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Abstract

We speculate that the early Universe was inside a primordial black hole. The interior

of the the black hole is a dS background and the two spacetimes are separated on the

surface of black hole’s event horizon. We argue that this picture provides a natural

realization of inflation without invoking the inflaton field. The black hole evaporation by

Hawking radiation provides a natural mechanism for terminating inflation so reheating

and the hot big bang cosmology starts from the evaporation of black hole to relativistic

particles. The quantum gravitational fluctuations at the boundary of black hole generate

the nearly scale invariant scalar and tensor perturbations with the ratio of tensor to

scalar power spectra at the order of 10−3. As the black hole evaporates, the radius of its

event horizon shrinks and the Hubble expansion rate during inflation increases slowly

so the quantum Hawking radiation provides a novel mechanism for the violation of null

energy condition in cosmology.
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1 Introduction

Inflation is a cornerstone of the theories of primordial Universe [1, 2, 3, 4, 5]. The basic

predictions of inflation that the perturbations on CMB maps to be nearly scale invariant,

nearly adiabatic and nearly Gaussian are very well consistent with observations [6, 7, 8].

Despite its immense successes with observations, there is no unique realization of inflation

dynamics. There are numerous models of inflation which are well consistent with data. In its

simplest form, the mechanism of inflation is based on a scalar field, the inflaton field, which

slowly rolls on the top of its nearly flat potential. The quantum fluctuations of the light

inflaton field generate the perturbations which are stretched on super-Hubble scales to seed

the perturbations on CMB and large scale structure. Despite its appealing simplicity, this

picture suffers from some important shortcomings. One important question is the nature of

inflaton field, i.e. what field in the theories of high energy physics, say beyond Standard Model

(SM), plays the role of inflaton field. The second important question is the vast diversity

of models which are nearly degenerate with the current observations. Another important

question is the initial singularity associated with big bang cosmology. In a sense inflation

only pushes the big bang singularity to initial times in evolution of Universe hoping that it

is beyond the reach of observational cosmology. Besides these conceptual questions, there

are technical questions such as what mechanism, i.e. symmetry principle, keeps the inflation

field light during a long enough period of inflation. Another question is how the SM degrees

of freedoms are generated during (p)reheating. The current models of (p)reheating are far

from providing a detailed mechanism to generate SM fields. Motivated by these questions, it

is important to think if inflation is unique in our primordial Universe. One natural question

is if there are alternatives to inflation which possess all the successes of inflation concerning

observations and yet bypass the above mentioned shortcomings. This line of thought has been

pursued in some models of alternative to inflation, for example see [9, 10, 11, 12, 13].

In this work, we speculate whether the interior of a black hole can be a place to look for

primordial Universe either to realize inflation or its alternative. Indeed, the recent detections

of gravitational wave by the LIGO team [14, 15] from the merging of two binary black holes

have put the reality of black hole beyond doubt. Massive and supermassive black holes

are ubiquitous in the cosmos which are detected indirectly by astronomical observations.

Similarly, primordial black holes are expected to exist in early Universe. Black holes emit

black body radiation via Hawking mechanism [16] and the lifetime of a black hole roughly

scales with its mass as M3. Therefore, primordial black hole of mass smaller than 1014 grams

are believed to evaporate via Hawking radiation.

Black hole physics play a key role in understanding quantum gravity which was the subject

of extensive studies in the past decades. The connection of black hole physics to thermody-

namics and the fact that black hole emits thermal radiation are very curious [16, 17]. In

addition, there have been attempts to provide a link between the temperature of black hole

associated with its horizon to the temperature of dS horizon [18]. This is motivated from

the fact that both the black hole and the dS backgrounds have horizons (though different in
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nature) and the temperature of the black hole is associated with its horizon. The fact that

the associated temperature of the dS background, TdS = H/2π, is the same as the amplitude

of quantum fluctuations of massless scalar fields in dS background makes this connection

intriguing.

In this work, we speculate whether the interior of a black hole could be the host of our

primordial Universe and a new mechanism of inflation can be realized.

2 Cosmology Inside a Black Hole

In this section we present our setup. We speculate that the primordial Universe is inside a

black hole. The interior cosmological background are separated from the outside black hole

solution by the black hole’s event horizon. Not much is known for the physics inside the

event horizon. The simple reason is that the interior region is causally disconnected from the

outside region, for a review of black hole physics see [19]. Any in-falling signal smoothly passes

through the event horizon while no signal can escape past the event horizon. Motivated by this

curious phenomena, we postulate that the interior of black hole is a cosmological background

bounded by cosmological horizon. This intuition is supported from the fact that inside the

horizon, the role of t and r as the time-like and space-like coordinates have switched. In this

picture we speculate that the Hubble horizon (cosmological horizon) from inside is attached

to the event horizon from the outside.

Indeed, the idea of replacing the interior of the black hole by a dS spacetime is not new.

There have been several works in the past suggesting that the interior of black hole may

be replaced by a non-singular dS geometry [20, 21, 22, 23, 24]. For similar ideas but is

somewhat different contexts see also [25, 26, 27, 28, 29, 30]. One motivation in replacing

the interior of black hole by the dS background was to get away with the singularity of

black hole. It is generally believed that the singularity of black hole is a shortcoming of the

classical general relativity. On very small scales, say on Planck scale `P ≡
√
G with G being

Newton’s constant, it is expected that the quantum effects become important which provide

mechanisms to resolve the singularity inside the black hole. This expectation brings one to

the realms of quantum gravity which is not understood at the moment.

In particular in [21] it is argued that the gravitational vacuum polarization inside the black

hole acts as a mechanism of self-regularization. In this picture the Schwarzschild geometry

with the mass M is valid down to the quantum barrier radius (in Planck unit) r = rQ = (M)1/3

where the curvature of spacetime R ∼M/r3 grows to order unity. Below this radius, down to

radius where the quantum gravity effects become strong, rQG . r < rQ, the geometry is nearly

classical described by the classical Einstein equation Gµν = 8πTµν(vacuum polarization) ∼
constant, describing a dS spacetime.

