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The single field chaotic inflation model with a monomial power greater than one seems
to be ruled out by the recent Planck and WMAP CMB data while Starobinsky model
with a higher curvature term seems to be a viable model. Higher curvature terms being
originated from quantum fluctuations, we revisit the quantum cosmology of the Wheeler-
DeWitt equation for the chaotic inflation model. The semiclassical cosmology emerges
from quantum cosmology with fluctuations of spacetimes and matter when the wave
function is peaked around the semiclassical trajectory with quantum corrections a la the
de Broglie-Bohm pilot theory.

Keywords: Quantum cosmology; Chaotic inflation model; Semiclassical cosmology; Mas-
sive scalar model.

PACS numbers:

1. Introduction

The first direct detection of gravitational waves from the merger of binary black

holes,1 the most important scientific discovery of the 21st century, will open a new

window of gravitational waves probe to explore the early history of the universe far

before the last scattering epoch and hopefully around the origin of the universe.

The tensorial part of spacetime fluctuations gives rise to gravitational waves, whose

observation will reconstruct the spacetime and its evolution history. If the universe

would have evolved back in time, the singularity theorem implies the Big Bang,

which belongs to a quantum gravity regime.2 The inflationary spacetime, the most

viable cosmological model, would have the singularity.3 The singularity theorem

may raise a few fundamental questions in general relativity: what is the quantum

spacetime and geometry including the Big Bang? how to quantize the spacetime as

well as matter fields, that is, what is quantum gravity and quantum cosmology? how
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do a classical universe and the unitary quantum field theory emerge from quantum

cosmology?

Quantum cosmology is a quantum gravity theory for the universe, which quan-

tizes simultaneously the spacetime geometry and matter fields. Two typical ap-

proaches to quantum cosmology are quantum geometrodynamics based on the

Wheeler-DeWitt (WDW) equation4 and the no-boundary (HH) wave function, a

path integral over spacetime manifolds and matters, by Hartle and Hawking.5,6 In

this proceedings we will not consider loop quantum gravity and other quantum grav-

ity models (for review and references, see Ref. 7). In quantum geometrodynamics the

WDW equation is the relativistic field equation in a superspace of the spacetime

geometry and the matter fields, in which both diffeomorphic invariant spacetime

variables and matter fields are quantized. The quantum geometrodynamics has the

advantage in predicting quantum gravity effects that can be tested by the current

observational data based on classical cosmology such as CMB etc since as sum-

marized in Fig. 1, the standard cosmology can be derived from the semiclassical

quantum cosmology, which in turn can be derived from the WDW equation. In

each stage for transitions from quantum to semiclassical and then to classical grav-

ity, spacetime and matter fluctuations leave imprints of quantum gravity effects,

which differ from the quantum field theory in the curved spacetime.

On the other hand, the HH no-boundary wave function sums over all compact

four-dimensional Euclidean geometry and matter fields with a three-dimensional

boundary to a Lorenztian geometry.5,6 The HH wave function has the advantage of

incorporating a boundary condition (initial condition) not to mention the quantum

law. In fact, the path integral is peaked around the WDW equation at the tree level.

From the view point of the standard cosmology, Page summarized the predictions

of the HH wave function:8 inflation of the universe to large size,6 prediction of

the near-critical density,6,9 inhomogeneities starting in ground states,10 arrow of
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production

Quantum Gravity/Cosmology

WDW equation, HH wave 
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Fig. 1. Emergence of classical gravity from quantum gravity and quantum effects.
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time and initial low entropy,11,12,13,14,15 and decoherence and classicality of the

universe.16,17 Starobinsky argued that inflation scenario relates quantum gravity

and quantum cosmology to astronomical observations and produces (non-universal)

arrow of time for our universe.18

In this paper, we review the quantum cosmology of the Friedmann-Robertson-

Walker (FRW) universe minimally coupled to a massive scalar field and argue that

the quantum gravity effects may resurrect the chaotic inflation model with a massive

scalar model. The recent Planck data rules out the single field chaotic model with

power greater than one, including the massive scalar.19 The Starobinsky inflation

model of R + αR2, however, which leads to a de Sitter-type acceleration without

inflaton, is the most favored by the Planck data.20 As noted by Starobinsky, R2

comes from spacetime fluctuations due to quantum matter. It has been noticed that

R2-term is equivalent to a scalar field under a conformal transformation, g̃µν = (1+

2αR)gµν and Ψ =
√

3/2 ln(1+2αR).21,22 Further, as shown in Fig. 1, the quantum

gravity effects from quantum cosmology, which have both quantum corrections from

spacetime as well as the expectation value of the energy-momentum stress tensor,

differs from those from quantum field theory in a fixed curved spacetime. It is thus

interesting and timely to revisit the quantum cosmology with a massive scalar field

and to investigate the quantum gravity effects.

