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Abstract

We review cosmological inflation and its realization in quantum field theory

and in string theory. This material is a portion of a book, also entitled

Inflation and String Theory, to be published by Cambridge University Press.
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Preface

The past two decades of advances in observational cosmology have brought
about a revolution in our understanding of the universe. Observations
of type Ia supernovae [1, 2], measurements of temperature fluctuations in
the cosmic microwave background (CMB)—particularly by the Wilkinson
Microwave Anisotropy Probe (WMAP) [3–7] and the Planck satellite [8–
10]—and maps of the distribution of large-scale structure (LSS) [11] have
established a standard model of cosmology, the ΛCDM model. This is a
universe filled with 68% dark energy, 27% dark matter, and only 5% ordi-
nary atoms [8]. There is now decisive evidence that large-scale structures
formed via gravitational instability of primordial density fluctuations, and
that these initial perturbations originated from quantum fluctuations [12–
17], stretched to cosmic scales during a period of inflationary expansion [18–
20]. However, the microphysical origin of inflation remains a mystery, and
it will require a synergy of theory and observations to unlock it.

In the standard cosmology without inflation, causal signals travel a finite
distance between the time of the initial singularity and the time of forma-
tion of the first neutral atoms. However, the CMB anisotropies display
vivid correlations on scales larger than this distance. This causality puzzle
is known as the horizon problem. The horizon problem is resolved if the
early universe went through an extended period of inflationary expansion,
i.e. expansion at a nearly constant rate, with

|Ḣ| � H2 ,

where H ≡ ȧ/a is the Hubble parameter associated with a Friedmann-
Robertson-Walker spacetime,

ds2 = −dt2 + a2(t)dx2 .

Because space expands quasi-exponentially during inflation, a(t) ∝ eHt,

7



8 Preface

homogeneous initial conditions on subhorizon scales are stretched to appar-
ently acausal superhorizon scales. Besides explaining the overall homogene-
ity of the universe, inflation also creates small primordial inhomogeneities,
which eventually provide the seeds for large-scale structures. These per-
turbations are inevitable in a quantum-mechanical treatment of inflation:
viewed as a quantum field, the expansion rate H experiences local zero-
point fluctuations, δH(t,x), which lead to spatial variations in the density
after inflation, δρ(t,x). If inflation is correct, then CMB observations are
probing the quantum origin of structure in the universe. By measuring the
statistical properties of the CMB anisotropies we learn about the physics of
inflation and about the precise mechanism that created the primordial seed
fluctuations.

In this book we will describe two intertwined approaches to the physics
of inflation: from the bottom up in effective field theory (EFT), and from
the top down in string theory.

We speak of an effective theory when we do not resolve the small-scale
(or high-energy) details of a more fundamental theory. Often this coarse-
graining is done so automatically that it is not emphasized explicitly: for
instance, we describe fluid dynamics and thermodynamics without reference
to atoms, and computations of atomic spectra are in turn insensitive to the
quark substructure of nucleons. Reasoning in terms of theories valid up to
a critical energy scale is also how the history of particle physics developed,
long before Wilson formalized the concept of effective theories. Effective
theories are particularly useful when the full theory is unknown, or is spec-
ified but not computable. In that case, one parameterizes the unknown
physics associated with degrees of freedom at a high energy scale Λ by a
collection of non-renormalizable interactions in the EFT, known as irrele-
vant interactions. At low energies, irrelevant interactions are suppressed by
powers of E/Λ. In the limit E/Λ → 0, the high-scale degrees of freedom
decouple. However, in some contexts a low-energy observable is strongly
affected by irrelevant interactions: such an observable is termed ultravio-
let (UV) sensitive. As we shall explain, inflation is an ultraviolet-sensitive
phenomenon.

The ultraviolet behavior of gravity is a foundational question for cosmol-
ogy. To understand the nature of general relativity at high energies, we recall
that the interactions dictated by the Einstein-Hilbert action can be encoded
in Feynman rules, just as in ordinary quantum field theory (see [21] for a
modern perspective). The coupling strength is set by Newton’s constant
G, which has negative mass dimension, so the interaction becomes stronger
at higher energies. Moreover, when divergences do arise, they cannot be
absorbed by renormalization of the terms in the classical Einstein-Hilbert
Lagrangian: on dimensional grounds, the factors of the gravitational cou-
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pling from graviton loops must be offset by additional derivatives compared
to the classical terms. General relativity is therefore non-renormalizable,1

and for energies above the Planck scale,

MP ≡
√

~c
G

= 1.2× 1019 GeV/c2 ,

the theory stops making sense as a quantum theory: it violates unitarity.
The conservative interpretation of this finding is that new physics has to
come into play at some energy below the Planck scale, and any quantum
field theory that is coupled to gravity should then be interpreted as an effec-
tive theory valid at energies below the Planck scale. This is precisely what
happens in string theory: strings of characteristic size `s cut off the diver-
gences in graviton scattering at energies of order 1/`s, where the extended
nature of the string becomes important. The result is a finite quantum
theory of gravity, whose long-wavelength description, at energies E � 1/`s,
is an effective quantum field theory that includes gravity, and whose non-
renormalizable interactions include terms suppressed by the Planck scale (or
the string scale). String theory therefore provides an internally consistent
framework for studying quantum fields coupled to general relativity.

A striking feature of effective theories that support inflation is that they
are sensitive to Planck-suppressed interactions: an otherwise successful
model of inflation can be ruined by altering the spectrum and interactions
of Planck-scale degrees of freedom. In every model of inflation, the duration
of the inflationary expansion is affected by at least a small number of non-
renormalizable interactions suppressed by the Planck scale. In a special class
of scenarios called large-field models, an infinite series of interactions, of ar-
bitrarily high dimension, affect the dynamics: this corresponds to extreme
sensitivity to Planck-scale physics. The universal sensitivity of inflation to
Planck-scale physics implies that a treatment in a theory of quantum grav-
ity is required in order to address critical questions about the inflationary
dynamics. This is the cardinal motivation for pursuing an understanding of
inflation in string theory.

A primary subject of this book is the challenge of realizing inflationary
dynamics in string theory (recommended reviews on the subject include [22–
32]). Let us set the stage for our discussion by outlining the range of gains
that can be expected from this undertaking.

The most conservative goal of studies of inflation in string theory is to
place field-theoretic models of inflation on firmer logical footing, giving con-
trolled computations of quantum gravity corrections to these models. In

1
Pure Einstein gravity is free of one-loop divergences, but diverges at two loops. Gravi-
tational theories including matter fields typically diverge at one loop, except in super-
symmetric cases [21].
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particular, ultraviolet completion can clarify and justify symmetry assump-
tions made in the EFT approach. For example, realizing chaotic infla-
tion [33] through axion monodromy in string theory [34] gives a microphysi-
cal understanding of the shift symmetry, φ 7→ φ+const., that ensures radia-
tive stability of the low-energy EFT. Inflationary models relying on the shift
symmetries of axions in string theory — variants of ‘natural inflation’ [35]
— have provided one of the best-controlled paths to ultraviolet-complete
scenarios yielding significant gravitational waves. In favorable cases, the
embedding into quantum gravity can also entail small modifications of the
theory that lead to additional observational signatures. For example, in
axion monodromy inflation nonperturbative corrections introduce modu-
lations of the power spectrum [36] and the bispectrum [37]. This is an
example where the structure of the ultraviolet completion could potentially
be inferred from correlated signatures.

String theory is a far more constrained framework than effective field the-
ory, and some effective theories that appear consistent at low energies do
not admit ultraviolet completions in quantum gravity. Enforcing the re-
strictions imposed by ultraviolet completion winnows the possible models,
leading to improved predictivity. For example, the DBI scenario [38] may be
viewed as a special case of k-inflation [39]. While most versions of k-inflation
are radiatively unstable, string theory makes it possible to control an in-
finite series of higher-derivative terms. In this case, a higher-dimensional
symmetry significantly restricts the form of the four-dimensional effective
action. Unlike its field theory counterpart, the observational signatures of
DBI inflation are correspondingly specific [40].