The proposal that there is an upper bound on the curvature of spacetime [31] has been

employed in [22, 23] to replace the interior of black hole by the dS spacetime. It is argued that

the divergence of the spacetime curvature at the center of black hole is an artifact of classical
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Einstein equations. Taking the quantum effects into account, there is a universal upper bound

to the curvature of spacetime preventing the appearance of singularity. Naturally one expects

that this universal length scale, `c, to be near the Planck length, `c ∼ `P . Of course, similar

to proposal in [21], this proposal is put forwarded as a hypothesis waiting for a final theory of

quantum gravity for justification. Below we summarize the relevant results in [22, 23] which

are useful for our setup.

The existence of limiting curvature for a spherically symmetric spacetime is postulated in

terms of the Riemann tensor as

RαβγδR
αβγδ . αc`

−4
c (1)

in which αc is a dimensionless parameter. This condition also implies that other quadratic

curvature invariants constructed from Ricci tensor and Weyl tensor are finite. As a second

assumption, it is assumed that when the curvature reaches its maximum value the equation

of state approaches the vacuum (dS) type

Rµ
ν = 3`−2c δµν . (2)

As a motivation for this assumption, note that the spacetime inside the black hole is homo-

geneous but anisotropic. This anisotropy is understood from the fact that inside the black

hole’s horizon the role of t and r as the time-like and space-like coordinates are switched.

Therefore, any dependence on the variable r inside the horizon is interpreted as a function

of time for the observer inside the black hole. Consequently, the interior of black hole is

similar to Kasner spacetime describing anisotropic contractions. This anisotropic behavior is

a consequence of classical Einstein’s field equations. However, once the quantum effects such

as the vacuum polarizations [21] are taken into account, the anisotropy is damped while the

curvature tensor reaches its maximum value near the Planck scale. Intuitively speaking, the

vacuum equation of state Eq. (2) is the simplest case which arise from this prescription and

yet regularizing the curvature singularity.

Imposing the spherical symmetry, the black hole metric is given by the Schwarzschild

solution

ds2 = −f(r)dt̄ 2 + f(r)−1dr2 + r2dΩ2 , (3)

in which r is the radial coordinate, dΩ2 represents the geometry of the two sphere and

f(r) = 1− 2M

r
, (4)

in which M is the mass of black hole (in Planck unit) as measured by an observer very far

from black hole. The black hole event horizon is located at rS ≡ 2M . Note that in order not

to confuse with the cosmic time t, we denote the time coordinate in black hole solution by t̄.

Imposing the maximum universal curvature hypothesis Eq. (1) and the vacuum assump-

tion (2), the interior of black hole is glued to a dS space at the position r0 < rS, where

r0 = 21/6H−1(M/H)1/3 . (5)
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Figure 1: The conformal diagrams: (left) black hole, (right) dS space. In both figures the

horizons are denoted by the thick lines.
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Figure 2: The conformal diagram when the dS space is glued to the black hole interior on the

space-like surface Σ at r = r0.

For the region r < r0, the spacetime is in dS type with the metric in static coordinate given

by Eq. (3) with f(r) = 1− (rH)2 in which H−1 represents the radius of dS horizon.

For the above picture to be a consistent solution of the Einstein’s field equations, one

has to impose the appropriate matching conditions [32]. More specifically, denoting the

surface of matching at r = r0 by the three-dimensional Σ, then the intrinsic metric induced

on Σ from both dS and black hole sides should be continuous while the jump in extrinsic

curvature [Km
n ] is balanced by the surface energy density Smn via Israel junction condition

[Km
n ] − δmn [Km

m ] = 8πSmn . Imposing these matching condition one can find the tension and

pressure on the surface Σ in order to support the above solution [23].

It is important to note that the surface of matching Σ at r = r0 is a space-like surface since

the coordinate r inside the black hole’s event horizon is a time-like coordinate. The surface Σ

has the topology of S2 ×R1 which is a tube with the fixed radius equal to r0 extended along

the direction of t̄.
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Figure 3: The conformal diagram of our setup when the dS horizon is glued to the black

hole’s event horizon. The surface of matching Σ, located at r = 2M = H−1, is shown by the

thick red line. The dotted line represents the surface when deflation ends at η = −π/2. The

curve Σf represents the surface of end of inflation. After inflation ends on the surface Σf ,

the Universe enters the standard hot big bang phase. The coordinates ranges in dS space are

−π < η < 0 and π < χ < 0.

The conformal Penrose diagrams associated for the above discussions are presented in

Fig. 1 and Fig. 2. In Fig. 1 the conformal diagram for the full black hole and dS spaces

before joining are plotted. In Fig. 2 the conformal diagram where the interior of black hole

for the region r < r0 is replaced by the dS space is presented. The matching surface Σ is

denoted with the thick curve in the middle. As can be seen from this figure, the interior of

black hole hosts a closed universe with positive spatial curvature. The dS space for the times

after matching is a contracting deflation phase followed by an expanding inflationary stage in

which the inflationary expansion continues forever.

The stability of the above model was investigated in [33]. It was shown that the model is

stable under small fluctuations meaning that the surface Σ retains its S2×R1 topology. The

extension of the model of [22, 23] to the case where the interior of black hole is filled with a

distribution of density profile (instead of sharp localization of density on a space-like surface)

was presented in [34] in which one replaces the cosmological constant Λ with an r-dependent

function [35].

