paper, we have shown that recent observations imply
a presence of quasi-linear super-structures with a comoving
radius 100− 300h−1Mpc at redshiftsz < 1. Observations are
at odd with the concordantΛCDM cosmology that predicts
Gaussian primordial perturbations at> 3σ level.

First, we have developed a formalism to estimate the ampli-
tude of the ISW signal for prominent structures based on thin-
shell approximation and the homogeneous collapse model.
From comparison with other calculations based on perturba-
tion theory and the LTB solution, we have found that our sim-
ple model works well for estimating the ISW signal for quasi-
linear superstructures inΛ-dominated universes.

Secondly, we have applied our developed tools to obser-
vations of ISW signals using the SDSS-LRG catalog, the
2MASS catalog, and the cold spot in the Galactic southern
hemisphere. The ISW signals from stacked images for the
SDSS-LRG catalog is inconsistent with the predicted values
in the concordantΛCDM model at more than 3σ. The radial
profiles of the stacked image show a hot-ring around a cold
spot for voids and a dip at the center of a hot-spot without a
cold-ring for clusters. These non-linear features are alsore-
produced by our models using the LTB solutions although the

agreement is not perfect. The asymmetrical features suggest
that the observed super-structures are in quasi-linear regime
rather than linear regime. The amplitudes of the ISW signals
obtained from the 2MASS catalog at redshifts 0.1< z < 0.3
are found to be several times larger than expected values. We
have confirmed that the mean temperature around the cold
spot filtered by a compensating top-hat filter with angular
scaleθout = 16◦ −17◦ deviates from the mean value at roughly
3σ level suggesting a presence of a hot-ring around the cold
spot. Note that our finding is consistent with the previous re-
sult that the cold spot itself is not unusual but the hot-ringplus
the inner cold region is found to be unusual (Zhang & Huterer
2009). This implies that the void may reside at low redshift
z < 0.3 and the angular size may be larger (= 16◦ − 17◦) than
considered in literature (Masina & Notari 2009).

Finally, we have discussed possible causes of the discrep-
ancy between the theory and observation, namely, observa-
tional systematics, primordial non-Gaussianity, features in
power spectrum, dark energy or alternative gravity.

We have not considered the effects of non-spherical col-
lapse which are important for estimating the mass function of
non-linear objects and the effects of uncompensated mass dis-
tribution for super-structures. The extension of our analysis
to more elaborate ones incorporating these effects would be
helpful for realizing detailed comparison between the theory
and the observation.

Future surveys of the CMB, galaxy distribution, weak
lensing and theoretical studies on dark energy/alternative
gravity and inhomogeneous cosmology will certainly yield
fruitful results for solving the puzzle.
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APPENDIX

A:FIRST-ORDER AND SECOND-ORDER ISW EFFECTS

In what follows, we derive analytic formulae for computing temperature fluctuations due to the ISW effect for spherically
symmetric compensated top-hat type density perturbationsusing first-order and second-order perturbation theory (Tomita &
Inoue 2008, abbreviated as TI hereafter). The relation between density perturbations of the growing mode and the potential
functionF of spatial variables are given in equations (3.6) and (3.11)of TI. The top-hat type density profile is parametrized in
terms of two constantsb andc, representing first order density contrasts at the center and at the wall at the present time (figure
A1).

The first-order density contrastδL
m at a conformal timeη when the scale factor is equal toa(η) can be written in terms of the

background matter densityρB and the growth functionP(η) corresponding to the growing mode of density perturbationas

δL
m ≡ δρ(1)/ρB =

1
ρBa2

[(a′/a)P′ − 1](c,−b), (A1)

for (r < r0,r0 < r < r1), respectively, where a prime denotes a partial derivativewith respect to conformal timeη.
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The second-order density contrast is expressed as

δS
m ≡ δρ(2)/ρB =

2/3
ρBa2

{(ζ1 −
9
2
ζ2)c2, [2(c + b)2(r0/r)6 + b2]ζ1 +

9
2

[(c + b)2(r0/r)6 − b2]ζ2} (A2)

for (r < r0,r0 < r < r1), respectively, whereζ1 andζ2 are given in equation (2.19) of TI. Here we have omitted the terms that
are negligible ifr1 ≪ H−1 because we assume that typical size of super-structures isO(100)h−1Mpc. Neglecting the terms higher
than second-order, the total density contrastδρ/ρB can be written as

ρB

ρB + δρ
=

1
1+ δρ/ρB

= 1− δL
m + (δL

m)2 − δS
m. (A3)

