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We show that the power spectrum of a self-interacting scalar field in de Sitter space-time is
strongly suppressed on large scales. The cut-off scale depends on the strength of the self-coupling,
the number of e-folds of quasi-de Sitter evolution, and its expansion rate. As a consequence, the
two-point correlation function of field fluctuations is free from infra-red divergencies.
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A central building block of our current understanding
of the Universe is the idea of cosmological inflation. It can
be realized by a single scalar field, called inflaton. The
quantum fluctuations of this field and of the space-time
seed today’s structures in the Universe. This is well un-
derstood in the case of small fluctuations. However, some
models of inflation imply the existence of large quantum
fluctuations, e.g., the so-called chaotic scenario [1], which
also leads to the idea of eternal inflation [2].

Our task is to study the implications of large quan-
tum fluctuations on structure formation and the evolu-
tion of the Universe. Of special importance is the power
spectrum, which is observable via the cosmic microwave
background radiation [3].

A toy model to understand the physics of large quan-
tum fluctuations is a self-interacting scalar field Φ in de
Sitter space-time. In the traditional approach, based on
perturbative quantum field theory in curved space-time,
the multi-point correlation functions of Φ generically ex-
hibit infra-red divergencies [4–6].

An approach for non-perturbative quantum field the-
ory is stochastic inflation [7–12]. It has acquired con-
siderable interest over the last years [13–20]. Its idea
lies in splitting the quantum fields into long- and short-
wavelength modes, and viewing the former as classical
objects evolving stochastically in an environment pro-
vided by quantum fluctuations of shorter wavelengths.
Given the de Sitter horizon c/H as a natural length scale
of the problem, one then focusses on the “relevant” de-
grees of freedom (the long-wavelength modes) and re-
gards the short-wavelength modes as “irrelevant” ones,
where “short” and “long” are subject to the horizon.

The most simple setup provides a fixed cosmological
background in which the dynamics of a scalar test field
Φ is analyzed. If Φ is free, massive and minimally cou-
pled, one obtains after splitting into long and short wave-
lengths, Φ = ϕ + φ, an effective equation of motion of
generalized Langevin-type,(

� + µ2
)
ϕ = h. (1)

The quantity h is a Gaussian-distributed random force
with zero mean.

In [19, 20] we applied replica field theory together with
a Gaussian variational method to stochastic inflation.

Extending early studies, that mainly focussed on homo-
geneous fields and thus restricting attention to the time
evolution of Φ, we presented a method to calculate arbi-
trary two-point correlation functions.

In this work we extend our previous results [19, 20]
to include self-interactions of a scalar field in de Sitter
space-time. For the specific example of a quartic self-
interaction we calculate the power spectrum and show
that self-couplings cause a damping of this quantity on
large scales. This therefore solves the problem of infra-
red divergencies of two-point correlation functions.

As a starting point, we use the Lagrangian

L =
1

2
gµν∂µΦ∂νΦ− λΦ4, (2)

where Φ is a massless, minimally-coupled, real scalar field
with quartic self-coupling constant λ. Greek indices run
from 0 to 3. We assume a de Sitter background geome-
try, (gµν) = diag(1,−a(t)2,−a(t)2,−a(t)2) with the scale
factor a(t) = exp(Ht). For convenience we use } = c = 1.

Let Φ0 be a free field, being subject to (2) with λ = 0.
It might be decomposed as

Φ0(t,k) = â(k)u0(t, k) + h.c., (3)

with the modulus of the comoving momentum k := |k|.
The annihilation and creation operators, â and â†, obey
the usual commutation relations.

In terms of conformal time τ , with a(τ) = (Hτ)−1, the
rescaled mode functions v0(τ, k) := a(τ)u0(τ, k) fulfil the
mode equation

v′′0 +

[
k2 − 2

τ2

]
v0 = 0, (4)

where primes denote derivatives with respect to τ . So-
lutions to (4) are fixed by requiring that for very short
wavelengths the effect of space-time curvature becomes
irrelevant, and thus a plane-wave solution should be
obtained, limk/a→∞ v0(τ, k) = eikτ/

√
2k. The factor

1/
√

2 k is fixed by the canonical commutation relations
of Φ0 and its conjugate momentum. At late times, the
leading term of the solution to (4) reads

u0
(
k � 1/|τ |

)
' − iH√

2k3
. (5)
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An object of central interest in cosmology is the power
spectrum P(k). Its relation to the propagator

G(k) (2π)3 δ3(k − k′) ≡
〈
Ω
∣∣Φ(k) Φ(k′)

∣∣Ω〉, (6)

where
∣∣Ω〉 is the Bunch-Davies vacuum, is given by

P(k) :=
k3

2π2
G(k). (7)

On superhorizon scales
(
k � 1/|τ |

)
one finds for the free

massless case (subscript “0”) a scale-invariant spectrum:

P0(k) =
k3

2π2

∣∣u0(k)
∣∣2 =

H2

(2π)2
. (8)

To go beyond Equation (8), we first split the field Φ
into a short- and a long-wavelength part, Φ = φ + ϕ,
where we use the filter function Fκ, specified by its deriva-
tive [30]:

F′κ(y) =


0 : y < −κ,

N exp

(
1−

[
1−

(
y
κ

)2]−2)
: y ∈ [−κ, κ],

0 : y > +κ,

(9)

with y := k|τ | − ε, cutting out wave numbers below ε/|τ |
with a cutting width κ. In the limit κ → 0, Fκ ap-
proaches the step function Θ

(
k|τ | − ε

)
. The constant

N := e
√
π 4
√

2 /(5.3κ) in (9) is a normalization factor,
ensuring

∫
dy F′κ(y) = 1. Throughout this work we choose

κ = 10−3 and ε = 10−2, although our main statements
are virtually independent of these quantities.