The setup we have in mind is similar to the model presented above. However, in order to

make direct contact with the physics of black hole we make the further assumption that the

matching surface Σ is on the surface of black hole’s event horizon with r0 = rS = 2M = H−1.
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The conformal Penrose diagram for our setup is presented in Fig. 3. This has the appealing

feature that the two spacetimes are glued along their corresponding horizons. As such, the

matching surface Σ is a null hypersurface. The conventional matching conditions [32] is

not directly applicable when a null hypersurface separates the two spacetimes. A general

prescription when the two spacetimes are separated by a null surface is presented in [36]. It is

shown that things are non-trivial in our setup. Indeed, to satisfy the matching conditions one

encounters either divergence in surface pressure or kink on the null surface. This pathology

is associated with the fact that the continuity of pressure across the hypersurface is broken

[21], see also [37]. In the Appendix we present the simple analysis of matching conditions to

indicate the difficulty in joining the dS space to the black hole along their horizons.

The above discussions suggest that replacing the whole interior of black hole by a dS

space is far from obvious. As just mentioned this requires an infinite surface pressure or the

appearance of kinks. At the moment, we have no physical methods at hand to resolve these

pathologies. Having said this, we proceed with our phenomenological approach and assume

that either by smearing the infinity in pressure on the surface of event horizon or by some

quantum effects one can in principle glue the two spaces on the surface of horizons. Assuming

the existence of a working matching condition we proceed to investigate the cosmological

implications of this setup.

As the conformal diagram Fig. 3 suggests, the dS space is a closed Universe with the

metric

ds2 = −dt2 +H−2 cosh2(H t)
[
dχ2 + sin2 χdΩ2

]
, (6)

in which t is the cosmic time with −∞ < t < +∞ and 0 < χ < π. Note that the cosmic time

t is different than the time coordinate in black hole solution which is denoted by t̄.

Upon changing to conformal time η via

cosh(H t) = − 1

sin η
, (7)

the above metric is cast into

ds2 =
1

H2 sin2 η

(
−dη2 + dχ2 + sin2 χdΩ2

)
, (8)

in which η changes in the interval −π < η < 0. For a review of dS space in various coordinate

systems see [38].

We are interested in cosmological evolution of the dS space inside the black hole. For

the region −π < η < −π/2 in Fig. 3 the Universe inside the black hole is in contracting

deflationary phase. This is clearly seen by the metric Eq. (8). The Universe reaches its

minimum size H−1 at the point of bounce η = −π/2. This point is indicated by the dotted

line in Fig. 3. Afterwards, the Universe enters the expanding inflationary phase continuing

forever for η → 0.

Crucial to our discussions is the surface of end of inflation. In the current setup in which

the interior of black hole is an exact dS space inflation never end. Actually the deflation phase
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is eternal in the past −∞ < t < 0 while the expanding inflationary phase continues forever

for t > 0. Having said these, in Fig. 3 we have plotted the curve Σf as the surface of end

of inflation. In next Section we discuss the physical mechanism which terminates inflation

justifying the existence of final surface Σf . It is understood that after inflation ends on the

final surface Σf , the Universe enters the standard hot big bang phase which in this picture is

a closed radiation dominated Universe.

Before closing this Section let us look at the induced metric on the surface of matching

Σ where r = rS = 2M = H−1. In the coordinate system Eq. (6) the surface of matching is

given by

a(t) sinχ = rS = 2M (9)

where a(t) is the scale factor in which for the metric Eq. (6) it is a(t) = H−1 cosh(H t).

From the black hole side the induced metric on the null surface is simply ds2in = r2SdΩ2.

From the dS side, the induced metric on the hypersurface of matching is

ds2in =
(
−1 + ȧ2 tan2 χ

)
dt2 + a(t)2 sinχ2dΩ2 , (10)

in which a dot represents the derivative with respect to cosmic time t. The continuity of the

induced metric on the matching surface simply requires that the coefficients of dt2 above to

vanish, yielding (
ȧ

a

)2

+
1

a2
=

1

r2S
. (11)

This is the Friedmann equation for a closed Universe with the scale factor a(t) = H−1 cosh(H t)

and the Hubble radius H = r−1S as expected. This also suggests that the energy density of

the Universe ρ is

ρ =
3

8πGr2S
=

3

4πr3S
M . (12)

This is well consistent with the intuition that the expansion of Universe is generated by the

mass of black hole encompassed within the volume 4πr3S/3.

So far we have considered the Schwarzschild solution. One can extend these discussions

to the case of charged black hole with the Reissner-Nordstrom metric where

f(r) = 1− 2M

r
+
Q2

r2
, (13)

in which Q is the electric charge of the black hole. The condition that the singularity to be

protected by the event horizon requires that Q2 ≤M , in which the radius of event horizon is

given by

r+ = GM + (M2 −Q2)1/2 . (14)
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Following the same steps as for the case of Schwarzschild metric and assuming that the black

hole’s event horizon coincides with the cosmological horizon, r+ = H−1, we obtain(
ȧ

a

)2

+
1

a2
=

2GM

r3S
− Q2

r4S
. (15)

As before, this describes a closed dS background with the total energy density

ρ =
3

4πr3S

(
M − Q2

2rS

)
. (16)

Interestingly, we see that the effective dS energy density receives a negative contributions

from the charge Q.

3 A New Mechanism of Inflation

In the previous section we have speculated that the spacetime inside the event horizon of

a black hole may be in the form of the dS geometry. As such, this provides a a natural

mechanism of inflation for early Universe. The novelty of this picture is that there is no need

for inflaton field. Of course, before claiming that this is a consistent realization of cosmic

inflation, we have to answer two important questions. The first question is how inflation

ends in this setup. In order to match to the observed hot big bang cosmology, inflation has

to end. The second question is how perturbations are generated in this setup to seed the

perturbations on CMB and large scale structure. Indeed, it is the predictions of any model

of inflation for cosmological perturbations which bring the model in contact to observations.

Below we answer each question in turn. To simplify the analysis we neglect the effect of

spatial curvature as its effect is rapidly diluted during inflation. Also we restore the Newton

constant G in the following analysis.

