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Abstract. Cosmologists have developed a phenomenally successful picture of structure in the
universe based on the idea that the universe expanded exponentially in its earliest moments. There
are three pieces of evidence for this exponential expansion– inflation – from observations of
anisotropies in the cosmic microwave background. First, the shape of the primordial spectrum is
very similar to that predicted by generic inflation models. Second, the angular scale at which the
first acoustic peak appears is consistent with the flat universe predicted by inflation. Here I describe
the third piece of evidence, perhaps the most convincing of all: the phase coherence needed to
account for the clear peak/trough structure observed by theWMAP satellite and its predecessors. I
also discuss alternatives to inflation that have been proposed recently and explain how they produce
coherent phases.

1. OVERVIEW

Over the last several years, we have gradually been accumulating evidence for a remark-
able theory of the early universe. This theory now accounts for the observed structure in
the universe by invoking new fundamental physics at very high energy scales. The theory
is so elegant and simple that it contains just a handful of free parameters. It is outlined
in Figure 1, which indicates how perturbations generated during inflation evolve with
time. The observations today of anisotropies in the radiation and inhomogeneities in the
matter therefore bear the imprint of:

• the potential of the field(s) which drive(s) inflation
• the abundances of different types of matter in the universe (baryons, which interact

with radiation; dark matter, which does not; and neutrinos,which can freestream
out of overdense region):Ωb,Ωm, andΩν

• late time phenomena such as dark energy (parametrized by abundanceΩde and
equation of statew) and reionization

The most important observations confirming this model come from two segments
of the electromagnetic spectrum. First, radio receivers have measured the cosmic mi-
crowave background (CMB) to exquisite precision. Second, optical telescopes have cap-
tured light from distant galaxies and quasars which tell us about the matter distribution
both around those objects [1, 2] and along the line of sight tous [3]. They have also
received light from distant objects such as galaxies and supernovae, allowing us to mea-
sure distances and fill in a modern Hubble diagram [4, 5].
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FIGURE 1. Outline of the evolution of structure in the universe. Perturbations are generated at very
early times during inflation (determined by the potentialV of the fieldφ which drives inflation), start to
evolve under the combined influence of pressure and gravity when the universe is of order 105 years old,
and then bifurcate into inhomogeneities in matter (which continue to grow due to gravity) and anisotropies
in the radiation (which remain constant).

Here I will focus on one observation and one aspect of the model. Anisotropies in the
CMB were first detected in 1992 by the COBE satellite [6]; wereprobed extensively in
the ensuing decade by more than thirty smaller scale experiments [7]; and have now been
mapped exquisitely by the WMAP satellite [8]. These observations have been celebrated
for measuring cosmological parameters to unprecedented accuracy (e.g. [9, 10]), and I
will briefly describe the progress on this front in §5. But, for the most part, I want to
focus on how the signal seen in the CMB is smoking gun evidencefor the theory of
inflation.

2. INFLATION

The theory of inflation was introduced over twenty years ago [11] to solve some of the
problems of the classical cosmology. For many years, progress was limited to theory
and to addressing the question of whether the density in the universe is indeed equal
to the critical density as inflation seems to predict. By far the most important, or at
least the most testable, aspect of inflation though is its mechanism for producing small
perturbations about a smooth background. These perturbations can be measured as long
as we account for their (straightforward) evolution after inflation ends.



FIGURE 2. Evolution of the amplitudes of two Fourier modes with the same wavelength. After in-
flation, modes remain constant until they re-enter the horizon. After re-entry, they evolve under the
competing influences of pressure and gravity.

