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We provide the latest constraints on the power spectra of both scalar and tensor

perturbations from the CMB data (including Planck 2015, BICEP2 & Keck Array

experiments) and the new BAO scales from SDSS-III BOSS observation. We find

that the inflation model with a concave potential is preferred and both the inflation

model with a monomial potential and the natural inflation model are marginally

disfavored at around 95% confidence level. But both the Brane inflation model and

the Starobinsky inflation model fit the data quite well.
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I. INTRODUCTION

In the past three decades, the inflation model [1–4] was taken as the standard paradigm

of the very early Universe. It not only resolves the flatness, horizon and monopole problems

in the hot big bang model, but also generates the primordial density perturbations seeding

the anisotropies in the cosmic microwave background (CMB) and the large-scale structure

in our Universe. The simple inflation model predicts that the power spectra of both pri-

mordial scalar and tensor perturbations are adiabatic, Gaussian and nearly scale-invariant.

In particular, the amplitude of primordial tensor perturbations is determined by the en-

ergy scale of inflation. Actually the primordial perturbations contribute to the anisotropies

and polarizations of CMB as well as CMB lensing, which can be precisely measured by the

ground-based or satellite CMB experiments, for example the Planck satellite [5, 6]. There-

fore one can estimate the cosmological parameters and explore the nature of inflation by

using the CMB data.

The excess of B-mode power over the base lensed-ΛCDM expectation detected by BI-

CEP2 [7] can be explained by the polarized thermal dust, not the primordial gravitational

waves [8, 9]. Subtracting the contributions to the CMB B-mode from Galactic polarized

dust measured by Planck collaboration in [10], the tensor-to-scalar ratio r . 0.1 at 95%

confidence level (C.L.) was obtained in [11] which was confirmed by a joint analysis of B-

mode polarization data of BICEP2/Keck Array and Planck (BKP) in [12]. Furthermore,

because of the tight constraint on the tensor-to-scalar ratio, the chaotic inflation model with

a potential V (φ) ∝ φ2 was disfavored at more than 2σ C.L. in [11]. All of these results are

confirmed by the Planck 2015 results [6] in which the scalar spectral index ns = 0.968±0.006

at 68% C.L. and the tensor-to-scalar ratio r0.002 < 0.11 at 95% C.L. by fitting the Planck

TT,TE,EE+lowP+lensing combination (P15).

Recently BICEP2 & Keck Array CMB polarization experiments released the B-mode

polarization data up to and including the 2014 observing season in [13]. This dataset includes

the first Keck Array B-mode data at 95 GHz. The BICEP2 & Keck Array B-mode data

(BK14) implies r0.05 < 0.09 (95% C.L.). Combining with Planck 2015 TT+lowP+lensing

and some other external data, the upper bound on r becomes r0.05 < 0.07 (95% C.L.) [13]

in the base ΛCDM+r model. This constraint on r is the strongest one to date, even though

it is model-dependent in some sense.
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In addition, the Baryon Acoustic Oscillation (BAO) data can significantly break the

degeneracies between cosmological parameters. Recently, the BAO distance scale measure-

ments were updated via an anisotropic analysis of BAO scale in the correlation function [14]

and power spectrum [15] of the CMASS and LOWZ galaxy samples from Data Release 12

of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS DR12). The total volume

probed in DR12 has a 10% increment from DR11 and the experimental uncertainty has been

reduced. In this paper, the BAO data we will adopt include 6dFGS [16], MGS [17], BOSS

DR12 CMASS [15] and LOWZ [15] (BAO15).

In this paper we will make a joint analysis of the recently released CMB and BAO data

to constrain the cosmological parameters and the inflation models. Our paper is arranged as

follows. In Sec. II, we constrain the power spectra of both scalar and tensor perturbations by

using the data combination of P15+BK14+BAO15. In Sec. III, we will test several inflation

models in two different methods. The summary and discussion are included in Sec. IV.

II. CONSTRAINTS ON THE POWER SPECTRA OF SCALAR AND TENSOR

PERTURBATIONS

In this section, we will make a joint analysis of P15+BK14+BAO15 dataset to constrain

the cosmological parameters in the base ΛCDM+r model and the other two extended models.