3.1 Background

Starting with H = 1/rS and noting that rS = 2GM for Schwarzschild black hole, we obtain

H =
4πM2

P

M
, (17)

in which M2
P ≡ 1/8πG is the reduced Planck mass. The above equation determines the scale

of inflation. In order for our classical treatment of the interior geometry of black hole to be

valid, we require that H � MP so we can safely neglect the quantum gravity effects in dS

background. This in turn implies that M � MP so the mass of our primordial black hole is

much higher than the scale of quantum gravity. This is also translated into rS � `P in which

`P ≡
√
G ∼ 1/MP . This means that on the black hole side, the classical general relativity is

trusted with quantum effects as small perturbations.
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In conventional models of inflation, inflation ends because of the slow-roll dynamics of

the inflaton field. During inflation the slow-roll parameter ε = −Ḣ/H2 is very small so the

background geometry is very close to a dS spacetime. As the inflaton field rolls towards its

minimum, the deviation from the slow-roll condition become significant and inflation ends

eventually when ε = 1. We not that in all these models of inflation Ḣ < 0 as required from

the weak energy condition, i.e. ρ+ P ≥ 0, so ε > 0 by construction.

Looking at our expression for H in Eq. (17) the only free parameter is the mass of black

hole M which is fixed from the start. Therefore, as long as classical physics are concerned,

the value of H is fixed and inflation is eternal as seen from the conformal diagram in Fig. 3.

However, it is known that a black hole is not an idle classical object. Indeed, it is the source

of black body radiation via Hawking radiation [16, 17] with the characteristic temperature

TH =
1

8πGM
=

1

4πrS
. (18)

While it radiates with temperature TH , it loses mass by the amount ∆M and correspondingly

the radius of its event horizon reduces by ∆rS/rS = −∆M/M . As it radiates further in

subsequent steps, the radius of its event horizon becomes smaller and the black hole gets

hotter. This pictures continues till black hole radiates its entire mass at a time scale of order

M3/M4
P . Of course, towards its final stage of evaporation in which the radius of event horizon

approaches `P the above picture may not hold and the quantum gravity effects are expected

to play important roles. However, for our purpose the important point is that the black hole

spends most of its semi-classical life time during the stage when M is near its original value

so the ratio ∆rS/rS is small.

The rate of change in black hole mass via Hawking radiation is given by [39]

dM

dt̄
= −αM

4
P

M2
, (19)

in which α is a constant determined by the number of all massless degrees of freedom that

the black hole decays to. For the SM degrees of freedom at the temperature around the Higgs

mass 125 GeV , we have α ∼ 2. However, the value of α can be significantly larger than unity

for models beyond SM and it may be reasonable to take α . 102 if black hole decays at and

above the GUT scale. The above equation can be integrated to obtain the lifetime of black

hole as measured from an observer far away from black hole

t̄BH '
M3

3αM4
P

. (20)

As mentioned before, this means that the life time of black hole before complete evaporation

scales like M3/M4
P .

Now back to our first question as how inflation ends in this setup. Based on above

discussions we argue that the mechanism of end of inflation is provided by the Hawking

radiation. Upon emitting thermally with the black body temperature TH , the mass of black
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hole changes by ∆M and the radius of its event horizon shrinks by ∆rS, causing a change in

Hubble expansion rate by ∆H. The question is how slow this process of black hole evaporation

is so inflation lasts for long enough period, say at least for 60 e-folds, to solve the flatness and

the horizon problem. Intuitively speaking the mechanism of black hole evaporation is a very

slow process so inflation can continue for a long period. The reason is that the mechanism for

black hole evaporation is a quantum-thermal effect so it should be inefficient for our black hole

which is more or less a classical object. Note that we have assumed M �MP to trust classical

general relativity analysis. For black hole which are significantly more massive than MP it

will take a long time before the black hole evaporate from the quantum Hawking radiation.

Based on this argument, the number of e-folds of inflation is expected to be a positive power

of MP/M because M is the only free parameter of the theory. Below we argue that indeed

the number of e-folds scale like (MP/M)2.

Let us define the parameter ε in our setup, similar to slow roll parameter in conventional

models of inflation, as the fraction change in H in one Hubble expansion time ∆t = H−1

ε = −∆H

H
. (21)

As in slow-roll models, inflation in our setup last long enough if ε is much less than unity while

inflation ends when ε ∼ 1. To calculate ε in the black hole side, we have to relate the cosmic

time ∆t to the time measured on the black hole side which is ∆t̄ as defined in Eq. (3). For this

purpose, note that from the relation H = 1/rS we obtain ∆H/H = −∆rS/rS. So if ∆H/H

is interpreted as the fractional change in H in one Hubble expansion time, then ∆rS/rS is

interpreted as the fractional change in rS in the time scale ∆t̄ = rS. This is consistent with

the intuition that a time scale associated with the horizon of dS space is mapped to the time

scale on the black hole side of order rS, as one expects from the relation rS = H.

Now having obtained ∆H/H = −∆rS/rS with ∆t̄ = rS as the corresponding time scale

in the black hole side, we can use the differential relation of Hawking radiation Eq. (19) to

calculate ε. Specifically, using rS = 2GM , so ∆rS = 2G∆M , and taking ∆t̄ = rS, Eq. (19)

yields

ε = − α

4π

(
MP

M

)2

= −4πα

(
H

MP

)2

. (22)

Note the important effects that the change in H is positive, i.e. ε is negative. This is

opposite to conventional models of inflation in which the weak energy condition ρ + P ≥ 0

requires that Ḣ < 0. However, in our case the change in H is induced via Hawking radiation

which is a quantum effect. It seems that quantum effects such as Hawking radiation can

naturally provide a mechanism to violate null energy condition in cosmology. This can play

crucial roles in other models of alternative to inflation such as bouncing cosmology. Indeed,

the violation of the null energy condition was a challenging issue for models of bouncing

cosmology which require Ḣ < 0 during the period of bounce.