It is well known that inflation produces perturbations characterized by a Harrison-
Zel’dovich spectrum [10, 12]. This means that the amplitudeof a particular Fourier
mode is drawn from a distribution with mean equal to zero and variance given by

〈δ̃ (k)δ̃ ∗(k′)〉 = (2π)3δ 3(k−k′)P(k) (1)

whereδ is the fractional overdensity with power spectrumP(k) proportional tokn.
A Harrison-Zel’dovich spectrum corresponds ton = 1, and most inflationary models
predict something very close to this. You might think then that the shape of the power
spectrum can be measured in observations, and this is what convinces us that inflation
is right. Well, it is true that we can measure the power spectrum, both of the matter and
of the radiation, and it is true that the observations agree with the theory. But this is not
what tingles our spines when we look at the data.

Rather, the truly striking aspect of perturbations generated during inflation is that
all Fourier modes all have the same phase. To understand whatthis means and how it
develops, consider Fig. 2 which shows a cartoon view of the evolution of the amplitudes
of two Fourier modes. Both oscillate quantum mechanically during inflation. Before
inflation ends, though, bothleave the horizon, that is, their wavelengths get stretched so
much that no causal physics can alter them1. Once this happens, their amplitudes remain
constant. They stay constant up until the time much later on (for modes of interest this
might typically happen when the universe is 100,000 years old) when the modes re-
enter the horizon, at which time causal physics can once again affect their amplitudes.
The crucial point here is that as the modes re-enter the horizon, δ̇ is small. If we think
of each Fourier mode as a linear combination of a sin and a cos mode, inflation excites

1 Technically this occurs when the wavelength of the mode becomes greater than the Hubble radius,c/H.



FIGURE 3. Evolution of four Fourier modes of the temperature of the radiation as a function of
conformal timeη (= η∗ at recombination). Largest scale mode (labeled “Super-Horizon”) is still constant
at recombination. A slightly smaller scale mode (labeled “First peak”) has begun its acoustic oscillation,
and has maximal amplitude at recombination. An even smallerscale mode began oscillating earlier; its
amplitude is zero at recombination. The smallest scale modeshown here (“Second Peak”) has gone
through one full oscillation, so its amplitude will be at a maximum. From [10].

only the cos modes. It is difficult to envision any other theory with this striking feature.

3. ACOUSTIC OSCILLATIONS

How do perturbations evolve once they re-enter the horizon?A cartoon version of the
equation governing them is

δ̈ −c2
s∇2δ = F (2)

wherecs is the sound speed andF is a forcing function due to gravity. The perturbations
obey the wave equation as one expects physically: a region which is very overdense is
driven by gravity to become more overdense, but driven toward the average density by
pressure.

At this point, you might come to the conclusion that the spectrum of anisotropies in the
radiation today will exhibit a series of peaks and troughs just as a guitar string produces
a series of higher harmonics. In fact, the spectrum of the CMBlooks remarkably like
that of a guitar string. However, underlying the similarityis a pair of differences which
are essential to the argument that inflation is the origin of the perturbations.

A guitar string produces a set of harmonics because it is tieddown at its ends. So
there are only a discrete set of frequencies at which it can oscillate. There is no such
restriction for perturbations in the early universe, so whydo we see anisotropies at
certain frequencies but not at others?



FIGURE 4. The evolution of an infinite number of modes all with the same wavelength. Left panel
shows the wavelength corresponding to the first peak, right to the first trough. Although the amplitudes of
all these different modes differ from one another, since they start with the same phase, the ones on the left
all reach maximum amplitude at recombination; the ones on the right all go to zero at recombination.

To understand this, consider Fig. 3 which shows the evolution of four Fourier modes
in the time leading up to recombination2. The mode with the largest wavelength cannot
be affected by causal physics so its amplitude remains constant. Smaller scale modes
have entered the horizon, and so have begun their acoustic oscillations. The smaller
the wavelength of a mode, the earlier it will have entered thehorizon, and the more
oscillations it will have undergone by the time of recombination. Thus, the amplitude of
the mode labeled “First Peak” is maximal at recombination, and we expect to see large
anisotropies on angular scales which subtend this distance(roughly a degree). The mode
labeled “First Trough” has oscillated for a longer time though, and its amplitude is zero
at recombination. Therefore, we expect very small anisotropies on the corresponding
angular scales. And on it goes, a succession of peaks and troughs present not because
no excitations are allowed at the frequencies in the troughs(as is the case for the guitar
string). Rather, perturbations are present at all wavelengths, but we happen to see only
some of them, depending on the phase of the oscillation at recombination.