String theory has also been an important source of inspiration for the
development of novel effective field theories. The geometric perspective
afforded by compactifications, and by D-branes moving inside them, com-
plements the more algebraic tools used to construct effective theories in
particle physics. The effective theories in D-brane inflation [41, 42], DBI
inflation [38], fibre inflation [43], and axion monodromy inflation [34], for
example, all exist in their own right as low-energy theories, but would likely
have gone undiscovered without the approach provided by string theory.
Generating effective theories from the top down in string theory also leads
to modified notions of what constitutes a natural inflationary model, or
a minimal one. Although we are very far from a final understanding of
naturalness in string theory, one broad characteristic of existing geometric
constructions is the presence of many light scalar fields, the moduli of the
compactification. Moduli play a central role in inflation, and can affect
both the background evolution and the perturbations. While theories with
many ‘unnecessary’ fields might be considered non-minimal in field-theoretic
model-building, they are extremely common in string theory.
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The boldest hope for the use of string theory in cosmology is that string
theory will open entirely new dynamical realms that cannot be described
in any effective quantum field theory with a finite number of fields, and
the resulting cosmic histories will avoid or overcome the limitations of con-
temporary models. While this enticing prospect has inspired work in string
cosmology for more than two decades, in our opinion string theory is not
yet understood at the level required for such a dramatic step. Even the low-
energy effective actions governing the interactions of massless string states
in non-supersymmetric vacua are not adequately characterized at present,
while computing dynamics driven by the full tower of massive strings is a
distant dream. Fundamental advances in understanding time-dependent so-
lutions of string theory with string scale curvatures will be required if we are
to move outside the aegis of the effective theory for the massless modes. In
this book we will restrict our attention to conservative applications of string
theory to the study of inflation: we will survey the substantial literature in
which string theory underpins or informs inflationary effective theories, but
does not replace them outright.

The task of making predictions in string theory is overshadowed by the
problem of the landscape, i.e. the fact that string theory has an astronom-
ical number of vacua (see [44] for a review). Although the dynamics that
populates the landscape is poorly understood, false vacuum eternal infla-
tion seems to be an unavoidable consequence. The cosmological constant
problem, the question of pre-inflationary initial conditions, and the chal-
lenge of defining a probability measure for eternal inflation are all facets
of the fundamental problem of understanding the landscape and making
predictions within it. The number of vacua is too large for enumeration to
be a realistic possibility [45], but it does not follow that in the landscape,
‘everything goes’. Instead, there seem to exist strong structural constraints
on the properties of the vacua in the landscape. For example, axion decay
constants appear to be smaller than the Planck mass in all computationally
controllable vacua [46,47]. As we will see, this has important consequences
for inflationary model-building in the context of string theory. Moreover,
all four-dimensional de Sitter vacua in supersymmetric string theories are
metastable, essentially because ten-dimensional Minkowski space is super-
symmetric and therefore has zero energy, while a de Sitter solution has
positive vacuum energy. Constructing a metastable de Sitter solution is
much more difficult than finding a supersymmetric vacuum, and correspond-
ingly, determining the prevalence of de Sitter vacua is far more subtle than
counting supersymmetric solutions. In fact, de Sitter solutions appear to
be exponentially sparse in comparison to unstable saddle points [48]. The
formidable challenges of constructing and surveying the landscape compel
us to understand dynamical selection effects in the early universe, but we
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have yet to see the first glimmering of a solution.

The organization of this book is as follows: in Chapter 1, we define in-
flation as an extended period of quasi-de Sitter evolution, and show how
quantum fluctuations during this era lead to primordial density fluctua-
tions and anisotropies in the CMB. We review the current observational
evidence in favor of the inflationary hypothesis. In Chapter 2, we discuss
the effective field theory approach to the physics of inflation. We explain
why the effective theories supporting inflation are unusually sensitive to UV
physics, and highlight the importance of symmetries for the radiative sta-
bility of inflationary models. In Chapter 3, we provide the groundwork for
a discussion of inflation in string theory. We first give a brief overview of
string theory, emphasizing those aspects that are particularly relevant for
research in string cosmology. We examine string compactifications, discuss
some leading mechanisms for moduli stabilization, and critically analyze
proposals for metastable de Sitter vacua. In Chapter 4, we then outline
how inflation can arise in this context. In Chapter 5, we provide a more
detailed discussion of several classes of inflationary models in string theory.
We end, in Chapter 6, by describing some challenges and opportunities for
the field.

In an effort to make this book self-contained, and accessible for a reader
who is entering the field, we have included extensive background mate-
rial in the appendices.2 In Appendix A, we collect mathematical concepts,
definitions, and results that will be helpful for following the discussion in
Chapters 3–5. In Appendix B, we present the effective theory of adiabatic
fluctuations during inflation [50, 51]. In Appendix C, we introduce cosmo-
logical perturbation theory and derive the primordial perturbations from
inflation.

We are indebted to our colleagues and collaborators for sharing their
insights on the material presented in this book. Special thanks go to Pe-
ter Adshead, Nima Arkani-Hamed, Valentin Assassi, Thomas Bachlechner,
Neil Barnaby, Cliff Burgess, Anthony Challinor, Xingang Chen, Miranda
Cheng, David Chernoff, Michele Cicoli, Joseph Conlon, Paolo Creminelli,
Sera Cremonini, Csaba Csáki, Anne Davies, Anatoly Dymarsky, Richard
Easther, Raphael Flauger, Daniel Green, Michael Green, Arthur Hebecker,
Shamit Kachru, Renata Kallosh, Marc Kamionkowski, Igor Klebanov, Ei-
ichiro Komatsu, Hayden Lee, Andrei Linde, Connor Long, Juan Maldacena,
David Marsh, Paul McGuirk, Alberto Nicolis, Enrico Pajer, Hiranya Peiris,
Maxim Perelstein, Rafael Porto, Fernando Quevedo, Sébastien Renaux-
Petel, Raquel Ribeiro, Leonardo Senatore, David Seery, Paul Shellard, Eva

2
The appendices will appear in the final version of the book [49], but are omitted from
the arXiv version.
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Silverstein, Marko Simonović, David Spergel, Paul Steinhardt, Andrew Tol-
ley, David Tong, Sandip Trivedi, Henry Tye, Erik Verlinde, Herman Ver-
linde, Filippo Vernizzi, Yi Wang, Scott Watson, Alexander Westphal, Timm
Wrase, Gang Xu, and Matias Zaldarriaga.

We are grateful to Valentin Assassi, Marcus Berg, Michele Cicoli, Joseph
Conlon, Daniel Green, Emil Martinec, Enrico Pajer, and Fernando Quevedo
for comments on the draft, and we are particularly indebted to John Stout
and Alexander Westphal for extensive corrections.

Finally, we thank our editor, Vince Higgs of Cambridge University Press,
for his guidance and support.

D.B. gratefully acknowledges support from the European Research Coun-
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Notation and Conventions

Throughout this book, we will employ natural units with ~ = c ≡ 1. More-
over, the reduced Planck mass,

M−2
pl ≡ 8πG =

(
2.4× 1018 GeV

)−2
,

is often set equal to one.

Our metric signature is mostly plus, (− + + + · · · ). We use t for phys-
ical time and τ for conformal time. We denote ten-dimensional spacetime
coordinates by XM , four-dimensional spacetime coordinates by xµ, three-
dimensional spatial coordinates by xi, and three-dimensional vectors by x.
The coordinates of extra dimensions are ym. Worldsheet coordinates of
strings and branes are σa. The spacetime metric in ten dimensions is GMN ,
while for the four-dimensional counterpart we use gµν . The spatial 3-metric
of the extended spacetime is gij , while the spatial 6-metric of the compact

space is gmn. The worldsheet metric is hab. The notation (∂φ)2 means

gµν∂µφ∂νφ or GMN∂Mφ∂Nφ, depending on the context.

The letter π stands both for 3.14159 · · · and for the Goldstone boson of
spontaneously broken time translations. We use R (not ζ) for the curvature
perturbation in comoving gauge. Our Fourier convention is

Rk =

∫
d3xR(x) eik·x .

The power spectrum for a statistically homogeneous field is defined by

〈RkRk
′〉 = (2π)3PR(k)δ(k + k′) .

We also use the dimensionless power spectrum

∆2
R(k) ≡ k3

2π2PR(k) .

14
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The Hubble slow-roll parameters are

ε ≡ − Ḣ

H2 , η̃ ≡ ε̇

Hε
,

where overdots stand for derivatives with respect to physical time t. The
potential slow-roll parameters are

ε ≡
M2

pl

2

(
V ′

V

)2

, η ≡M2
pl
V ′′

V
,

where primes are derivatives with respect to the inflaton φ, and V (φ) is the
potential energy density.

We define the string length and the string mass, respectively, as

`2s ≡ α
′ , M2

s ≡
1

α′
,

where α′ is the Regge slope. Beware of factors of 2π in alternative defini-
tions of these quantities in the literature. The ten-dimensional gravitational
coupling is

2κ2 = (2π)7(α′)4 .



1
Inflation: Theory and Observations

A fundamental observational fact about our universe is that on large scales it
is well-described by the spatially flat Friedmann-Robertson-Walker (FRW)
metric

ds2 = −dt2 + a2(t)dx2 . (1.1)

In §1.1, we first explain why the homogeneity, isotropy, and flatness of the
universe encoded in (1.1) are puzzling in the standard cosmology. We then
show how an early phase of quasi-de Sitter evolution drives the primordial
universe towards these conditions, even if it started in an inhomogeneous,
anisotropic, and curved initial state. In §1.2, we argue that quantum fluctu-
ations during inflation are the origin of all structure in the universe, and we
derive the power spectra of scalar and tensor fluctuations. In §1.3, we de-
scribe the main cosmological observables, which are used, in §1.4, to obtain
constraints on the inflationary parameters. We then review recent experi-
mental results. Finally, in §1.5, we discuss future prospects for testing the
physics of inflation with cosmological observations.