Different filter functions have been intensively dis-
cussed in [20]. In [19] we showed for free fields that filter
functions with compact support allow us to avoid infra-
red divergencies. Below we show that this also holds true
for self-interactions.

Having introduced the precise way of splitting into
long- and short-wavelength modes with the filter func-
tion (9), we now consider the form of the induced noise
terms. For general self-interactions, they are non-linear
in the short-wavelength modes. However, if one is inter-
ested in the late-time behavior, or more precisely in the
leading-ln

(
a(t)

)
contribution, one may restrict to linear,

Gaussian-distributed noise terms. This has been argued
already a long time ago by Starobinsky [7] and has been
rigorously proven by Woodard [15] (see also [16]).

Here we present a heuristic argument: From (2) and
the ansatz Φ = ϕ+ φ one finds

�ϕ+ 4λϕ3 + �φ = − 4λφ3 − 12λϕφ2

= − 12λϕ2 φ.
(10)

We now show that the right-hand side becomes subdom-
inant in the limit τ → 0. For the sake of this argument,

we assume a sharp-cut,

φ(τ,x) =

∫
k>ε/|τ |

d3k

(2π)3
φ̃(τ, k) e−ik·x. (11)

Furthermore, let φ0 be the solution of the field equation
for λ = 0. Then to leading order in λ� 1, we are allowed
to approximate φ in each term on the right-hand side of
(10) by its free pendent. At late times, the mode function
u of φ̃ is approximately time-independent,

λu ' λu0
τ→ 0−−−→ − i

λH√
2k3

. (12)

As the lower boundary of integration shrinks exponen-
tially fast, we see that all terms on the right-hand side
are either subdominant or vanish at late times. Hence it
remains to study �φ in the late-time limit. Taking into
account the smallness of λ, we find after some algebra
that this term dominates the others on the right-hand
side of (10).

The stochastic field equation for model (2) reads then

�ϕ+ 4λϕ3 = h, (13)

where h is a Gaussian-distributed random variable with

h = 0, h2 = ∆, (14)

where ∆ is a known function, depending on derivatives
of the mode functions in (3). The “bar” in (14) and
below denotes the average over the noise due to quantum
fluctuations of short wavelengths.

Let us now briefly summarize the program we will per-
form next: As we described in detail in [19, 20], we first
Wick-rotate to Euclidean signature and use the replica
trick [21]. Then we introduce a suitable variational action
and determine its form (especially its replica structure)
from a Feynman-Jensen variational principle [22]. This
will allow us to go beyond ordinary perturbation theory
(c.f. [19, 20, 23]) and to obtain an analytic expression for
the full power spectrum.

After Wick-rotating we proceed with the replica trick,

δn

δj(x1) . . . δj(xn)
ln
(
Z[j]

)
= lim
m→0

1

m

δn

δj(x1) . . . δj(xn)
ln
(
Zm[j]

)
,

(15)

where Z[j] is the generating functional, depending on an
external current j. m denotes the number of replicas,
labelled by the indices a, b, . . . . Furthermore we define
the replicated action S(m) via

Zm[j] =

∫ m∏
a=1

D[ϕa] exp

(
−

m∑
b=1

S
[
ϕb, j

])

≡
∫ m∏

a=1

D[ϕa] exp
(
−S(m)

[
{ϕ}, j

])
.

(16)
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Besides terms diagonal in replica space (∝ δab), it also
contains the non-diagonal part

S(m)
[
{ϕ}, j

]
⊃ −1

2

m∑
a,b=1

∫
t,k

ϕa(t,k) ∆(t,k)ϕb(t,−k),

(17)

originating from the average over noise.
We apply the Feynman-Jensen variation principle and

therefore define a Gaussian variational action

S(m)
var

[
{ϕ}

]
:=

1

2

m∑
a,b=1

∫
t,k

ϕa(t,k) G−1ab(t,k)ϕb(t,−k),

(18)
with

∫
t

:=
∫

dt and
∫
k

:=
∫

d3k/(2π)3. We make the
ansatz for the inverse propagator

G−1ab :=
[
G−10 + σ

]
δab − σab. (19)

The self-energy matrix Jσδab − σabK mimics the diagonal
and the non-diagonal parts in (16), respectively.