It is now very important to remember that there are many, manymodes with nearly
identical wavenumbers. Think of the number of arrows that can point from the center of
a sphere to a fixed radius, keeping in mind that two arrows can be placed infinitesimally
close to each other. In fact, since the universe is effectively infinite, there are an infinite
number of modes for any wavenumber. All of these get excited during inflation and we
must sum over all of them to compute the anisotropy amplitudeat a given scale. Thus,
when I drew the single line corresponding to the “First Peak”mode in Fig. 3, this was
really shorthand for an infinite number of modes all with different amplitudes, as in
Fig. 4. The amplitudes may differ, but as Fig. 4 shows, the phases are all the same. All
modes enter the horizon with constant amplitude. Thus, all modes with the “First Peak”
wavenumber have maximal amplitude (left panel in the figure)at recombination: they

2 After recombination, photons freestream though the universe, so we see their distribution today as it was
at the time of recombination.



FIGURE 5. Modes corresponding to the same two wavelengths (First PeakandFirst Trough) as in
Fig. 4, but this time with initial phases scrambled. The anisotropies at the angular scales corresponding to
these wavelengths would have identical rms’s if the phases were random.

have all undergone half an oscillation, so their sign simplychanges. Similarly, all modes
corresponding to “First Trough” have gone through 3/4 of an oscillation3; since they all
are cosine modes and cos(3π/2) = 0, all have zero amplitude at recombination (right
panel).

Contrast this with the situation one might otherwise expect, random phases, as de-
picted in Fig. 5. If the phases were truly random, so that boththe sine and cosine modes
were excited, then at recombination, there would not be any difference at all between the
rms amplitudes of theFirst PeakandFirst Troughwavenumbers. So we would not see
a sequence of peaks and troughs in the anisotropy spectrum today. We would see sim-
ply a flat spectrum with no features. If not for inflation, wewould see a flat spectrum.
How else could the phases have been set well before the modes of interest entered the
horizon?

Therefore, when we look at the anisotropy spectrum recentlymeasured by WMAP [8]
and we see the first and second peaks and troughs very clearly (Fig. 6), we are really
observing inflation doing the work of coordinating the phases of all Fourier modes.
Without this coherence, there would be no peaks and troughs.

4. POLARIZATION

The bottom panel of Figure 6 shows the cross-correlation between the temperature and
polarization anisotropies. This cross-correlation was first detected by the DASI experi-
ment in late 2002 [13], so our measurements of polarization are much less established
than those of temperature. Yet the WMAP results already are acrucial part of the co-
herence argument for inflation. The peaks and troughs in the anisotropy spectrum all are
on angular scales smaller than a degree(l > 200); all of these scales were within the

3 You might expect the mode which has gone through 1/4 of a full oscillation to be the first trough.
However, there are other effects (the dipole and the Integrated Sachs-Wolfe effect) which fill in this trough.



FIGURE 6. Top panel:Temperature anisotropies in the CMB as a function of angularscale [8] (smaller
scales toward the right). The series of peaks and troughs is aclear indication of phase coherence,
presumably coordinated during inflation.Bottom panel:Cross correlation between the temperature and the
polarization as a function of angular scale. The anti-correlation at 100< l < 200 and positive correlation
from 200< l < 400 are also due to phase coherence generated during inflation.

horizon at the time of recombination. So you might imagine that one could concoct a
theory of structure formation which obeyed causality and still managed to produce only
the cosine modes. If you could concoct such a theory [14, 15],then you could explain
the peaks and troughs without appealing to inflation. It seems unlikely, but it is at least
logically possible.