For a central value of total density contrast, (δρ/ρ)c, we have the relation

α(z)c2 +β(z)c −γ(z) = 0, (A4)

wherez is the redshift,α(z) ≡ 2
3(ζ1 − 9

2ζ2)/(ρBa2) − [β(z)]2, β(z) ≡ ( a′

a p′ − 1)/(ρBa2) and γ(z) ≡ 1− 1/[1 + (δρ/ρ)c].
In the text we consider models of supervoids and superclusters with a given set ofr0,r1 and (δρ/ρ)c(zc), where (δρ/ρ)c(zc) is

(δρ/ρ)c at the epoch of redshiftzc. From this set we obtainc andb, solving the above equation as

c = −[β(zc) +
√

β(zc)2 + 4α(zc)γ(zc)]/(2α(zc)), (A5)

andb is related toc asb/c = 1/[(r1/r0)3 − 1] for compensated super-structures.
The first-order and second-order temperature fluctuations∆T (1)/T and∆T (2)/T are defined by equations (4.2) and (4.4) of TI.

Their expressions for a light path passing the center of spherical voids and clusters are given in equations (5.11) and (5.13) of TI.
For the other light paths, the first-order temperature fluctuation is derived from equations (5.8) and (5.9) with equation (C6) of TI
and expressed as

∆T (1)/T = −2{a′

a
+ [

a′′

a
− 3(

a′

a
)2]P′}c(r0)3J(r/r0), (A6)

whereJ(r/r0) is given in equation (C7) of TI forr ≤ r0. Forr1 > r > r0, we have

J(u) = −
1
6

2u1
2[I1 + I3 − 3u1

2I2]/(u1
3 − 1), (A7)

whereu ≡ r/r0, u1 ≡ r1/r0 and

I1 =
∫ u1

u
(u2 − u2)−1/2du = ln[(u1 +

√

u2
1 − u2)/u],

I2 =
∫ u1

u
(u2 − u2)−1/2udu = (u1

2 − u2)1/2,

I3 =
∫ u1

u
(u2 − u2)−1/2u3du =

1
3

(u1
2 + 2u2)(u1

2 − u2)1/2. (A8)

The second-order temperature fluctuation can be derived from equations (2.17),(2.18),(4.4) and (4.5) of TI and expressed as

∆T (2)/T = −[ζ′1

∫

∞

0
dλ(F,r)2 + ζ′2×100

∫

∞

0
dλΦ0], (A9)

where
∫

∞

0 dλ(F,r)2 and
∫

∞

0 dλΦ0 for r < r0 are given in equations (C3) and (C4) of TI and the expression of ζ′1 andζ′2 is shown
in equations (4.6) and (4.7) of TI. Forr1 > r > r0, we have

∫

∞

0
(F,r)

2dλ=
1
9

c2(r0)3[u1
6I4 + I3 − 2u1

3I1]/(u1
3 − 1)2

100
∫

∞

0
Φ0dλ=

1
4

c2(r0)3[u1
6I4 − 2I3 + 9u1

2I2 − 8u1
3I1]/(u1

3 − 1)2, (A10)

whereIi (i = 1− 3) are given above andI4 is

I4 =
∫ u1

u
(u2 − u2)−1/2u−3du =

1
2u2

{1
u

tan−1[
√

u1
2 − u2/u] +

√

u1
2 − u2/u1

2}. (A11)

When we compare the temperature fluctuations in the perturbative model (in appendix A) and those in the full non-linear model
(in appendix B), we should notice the difference of their density profiles, i.e. the top-hat profile (in appendix A) and theSakai-
Inoue (SI) profile (in appendix B). For our comparison in thispaper, we simulate the top-hat profile to the SI profile by equating
the outer boundaries and their zero points as follows. Here we represent the SI profile using the radial coordinater defined in
the perturbative model. In the top-hat profile, the radii in the outer boundary and the zero point arer = r1 andr0, respectively,
and in the SI profile the radius in the outer boundary isr = rout and the zero point isr = (rin + rc)/2 approximately, in which
rc = (rout + rin)/2. If we equate these outer boundaries and zero points, we obtain

r0 = (rin + rc)/2 = (3rin + rout)/4. (A12)

Then for relative widthswth ≡ 1− r0/r1 andwSI ≡ 1− rin/rout , we have a relationwth = 3
4wSI . In the text we show the temperature

fluctuations in both models with parameters which satisfy this relation.
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FIG. A1.— Left: matter density contrast (at linear order) for a top-hat type spherical void used in our perturbative analysis. Right: density profilesδm in our
LTB models as a function of physical radius in unit of presentHubble radius for a compensated cluster and void. The initial condition is set at a redshiftz = 10.
We assume a concordant FRW cosmology with (Ωm,0,ΩΛ,0) = (0.26,0.74) as the background spacetime.