Having obtained ε we can obtain an estimate of the total number of e-foldings N . Roughly
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speaking one expects that N ∼ 1/|ε|. Using Eq. (22) we obtain

N ∼ 1

4πα

(
MP

H

)2

. (23)

This shows that there is no shortage in getting enough number of e-foldings. For example,

taking H/MP ∼ 10−5 and α ∼ 10, the above estimation yields N ∼ 108. Of course, observa-

tionally we only require the last 60 e-folds of inflation to solve the flatness and the horizon

problem. We note that the larger is the value of α, the smaller is N . This is because a

large value of α corresponds to more channels that the black hole can decay to. If we allow

for significantly many new degrees of freedom in some beyond SM theories, such as grand

unification or supersymmetric theories, then the black hole can decay to these new degrees of

freedom so its lifetime becomes shorter and hence we obtain a lower value for N .

As mentioned before, in our picture inflation ends via Hawking radiation when ∆H/H ∼ 1,

i.e. when |ε| ∼ 1. This corresponds to scale H ∼ MP . Of course in this limit, we are far

from semi-classical description of the black hole physics and a full quantum gravity study is

required. At this stage, the interior of black hole is very hot with all relativistic particles

being excited. This sets the reheating and the origin of hot big bang cosmology inside the

quantum primordial black hole.

We comment that in the above discussions we have neglected the deflation phase, i.e. the

period η < −π/2 in Fig. 3. The main focus of our discussions here is the final stage of

inflation for the period −π/2 < η < ηf . Of course, the period of deflation and bouncing

cosmology may be interesting by its own right. It would be interesting if a period of bounce

in this setup without reaching the final stage of inflation can solve the flatness and the horizon

problem as an alternative to inflation [9, 10, 11].

Before ending these discussions we note a curious effect in this setup. In our setup where

H = r−1S the black hole temperature in terms of H is given by TH = H/4π. Curiously, this

value of the black hole temperature is by a factor 1/2 smaller than the temperature associated

with the cosmological horizon of a dS background, TdS, calculated by Gibbons and Hawking

[18]: TdS = H/2π. This means that in our setup the dS background is always hotter than

the black hole TdS = 2TH . We imagine that the black hole and the dS backgrounds are two

separate thermal systems which are in contact at the surface of black hole. Since TdS > TH ,

one may expect that the black hole should get hotter for the two systems to reach into thermal

equilibrium. This is not in contradiction with Hawking radiation stating that as the black

hole evaporates it gets hotter. Perhaps the system never reach a true thermal equilibrium

since at each instant TdS = 2TH . The distribution of energy and pressure on the surface of

matching Σ may prevent the two thermal systems to reach into a thermal equilibrium.

3.2 Perturbations

After presenting our background inflation, now comes the important question how perturba-

tions are generated in this setup to seed the perturbations in CMB and large scale structure.
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As usual we look for scalar and tensor perturbations. The nature of tensor perturbations

is easy to understand. In conventional models of inflation, the tensor perturbations directly

probe the energy scale of inflation, i.e. the value of H during inflation. The tensor pertur-

bations are the perturbations in the fabric of space-time without relying on the details of

mechanism of inflation such as the slow-roll parameters. Since the tensor perturbations are

easy to follow, here we start with the brief analysis of tensor perturbations.

3.3 Tensor Perturbations

The tensor perturbations of the metric are characterized by [40, 41]

ds2 = −dt2 + a(t)2(δij + hij)dx
idxj . (24)

The perturbations hij are transverse and traceless, hii = ∂ihij = 0, in which it is understood

that the indices are raised and lowered with the flat metric δij. After imposing these con-

ditions, only two degrees of freedom remain which correspond to two polarization modes of

gravitational waves.

Plugging the tensor perturbations into the gravitational action, for each polarization, we

obtain

Sh =
M2

P

8

∫
dηd3xa2

[
(h′ij)

2 − (∇hij)2
]
, (25)

in which η is the conformal time related to cosmic time via dη = dt/a(t). The above action

has the simple form of a massless scalar field in the dS background. It is well-known that the

amplitude of massless fields in dS background is H/2π. Correspondingly, the power spectrum

of tensor perturbation has the universal form

Ph =
2

π2

H2

M2
P

∣∣∣
k=aH

, (26)

in which the value of H is calculated at the time of horizon crossing for the mode k when

k = aH.

Having presented the power spectrum of tensor perturbations, it is important to under-

stand the quantum origin of these perturbations in both dS and and black hole sides. Let us

start from the dS side. We can obtain a good order of magnitude estimate for the amplitude

of these perturbations as follows. Let us look at the gravitational action

Sgr =
M2

P

2

∫
d4x
√−gR , (27)

in which R is the Ricci scalar. The uncertainty principle implies that the space is full of

quantum fluctuations. As an estimation of the amplitude of quantum fluctuations of the

spacetime, suppose the relativistic length scale of these perturbations are at the order L. Then

the quantum effects are important if the action becomes at the order ~ = 1. Plugging these

13



order of magnitude estimations for the tensor perturbation in our gravitational action Eq. (27)

yield ∆Sgr ∼ L4M2
PL
−2 = M2

PL
2. Requiring that ∆Sgr = ~ = 1, we obtain L ∼ 1/MP . Now

let us see what this implies for the amplitude of quantum tensor perturbations hij. Using the

metric Eq. (24), the tensor perturbations cause the ripple in space with the physical length

L ∼ a|x|hphy in which hphy means the amplitude of physical tensor perturbations (without

caring about the polarization and indices). For the modes at the moment of horizon crossing

a|x| ∼ 1/H which is the physical length of dS geometry. Now, requiring that L ∼ 1/MP as

just obtained above, we obtain

hphy ∼
H

MP

. (28)

This sets the amplitude of tensor modes. Indeed, this is well consistent with the exact result

for the power spectrum Eq. (26) in which Ph ∼ h2phy yielding hphy ∼ H/MP as given in Eq.

(28).