1.1 Horizon Problem

1.1.1 Radiation-Dominated Universe

To discuss the causal structure of the FRW spacetime, we write the metric
(1.1) in terms of conformal time:

ds2 = a2(τ)
[
−dτ2 + dx2

]
, (1.2)

so that the distance |∆x| (the comoving distance) that a particle can travel
between times τ1 and τ2 = τ1 + ∆τ is simply |∆x| = ∆τ , for any a(τ). In
the standard Big Bang cosmology, the expansion at early times is driven
by the energy density of radiation, and by tracing the evolution backward

16



1.1 Horizon Problem 17

one finds that a → 0 at sufficiently early times, and the metric becomes
singular at this point. We choose coordinates so that the initial singularity
is at t = 0. At some time t > 0, the maximum comoving distance a particle
can have traversed since the initial singularity (a.k.a the particle horizon)
is given by

∆τ =

∫ t

0

dt′

a(t′)
=

∫ a

0

d ln a

aH
, where H ≡ 1

a

da

dt
. (1.3)

During the standard Big Bang evolution, ä < 0 and the comoving Hubble
radius (aH)−1 = (ȧ)−1 grows with time. The integral in (1.3) is therefore
dominated by the contributions from late times. This leads to the so-called
horizon problem. The amount of conformal time that elapses between the
singularity and the formation of the cosmic microwave background (an event
known as recombination) is much smaller than the conformal time between
recombination and today (see fig. 1.1). Quantitatively, one finds that points

1000 10 3 1 0 1 1000

0.2

0.4

0.6
0.8
1.0

0.01

0.1

0.001

Hu
bb

le 
sp

he
re

now

ligh
t c

one

comoving distance [Glyr]

sc
al

e 
fa

ct
or

co
nf

or
m

al
 ti

m
e 

[G
yr

]

-40 -20 0 20 40

50

40

30

20

10

0

3 10

CMB

Fig. 1.1. Spacetime diagram illustrating the horizon problem in comoving coor-
dinates (figure adapted from [52]). The dotted vertical lines correspond to the
worldlines of comoving objects. We are the central worldline. The current red-
shifts of the comoving galaxies are labeled on each worldline. All events that we
currently observe are on our past light cone. The intersection of our past light
cone with the spacelike slice labeled CMB corresponds to two opposite points on
the CMB surface of last-scattering. The past light cones of these points, shaded
gray, do not overlap, so the points appear never to have been in causal contact.

in the CMB that are separated by more than one degree were never in
causal contact, according to the standard cosmology: their past light cones
do not overlap before the spacetime is terminated by the initial singularity.
Yet their temperatures are observed to be the same to one part in 104.
Moreover, the observed temperature fluctuations are correlated on what
seem to be superhorizon scales at recombination. Not only must we explain
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why the CMB is so uniform, we must also explain why its small fluctuations
are correlated on apparently acausal scales.
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Fig. 1.2. Inflationary solution to the horizon problem. The comoving Hubble
sphere shrinks during inflation and expands during the conventional Big Bang
evolution (at least until dark energy takes over). Conformal time during inflation
is negative. The spacelike singularity of the standard Big Bang is replaced by
the reheating surface: rather than marking the beginning of time, τ = 0 now
corresponds to the transition from inflation to the standard Big Bang evolution.
All points in the CMB have overlapping past light cones and therefore originated
from a causally connected region of space.

1.1.2 Cosmic Inflation

To address the horizon problem, we may postulate that the comoving Hub-
ble radius was decreasing in the early universe, so that the integral in (1.3)
is dominated by the contributions from early times. This introduces an ad-
ditional span of conformal time between the singularity and recombination
(see fig. 1.2): in fact, conformal time now extends to negative values. If the
period of decreasing comoving Hubble radius is sufficiently prolonged, all
points in the CMB originate from a causally connected region of space. The
observed correlations can therefore result from ordinary causal processes at
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early times.
In an expanding universe, a shrinking comoving Hubble sphere implies

d

dt
(aH)−1 = −1

a

[
Ḣ

H2 + 1

]
< 0 ⇒ ε ≡ − Ḣ

H2 < 1 . (1.4)

We will take the slow evolution of the Hubble parameter, ε < 1, as our
definition of inflation. This definition includes, but is not limited to, the
dynamics of a slowly rolling scalar field (see §2.2.1). In the de Sitter limit,
ε→ 0, the space grows exponentially,

a(t) ∝ eHt , (1.5)

with H ≈ const.
Inflationary expansion requires a somewhat unconventional matter con-

tent. In a spatially-flat FRW universe supported by a perfect fluid, the
Einstein equations lead to the Friedmann equations

3M2
plH

2 = ρ , (1.6)

6M2
pl(Ḣ +H2) = −(ρ+ 3P ) , (1.7)

where ρ and P are the energy density and pressure of the fluid. Combining
(1.6) and (1.7), we find

2M2
plḢ = −(ρ+ P ) , (1.8)

and hence

ε =
3

2

(
1 +

P

ρ

)
. (1.9)

Inflation therefore occurs when P < −1
3ρ, corresponding to a violation of

the strong energy condition (SEC).1 One simple energy source that can drive
inflation is a positive potential energy density of a scalar field with negligible
kinetic energy, but we will encounter a range of alternative mechanisms.

1.2 Primordial Perturbations

With the new cosmology the universe must have been started off in some

very simple way. What, then, becomes of the initial conditions required by

dynamical theory? Plainly there cannot be any, or they must be trivial. We

are left in a situation which would be untenable with the old mechanics.

If the universe were simply the motion which follows from a given scheme

of equations of motion with trivial initial conditions, it could not contain

1
For a perfect fluid, the SEC states that ρ+ P ≥ 0 and ρ+ 3P ≥ 0.
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the complexity we observe. Quantum mechanics provides an escape from the

difficulty. It enables us to ascribe the complexity to the quantum jumps, lying

outside the scheme of equations of motion. The quantum jumps now form

the uncalculable part of natural phenomena, to replace the initial conditions

of the old mechanistic view.

P. A. M. Dirac [53].

Inflation not only explains the homogeneity of the universe, but also pro-
vides a mechanism to create the primordial inhomogeneities required for
structure formation [12–17]. This process happens automatically when
we treat the inflationary de Sitter phase quantum mechanically. Here,
we briefly sketch the quantum generation of primordial fluctuations. We
also present the modern view of inflation as a symmetry breaking phe-
nomenon [50,51]. For more details, see Appendices B and C.

1.2.1 Goldstone Action

By definition, inflation is a transient phase of accelerated expansion, corre-
sponding approximately, but not exactly, to a de Sitter solution. In order for
inflation to end, the time-translation invariance present in an eternal de Sit-
ter spacetime must be broken. The slow evolution of the Hubble parameter
H(t) serves as a clock that measures the progress of inflation, breaking time
translation invariance and defining a preferred time slicing of the spacetime.
The isometries of de Sitter space, SO(4, 1), are spontaneously broken down
to just spatial rotations and translations. It is often useful to think of the
time slicing as being defined by the time-dependent expectation value ψm(t)
of one or more bosonic fields ψm.

Fig. 1.3. Time-dependent background fields ψm(t) introduce a preferred time slic-
ing of de Sitter space.

As with spontaneously broken symmetries in flat-space quantum field
theory (see e.g. [54]), the broken symmetry is nonlinearly realized by a
Goldstone boson. Focusing on symmetry breaking and on the physics of
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the Goldstone boson allows a model-insensitive description of fluctuations
during inflation [51]. In particular, we can defer consideration of the dy-
namics that created the background evolution H(t), though ultimately we
will return to explaining the background.

The Goldstone boson associated with the spontaneous breaking of time
translation invariance is introduced as a spacetime-dependent transforma-
tion along the direction of the broken symmetry, i.e. as a spacetime-dependent
shift of the time coordinate [50]

U(t,x) ≡ t+ π(t,x) . (1.10)

The Goldstone mode π parameterizes adiabatic fluctuations of the fields
ψm, i.e. perturbations corresponding to a common, local shift in time of the
homogeneous fields

δψm(t,x) ≡ ψm
(
t+ π(t,x)

)
− ψm(t) . (1.11)

The Einstein equations couple the Goldstone boson π to metric fluctua-
tions δgµν . A convenient gauge for describing these fluctuations is the spa-
tially flat gauge, where the spatial part of the metric is unperturbed

gij = a2(t)δij . (1.12)

The remaining metric fluctuations δg00 and δg0i are related to π by the
Einstein constraint equations. The dynamics of the coupled Goldstone-
metric system can therefore be described by π alone.