2. Why Massive Scalar Quantum Cosmology?

The FRW universe with a scale factor a = eα and an inflaton φ has a superspace

with the supermetric

ds2 = −da2 + a2φ2 (1)

and leads to the super-Hamiltonian constraint

H(a, φ) = −
(

π2
a + VG(a)

)

+
1

a2

(

π2
φ + 2a6V (φ)

)

= 0. (2)

Then, the WDW equation takes the form (see, for instance, Ref. 17 and for a recent

review and references see Refs. 23, 24)
[

−∇2 − VG + 2a4V (φ)
]

Ψ(a, φ) = 0, (3)

where

∇2 = −a−1 ∂

∂a

(

a
∂

∂a

)

+
1

a2
∂2

∂φ2
, VG(a) = ka2 − 2Λa4. (4)

Note that the WDW equation becomes a relativistic wave equation in the super-

space, which is generically true for any spacetime with more than two degrees of

freedom or with a matter field.

To compare the predictions of quantum cosmology with the inflation scenario

and current observational data, we may introduce perturbations of spacetime and/or
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matter. The Fourier-modes fk of φ-fluctuations, for instance, have the wave func-

tion Ψ(α, φ, fk).
10 We assume the φ-derivatives to be much smaller than the α-

derivatives, which corresponds to a slow-roll approximation in the inflation scenario.

In the geometry belonging to a classical regime, the wave function of the WDW

equation becomes a wavepacket and is peaked around a semi-classical trajectory,

along which we may apply the the Born-Oppenheimer interpretation.25,26,27,28

Recently, Kiefer and Krämer have found the power spectrum corrected by quantum

cosmology29,30

∆2
(1)(k) = ∆2

(0)(k)
︸ ︷︷ ︸

classical cosmology

(

1−
43.56

k3
H2

m2
P

)−3/2(

1−
189.18

k3
H2

m2
P

)

︸ ︷︷ ︸

correction from quantum cosmology

, (5)

where ∆2
(0)(k) is the spectrum from classical theory. Note that the power spectrum

(5) is suppressed at large scales and shows a weaker upper bound than the tensor-

to-scalar ratio.

From the view point of density perturbations, there is a formulation of gauge

invariant perturbations in quantum cosmology. Choosing gauge invariant perturba-

tions is equivalent to selecting the diffeomorphism invariant variables for the super-

space. The gauge invariant perturbations still have advantage in interpreting the

observational data in cosmology. Recently, the gauge invariant super-Hamiltonian

and super-momenta constraints have been introduced in terms of Mukhanov-Sasaki

variables31,32,33,34. Then, the classical cosmology from the quantum cosmology

may give a complete description of density perturbations with quantum effects in-

cluded for CMB data.

3. Second Quantized Universes

The WDW equation (3) is a relativistic wave in the superspace (1), in which a plays

the role of an intrinsic time. As for quantum field theory in a curved spacetime, the

WDW equation evolves an initial wave function Ψ(a0, φ) to a final one Ψ(a, φ). The

Cauchy initial value problem of the WDW equation has been well elaborated.17,35

Note that the HH wave function has a different Cauchy surface, α = ±φ. Then, a

question is how to prescribe the boundary condition that leads to the present uni-

verse. For the single-field inflation model with a monomial potential, Kim observed

that the eigenfunctions for the inflaton17,35

HM(φ, a)Φn(φ, a) = En(a)Φn(φ, a), V (φ) =
λ2p

2p
φ2p (6)

obey the Symanzik scaling-law

En(a) =
(λ2pa

6

p

) 1
p+1

ǫn, Φn(φ, a) =
(λ2pa

6

p

) 1
4(p+1)