If we translate this back into our black hole picture, the tensor perturbations are associated

with the quantum fluctuations of the event horizon. In the black hole side there is the vast

machinery of the black hole quasi normal modes in which the classical scalar, vector and tensor

perturbations of black hole spacetime are studied systematically [42, 43]. In principle, one

can use these technology to make the link between our tensor perturbations in dS background

and the corresponding tensor perturbations in black hole side precise. This is an interesting

question, but it is beyond the scope of the present work. Instead, we follow our heuristic

reasoning as used above to demonstrate that the above picture in dS side is quite consistent

with its dual interpretation in black hole side.

At the classical level, the space on the black hole side is empty so Sgr = R = 0. However,

employing the uncertainty principle, we expect the quantum fluctuations of spacetime to cause

ripples on the surface of event horizon. Following the same logic as in the dS case, the length

scale of quantum fluctuations which changes the gravitational action by ~ is obtained to be

L ∼ 1/MP . After turning the tensor perturbations on the black hole background, the physical

length is given by L ∼ rShij so setting L ∼ 1/MP implies that hphy ∼ 1/rSMP ∼ H/MP

which is in agreement with the result obtained in the dS side.

The morale of the above heuristic presentation is that the quantum fluctuations of the

tensor perturbations are sourced at the horizon of dS background or on the surface of event

horizon of black hole with the amplitude hphy ∼ H/MP and on the length scale `P . The

conclusion that the quantum gravitational fluctuations of the black hole horizon is the source

of the cosmological tensor perturbations is extended to scalar perturbations which will be

studied next.

3.4 Scalar Perturbations

Here we study scalar perturbation in this setup. As just mentioned above, the cosmological

scalar perturbations are associated with the quantum ripples at the surface of black hole event

horizon. As such, from the above arguments for the tensor perturbations, we expect that the
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length scale of quantum scalar perturbations on the surface of black horizon to be `P with the

amplitude H/MP . Consequently, the amplitude of curvature perturbations R is expected to

be PR ∼ H2/M2
P . This also sets the amplitude of the observed COBE normalization for the

temperature perturbations on CMB map P1/2
R ' (δT/T )CMB ' 10−5, providing the rough

estimate H/MP ∼ 10−5.

After this rough estimate for the amplitude of scalar perturbations, we parametrize the

scalar perturbation as

R ≡ βH

MP

. (29)

Our goal here is to find the order of magnitude of β.

Happily the question of vacuum fluctuation of black hole’s event horizon has been studied

by York in [44]. In an attempt to provide a dynamical explanation for the origin of Hawking

radiation, he studied the black hole metric perturbation undergoing quantum zero point

(vacuum) fluctuations. The underlying roles are the uncertainty principle and the equivalence

principle. It is argued that the tides associated with the zero point fluctuations distort the

timelike limit surface, the apparent horizon and the event horizon. It is argued that this

distortion creates the quantum ergosphere and the desired quantum radiance is driven by

the “curvature fluctuations”, as governed by the equivalence principle. It is pointed out

that the zero point fluctuations can not sharply localize on the horizon because this would

force the amplitude of metric fluctuations at the horizon to become very large. Instead, the

uncertainty associated with a metric fluctuation with frequency ω is spread over a region with

the wavelength 2π/ω. Below we briefly summarize the results in [44] relevant for our analysis.

The metric perturbations in the advanced Eddington-Finkelstein coordinate is given by

ds2 = −(1− 2Gm/r)dv2 + 2dvdr + r2dθ2 + r2 sin2 θdφ2 , (30)

in which

m = m(v, θ) = M +
∑
`

(2`+ 1)ε`M sin(ω`v)q`(θ) . (31)

Here M is the mass of the black hole in the absence of perturbations, ` is the usual angular

momentum index labeling each mode and q`(θ) = (2` + 1)1/2P`(cos θ), in which P` is the

Legendre polynomial determining the shape of black hole distortion. Finally, ω` represents

the resonant or ringing mode frequencies for each `.

After imposing the minimum uncertainty relation between the physical metric perturba-

tions ∆g and its conjugate momentum, ε` are obtained to be

ε2` =
~
M2

[
3

2

(σ`
π

)3 1 + 16σ2
`

`2(`+ 1)2 + 16σ2
`

]
, (32)

in which σ` ≡ GMω` is the dimensionless frequency. For the first few `, the values of σ`
are σ2 ' 0.37, σ3 ' 0.60, σ4 ' 0.8, σ5 ∼ 1.01 and σ6 ∼ 1.21. Of all `, only the quadrupole
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mode ` = 2 satisfies ω2 < 1/(2GM), i.e. of all σ` only σ2 < 0.5. It is argued that the

short wavelength modes act incoherently inside a quantum-mechanically defined volume of the

system, in our case the radius of the event horizon. Therefor, one can neglect the contributions

of modes beyond ` = 2 for which σ` > 0.5. With this reasoning and other physical arguments,

it is concluded that only the quadrupole mode is relevant in the metric perturbations. In

other words, most of the gravitational radiation occurs at ` = 2 in which the modes of ` = 2

propagate in an essentially free radial manner towards the distant observer.

With ` = 2 as the dominant mode of perturbations, the change in the mass from Eq.

(31) is obtained to be ∆M ∼ ε2M ' 1.8
√
~/G. More specifically, the characteristic rms

fluctuations of the “ irreducible” mass of the physical event horizon is obtained to be

∆MEH ≡
√

5
[
〈M2

EH〉 − 〈MEH〉2
]1/2

' 1.18× 10−2
√
~/G ' 9× 10−2MP . (33)

Note that the factor
√

5 comes from the contributions of 2` + 1 = 5 independent modes

associated with ` = 2. Also note that the averaging above is over one period of time τ = 2π/ω`
and also over the surface of the two-dimensional sphere.