A second description of the same physics is sometimes convenient, espe-
cially in the cosmological context. First, we note that, for purely adiabatic
fluctuations, we can perform a time reparameterization that removes all
matter fluctuations, δψm 7→ 0. This takes us to comoving gauge, where the
field π has been ‘eaten’ by the metric gµν . The spatial part of the metric
can now be written as

gij = a2(t)e2R(t,x) δij , (1.13)

where R is called the comoving curvature perturbation. The other compo-
nents of the metric are related to R by the Einstein constraint equations
(see Appendix C). The relationship between π (in spatially flat gauge) and
R (in comoving gauge) is

R = −Hπ + · · · , (1.14)

where the ellipses denotes terms that are higher order in π. This links the
comoving curvature perturbation R with the Goldstone boson π of sponta-
neous symmetry breaking during inflation [55,56].
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The Goldstone mode π exists in every model of inflation. In single-field
inflation, π is the unique fluctuation mode [51], while in multi-field inflation,
additional light fields can contribute toR: see Appendix B. As we will see in
Chapter 4, string theory strongly motivates considering scenarios in which
multiple fields are light during inflation. However, from a purely bottom-up
perspective, extra light fields during inflation are not required by present
observations, and in this section we will focus on the minimal case of a single
light field.

One can learn a great deal about the CMB perturbations by studying the
Goldstone boson fluctuations alone. The physics of the Goldstone boson is
described by the low-energy effective action for π, which can be obtained
by writing down the most general Lorentz-invariant action for the field U ≡
t+ π:

S =

∫
d4x
√
−gL[U, (∂µU)2,�U, · · · ] . (1.15)

The action (1.15) is manifestly invariant under spatial diffeomorphisms, but
because π transforms nonlinearly under time translations, one says that time
translation symmetry is nonlinearly realized in (1.15). Expanding (1.15) in
powers of π and derivatives gives the effective action for the Goldstone mode.
We derive the Goldstone action in detail in Appendix B, via an alternative
geometric approach [50, 51], and present only the main results here. At
quadratic order in π, and to leading order in derivatives, one finds

S(2)
π =

∫
d4x
√
−g

M2
pl|Ḣ|
c2
s

[
π̇2 − c2

s

a2 (∂iπ)2 + 3εH2π2

]
, (1.16)

where (∂iπ)2 ≡ δij∂iπ∂jπ. Since Lorentz symmetry is broken by the time-
dependence of the background, we have the possibility of a nontrivial speed
of sound cs; standard slow-roll inflation (see §2.2.1) is recovered for cs = 1.
The field π has a small mass term, which arises from the mixing between π
and the metric fluctuations. Using (1.14), we can write (1.16) in terms of
the curvature perturbation R,

S
(2)
R =

1

2

∫
d4x a3 y2(t)

[
Ṙ2 − c2

s

a2 (∂iR)2

]
, (1.17)

where
y2 ≡ 2M2

pl
ε

c2
s

. (1.18)

The field R is therefore massless, implying — as we shall see — that it is
conserved on superhorizon scales [55].

For simplicity, we will assume that ε and cs are nearly constant, so that
the overall normalization of the action can be absorbed into the definition
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of a new, canonically-normalized, field

v ≡ yR =

∫
d3k

[
vk(t) ak e

ik·x + c.c.
]
. (1.19)

We have written v in terms of time-independent stochastic parameters ak
and time-dependent mode functions vk(t). The mode functions satisfy the
Mukhanov-Sasaki equation

v̈k + 3H v̇k +
c2
sk

2

a2 vk = 0 . (1.20)

This is the equation of a simple harmonic oscillator with a friction term
provided by the expanding background. The oscillation frequency depends
on the physical momentum and is therefore time-dependent:

ωk(t) ≡
csk

a(t)
. (1.21)

At early times (small a), ωk � H for all modes of interest. In this limit,
the friction is irrelevant and the modes oscillate. However, the frequency of
each mode drops exponentially during inflation. At late times (large a), the
dynamics is dominated by friction and the mode has a constant amplitude.
We say that the mode ‘freezes’ at horizon crossing, i.e. when ωk(t?) = H or
csk = aH(t?). It is these constant superhorizon fluctuations that eventually
become the density fluctuations that we observe in the CMB or in LSS (see

fig. 1.4).2

1.2.2 Vacuum Fluctuations

The initial conditions for v (or R) are computed by treating it as a quantum
field in a classical inflationary background spacetime. This calculation has
become textbook material [57, 58] and can also be found in many reviews
(e.g. [27, 59]). We present the details in Appendix C. Here, we will restrict
ourselves to a simplified, but intuitive, computation [60].

The Fourier modes of the classical field v are promoted to quantum op-
erators

v̂k = vk(t)âk + h.c. (1.22)

We have seen that at sufficiently early times all modes of cosmological inter-
est were deep inside the Hubble radius. In this limit, each mode behaves as

2
Recall that we are assuming adiabatic initial conditions. The presence of entropy per-
turbations, as in multi-field models, can complicate the relation between the curvature
perturbations at horizon crossing and the late-time observables.
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Fig. 1.4. The evolution of curvature perturbations during and after inflation: the
comoving horizon (aH)−1 shrinks during inflation and grows in the subsequent
FRW evolution. This implies that comoving scales (csk)−1 exit the horizon at
early times and re-enter the horizon at late times. In physical coordinates, the
Hubble radius H−1 is constant and the physical wavelength grows exponentially,
λ ∝ a(t) ∝ eHt. For adiabatic fluctuations, the curvature perturbations R do not
evolve outside of the horizon, so the power spectrum PR(k) at horizon exit during
inflation can be related directly to CMB observables at late times.

an ordinary harmonic oscillator. The operators âk play the role of the anni-
hilation operators of the quantum oscillators. The vacuum state is defined
by âk|0〉 = 0. The oscillation amplitude will experience the same zero-point

fluctuations as an oscillator in flat space, 〈0|v̂kv̂k′ |0〉 = (2π)3|vk|
2δ(k + k′),

where

|vk|
2 =

1

a3

1

2ωk
. (1.23)

The factor of a−3 arises from the physical volume element in the Lagrangian
(1.17)—note that the Fourier mode vk was defined using the comoving coor-
dinates rather than the physical coordinates. The second factor, 1/(2ωk), is
the standard result for the variance of the amplitude of a harmonic oscillator
in its ground state. (In inflation, this state is the Bunch-Davies vacuum.)
As long as the physical wavelength of the mode is smaller than the Hubble
radius, the ground state will evolve adiabatically. Eq. (1.23) then continues
to hold and the precise time at which we define the initial condition is not
important. Once a given mode gets stretched outside the Hubble radius, the
adiabatic approximation breaks down and the fluctuation amplitude freezes
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at

|vk|
2 =

1

2

1

a3
?

1

csk/a?
, (1.24)

where a? is the value of the scale factor at horizon crossing,

csk

a?
= H . (1.25)

Combining (1.25) and (1.24), we get

|vk|
2 =

1

2

H2

(csk)3 , (1.26)

where from now on it is understood implicitly that the right-hand side is
evaluated at horizon crossing.

1.2.3 Curvature Perturbations

Using (1.19), we obtain the power spectrum of primordial curvature pertur-
bations

PR(k) ≡ |Rk|
2 =

1

4

H4

M2
pl|Ḣ|cs

1

k3 . (1.27)

The variance in real space is 〈R2〉 =
∫

d ln k ∆2
R(k), where we have defined

the dimensionless power spectrum

∆2
R(k) ≡ k3

2π2PR(k) =
1

8π2

H4

M2
pl|Ḣ|cs

. (1.28)

Since the right-hand side is supposed to be evaluated at horizon crossing,
csk = aH, any time dependence of H and cs translates into a scale de-
pendence of the power spectrum. Scale-invariant fluctuations correspond to
∆2
R(k) = const., and deviations from scale invariance are quantified by the

spectral tilt

ns − 1 ≡ d ln ∆2
R

d ln k
= −2ε− η̃ − κ , (1.29)

where we have defined two additional expansion parameters,

η̃ ≡ ε̇

Hε
and κ ≡ ċs

Hcs
. (1.30)

Inflationary backgrounds typically satisfy {ε, |η̃|, |κ|} � 1 and hence predict
ns ≈ 1. Inflation would not end if the slow-roll parameters vanished, so
importantly we also expect a finite deviation from perfect scale-invariance,
ns 6= 1.
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1.2.4 Gravitational Waves

Arguably the cleanest prediction of inflation is a spectrum of primordial
gravitational waves. These are tensor perturbations to the spatial metric,

gij = a2(t)(δij + 2hij) , (1.31)

where hij is transverse and traceless. Expanding the Einstein-Hilbert action
leads to the quadratic action for the tensor fluctuations:

S
(2)
h =

1

2

∫
d4x a3 y2

[
(ḣij)