Fn

((λ2pa
6

p

) 1
2(p+1)φ

)

. (7)

Here, ǫn is independent of a. Since the eigenfunctions constitute a basis denoted by

an infinite vector ~ΦT(φ, a) = (Φ0,Φ1, · · · ), the rate of change of the eigenfunctions
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is given by a coupling matrix

∂

∂a
~Φ(φ, a) = Ω(a)~Φ(φ, a), (8)

where Ωln(a) is a matrix inversely proportional to a as

Ωln(a) =
3

4(p+ 1)a

(
ǫl − ǫn

)
∫

dζFl(ζ)Fn(ζ)ζ
2. (9)

The meaning of Eq. (8) is continuous transitions among the eigenfunctions at each

moment of intrinsic time a.

For the Cauchy problem, expand the wave function by the eigenfunctions of the

inflaton Hamiltonian, Ψ(a, φ) = ~ΦT(φ, a) · ~Ψ(a), and find the two-component wave

function17,35

(

Ψ(a, φ)
∂Ψ(a,φ)

∂a

)

=

(
~ΦT 0

0 ~ΦT

)

Texp

[∫ a

a0

(
Ω I

VGI −
E
a′2 Ω

)

da′
]( ~Ψ(a0)

d~Ψ(a0)
da0

)

, (10)

where E(a) = (E0, E1, · · · ). The WDW equation has another Cauchy problem of the

Feshbach-Villars formulation.36 Taking only the off-diagonal components, which is

equivalent to neglecting the coupling matrix Ω, the equation for the gravitational

part is approximately given by

d2~Ψ(a)

da2
−
(

VG(a)I −
E(a)

a2

)

~Ψ(a) ≈ 0. (11)

From the view point of observational cosmology, the task of quantum cosmology is to

construct the present Cauchy data based on observations and to evolve back to the

early universe to understand the origin of the universe. Note that Ω diverges more

rapidly than E(a)/a2 for p < 5 as the universe approaches the Big Bang singularity,

a ≈ 0. For instance, a massive scalar field model with p = 1 and λ2 = m2 has the

harmonic wave functions and the coupling matrix

En(a) = ma3(2n+ 1), Ωln(a) =
3

4a

(√

l(l− 1)δl−n,2 −
√

n(n− 1)δn−l,2

)

, (12)

and the time-ordered integral is thus approximated by

T exp

[∫ a

a0

(
Ω(a′) 0

0 Ω(a′)

)

da′
]

=

(
eln(a/a0)aΩ(a) 0

0 eln(a/a0)aΩ(a)

)

. (13)

Therefore, the wave function experiences an infinite number of transitions among

different harmonic functions or oscillations near the singularity, which may lead to a

chaotic behavior. Further, the probability for the wave function near the singularity

is almost invariant, |Ψ(a, φ)|2 ≈ |Ψ(a0, φ)|
2, as afar as the variation of ~Ψ(a) is

finite.23
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4. Semiclassical and Classical Cosmology

The wave function peaked around a wave packet allows the de Broglie-Bohm pilot-

wave theory. We assume that the WDW equation takes a general form

[

−
~
2

2M
∇2 −MVG(ha) + ĤM(φ,−i

δ

δφ
;ha)

]

Ψ(ha, φ) = 0, (14)

where ha denotes the superspace metric hij and M = m2
P is the Planck mass

squared. The de Broglie-Bohm pilot theory describes the quantum theory in an

equivalent way that the oscillating wave function forms a wave packet around a

trajectory prescribed by the Hamilton-Jacobi equation with a quantum correction

and another equation for the conservation of probability.37 The standard cosmology

is the Friedmann equation together with the principle of homogeneity and isotropy

of the universe, which has been confirmed precisely by CMB and other observational

data. To embody quantum cosmology into an observational cosmology, as shown in

Fig. 1, it is necessary to obtain the semiclassical cosmology and then the classical

cosmology with quantum corrections included.