The above value of ∆MEH sets the time scale of vacuum fluctuations on the surface of black

hole horizon. Taking the corresponding uncertainty in time scale as ∆t ∼ 1/∆E ∼ 1/∆MEH ,

we obtain

∆t ' 17M−1
P . (34)

This is consistent with our previous rough estimate that the length (time) scale associated

with the vacuum fluctuations of metric is at the order L ∼M−1
P . However, the results in [44]

enable us to find the numerical pre-factor relating ∆t to M−1
P which would be necessary to

determine the parameter β defined in Eq. (29).

Having obtained the time scale of curvature fluctuations on the horizon given in Eq.

(34) we are able to estimate curvature perturbations R. Going to flat gauge, R is given by

R = −H∆t. With the estimation for ∆t given in Eq. (34) we obtain

R ' 17H

MP

, (35)

which fixes our numerical parameter β ' 17.

Using the COBE normalization R ' 2×10−5, the scale of inflation in our model is fixed to

be H ' 10−6MP . It is interesting that the scale of inflation is uniquely determine by the scalar

perturbations. This should be compared with the situation in models of slow-roll inflation

in which the scale of inflation can not be determined uniquely by curvature perturbations.

In these models PR = H2/8π2εM2
P or R ' H/

√
8επMP so the scale of inflation can be

fixed modulo the unknown slow-roll parameter ε. Now comparing our result for R with the

predictions of slow-roll models, we make the identification β ↔ 1/
√

8επ.
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Having obtained both the scalar and the tensor power spectra, now we can look at their

ratio. Defining their ratio as usual via r ≡ 2Ph/PR we obtain

r =
2

β2π2
' 7× 10−4 . (36)

This value for the parameter r is too small to be detected by the current CMB observations.

It is interesting to see if the next generation of CMB observations can detect the above value

of r. We emphasis that the analysis presented above provide the order of magnitude of the

parameters β and r. A careful analysis of scalar curvature perturbations are necessary to fix

the parameter β. Even a factor π uncertainty in our heuristic estimate of β based on the

results of [44] can enhance the value of r by π2 ∼ 10. Therefore, a more precise analysis of

curvature perturbations beyond what presented here is necessary.

Finally, we look at the spectral index ns defined via ns − 1 = d lnPR/d ln k. Following

the usual method and noting that all quantities are calculated at the time of horizon crossing

when k = aH we obtain

ns − 1 ' −2ε+
2β̇

Hβ
, (37)

in which ε = −∆H/H ' −Ḣ/H2. Note that in obtaining the above result, we have allowed

for the possibility that the parameter β may have a mild scale-dependence. In other words,

the parameter β for the vacuum fluctuations of the black hole horizon may have a mild

dependence on the mass of black hole, β = β(M).

In our model, ε ∼ −H2/M2
P ∼ −10−12 so if the parameter β has no running then ns − 1

is practically scale invariant. However, the current observations by the Planck team has rule

out a scale invariant power spectrum beyond 5σ confidence level [6]. Therefore, it is desirable

to obtain a red-tilted power spectrum with ns < 1. Of course, a mild scale-dependence in

the parameter β may come to rescue. This is another reason why the scalar perturbations in

this setup has to be performed more carefully to see if the parameter β can have any scale

dependence to yield a red-tilted power spectrum.

We comment that so far we have concentrated on the simple setup of FRW Universe inside

the Schwarzschild black hole. Alternatively, one can consider the case of a charged black hole

with the Reissner-Nordstrom metric as mentioned at the end of Section 2. In this case, the

energy density and the Hubble expansion rate during inflation have extra dependence on the

electric charge of black hole, Q, as given in Eq. (16). If the discharge of black hole from

its electric charge via Hawking radiation is faster than losing its mass, then ε can be much

larger than its value in the Schwarzschild black hole case. Also note that since Q contributes

negatively in H, its discharge yields a positive contribution to ε so a red-tilted power spectrum

may be achieved from Eq. (37). Finally, one can consider the more complicated case of the

charged Kerr metric with the three parameters, mass, charge and the angular momentum

J . The possibility of angular momentum is somewhat intriguing. Intuitively speaking, the

orientation of angular momentum defines a preferred direction so inflation inside the Kerr
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black hole may be in the form of anisotropic inflation [45, 46]. This may result in quadrupole

statistical anisotropy in curvature power spectrum.

4 Summary and Discussions

In this work we have entertained the possibility that our primordial Universe was inside a

primordial black hole. This is motivated from the fact that there are curious similarities

between the physics of black hole and the dS spacetimes. The fact that both spacetimes have

horizon is the key for our setup. The interior of the event horizon of the black hole is mapped

to a dS background while the two spacetimes join smoothly at their boundaries. This allows

us to provide a one to one map with the known physics of black hole to the corresponding

dynamics in the dS side.

The above picture provides an intriguing mechanism of inflation without invoking the

inflaton field. It is argued that the built-in Hawking radiation for the evaporation of black

hole provides the natural mechanism to terminate inflation. Due to the slow quantum process

of Hawking radiation, inflation proceeds for a long period. The model typically predicts

N ∼ (MP/H)2 e-folds of inflation. The reheating and the onset of hot big bang cosmology in

this setup happens when black hole radiates all its energy to relativistic particles inside the

(remnant) quantum black hole. The final stage of inflation in which the black hole mass and

temperature approach the Planck energy scale is not well-understood. This is the limit that

the quantum gravity effects can play important roles and the physics beyond SM are quite

important. The decay rate of the black hole, determined by the parameter α in Eq. (19),

depends strongly on the number of all massless particles that the black hole can decay to. At

the final stage of its evaporation, the numerous degrees of freedom of the physics beyond SM

are expected to be massless so the parameter α can be many orders of magnitude larger than

unity.

In the simplest case that the black hole decays only to SM particles, the faction of decay

channels are determined by the spin of particles, s = 0, 1/2, 1 and s = 2 for two modes of

gravitons. The fraction of energy deposited to gravitons is about few percents [39]. Therefore,

our model predicts the existence of background gravitations with a fraction of the energy of

background photons. Note that this is different than the gravitational wave perturbations

on CMB which was calculated in Section 3.3. It would be interesting to see if a few percent

of background radiation energy density in the form of isotropic and homogeneous gravitons

particles can be detected observationally.