This logical possibility evaporates when confronted with the polarization data. In
particular, the negative cross-correlation between temperature and polarization on scales
100< l < 200 is also the result of phase coherence, as we will shortly see, and the scales
involved werenotwithin the horizon at recombination. So there is no causal mechanism
that could have produced this anti-correlation: wemustappeal to inflation to understand
it.

To understand why the temperature and polarization are anti-correlated on scales of
order a degree, we first must establish that polarization results from Compton scattering
of a radiation field with a quadrupole moment. To see this consider Fig. 7 which
depicts incoming radiation in thez= 0 plane and shows the polarization of the outgoing
radiation along the positivez-axis. Since the radiation has a quadrupole, incoming



FIGURE 7. Incoming unpolarized radiation along thex- and y- axes produces outgoing polarized
radiation along thez-axis only if the initial distribution has a non-zero quadrupole moment (figure from
[10].)

radiation along thex-axis is hotter than that along they- axis. Only they-component
of the polarization of the incomingx-ray gets transmitted (thez-component is parallel
to the outgoing direction, and polarization is transverse to the direction of propagation)
and only thex-component of the incomingy-ray gets transmitted. Hence the outgoing
x-component is cooler than the outgoingy-component. A quadrupole in an unpolarized
radiation field produces polarized radiation after Comptonscattering.

Therefore, the polarization today should be proportional to the quadrupole at the time
of recombination. The photons just before recombination are tightly coupled to the
electrons. This tight coupling tends to suppress the quadrupole. Consider an observer
measuring incoming photons, and for simplicity assume there is only a single plane
wave perturbation. When the observer looks perpendicular to the direction along which
the density is varying, he sees no perturbation. When he measures along this direction,
he measures a Doppler shift, which can be Taylor expanded as

δT
T

= v+v′ λmfp (3)



FIGURE 8. The monopole and dipole of the radiation field at recombination as a function of wavenum-
ber k (from [10]). A perturbation with wavenumberk shows up on angular scalesl ∼ kη0 whereη0 is
(roughly) the distance to the last scattering surface (angle θ ∼ l−1 is equal to size of objectk−1 divided
by distance to last scattering surface).

wherev is the electron velocity;v′ its spatial derivative which is of orderv/λ with λ
the wavelength of the perturbation; andλmfp the distance the photon has traveled since
it last scattered, the mean free path. The first term here represents the dipole seen by our
hypothetical observer, the second the quadrupole. Hence the quadrupole is proportional
to vλmfp/λ . The quadrupole then is proportional to the electron velocity. The dipole of
the radiation is equal to the electron velocity, so the quadrupole is proportional to the
dipole right before recombination. The proportionality constant is small, sinceλmfp is
much smaller than the typical wavelength. Collecting thesearguments, we expect

P≃ D
λmfp

λ
(4)

whereP is the polarization andD the dipole. Incidentally, this explains why measure-
ments of polarization have lagged behind those of temperature anisotropies: the polar-
ization signal is a factor of ten smaller due to theλmfp/λ suppression.

The polarization of the CMB today then is determined by the dipole at recombina-
tion. The temperature anisotropies on the other hand are determined by the monopole at



recombination4. The cross-correlation between the temperature anisotropy and the po-
larization anisotropy then is proportional to the cross-correlation of the monopole and
dipole at recombination. How is the monopole related to the dipole at recombination?
We can answer this simply by recalling the continuity equation:

∂ρ
∂ t

+∇ · (ρv) = 0. (5)

The velocity then (or equivalently the dipole) is proportional toρ̇ , the time derivative of
the monopole. This is shown explicitly in Fig. 8. At recombination, this phase difference
causes the product of the two to be negative for 100< l < 200 and positive on smaller
scales untill ∼ 400. But this is precisely what WMAP has observed! We have clear
evidence that monopole and dipole were out of phase with eachother at recombination.