The stratagem toward Fig. 1 is first to apply the Born-Oppenheimer idea, which

separates a slow moving massive particle M (gravity) from a fast moving light

particle (inflaton), and then to expand quantum state for fast moving variable by

a certain basis25,26,27,28

|Ψ(ha, φ)〉 = Ψ(ha)|Φ(φ, ha)〉, (15)

in which

|Φ(φ, ha)〉 = ~CT (ha) · ~Φ(φ, ha). (16)

The basis ~ΦT (φ, ha) = (|Φ0〉, |Φ1〉, · · · ), which is not necessarily the instantaneous

eigenfunctions of ĤM, will be chosen to make the semiclassical and classical cosmol-

ogy as simple as possible. We then apply the de Broglie-Bohm pilot-theory to the

gravity part only

Ψ(ha) = F (ha)e
iS(ha)

~ . (17)

Now, in a semiclassical regime, the WDW equation is equivalent to set of

equations28

1

2M

(
∇S
)2

−MVG(ha) +Hnn(ha)−
~
2

2M

∇2F

F
−

~
2

M
Re
(
Qnn

)
= 0, (18)

1

2
∇2S +

∇F

F
· ∇S + Im

(
Qnn

)
= 0, (19)

where Hnk(ha) is the expectation value of the inflaton, ~Ank(ha) is the induced

gauge potential due to the parametric interaction, (~2/2M)(∇2F/F ) is the quantum
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potential of Bohm and Qnn is the quantum back reaction of matter:

Hnk(ha) = 〈Φn(φ, ha)|ĤM|Φk(φ, ha)〉,

~Ank(ha) = i〈Φn(φ, ha)|∇|Φk(φ, ha)〉,

Qnn(ha) =
∇F

F
·
(∇Cn

Cn
− i
∑

k

~Ank
Ck

Cn

)

. (20)

The advancement of the de Broglie-Bohm quantum theory in Ref. 28 is that the

continuity equation (19) may be integrated along the semiclassical trajectory and

provide another quantum back reaction to the semiclassical Einstein equation (18).

To complete the transition from the quantum cosmology (3) to the semiclassical

cosmology, we introduce a cosmological time as the directional derivative along the

semiclassical trajectory in the extended superspace

∂

∂τ
= −

1

Ma

∂S(a)

∂a

∂

∂a
. (21)

The cosmological time is equivalent to solving ∂a(τ)/∂τ = −(1/Ma)(∂S/∂a). Then

the Heisenberg matrix equation takes the form28

i~
∂Cn

∂τ
=
∑

k

[(
Hnk −Hnnδnk

)
− ~Bnk −

~
2

2Ma

(
Dnk −Dnnδnk

)]

Ck, (22)

where Bnk is the gauge potential ~Ank measured along the τ -flow and Dnk is given

by

Bnk(a(τ)) = i〈Φn|
∂

∂τ
|Φk〉,

Dnk(a(τ)) = −
1

ȧ2

[( ∂2

∂τ2
−

ä

ȧ

∂

∂τ

)

δnk − 2iBnk
∂

∂τ
+ 〈Φn|

∂2

∂τ2
−

ä

ȧ

∂

∂τ
|Φk〉

]

. (23)

Here and hereafter, the dots denote the derivatives with respect to the cosmological

time τ . We may use the freedom to select the basis such that Hnk = ~Bnk for

n 6= k.26 Then, the Heisenberg equation (22) is the solution of the τ -dependent

Schrödinger equation and a correction of order of ~/M , which comes from the

relativistic theory. Now, we can show thereby that the chaotic inflation model nec-

essarily contains (higher) curvature terms
( ȧ

a

)2

+
k

a2
− Λ =

8π

3m2
Pa

3

(
Hnn + δρnn

)
, (24)

where the quantum correction to the energy density is given by

δρnn = −
4π~2

3m2
Paȧ

UnnRe
(
Rnn

)
+

2π~2

3m2
Pa

(

U2
nn +

1

ȧ
U̇nn

)

, (25)

where

Rnn =
Ċn

Cn
− i
∑

k

Bnk
Ck

Cn
,

Unn = −
1

2

ȧ2 + aä

aȧ2 + 4π~
3m2

P

Im
(
Rnn

) . (26)
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Finally, the chaotic model with a massive scalar with m has R
(0)
nn = 0 and

U
(0)
nn = −(1/2)(1/a+ ä/ȧ2) and the expectation value of the inflaton is given by28