2 − 1

a2 (∂khij)
2

]
, (1.32)

where

y2 ≡ 1

4
M2

pl . (1.33)

The structure of the action is identical to that of the scalar fluctuations,
eq. (1.17), except that tensors do not have a nontrivial sound speed and
the relation to the canonically-normalized field does not include ε, because
at linear order tensors do not feel the symmetry breaking due to the back-
ground evolution. The quantization of tensor fluctuations is therefore the
same as for the scalar fluctuations. In particular, eq. (1.26) applies to each
polarization mode of the gravitational field. Adding the power spectra of
the two polarization modes, one finds [61]

∆2
h(k) ≡ k3

2π2Ph(k) =
2

π2

H2

M2
pl

, (1.34)

where the right-hand side is evaluated at horizon crossing, k = aH. While
the power spectrum of scalar fluctuations, eq. (1.28), depends on H, Ḣ, and
cs, the power spectrum of tensor fluctuations is only a function of the de
Sitter expansion rate H. Tensor fluctuations are therefore a direct probe of
the energy scale at which inflation took place. The scale-dependence of the
tensor modes is determined by the time-dependence of H,

nt ≡
d ln ∆2

h

d ln k
= −2ε . (1.35)

Observational constraints on tensor modes are usually expressed in terms
of the tensor-to-scalar ratio

r ≡ ∆2
h

∆2
R
. (1.36)

Since the amplitude of scalar fluctuations has been measured, the tensor-
to-scalar ratio quantifies the size of the tensor fluctuations. Using (1.34),
we can write

H

Mpl
= π∆R(k?)

√
r

2
, (1.37)
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which on substituting ∆R(k?) = 4.7× 10−5 becomes

H = 3× 10−5
( r

0.1

)1/2
Mpl . (1.38)

Detecting inflationary tensor perturbations at the level r & 0.1 would im-

ply that the expansion rate during inflation was about 10−5Mpl. This is
sometimes expressed in terms of the energy scale of inflation

Einf ≡ (3H2M2
pl)

1/4 = 8× 10−3
( r

0.1

)1/4
Mpl . (1.39)

Note that reducing r by four orders of magnitude reduces Einf by only one
order of magnitude. Gravitational waves from inflation are only observable
if inflation occurred near the GUT scale, Einf ∼ 10−2Mpl ∼ 1016 GeV.

1.3 Cosmological Observables

When the curvature perturbation R re-enters the horizon it sources fluc-
tuations in the primordial plasma. These matter perturbations evolve into
anisotropies in the cosmic microwave background (CMB) [57,62] and inho-
mogeneities in the large-scale structure (LSS). In this section, we describe
these key cosmological observables. In the next section, we will show how
these observables are used to constrain both the composition of the universe
and its initial conditions.

1.3.1 CMB Anisotropies

In the very early universe, photons had a small mean free path due to the
high density of charged particles. At a temperature of about 0.3 eV, the
formation of neutral hydrogen,

e+ p→ H + γ , (1.40)

termed recombination, became entropically favored. The free electron den-
sity dropped rapidly and Thomson scattering between electrons and pho-
tons, e + γ ↔ e + γ, became inefficient: the photons decoupled. Since the
moment of last scattering at t ≈ 380, 000 yrs, these primordial photons have
been streaming freely through the universe, reaching our detectors 13.7 bil-
lion years later [63]. The observed frequency spectrum is that of an almost
perfect black body with a mean temperature T̄ = 2.72548± 0.00057 K [64].
Fig. 1.5 shows the variation of the CMB temperature as a function of direc-
tion n on the sky,

∆T (n) ≡ T (n)− T̄ . (1.41)
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Fig. 1.5. CMB anisotropies as observed by the Planck satellite. Red (blue) spots
are hotter (colder) than the average temperature, reflecting density variations at
recombination.

These anisotropies reflect inhomogeneities in the density of the primordial
plasma, which can be traced back to the curvature perturbations calculated
in the previous section.

For Gaussian initial conditions, complete information about the tempera-
ture map is contained in the correlations between the temperatures at pairs
of distinct points n and n′,

C(θ) ≡
〈

∆T

T̄
(n)

∆T

T̄
(n′)

〉
, (1.42)

where cos θ ≡ n · n′, and the angle brackets denote an ensemble average.3

It is convenient to describe the same information in harmonic space, by
expanding the temperature field in spherical harmonics,

∆T (n)

T̄
=
∞∑
`=0

+∑̀
m=−`

a`mY`m(n) . (1.43)

where ` and m are eigenvalues of differential operators on the sphere, with
∇2Y`m = −`(` + 1)Y`m and ∂φY`m = imY`m. Reality of the temperature

field imposes a∗`m = (−1)ma`−m. Statistical isotropy constrains the two-
point correlation function of the multipole moments a`m to be of the form

〈a`ma
∗
`
′
m
′〉 = C` δ``′δmm′ . (1.44)

3
Recall that in §1.2.2 we computed a quantum average. This is related to the ensemble
average after decoherence turns the quantum state into a single classical state of the
ensemble: see e.g. [65–69].
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The angular power spectrum, C`, is the Legendre transform of the two-point
function (1.42):

C` = 2π

∫ 1

−1
d cos θ C(θ)P`(cos θ) . (1.45)

Although the theory predicts ensemble-averaged quantities, we only ob-
serve a single realization of the ensemble. After extracting the multipole
moments of the measured temperature map, we can construct an estimator
for the angular power spectrum,

Ĉ` =
1

2`+ 1

∑
m

|a`m|
2 . (1.46)

This estimator is unbiased, in that 〈Ĉ`〉 = C`. The variance of the estimator
is called cosmic variance:

var(Ĉ`) ≡ 〈Ĉ`Ĉ`〉 − 〈Ĉ`〉
2 =

2

2`+ 1
C2
` . (1.47)

This irreducible error arises from having only 2`+1 modes at each multipole
moment ` to estimate the variance of their distribution. Fig. 1.6 shows
the CMB power spectrum as measured by the Planck satellite. The error
bars include both cosmic variance and measurement noise, but the former
dominates up to ` ∼ 2000.

The shape of the CMB power spectrum is well-understood theoretically.
Before neutral hydrogen formed, photons and baryons were strongly coupled
and acted as a single fluid in which the photon pressure sustained acoustic
oscillations (i.e. sound waves) driven by the gravitational force induced by
the curvature perturbations. The observed CMB fluctuations are a snapshot
of these density waves. For adiabatic initial conditions, the angular power
spectrum is predicted to be

C` =

∫
d ln k∆2

R(k)T 2
` (k) , (1.48)

where the transfer function T`(k) describes both the evolution of the initial
fluctuations from the moment of horizon entry to the time of recombination,
as well as the projection from recombination to today [57, 62]. Since the
transfer function depends only on known physics it is computable using a set
of coupled Einstein-Boltzmann equations for the primordial plasma [70,71].
The knowledge of T`(k) allows us to use the observed C` as a probe of the
initial conditions ∆R(k). The theoretical curve in fig. 1.6 assumes a nearly
scale-invariant spectrum as predicted by inflation.
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Fig. 1.6. The power spectrum of CMB temperature anisotropies measured by
the Planck satellite (figure adapted from [8]). Plotted is the combination D` ≡
`(` + 1)C`/2π. Shown are both the data for individual multipoles (gray points),
as well as binned averages (blue points with error bars). The lower plot shows the
residuals with respect to the best-fit ΛCDM model.

1.3.2 CMB Polarization

Recombination was not an instantaneous process. In the time it took pro-
tons and electrons to combine into neutral hydrogen, the photons developed
a quadrupole anisotropy in the local electron rest frame. Thomson scatter-
ing converted this into an anisotropy of the CMB polarization [72–74].

Linear polarization can be measured in terms of the Stokes parameters Q
and U [75]. Let n be the direction of observation and (e1, e2) be a basis of
orthogonal unit vectors. The Stokes parameters are not invariant under a
change of these coordinates, rotating the basis (e1, e2) by an angle ψ leads
to

(Q± iU)′(n) = e∓2iψ(Q± iU)(n) . (1.49)

This identifies Q ± iU as a spin-2 field to be expanded in terms of spin-
weighted spherical harmonics [76]

(Q± iU)(n) =
∑
`m

a±2,`m ±2Y`m(n) . (1.50)

Acting twice with a spin-lowering operator on Q + iU and twice with a
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spin-raising operator on Q− iU produces scalar (spin-0) quantities. These
scalars can be collected according to their transformations under parity (the
operation which takes n into −n):

E(n) ≡ aE,`mY`m(n) , aE,`m ≡ −
a2,`m + a−2,`m

2
, (1.51)

B(n) ≡ aB,`mY`m(n) , aB,`m ≡ −
a2,`m − a−2,`m

2i
. (1.52)

The E-modes are parity-even, while the B-modes are parity-odd. Roughly,
we can think of the E-mode as the gradient of a scalar and the B-mode as
the curl of a vector. Typical E- and B-patterns are shown in fig. 1.7. Given
T , E and B, we can form several types of correlation functions

〈aX,`ma
∗
Y,`
′
m
′〉 = CXY` δ``′δmm′ , X, Y ≡ {T,E,B} . (1.53)

Since B is parity-odd, while T and E are parity-even, we expect CTB` =

CEB` = 0.