The universality of the decay of black hole via Hawking radiation implies that the per-

turbations to be adiabatic. Since the decay rate of the black hole to each species (baryons,

leptons, photons etc) are uniquely determined via their spins, it is expected that the per-

turbations in the energy density of each species to follow its background energy density, i.e.

δρb/ρb = δργ/ργ etc. As a result, the adiabaticity of the CMB perturbations is a natural

outcome of this model. In addition, since the background is nearly dS with no significant
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interactions, it is expected the perturbations to be nearly Gaussian. Putting it another

way, the interactions involved in the system are sourced from gravitational back-reactions,

so motivated by the analysis of [47], we expect the system to generate no large amount of

non-Gaussianity. However, towards the end of black hole’s life, the quantum gravitational

effects become significant. Therefore, the simple picture of small gravitational back reactions

is modified towards the final stage of inflation and small-scales non-Gaussianities may be

generated towards the final stage of inflation.

The model can naturally incorporate the existence of some massive species beyond the

SM sector as the source of dark matter and mechanism of baryon asymmetry. For example,

as a possible mechanism of baryon asymmetry, at the time of black hole decay it can channel

a fraction of its energy to a particle with the mass of GUT scale which goes out of thermal

equilibrium afterwards. If this particle decays to baryons and anti baryons asymmetrically

with different decay rates, it can generate the seeds of baryon asymmetry as in mechanism of

delayed decay of heavy particles [40].

In this work we did not speculate on the origin of the primordial black hole itself. It

may have been created spontaneously from vacuum. Alternatively, it might have existed

eternally in the past. In addition, we have considered the ideal situation that the black hole

has reached its final mass M , i.e. it is not accreting matter from outside. We have assumed

that the interior allows an isotropic and homogenous solution. These assumptions are far

from obvious if the black hole is not in its final configuration and matter are absorbed into it.

One drawback of our setup is that the matching conditions to glue a dS space to the

interior of a black hole on the surface of event horizon is non-trivial. The actual matching

requires a divergence in surface pressure [36, 21]. We have no mechanism at hand to resolve

this issue. The solutions to this shortcoming may involve non-trivial quantum physics around

the horizon of black hole. This is an open question which should be addressed for our setup of

primordial inflationary Universe inside the black hole to be treated as a consistent scenario.

Finally, the speculation that the primordial Universe was inside a single primordial black

hole opens up the way for many more speculations! For example, if there are more than one

primordial black hole, then inside each black hole there is an FRW Universe. This naturally

suggest the emergence of “multiverse” in this picture. Another possible speculation is that

our present Universe itself is inside a huge black hole. This may provide some clues for the

cosmological constant problem. Indeed the idea that our current Universe is inside a black

hole was put forward in [48] as a solution to the flatness and the horizon problem without

relying on inflation. Finally, the question of big bang singularity in our setup has been traded

by the question of black hole singularity. But the possibility that the interior of black hole

allows for a cosmological solution may suggest that there was no singularity of any type after

all. This is in line with the maximum curvature proposal suggested in [21, 22, 23].

Acknowledgments: I would like to thank Robert Brandenberger and Misao Sasaki for

useful discussions and correspondences. I am grateful to M. A. Gorji, Sadra Jazayeri and

Javad Taghizadeh Firouzjaee for numerous discussions and clarifications.

19



A Matching surface in static coordinate

Here we provide some sketches on the difficulty of matching a dS solution to the event horizon

of the black hole. For this purpose we use the static coordinate

ds2 = −f(r)d t2 +
dr2

f(r)
+ r2dΩ2 (38)

in which f(r) for two sides of spacetime is defined via

f(r) =

{
1−H2r2 0 ≤ r ≤ r0

1− 2GM
r

r ≥ r0
(39)

The surface of matching Σ is located at r = r0. For the moment we have not specified the

position of r0 but our goal is to consider the case where r0 = 2GM = H−1.

The continuity of the metric requires that H2r20 = 2GM/r0 so r0 = 2GM/H2 = rS/H
2 in

which rS = 2GM is the black hole’s event horizon.

Now we investigate the jumps in extrinsic curvature. The unit normal vector to the surface

of matching is

nµ = (0,
1√
f(r0)

, 0, 0) . (40)

Denoting the components of Kαβ on the black hole’s side and on the dS side respectively by

K>
αβ and K<

αβ we have

K>t
t = − f

′

2f
=
GM

r0

(
1− 2GM

r0

)−1/2
(41)

K>θ
θ = − 1

r0

√
1− 2GM

r0
(42)

K>φ
φ = K>θ

θ , (43)

and

K<t
t = − f

′

2f
= −H2r0

(
1−H2r20

)−1/2
(44)

K<θ
θ = − 1

r0

√
1−H2r20 (45)

K<φ
φ = K<θ

θ . (46)

The discontinuities in extrinsic curvature should be balanced by characteristic integrals of

energy density over the surface of matching Σ at the position r0. If we take H−1 < r < r0 then

imposing the matching condition one arrives at the solution obtained in [22, 23]. However, if

we consider the extreme case r0 = 2GM = H−1 then we see the appearance of pathologies.

More specifically, Kφ
φ and Kθ

θ are well-defined on both sides and indeed are continues if
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r0 = 2GM = H−1. However, Kt
t diverges at this point. The divergence in Kt

t is easily traced

to the divergence in unit normal nµ in which at horizon f(rS) = 0. Of course this can be

an artifact of coordinate singularity associated with the Schwarzschild metric on the surface

of event horizon so one has to use the non-singular extension of the (r, t) coordinate such as

the Kruskal-Szekeres coordinate. However, the difficulty in matching a dS solution to a black

hole solution at the surface of event horizon in the form of Eq. (39) is genuine and one may

have to consider an infinite pressure on the surface of matching [21, 36].
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