B:METHOD OF COMPUTING REES-SCIAMA EFFECTS USING THE LTB MODELS

Any spherically symmetric spacetime which includes dust ofenergy densityρ(t,r) and a cosmological constantΛ can be
described by the LTB solution,

ds2 = −dt2 +
R′2(t,r)
1+ f (r)

dr2 + R2(t,r)(dθ2 + sin2θdϕ2) (B1)

which satisfies

Ṙ2 =
2Gm(r)

R
+
Λ

3
R2 + f (r) (B2)

ρ =
m′(r)

4πR2R′
(B3)

where′ ≡ ∂/∂r and˙ ≡ ∂/∂t.
Our model is composed of three regions: an outer flat FRW spacetime, an inner negatively/positively curved FRW spacetime,

and an intermediate shell region described by the LTB metric. At the initial timet = ti, which we choose aszi = 10, we define the
radial coordinate asR(ti,r) = r, and we assume (figure A1)

m(r) =
4
3
πR3ρmW (r), W (r) ≡











1+ δm for r ≤ rin

1+
δm

16
(8− 15X + 10X3 − 3X5) for rin ≤ r ≤ rout

1 for r ≥ rout

(B4)

where
X ≡ r − rc

w/2
, rc ≡

rout + rin

2
, w ≡ rout − rin. (B5)

Initial velocity field, v = Ṙ − HR, is given by the linear perturbation theory (TI). Thenf (r) is determined by equation (B2). Our
model parameters areΩm,0, rout , w, the redshift of the center of a void/cluster,zc, andδm(zc).

The wave 4-vectorkµ of a photon satisfies the null geodesic equations,

kµ ≡ dxµ

dλ
, kµkµ = 0,

dkµ

dλ
+Γ

µ
νσkνkσ = 0 (B6)

For null trajectories on theθ = π/2 plane, the geodesic equations (B6) with the metric (B1) reduce to

(kt)2 = X2 + R2(kϕ)2, X ≡ R′

√
1+ f

kr, (B7)

R2kϕ = constant, (B8)

dr
dt

=
kr

kt
,

dϕ
dt

=
kϕ

kt
, (B9)

dkt

dt
= −

Ṙ′X2

R′kt
− RṘ

(kϕ)2

kt
, (B10)
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dX
dt

= −
Ṙ′

R′
X + R

√

1+ f
(kϕ)2

kt
. (B11)

We use the null condition (B7) not only to set up initial data but also to check numerical precision after time-integration.
To integrate the geodesic equations (B9)-(B11) together with the field equations (B2) and (B13) numerically, we discretize r

into N elements,

ri = i∆r, i = 1, ...,N, ∆r =
rout

N
. (B12)

and any field variableΦ(t,r) into Φi(t) ≡ Φ(t,ri). Evolution ofRi(t) is determined by (B2), but we also need data ofR′

i(t) and
R′′

i (t). Because finite difference approximation,R′

i(t) ≈ (Ri+1 − Ri−1)/(2∆r), include errors ofO(∆r2), we numerically integrate
with time,

Ṙ′ =
1

2Ṙ

(

2Gm′

R
−

2Gm
R2 R′ + f ′ +

2
3
ΛRR′

)

, (B13)

which is given by differentiating (B2) with respect tor. Furthermore, to vanishR′′(t,r) in the geodesic equations, we have
introduced an auxiliary variableX . To prepare geometrical values between grid pointsri andri+1, we adopt cubic interpolation:
at each timet∗ any variableΦ(t∗,r) in ri < r < ri+1 is determined by

Φ(t∗,r) = ax3 + bx2 + cx + d, x ≡ r − ri −
∆r
2

a ≡ −Φi−1 + 3(Φi −Φi+1) +Φi+2

6(∆r)3
, b ≡ Φi−1 −Φi −Φi+1 +Φi+2

4(∆r)2
,

c ≡ Φi−1 + 27(−Φi +Φi+1) −Φi+2

24∆r
, d ≡ −Φi−1 + 9(Φi +Φi+1) −Φi+2

16
, (B14)