Maximizing the right-hand side of the Feynman-Jensen
inequality

ln(Z) ≥ ln(Zvar) +
〈
S(m)

var − S(m)
〉
var

, (20)

wherein the subscript “var” refers to the variational ac-
tion (17), yields the replica symmetric solution

σ ' 6λH

m

∫
k

TrJGabK, (21a)

σab ' ∆Jab, (21b)

with a 6= b. The m ×m-matrix J is defined by Jab = 1
for all a, b.

To solve the implicit equations (21a) and (21b) we in-
vert (19) by means of an expansion in the number of
replicas m. At leading order we find

Gab '
[
G−10 + σ

]−1
δab + ∆

[
G−10 + σ

]−2
Jab. (22)

From this quantity we extract the full physical propaga-
tor G(t, k) via (c.f. [23])

G(t, k) = lim
m→0

1

m
Tr

q
Gab(t, k)

y
. (23)

Its explicit form is rather lengthy and shall not be given
here, but the corresponding power spectrum is plotted in
Figure 1. At late times one can identify two regimes:

P(t, k) ' H2

(2π)2


(

k

k∗(t)

)3
: k � k∗(t),

1 : k∗(t)� k � 1/
∣∣τ(t)

∣∣.
(24)
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Figure 1: Power spectrum P(k) of a massless test field with
quartic self-coupling as a function of comoving momentum.
Upper panel: Results for various values of λ, with N = 6.
Lower panel: The same as above but for various numbers of
e-folds, where the coupling has been fixed to λ = 10−12. Also
indicated is the value k∗ at which the power spectrum has
decreased to half of its amplitude (normalized to 1 here).

The wave number k∗ at which the large-scale behavior of
P(t, k) changes significantly is essentially determined by
the solution for σ in (21a):

k∗ '
3

√
σH

2
' 3

√
3

2π2

3
√
λN H, (25)

where N := Ht is the number of quasi-de Sitter e-folds.
The factor in front of the curly brace is the standard

value of the scale-invariant power spectrum. The large-
scale behavior [k � k∗(t)] of P(t, k) follows from the fact
that: a) the quantity σ is k-independent [c.f. (21a)], b)
the second term in (22) is subdominant compared to the
first [hence Gab(t, k → 0) = const.], and c) the relation
of P(t, k) to G(t, k) involves a factor k3.

We observe in Figure 1 that the power spectrum is
heavily suppressed on large scales, in agreement with
(24). This damping becomes more pronounced as the
self-coupling λ is increased and for a large number of e-
folds [c.f. (25)]. Hence, the self-coupling breaks the scale
invariance of P(t, k).
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On subhorizon scales one finds P
(
k � 1/|τ |

)
∼ k2.

This might be understood from: a) the fact that quan-
tum effects in stochastic inflation only significantly mod-
ify large scales, b) the behavior of the free mode function
u0
(
k � 1/|τ |

)
∼ k−1/2, and c) the factor k3 in (7).

The derived large-scale suppression solves the problem
of infra-red divergencies of real-space correlation func-
tions: While in a scale-invariant theory the two-point
function diverges in real space,

G(t,x) =

∫
d3k

(2π)3
eik·x G(t,k) ∝

∫
dk

k

sin(k)

k
→∞,

(26)

the theory with correctly resummed quantum effects will
be finite. For a complete understanding of quantum ef-
fects in inflationary cosmology one would need to include
metric fluctuations.

Let us now study if a cut-off at k∗ could be observable.
We assume quasi-de Sitter inflation and a sudden reheat-
ing to the radiation-dominated Universe after N e-folds.
This gives for the damping scale today,

k∗

∣∣∣
today

' 3

√
3

2π2

3
√
λN e−N

(
H

Treh

)(
T0
H0

)
H0. (27)

H0 is the present value of the Hubble rate, and Treh and
T0 denote the temperatures at reheating and today, re-
spectively. With λ ' 10−13, Treh ' H as well as N ≈ 60,
we find

k∗

∣∣∣
today

≈ H0, (28)

for N � 60 this cut-off is unobservable.
Other scenarios [24, 25] with a finite number of e-folds

also lead to a cut-off in P(k). However here it is mainly
the self-interaction, which is responsible for the large-
scale damping. This can be easily seen by considering
that the λ = 0 result is scale-invariant [c.f. (8)].

Suppression of the power spectrum in the infra-red
could also influence the cosmic microwave background
radiation. This issue was brought into the focus of in-
terest by recent observations [3, 26, 27], which suggest
a lack of power on the largest observable scales. De-
spite a cut-off in the primordial power-spectrum about
the Hubble scale, the integrated Sachs-Wolfe effect [28]
can regenerate power on the largest observable scales in
the cosmic microwave background. Mortonson and Hu
[29] recently provided new upper bounds on such a cut-
off. They found kcut < 5.2×10−4 Mpc−1(95 % C.L.) using
polarization data. This value is close to and well consis-
tent with our estimate of k∗ ≈ H0 ≈ 2.4× 10−4 Mpc−1.

To summarize, quantum effects in inflationary cosmol-
ogy significantly modify the large-scale evolution of quan-
tum fields. Using replica field theory, we haven shown for
the specific example of a self-interacting scalar field in de
Sitter space-time, that the power spectrum is free from
infra-red divergencies due to a large-scale cut-off.
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