This evidence is exciting for the small scale modes (l > 200). Just as the acoustic
peaks bear testimony to coherent phases, the cross-correlation of polarization and tem-
perature speaks to the coherence of the dipole as well. It solidifies our picture of the
plasma at recombination. The evidence from the larger scalemodes (l < 200) though is
positively stupendous. For, these modes were not within thehorizon at recombination.
So theonly way they could have their phases aligned is if some primordial mechanism
did the job, when they were in causal contact. Inflation is just such a mechanism.

5. COSMOLOGICAL PARAMETERS

I hope I have convinced you that we now have very good reason tobelieve in the basic
framework of inflation as the seed of structure in the universe. Once we assume this
framework, we can go ahead and determine the free parametersin the model. The first
and most renowned is that the first peak appears where it should if the universe is flat,
so let’s assume that the universe is flat. Three of the easiestparameters to measure then
are the baryon densityΩb, the matter densityΩm, and the Hubble constanth. Actually,
as indicated in Fig. 9, the CMB anisotropies are most sensitive to combinations of these
parameters.

Here is a rough guide to the sensitivity of the anisotropies to these three cosmological
parameters [10].

• Baryon densityΩbh2. The sound speed in Eq. (2) goes down as more baryons are
added. The frequency of oscillation thus becomes smaller asthe baryon density
goes up. A reduced frequency accentuates the effectivenessof the driving force,
making the oscillation more asymmetric. The result is that the height of the second
peak is much smaller than the height of the first peak when the baryon density is
high.

• Matter densityΩmh2. If there is a lot of radiation at recombination, the gravitational
potential changes with time, inducing a larger driving force and hence boosting

4 The monopoleis what normally thinks of when speaking of the temperature in a given spot. It is the
average temperature of all photons hitting that spot comingfrom all directions.



FIGURE 9. Dark solid curve is a model with 70% cosmological constant and thirty percent baryons.
Lighter curves show how the anisotropies change when varying different parameters. Here the total density
is set to the critical density. From [10].

anisotropies.
• Cosmological constantΩΛ. The cosmological constant5 is a late time effect, so the

only impression it leaves on the CMB relates to the way physical scales project
onto angular scales; i.e.ΩΛ changes the distance to the last scattering surface, so
the curves simply shift horizontally ifΩΛ changes.

The results from WMAP [9] are shown in Fig. 10. We get a sense that the CMB
has reduced parameter uncertainties by close to a factor of ten. And this improvement
allows us to make several remarkable statements about our universe, based solely on
observations of the CMB. First, if one assumes the universe is exactly flat, then the
CMB tells us that Hubble constant ish = 0.72± 0.05, in remarkable agreement with
direct determinations [4]. The ratio of the total matter density to the baryonic density is
about 6±1, which means the CMB alone requires significant non-baryonic dark matter.
Finally, ΩΛ = 1− Ωm is equal to 0.71± 0.07. The CMB, together with the flatness
assumption, requires a cosmological constant, or some formof dark energy. No wonder

5 In a flat universe with constantΩmh2 andΩbh2, reducingΩΛ is equivalent to raising one of the other
Ω’s and reducing the Hubble constanth to keep the productsΩih2 fixed.



FIGURE 10. Allowed ranges for three cosmological parameters assumingthe universe is flat. Light
hatched bands are a rough estimate of numbers used ten years ago. The dark solid bands are 1-sigma
errors from WMAP [9].

parameter determination has received so much publicity!

6. ALTERNATIVES

It is perhaps not surprising that, as the evidence for inflation has firmed up, theoreticians
have been working harder than ever to find alternatives to inflation. Here I want to focus
on the question of what alternatives are viable in light of the coherent phase argument.

It is instructive to start with two models that don’t quite make it. The first is the well-
known class of models with structure seeded by topological defects. The phases of the
Fourier modes are not synchronized in defect models, so we donot expect a coherent
series of peaks and troughs. This elegant argument was first first advanced by Albrecht
et al. [16] as a way of distinguishing defect models from inflation and later confirmed in
detailed numerical studies [17, 18].