We also have to consider null geodesics from an observer to the void/cluster. Suppose that the observer is at the origin and the
center of the void/cluster is located atx = xc on they axis. Then, without loss of generality, on thex-y plane we can analyze light
rays which reach the observer. Some position on the outer shell and the four momentum of the light there in the observer-centered
coordinate are given by

x = xc + rout cosϕ, y = rout sinϕ, (B15)

kµ(O) = E

(

1,−
cosα

a
,−

sinα
a

,0

)

, (B16)

whereE is the photon energy andα is the angle between the light ray and thex-axis. Definingl(z) as a comoving length from the
observer to the photon, we can write the light path as

x = l(z)cosα, y = l(z)sinα, l(z) =
∫ z

0

dz
a0H(z)

. (B17)

The solution of (B15) and (B17) gives

l = xc cosα−
√

r 2
out − x2

c sin2α, sinϕ =
l

rout
sinα, (B18)

and the null vector in the void/cluster-centered sphericalcoordinate,

kt = E, kr = −
E cos(α−ϕ)

rout
, kϕ = −

E sin(α−ϕ)
arout

. (B19)

at the time when the photon leaves the shell,zleave.
Our computing algorithm is summarized as follows:

(i) SupposeΩm,0, δm(zc), rout , w and redshift of the center of a void/cluster,zc. For each angle,α, Eqs.(B18) and (B19) give
“initial" conditions of the null geodesic atz = zleave in the void/cluster-centered spherical coordinate.

(ii) Solve the field equations in the LTB spacetime, (B2) and (B13), fromz = zi to zleave.

(iii) Solve the null geodesic equations (B7)-(B11) together with the the field equations (B2) and (B13) backward fromz = zleave
to the time when the photon enters the shell.
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C:TEMPERATURE VARIANCE FOR TOP-HAT COMPENSATING FILTER

In what follows, we derive analytic formulae for computing variance of temperature fluctuations on a sky for a circular top-hat
compensating filterWth(θ;θin). We assume that an ensemble of the CMB fluctuations can be regarded as an isotropic random field
on unit sphereS2. Let∆T (θ,φ) be a temperature fluctuation at spherical coordinates (θ,φ). Then filterd temperature fluctuation
centered at the “north” pole (θ = 0) can be written as

∆Tf = A−1
∫ 2π

0
dφ

∫ θout

0
dθsinθWth(θ;θin)∆T (θ,φ), (C1)

whereA = 2π(1− cosθin). Plugging∆T expanded in spherical harmonicsYlm,

∆T =
∑

lm

almYlm (C2)

into equation (A1), we have

∆Tf = A−1
∑

l

al0Gl, (C3)

where

Gl =

√
π(2l + 1)
l + 1

[

2
(

−xinPl(xin) + Pl−1(xin)
)

+ xoutPl(xout) − Pl−1(xout)

]

,

xin = cosθin, xout = 2xin − 1. (C4)

Note that we have used a formula for the Legendre functionPl,

dPl(x)
dx

=
l(l + 1)
1− x2

∫ 1

x
Pl(x)dx (C5)

in deriving equation A4. Because∆T is assumed to be isotropic onS2, the variance of∆Tf can be written as a function of the
angular power spectrumCl as

σ2
f = A−2

∑

l

ClG
2
l . (C6)

If the CMB sky is smoothed by a Gaussian beam with the FWHMθs, then the variance is

σ2
f = A−2

∑

l

ClBlG
2
l , (C7)

whereBl = exp[−σ2
s l(l + 1)/2], andσs = (8 ln2)−1/2θs.

In the absence of complete sky coverage, we cannot directly observeCl. We can only compute estimated expansion coefficients
for the observed regionR in the sky (Bunn 1995),

blm = Nlm

∫

R
∆TYlm sinθdθdφ, (C8)

whereNlm is a factor chosen to normalizeblm appropriately. IfR is azimuthally symmetric, one possible prescription is to set
(Peebles, 1973)

Nlm = W −1/2
llm , (C9)

where

Wll′m =
∫

R
YlmYl′m sinθdθdφ. (C10)

Then a possible estimator forCl is given by

C̃l ≡ 〈|blm|2〉 =
1

2l + 1

∑

l′,m

W −2
llmW 2

ll′mCl′ . (C11)

In the limit thatCl varies much more slowly thanWll′m

1
Cl

dCl

dl
≪ 1

Wll′m

dWll′m

dl′

∣

∣

∣

∣

l=l′
, (C12)

we haveC̃l ≈Cl.
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