In general, the power spectra of primordial scalar and tensor perturbations can be pa-

rameterized as follows

Ps(k) = As

(
k

kp

)ns−1+ 1
2

dns
d ln k

(
ln k

kp

)
+ 1

6
d2ns
d ln k2

(
ln k

kp

)2

, (1)

Pt(k) = At

(
k

kp

)nt

, (2)

where As and At denote the amplitudes of scalar and tensor power spectra at the pivot scale

kp, ns and nt denote the spectral indices of scalar and tensor power spectra, nrun ≡ dns/d ln k

and nrun,run ≡ d2ns/d ln k2 denote the running and the running of running of scalar spectral

index. In this paper, we set the pivot scale as kp = 0.01 Mpc−1. The spectral index of tensor

power spectrum is set as nt = −At/(8As) which is the consistency relation for the canonical

single-field slow-roll inflation model [18]. In principle, nt can be taken as a free parameter.

However, nt cannot be well constrained by the current observations [19–21], even though
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nt ' 0 is consistent with the current datasets. The measurement on nt is expected to be

improved by some forthcoming experiments [22].

In this paper we consider three cosmological models. The first one is the base ΛCDM+r

model in which there are seven free parameters: the baryon density today (Ωbh
2), the cold

dark matter density today (Ωch
2), the 100× angular scale of the sound horizon at last-

scattering (100θMC), the Thomson scattering optical depth due to the reionization (τ), the

amplitude of scalar power spectrum (As), the spectral index of scalar power spectrum (ns)

and the tensor-to-scalar ratio (r). The second one is the base ΛCDM+r+nrun model where

the running of scalar spectral index (dns/d ln k) is included as an additional free parameter.

The third one is the base ΛCDM+r+nrun+nrunrun model in which an additional parameter,

namely the running of running (d2ns/d ln k2), is added.

We use the Markov Chain Monte Carlo sampler (CosmoMC) [23] to explore the space of

cosmological parameters in the cosmological models. Our results are summarized in Tab. I

in which we list the constraints on all of the cosmological parameters as well as the best-fit

χ2 for these three cosmological models.

Parameters ΛCDM+r ΛCDM+r+nrun ΛCDM+r+nrun+nrunrun

Ωbh
2 0.02227± 0.00014 0.02230± 0.00015 0.02223± 0.00015

Ωch2 0.1188± 0.0010 0.1188± 0.0010 0.1190± 0.0010

100θMC 1.04091± 0.00030 1.04091± 0.00030 1.04092± 0.00029

τ 0.067± 0.012 0.067± 0.012 0.072± 0.013

ln(1010As) 3.119± 0.021 3.117± 0.021 3.132± 0.023

ns 0.9669± 0.0040 0.9721± 0.0108 0.9756± 0.0111

r0.01 (95% C.L.) < 0.0685 < 0.0751 < 0.0814

dns/d ln k - −0.0035± 0.0068 −0.0247± 0.0148

d2ns/d ln k2 - - 0.0211± 0.0130

χ2 13608.6 13608.6 13605.3

TABLE I: The 68% limits on the cosmological parameters in three cosmological models from

P15+BK14+BAO15 data combination.

The marginalized contour plots and the likelihood distributions of r and ns in the base

ΛCDM+r model are depicted in Fig. 1. The constraints on r and ns are given by
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FIG. 1: The marginalized contour plots and the likelihood distributions of r and ns in the base

ΛCDM+r model.

r0.01 < 0.0685 (95% C.L.) , (3)

ns = 0.9669± 0.0040 (68% C.L.) . (4)

The primordial scalar power spectrum deviates from the Harrison-Zel’dovich spectrum at

more than 8σ C.L..

The marginalized contour plots and the likelihood distributions of r, ns and dns/d ln k

in the base ΛCDM+r+nrun model show up in Fig. 2. We see that the constraints on r, ns

and dns/d ln k read

r0.01 < 0.0751 (95% C.L.) , (5)

ns = 0.9721± 0.0108 (68% C.L.) , (6)

dns/d ln k = −0.0035± 0.0068 (68% C.L.) . (7)

Even though there is one more parameter in the ΛCDM+r+nrun model, the best-fit χ2 is

the same as that in the ΛCDM+r model. We conclude that P15+BK14+BAO15 data do

not prefer a non-zero running of scalar spectral index from the statistic point of view.

Finally, the marginalized contour plots and the likelihood distributions of r, ns, dns/d ln k

and d2ns/d ln k2 in the base ΛCDM+r+nrun+nrunrun model are illustrated in Fig. 3. We
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FIG. 2: The marginalized contour plots and the likelihood distributions of r, ns and nrun ≡

dns/d ln k in the base ΛCDM+r+nrun model.

see that the constraints on r, ns, dns/d ln k and d2ns/d ln k2 are

r0.01 < 0.0814 (95% C.L.) , (8)

ns = 0.9756± 0.0111 (68% C.L.) , (9)

dns/d ln k = −0.0247± 0.0148 (68% C.L.) , (10)

d2ns/d ln k2 = 0.0211± 0.0130 (68% C.L.) . (11)

Our results show a slight preference for the negative running and a positive running of

running of the scalar spectral index at the pivot scale kp = 0.01 Mpc−1, and ∆χ2 ' −3.3

compared to the base ΛCDM+r model.
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FIG. 3: The marginalized contour plots and the likelihood distributions of r, ns, nrun ≡ dns/d ln k

and nrun,run ≡ d2ns/d ln k2 in the base ΛCDM+r+nrun+nrunrun model.