E-mode B-mode
(grad) (curl)

Fig. 1.7. Examples of E-mode and B-mode patterns of CMB polarization. While
the E-mode patterns are mirror-symmetric, the B-mode patterns are interchanged
under reflection about a line going through the center.

Discussing polarization in terms of E-modes and B-modes has several dis-
tinct advantages. First of all, unlike the Stokes parameters, the parameters
E and B are independent of the choice of coordinates. More importantly,
symmetry forbids the generation of B-modes by scalar fluctuations [77,78].
B-modes are therefore a crucial signature of the presence of tensor (or vec-
tor) fluctuations.
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1.3.3 Large-Scale Structure

The density perturbations are small at recombination, but under the influ-
ence of gravity they grow [79], eventually forming the large-scale structure of
the universe. A linear order, the initial conditions from inflation are related
to the dark matter density contrast δ ≡ δρ/ρ at redshift z via a transfer
function Tδ(z, k):

Pδ(z, k) = T 2
δ (z, k)PR(k) . (1.54)

On large scales, the transfer function is relatively easy to calculate in pertur-
bation theory [80], while on small scales numerical N-body simulations [81]
are required.

With the exception of gravitational lensing [82–84], we do not measure the
dark matter density δ directly. Instead, we observe biased baryonic tracers
of the dark matter field, such as galaxies, clusters, and Lyα fluctuations:
see the compilation of recent measurements in fig. 1.8. On large scales,
the density contrast of these tracers, δg, has a linear and deterministic
relationship to the underlying dark matter field,

δg(z,x) = b(z)δ(z,x) . (1.55)

where b(z) parameterizes the biasing. On small scales, however, the biasing
can become non-linear, non-local and stochastic. This makes it challenging
to relate large-scale observations to the initial conditions.

The Einstein equations couple the oscillations in the photon-baryon fluid
to the dark matter density. The same oscillations that we observe in the
CMB power spectrum are therefore also imprinted in the matter power
spectrum. These oscillations are barely visible in fig. 1.8 between k = 0.01
Mpc−1 and 0.1 Mpc−1. Detections of these baryon acoustic oscillations
(BAO) were first reported in [87, 88] and more fully characterized in [89–
93] (for a review of BAO see [94]). Fig. 1.9 shows the measured matter
two-point function in real space, ξ(r). The BAO feature is clearly visible at
about 100 Mpc.

Both the CMB observations and the BAO observations measure the sound
horizon of the photon-baryon plasma. The observed scale in the CMB
measurements depends on the angular diameter distance to recombina-
tion, DA(zrec). For BAO, the observed scale depends on the (spherically-
averaged) distance to the effective survey redshift z̄, which is a combination
of the angular diameter distance and the Hubble parameter:

DV (z̄) ≡
[
(1 + z̄)2D2

A(z̄)
cz̄

H(z̄)

]1/3

. (1.56)

Comparing CMB and LSS measurements provides important information
about the evolution of the universe after recombination and helps to break
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Fig. 1.8. Compilation of measurements of the matter power spectrum (figure
adapted from [85]).

an important geometric degeneracy [95, 96] that exists in the CMB-only
analysis. Alternatively, the degeneracy can be broken by using the gravita-
tional lensing of the CMB anisotropies [84].

1.4 Current Tests of Inflation

In March 2013, the Planck collaboration released its first cosmological anal-
ysis [8]. Together with the measurements of the CMB damping tail by the
Atacama Cosmology Telescope (ACT) [97,98] and the South Pole Telescope
(SPT) [99, 100] this provides a beautiful picture of the first seven acoustic
peaks of the CMB power spectrum. In this section, we summarize how the
CMB results have tested the physics of inflation [9, 10]. Errors quoted in
this section are 1σ errors (68% limits) unless otherwise specified.

1.4.1 ΛCDM Model

The standard model of cosmology has six free parameters: the physical
baryon density, ωb ≡ Ωbh

2; the physical density of cold dark matter (CDM),

ωc ≡ Ωch
2; the dark energy density, ΩΛ; the optical depth τ ; and the

amplitude As and the spectral index ns in the power law ansatz for the
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Fig. 1.9. Spherically averaged redshift-space correlation function of the CMASS
Data Release 9 (DR9) sample of the Baryonic Oscillation Spectroscopic Survey
(BOSS). The dashed line corresponds to the best-fitting ΛCDM model. (Figure
adapted from [86]).

initial conditions 4

∆2
R(k) = As

(
k

k?

)ns−1

. (1.57)

This simple model provides a superb fit to a wide range of cosmological data,
from CMB to LSS. Fig. 1.6 shows the power spectrum of CMB temperature
fluctuations measured by Planck, as well as the best-fit curve of the ΛCDM
model. Table 1.1 summarizes the best-fit parameters. The Planck data is
precise enough to determine all six parameters at the percent level without
recourse to external datasets. A small degeneracy between τ and As (and/or
ns) is broken by the addition of WMAP low-` polarization data [7] (or
Planck lensing data [101]).

The best-fit value for the scalar amplitude is

As =
(

2.196+0.051
−0.060

)
× 10−9 . (1.58)

A scale-invariant primordial power spectrum is now excluded at almost 6σ
significance,

ns = 0.9603± 0.0073 . (1.59)

4
In the Planck analysis, As and ns are defined at the pivot scale k? = 0.05 Mpc

−1
.
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Parameter Planck · · · + WMAP + ACT CMB + BAO

Ωbh
2

0.02207± 0.00067 0.02207± 0.00054 0.02214± 0.00048

Ωch
2

0.1196± 0.0061 0.1198± 0.0052 0.1187± 0.0034

ΩΛ 0.683± 0.040 0.685± 0.033 0.692± 0.021

τ 0.097± 0.080 0.091± 0.027 0.092± 0.026

10
9
As 2.23± 0.32 2.20± 0.11 2.20± 0.11

ns 0.962± 0.019 0.959± 0.014 0.961± 0.011

Table 1.1. Parameters of the ΛCDM baseline model (with 2σ errors). The first
four parameters describe the composition of the universe, the last two its initial
conditions. The BAO data improves the constraint on ΩΛ. The small-scale CMB
data hardly affect the constraints but help with a characterization of foregrounds,
which becomes essential when going beyond the ΛCDM model.

This result assumes that tensor fluctuations make a negligible contribution
to the temperature fluctuations. Allowing for tensors introduces a new
parameter, the tensor-to-scalar ratio r, cf. (1.36). With earlier datasets,
including r in the fit weakened the evidence for ns < 1, but with Planck
this result is now robust: see figure 1.10 and table 1.3.
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Fig. 1.10. Planck+WMAP+BAO constraints on ns and r (figure adapted
from [9]).
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1.4.2 Inflation after Planck

The Planck collaboration has tested for deviations from the standard as-
sumptions for the initial conditions, such as deviations from Gaussianity,
adiabaticity, power law scaling, and flatness. Here, we summarize their
findings.

Geometry

Inflation very effectively solves the flatness problem [18]. The baseline anal-
ysis of Planck has therefore fixed the curvature parameter to be vanishing,
ΩK = 0. On the other hand, including ΩK in the fit allows a test of
this key prediction of inflation. Table 1.2 shows the constraints on the pa-
rameter ΩK , after marginalizing over the other parameters of the ΛCDM
model. Here, the BAO data plays a crucial role in breaking the geometric
degeneracy between Ωm and H0 and reducing the error on ΩK by an or-
der of magnitude. Even at this new level of precision the observable patch
of the universe is consistent with spatial flatness. Planck has also tested
the isotropy assumption [102]. Except perhaps on the largest scales, the
universe indeed seems to be statistically isotropic.

Parameter Planck · · ·+ WMAP + ACT CMB + BAO

ΩK −0.072± 0.081 −0.037± 0.049 −0.0005± 0.0066

Table 1.2. Constraints on the geometry of the universe (with 2σ errors). The
inclusion of BAO data plays an important role.