Hnn = ~a3
(

n+
1

2

)(
ϕ̇∗ϕ̇+m2ϕ∗ϕ

)
, (27)

which obeys the classical equation of motion

ϕ̈+ 3
ȧ

a
ϕ̇+m2ϕ = 0. (28)

The gauge potential reads

Bnk =
n

n+ 1
2

Hnnδnk + f
√

(n+ 1)(n+ 2)δn,k−2 + f∗
√

(k + 1)(k + 2)δn,k+2,(29)

where f = −(~a3/2)(ϕ̇2 + m2ϕ2). The solution of the Heisenberg equation (22)

can be used to find systematically the quantum correction (25) and thus to the

Friedmann equation (24).

5. Gauge Invariant Quantum Cosmology

Mukhanov and Sasaki obtained the gauge invariant formulation of density pertur-

bations. Then a question can be raised whether one may find the Hamiltonian for

scalar perturbations of metric and a massive scalar field, which is gauge invariant

and leads the semiclassical equation for observational data. In fact, such a Hamil-

tonian was found31,32,33,34

H = N̄0

[

H0 +
∑

~n,±

H̆~n,±
2

]

+
∑

~n,±

Ğ~n,±
2 H̆~n,±

1 +
∑

~n,±

K̆~n,±H̃
~n,±
1 , (30)

where H0 is the unperturbed Hamiltonian for the FRW universe, and H̆~n,±
2 is the

quadratic Hamiltonian of scalar, vector and tensor perturbations for the inhomo-

geneities as well as the massive scalar field, and H̆~n,±
1 and H̃~n,±

1 are inhomogeneous

linear perturbations. Extending Sec. 4 to quadratic perturbations, one may show

that the semiclassical cosmology from the WDW equation (30) provides the master

equation for the power spectrum of primordial scalar (vector and tensor) pertur-

bations perturbations. The semiclassical cosmology with (higher) curvatures via

the de Broglie-Bohm pilot theory and the Born-Oppenheimer idea may resurrect

the chaotic inflation model with a massive scalar field. The detailed work in this

direction will be addressed in a future publication.

6. Conclusion

In this paper we have studied the semiclassical gravity for the chaotic inflation

model with a power-law greater than one. In classical gravity theory the chaotic

inflation model with a convex power-law is highly likely to be excluded by current

observational CMB data, such Planck and WMAP. Starobinsky model with a higher

curvature term, however, seems to be a viable model. Higher curvature terms have
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a quantum origin due to fluctuations of a spacetime and/or a matter field in the

curved spacetime. It is thus physically legitimate to investigate the chaotic inflation

model in the framework of quantum cosmology since the quantum cosmological

model with a chaotic inflaton necessarily involves quantum gravity effects due to

spacetime and inflaton’s fluctuations.

In order to compare the predictions of the quantum cosmology with current

observational data, the semiclassical cosmology should emerge from the quantum

cosmology for the FRW cosmology minimally coupled to a chaotic inflaton, in par-

ticular, a massive inflaton. In fact, the de Broglie-Bohm pilot-theory together with

the Born-Oppenheimer idea of separating the Planck mass scale from the inflaton

mass scale leads to the semiclassical cosmology, in which both quantum corrections

to the classical gravity as well as the matter field. It turns out that the semiclassical

gravity equation indeed contains higher curvature terms for the FRW geometry.

Further, the gauge invariant quantum cosmology using Mukhanov-Sasaki Hamilto-

nian with a massive scalar field may yield the semiclassical chaotic inflation model,

which may be easily compared with observational data. It would be interesting to

study numerically the semiclassical gravity for the FRW universe with a massive

scalar field and to see whether the quantum cosmology can resurrect the chaotic

inflation model.

An alternative way to test the predictions of quantum cosmology is to simulate

the evolution of the universe, in particular, the quantum effects of an expanding

universe using laboratory experiments. It has been suggested that a static ion trap

may simulate the quantum effects of expanding universe.38 It has also been observed

that the quantum cosmology for the FRW universe minimally coupled to a massive

scalar field is equivalent to a spinless charged particle in a homogeneous time-

dependent magnetic field along a fixed direction.39 The infinite oscillations near

the singularity can be simulated by time-dependent magnetic fields of over-critical

strength.
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