III. CONSTRAINTS ON INFLATION

The equations of motion for the canonical single-field slow-roll inflation take the form

H2 =
1

3M2
p

[
1

2
φ̇2 + V (φ)

]
, (12)

φ̈ + 3Hφ̇+ V ′(φ) = 0, (13)
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where Mp = 1/
√

8πG is the reduced Planck energy scale, the dot and prime denote the

derivative with respect to the cosmic time t and the inflaton field φ, respectively. The

inflaton field slowly rolls down its potential if ε� 1 and |η| � 1, where

ε ≡
M2

p

2

(
V ′

V

)2

, (14)

η ≡ M2
p

V ′′

V
. (15)

In this limit, the equations of motion are simplified to

H2 ' V (φ)

3M2
p

, (16)

3Hφ̇ ' −V ′(φ). (17)

From the dynamics of inflation, we have

η = 2ε+
1

2

d ln ε

dN
, (18)

where N ≡
∫ tend
t

H(t′)dt′ is the number of e-folds before the end of inflation. The amplitudes

of scalar and tensor power spectra are respectively given by

Ps =
V

24π2M2
p ε
, (19)

Pt =
2V

3π2M2
p

. (20)

Therefore the tensor-to-scalar ratio and the spectral index of scalar power spectrum are

related to the slow-roll parameters by

r = 16ε, (21)

ns = 1− 6ε+ 2η. (22)

See, for example, [24] in detail.

A. Selection of inflation models

There are a large number of inflation models in the market [25]. It is almost impossible

to figure out a unique inflation model even when the cosmological parameters are measured

very accurately, because the number of the cosmological parameters we can measure should
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be limited. In general, the simplicity is considered as a basic principle we should follow. In

this subsection, we only take into account a few simple inflation models and compare them

with the global fitting results given in the former section. Our main results are illustrated in

Fig. 4. At first glance, we see that the inflation model with a concave potential is preferred

at around 95% C.L..

Concave
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SBS Inflation
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FIG. 4: Comparing the inflation models with the observational constraints.

The inflation model with a monomial potential V (φ) ∼ φn [26] is the simplest class of

inflation models, and is the prototype of chaotic inflation model. The predictions of this

model are

r =
14n

N
, (23)

ns = 1− n+ 2

2N
. (24)

Here n is not necessarily an integer. Axion monodromy was supposed to achieve V (φ) ∼ φn

inflation model in string theory. For example, n = 2/5, 2/3 in [27], n = 1 in [28], and
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the models with higher power in [29, 30]. For 50 < N < 60, the predictions of V (φ) ∼

φn inflation model are illustrated in the region between two grey dashed lines in Fig. 4.

Unfortunately, we see that this class of inflation models are marginally disfavored at around

95% C.L..

In the natural inflation model [31, 32], the effective one-dimensional potential is given

by V (φ) = m2f 2 (1 + cos(φ/f)) where f denotes the decay constant. The natural inflation

predicts

r =
8

(f/Mp)2

1 + cos θN
1− cos θN

, (25)

ns = 1− 1

(f/Mp)2

3 + cos θN
1− cos θN

, (26)

where

cos
θN
2

= exp

(
− N

2(f/Mp)2

)
. (27)

For 50 < N < 60, the different decay constant corresponds to different predictions. See the

purple shaded region in Fig. 4. Compared to the constraints from data, the natural inflation

model is also marginally disfavored at 95% C.L..

In the spontaneously broken SUSY (SBS) inflation model [33], the potential of inflaton

field takes the form of V (φ) = V0

(
1 + c ln φ

Q

)
where V0 is dominant and c << 1. This

inflation model predicts

r ' 0, (28)

ns = 1− 1

N
. (29)

It is also disfavored at more than 95% C.L., because it predicts a large scalar spectral index.

In the Starobinsky inflation model [1], the inflationary expansion of the Universe is driven

by a higher derivative term in the action, namely S =
M2

p

2

∫
d4x
√
−g
(
R + R2

6M2

)
where

M denotes an energy scale. The tensor-to-scalar ratio and the scalar spectral index in

Starobinsky inflation model are given by

r ' 12

N2
, (30)

ns = 1− 2

N
, (31)

in [34, 35]. Even though this inflation model can fit the data quite well, why the terms with

higher powers of R are all suppressed [36] is still an open question.
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B. Constraints on typical inflation models

In this subsection, we propose a new method to explore the space of inflation models.