Scalar Fluctuations

The observations of the primordial scalar fluctuations are in striking agree-
ment with the predictions of inflation, both qualitatively and quantitatively:

. Coherent phases.—A telling feature of the CMB anisotropies is that
they span superhorizon scales at recombination (corresponding to ` <
200) and have coherent phases. This fact is observed unambiguously
through the low-` peak in the cross-correlation between temperature
fluctuations and E-mode polarization (see fig. 1.11). In the absence
of phase coherence, this peak would disappear [103,104]. It is easy to
see why the inflationary mechanism for generating fluctuations leads
to phase coherence. Modes freeze when their physical wavelengths
become larger than the Hubble radius and only start evolving again
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when they re-enter the horizon. All modes with the same wavenumber
k, but possibly distinct wavevectors k, therefore start their evolution
at the same time. This phase coherence allows for constructive in-
terference of the modes and yields acoustic oscillations in the CMB.
Alternative mechanisms for structure formation involving topological
defects (e.g. cosmic strings, see §4.5.2) source perturbations with in-
coherent phases, smearing out the peaks [105], and are therefore ruled
out by the CMB observations. Isocurvature fluctuations also destroy
some of the phase coherence5 and are hence significantly constrained
by the data (see below).

500 1000 1500 2000

0.4

0.2

0.0

-0.2

-0.4

Fig. 1.11. The cross-correlation of CMB temperature anisotropies and E-mode
polarization (figure adapted from [8]). The curve is not a fit, but a prediction! The
low-` peak is a signature of phase coherence of the initial conditions.

. Power law spectrum.—We have seen above that slow-roll inflation pre-
dicts a power law spectrum with a percent-level deviation from perfect
scale-invariance, which Planck has detected at high significance. At
second order in the slow-roll expansion, inflation predicts a small cor-
rection to the power law spectrum

∆2
R(k) = As

(
k

k?

)ns−1+ 1
2
αs ln(k/k?)

. (1.60)

The data is not yet precise enough to detect the expected running of
the spectrum, αs ∼ (ns − 1)2, and a detection of running at a level

5
In contrived scenarios, causal evolution inside the horizon yields isocurvature perturba-
tions that lead to acoustic peaks [106] — see the review [107].
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accessible to Planck would in fact be in conflict with the inflationary
expectation. It is nevertheless interesting to include αs as a free pa-
rameter in the fit. Table 1.3 summarizes the latest constraints on αs,
which depend on whether the tensor-to-scalar ratio r is included as a
parameter or is set to zero. At present, there are no clear indications
for a departure from the inflationary power law spectrum.

Parameter Planck · · · + WMAP + ACT CMB + BAO

ns 0.963± 0.019 0.960± 0.014 0.962± 0.011

r < 0.115 < 0.117 < 0.119

ns 0.974± 0.030 0.955± 0.015 0.960± 0.012

αs −0.034± 0.035 −0.015± 0.017 −0.013± 0.018

ns 0.976± 0.030 0.957± 0.015 0.959± 0.011

r < 0.228 < 0.230 < 0.235

αs −0.041± 0.037 −0.022± 0.021 −0.022± 0.022

Table 1.3. Constraints on tensor modes and on deviations from the power law
spectrum (with 2σ errors).

Tensor Fluctuations

Tensor modes contribute to the CMB temperature power spectrum in a
specific way and are therefore constrained by the Planck analysis. Fig. 1.10
shows the current constraints on the parameters ns and r. Marginalizing
over ns gives an upper limit on the tensor-to-scalar ratio [9]

r < 0.12 (95% limit) . (1.61)

This constraint is at the limit of what can be achieved with CMB tempera-
ture data alone [108]. To probe smaller values of r requires measurements of
CMB polarization: as we explained in §1.3.2, B-modes are a unique signa-
ture of inflationary tensor modes. The BICEP2 collaboration has recently
reported a detection of primordial B-modes. We discuss this result in §1.4.3.

Non-Gaussianity

The CMB power spectrum in fig. 1.6 reduces the Planck data from about 50
million pixels to 103 multipole moments. This enormous data compression is
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justified if the primordial perturbations are isotropic and Gaussian. On the
other hand, a wealth of information may be contained in deviations from
a perfectly Gaussian distribution [109–111]. Among the primary accom-
plishments of the Planck mission are the significant upper bounds placed
on higher-order CMB correlations, or non-Gaussianity [10]. (For previous
results from WMAP see [112, 113].) This has allowed the study of primor-
dial quantum fields to move beyond the free field limit and start to place
meaningful constraints on interactions.

In §1.2, we computed the two-point function (or power spectrum) of pri-
mordial curvature perturbations,

〈0|R̂k1
R̂k2
|0〉 = (2π)3 PR(k1) δ(k1 + k2) , (1.62)

where |0〉 denotes the vacuum state and R̂ is the quantum operator associ-
ated with the field R. In principle, there is more information in the vacuum
expectation values of higher-order n-point functions. Schematically, we can
write these as the following path integral

〈Ω|R̂k1
· · · R̂kn

|Ω〉 ∝
∫

[DR]Rk1
· · ·Rkn

eiS[R] , (1.63)

where S is the inflationary action and |Ω〉 is the vacuum of the interacting
theory. For a free field theory, the action is a quadratic functional S(2),

cf. eq. (1.17), and the eiS weighting of the path integral is a Gaussian (after
Wick rotating to Euclidean time). All correlation functions with n odd then
vanish, while those with n even are completely determined by the two-point
function (1.62). However, including nontrivial interactions in the action,

Sint = S(3) + S(4) + · · · , makes the eiS weighting of the path integral non-
Gaussian. This allows non-zero n-point functions for all n.

The primary diagnostic for primordial non-Gaussianity is the three-point
function (or bispectrum),

〈Ω|R̂k1
R̂k2
R̂k3
|Ω〉 = (2π)3BR(k1, k2, k3) δ(k1 + k2 + k3) . (1.64)

The delta-function is a consequence of statistical homogeneity: it enforces
that the three momentum vectors form a closed triangle. The momentum
dependence of the bispectrum determines the amount of non-Gaussianity
associated with triangles of different shapes. A useful measure of the size
of the non-Gaussianity is the parameter

fNL ≡
5

18

BR(k, k, k)

P 2
R(k)

, (1.65)

i.e. the normalized amplitude of the bispectrum in the equilateral configu-
ration, k1 = k2 = k3 ≡ k. The momentum dependence of the bispectrum
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BR(k1, k2, k3) potentially contains substantial information about the physics
that generated the primordial perturbations. The Planck analysis [10] has
tested for shapes of non-Gaussianity parameterized by the following tem-
plates:

Blocal ≡
6

5

(
P1P2 + perms.

)
, (1.66)

Bequil ≡
3

5

(
6 (P 3

1P
2
2P3)1/3 − 3P1P2 − 2 (P1P2P3)2/3 + perms.

)
, (1.67)

Bortho ≡
3

5

(
18 (P 3

1P
2
2P3)1/3 − 9P1P2 − 8 (P1P2P3)2/3 + perms.

)
, (1.68)

where Pi ≡ PR(ki). We comment briefly on the physical motivations for
these choices of bispectrum shapes:

. Local non-Gaussianity.—The shape (1.66) arises from the following
ansatz in real space [114,115]:

R(x) ≡ Rg(x) +
3

5
f local

NL

[
R2
g(x)− 〈R2

g〉
]
, (1.69)

where Rg(x) is a Gaussian random field. In momentum space, the sig-
nal peaks for squeezed triangles, e.g. k1 � k2 ∼ k3 (see fig. 1.12). This
shape of non-Gaussianity arises in models of multi-field inflation— see
Appendix C. On the other hand, in single-field inflation (i.e. in models
in which only the adiabatic mode π is excited) the signal vanishes in
the squeezed limit. This important theorem is known as the single-
field consistency relation [116, 117]. Under mild assumptions about
the inflationary action and the initial state, it is possible to show that
the bispectrum in single-field inflation satisfies6

lim
k1→0

BR(k1, k2, k3)

PR(k1)PR(k2)
= (1− ns)� 1 , (1.70)

In terms of the shapes (1.66)–(1.68), this implies that f local
NL � 1, as

only the local shape peaks in the squeezed limit. Observing a signal

in the squeezed limit (f local
NL & 1) would rule out all models of single-

field inflation, not just slow-roll models. Planck has now severely
constrained this possibility (see below).

. Equilateral non-Gaussianity.—Large non-Gaussianity in single-field
inflation can nevertheless arise from higher-derivative interactions [121,

6
This theorem can be interpreted as a Ward identity associated with the non-linearly
realized dilatation symmetry of the background [56, 118–120], and is the analog of the
Adler zero in pion physics.
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Fig. 1.12. Bispectrum of the local ansatz. The signal is peaked for squeezed
triangles.

122]. This leads to signals that peak in equilateral triangle configura-
tions, i.e. k1 ∼ k2 ∼ k3. To characterize this type of non-Gaussianity,
we return to the Goldstone action. At cubic order and to lowest order
in derivatives, we get [51] (see Appendix B for the derivation)

S(3)
π =

∫
d4x
√
−g

M2
plḢ

c2
s

(1− c2
s)

(
π̇(∂iπ)2

a2 +
A

c2
s

π̇3

)
. (1.71)

We have two cubic operators, π̇(∂iπ)2 and π̇3, but only one new param-
eter, A. This is a consequence of the nonlinearly-realized time trans-
lation symmetry, which relates the amplitude of the operator π̇(∂iπ)2

to the sound speed. In DBI inflation (see §5.3) one has A = −1 [40],
while more generally naturalness arguments suggest A ∼ O(1) [113].