A second alternative has recently been proposed by Armendariz-Picon and Lim [19].
They note that inflation works by producing perturbations when the modes of interest are



sub-horizon and then driving these modes to be larger than the horizon. Once outside the
horizon, the perturbations freeze-out, i.e. remain constant, until they re-enter the horizon
much later around the time of recombination. They point out that really perturbations
freeze out once they leave thesound horizon horizon(cs/H instead ofH−1). Thus
instead of the Hubble rate remaining roughly constant (as during inflation wherein
cs = 1), freeze-out can also be accomplished if the sound speed drops rapidly. This
is a clever idea, one that might ultimately be part of a viablealternative. At present
though, it doesn’t quite work, because – as they point out – inflation is still needed (after
perturbation production) to drive the scale beyond the horizon6. Another way of saying
this is to notice that if not for inflation, the modes of interest would never have been
sub-horizon, so nothing could have been effective in producing perturbations.

Indeed, the most basic requirement for coherent phases is that at some point is the
distant past (well before recombination), the modes of interest had to be within the
horizon. So, the coherent phases requirement is simply a strengthened version of the
classical horizon problem. With that in mind, I come to a finalclass of alternatives which
generate perturbations in a variety of ways, but all share the same innovative approach
to the horizon problem.

One way to think of the horizon problem is in term of the comoving grid, wherein the
wavenumber of any mode remains constant with time. The comoving Hubble radius is
(aH)−1, which typically increases with time. The classical horizon problem is that, since
the comoving Hubble radius monotonically increases in the standard cosmology, these
modes must have all been outside the horizon before recombination. The inflationary
solution is depicted in Fig. 11, which shows that the necessary requirement is that
aH must haveincreasedsometime in the past. Mathematically then we would seem
to require

d
dt

(aH) =
d2a
dt2

> 0 (6)

at some point in the distant past. That is, we seem to require inflation (which can be
defined as a period in which ¨a > 0). The alternative models [20] however evade this
constraint by using a contracting phase. The requirement that the comoving radius
decrease now isd[−aH]/dt > 0 (since the Hubble radius is−H−1) or ä < 0. So the
horizon problem can be solved and the necessary coherent phases generated if: (i) the
universe accelerates while it is expanding (inflation) OR (ii) the universe decelerates
while it is contracting.

These alternatives and others are honing in on the question of what we have really
learned from the observations. That is, it is no longer sufficient to solve the classical
horizon problem. While the scales of interest are sub-horizon, a mechanism is needed to
generate perturbations with the proper amplitude and shapeand to drive these perturba-
tions beyond the horizon so they freeze out.

6 However, the since scale-invariant perturbations have already been generated, the requirements on
inflation are less severe than usual.



FIGURE 11. Evolution of the comoving Hubble radius in the inflationary picture. During inflationH
remains, constant, so the comoving Hubble radius drops as the universe expands exponentially. Thus
scales which were initially in causal contact (ata∼ 10−50 in the figure) freeze-out. From [10].

7. CONCLUSIONS

Detailed observations of the CMB have solidified our confidence in a model of structure
formation based on inflation. The most striking evidence forinflation is the phase coher-
ence of the primordial perturbations, which manifests itself in the peaks and troughs of
the temperature anisotropies and in the cross-correlationbetween the temperature and
the polarization. Once this framework has been accepted, itis possible to use it and ex-
tract cosmological parameters. This parameter estimationsuggests that: the universe is
flat; there is non-baryonic dark matter; and dark energy dominates the energy budget.

As the observations have improved, theorists have expandedthe range of models
which can account for them. and proposed new alternatives toinflation. The exciting
development is that these alternatives must solve a much more demanding version of
the horizon problem. And we are learning more about what precisely is necessary to
generate the coherent phases we have so unambiguously observed.
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