Similar to [37], we parametrize the slow-roll parameter ε(N) in terms of e-folding number

N for the typical inflation model as follows

ε(N) =
c/2

(N + ∆N)p
, (32)

where c(> 0) and p are two constants, and

∆N =
( c

2

)1/p

. (33)

Here we introduce ∆N to keep N = 0 at the end of inflation, namely ε(N = 0) = 1. See

some extended investigations in [38–41]. Now the tensor-to-scalar ratio reads

r =
8c

(N + ∆N)p
. (34)

From Eq. (18), we obtain

η =
c

(N + ∆N)p
− p

2(N + ∆N)
, (35)

and then

ns = 1− c

(N + ∆N)p
− p

(N + ∆N)
. (36)

Even though this parametrization can not cover all of the canonical single-field slow-roll

inflation models, it can really cover many well-known inflation models.

• For the inflation model with V (φ) ∼ φn, we have p = 1 and c = n/2.

• For the Starobinsky model, we have p = 2 and c = 3/2.

• For the brane inflation model [42] with V (φ) = V0(1− (µ/φ)d−2), we have p = 2(d− 1)/d,

where d is the number of transverse dimensions. For example, the D3-Brane inflation in the

KKLMMT setup predicts p = 5/3 and c ' 0 [43].

Up to now the exact e-folding number corresponds to the pivot scale kp is still unknown.

Usually it is considered to be a number between 50 and 60. In this subsection, we take N

as a free parameter. Adopting the flat priors for c ∈ [0, 100], p ∈ [0.5, 3] and N ∈ [50, 60],

globally fitting P15+BK14+BAO data combination and finally marginalizing over other free
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parameters in the base ΛCDM model and N , we obtain the constraints on the parameters

c and p, namely

p = 2.05+0.32
−0.28 (68% C.L.), (37)

c < 61.8 (95% C.L.). (38)

See Fig. 5 as well. We see that the inflation model with a monomial potential corresponds

0.0 0.6 1.2 1.8 2.4 3.0
p

0

10

20

30

40

50

c

P15+BK14+BAO15
V∝φn

R2 inflation
D3-Brane inflation

FIG. 5: Constraints on the space of inflation models from P15+BK14+BAO15.

to p = 1 which is disfavored at more than 95% C.L.. But both the Brane inflation model

and the Starobinsky inflation model still fit the data quite well.

IV. SUMMARY AND DISCUSSION

In this paper, we constrained the cosmological parameters in the base ΛCDM+r model

and two extended models by jointly analyzing the data combination including Planck 2015
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data of CMB anisotropies and polarizations as well as CMB lensing, BICEP2 & Keck Array

data of B-mode polarization up to and including 2014 observing season, and the anisotropic

BAO distance scales from SDSS-III BOSS DR12 together with the isotropic 6dFGS and

MGS BAO data. Comparing with the predictions of inflation models, we find that the

inflation model with a concave potential is preferred and both the inflation model with a

monomial potential and the natural inflation model are marginally disfavored at 95% C.L..

But both the Brane inflation model and the Starobinsky inflation model still give a good fit

to the current data.

Even though there is no evidence for supporting a non-zero running of scalar spectral

index, a positive running of running in order of O(10−2) provides a slightly better fit to

the data. Such a positive running of running can significantly relax the Lyth bound on the

tensor-to-scalar ratio to 0.1 [44].

Before closing this paper, we also want to sketch the potential of inflaton field according

to the current cosmological data. To summarize, the preferred inflation potential goes like

that as follows

V (φ) = Λ∗ − δV (φ), (39)

where Λ∗ is an effective cosmological constant which determines the energy scale of inflation,

and the dynamics of inflation is described by the subdominant term δV (φ). Since the concave

shape of potential is preferred, δV ′′(φ) > 0. For example, for

V (φ) = Λ∗

[
1−

(
φ

µ

)n]
, (40)

where µ is an energy scale, and n is related to p in Eq. (32) by

n =
2(p− 1)

p− 2
for p > 1 and p 6= 2. (41)

Note that p = 2 corresponds V (φ) = Λ∗ [1− exp(−φ/µ)]. From Sec. III B, we find p > 1

which implies n < 0 or n > 2 and the potential is certainly concave. Now we still cannot

distinguish the sign of n. We hope that the accurate experiments will tell us more detail

about inflation in the near future.
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