Both π̇(∂iπ)2 and π̇3 produce bispectra that are well approximated by
the equilateral template (1.67) (see fig. 1.13).

. Orthogonal non-Gaussianity.—The two equilateral bispectra are not
identical, so one can find a linear combination of the two operators
π̇(∂iπ)2 and π̇3 that is orthogonal in a well-defined sense [123] to the
shape (1.67), and also to the local shape (1.66). This is the orthog-
onal template (1.68) [113]. In terms of the parameters of the La-
grangian (1.71), the signal is mostly of the orthogonal shape — specif-
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Fig. 1.13. Bispectrum of the interaction π̇(∂iπ)2. The signal is peaked for equi-
lateral triangles.

ically, with greater than 70% correlation with the orthogonal template
— for 3.1 . A . 4.2.

The Planck collaboration has reported the following constraints on the am-
plitudes of the templates (1.66), (1.67) and (1.68) [10]:

f local
NL = 2.7± 5.8 , (1.72)

f equil
NL = −42± 75 , (1.73)

fortho
NL = −25± 39 . (1.74)

Eq. (1.72) is a very strong constraint on multi-field inflation. The lim-
its (1.73) and (1.74) are strong, but they do not make a future detection
inconceivable (see §1.5). Observational constraints on the parameters in the
Goldstone action (1.71) are shown in fig. 1.14.

Non-Adiabaticity

As we have seen, single-field inflation predicts initial fluctuations that are
adiabatic. Adiabatic perturbations have the property that the local state of
matter (determined, for example, by the energy density ρ) at some spacetime
point (t,x) of the perturbed universe is the same as in the background
universe at some slightly different time t+π(t,x). That is, some parts of the
universe are ‘ahead’ and others ‘behind’ in the evolution. At recombination,
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Fig. 1.14. Planck constraints on non-Gaussianity in single-field inflation (figure
adapted from [124]). Shown are the 68% and 95% constraints on the sound speed
cs and interaction coefficient A; cf. eq. (1.71).

the universe consists of a mixture of several fluids: photons (γ), baryons
(b), dark matter (c) and neutrinos (ν). For adiabatic initial conditions, the
density perturbations in each species ‘I’ are proportional to the Goldstone
boson of broken time translations

δI(t,x) ≡ ρ̄I(t+ π(t,x))− ρ̄I(t)
ρ̄I(t)

≈
˙̄ρI
ρ̄I
π(t,x) . (1.75)

All matter perturbations therefore have the same density contrast (e.g. δb =
δc) and are proportional to the radiation perturbations (e.g. δc = 3

4δγ). For
adiabatic initial conditions, all species fluctuate synchronously and lead to
the curvature perturbation R.

In multi-field inflation, it is possible to generate so-called isocurvature
perturbations, where an overdensity in one species compensates for an un-
derdensity in another, resulting in no net curvature perturbation. For exam-
ple, we can define the following isocurvature perturbation for dark matter
and photons,

S ≡ δc − 3
4δγ . (1.76)

If this field were significantly different from zero it would lead to a measur-
able effect in the CMB power spectrum.

We digress briefly to describe two classic distinctions between isocurva-
ture perturbations and curvature perturbations, at the level of the acoustic
peaks [125,126]. The first distinction involves the angular positions of suc-
cessive peaks. Adiabatic perturbations from single-field inflation have fixed
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amplitude outside the horizon, and begin to evolve upon entering the hori-
zon. The resulting evolution may be thought of as a cosine mode. The
curvature perturbations sourced by cosmic defects, in contrast, have negli-
gible amplitude as they enter the horizon, and grow subsequently through
causal processes. The result is typically a sine mode. These two cases make
different predictions for the angular positions of subsequent peaks, which
are in the ratio 1 : 2 : 3 in the cosine case, and 1 : 3 : 5 in the sine case. The
relative heights of even and odd peaks provide another means of testing adi-
abaticity. Acoustic peaks corresponding to compression waves — namely,
the odd peaks — are enhanced compared to even peaks in the adiabatic
case, but suppressed compared to even peaks in the isocurvature case.

Definitive evidence against isocurvature models involving causal evolution
inside the horizon, without an inflationary phase, comes from measurements
of CMB polarization. A characteristic signature of these models is that the
temperature and E-mode polarization perturbations are positively corre-
lated on large angular scales [125], while in inflation these perturbations are
anti-correlated. The measurement of TE anti-correlation on superhorizon
scales [127] shows that superhorizon adiabatic perturbations were present
when the CMB decoupled.

Although purely isocurvature perturbations are now ruled out, it is possi-
ble that the observed anisotropies originate from a combination of adiabatic
and isocurvature perturbations. To quantify the isocurvature contribution,
it is conventional to define the relative amplitude of the power spectra of
the isocurvature field and the curvature perturbation

α ≡ PS
PR

. (1.77)

Assuming that S and R are uncorrelated (motivated by axion isocurvature
models[128–130]), Planck has constrained this ratio [9],

α0 < 0.036 . (1.78)

The constraint strengthens if S and R are perfectly correlated (as in curva-
ton isocurvature models [131,132]),

α+1 < 0.0025 . (1.79)

Observing an isocurvature contribution to the primordial fluctuations is
another way to rule out single-field inflation, since only the presence of ad-
ditional light fields can give rise to non-adiabaticity. Unfortunately, the
amplitude of the signal depends on the post-inflationary evolution: the
primordial perturbations become adiabatic if the particles produced after
inflation reach a suitable thermal equilibrium [133]. Correspondingly, ob-
servable isocurvature is possible only when one or more particle species has
an abundance determined by physics beyond thermal equilibrium.
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1.4.3 Inflation after BICEP2

In March 2014, the BICEP2 collaboration announced the first detection of
primordial B-modes [134]. The most straightforward interpretation7 of the
signal seen by BICEP2 is as the imprint of primordial gravitational waves
from quantum fluctuations of the gravitational field during inflation, as in
(1.34). An unambiguous detection of inflationary gravitational waves would

pinpoint the energy scale of inflation at the GUT scale, Einf ∼ 1016 GeV,
and also provide experimental evidence that gravity is quantized. If the
BICEP2 result is confirmed, it will stand as one of the pivotal discoveries
in the history of cosmology.
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Fig. 1.15. E-mode and B-mode maps measured by the BICEP2 experiment (figure
adapted from [134]). An excess over the lensing B-mode is detected with high
signal-to-noise.

The BICEP experiment was designed specifically to search for the pri-

7
Even if the BICEP2 measurement turns out to be correct in every detail, further ex-
perimental and theoretical work will be required to exclude alternative explanations
for a spectrum of primordial gravitational waves, although no alternative is nearly as
compelling as the inflationary prediction. One way to confirm the inflationary origin of
the signal would be by establishing the superhorizon nature of the B-modes at recom-
bination [135].
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mordial B-mode signal on degree angular scales. Located at the South Pole,
it observed a small and exceptionally clean patch of the sky, the ‘Southern
Hole’. The observation frequencies were chosen to avoid contamination from
synchrotron radiation and from emission by dust. The first version of the
experiment, BICEP1, observed at two frequencies: 100 GHz and 150 GHz.
Collecting data from 2006 to 2008, it obtained the first significant upper
limit on r from polarization measurements alone [136]

r < 0.73 (95% limit) . (1.80)

BICEP2 observed at only one frequency, 150 GHz, but with ten times as
many detectors as BICEP1. Data was taken over three seasons from 2010
to 2012. The final polarization maps are shown in fig. 1.15. Even by eye,
the B-mode pattern is clearly visible! The derived B-mode power spectrum
is shown in fig. 1.16. The best-fit value for the tensor-to-scalar ratio is8

r = 0.2+0.07
−0.05 . (1.81)

The null hypothesis r = 0 is rejected at almost 7σ.
The result in (1.81) was obtained without any foreground subtraction.

The signal is large enough to dominate over available estimates of the po-
larized foregrounds (synchrotron and dust), but a more direct and convinc-
ing exclusion of a foreground explanation would be a detection of B-modes
at a second frequency that confirms the expected thermal spectrum of the
cosmological signal. Using foreground models to correct for any residual
foreground contamination tends to reduce the maximum likelihood value of
r, but not by enough to seriously weaken the significance of the claimed
detection.

The BICEP team took exceptional care to test for systematic errors. They
performed a large suite of so-called jackknife tests. Here, the data is split
according to various criteria and then the difference of the two sets is taken.
The signal will cancel but any systematic effects that vary between the two
sets may remain and can therefore be identified. No failures of any jackknife
tests have been reported.

8
The central value of r claimed by BICEP2 seems somewhat in tension with the Planck
upper bound (1.61). This issue is currently under active investigation [137, 138], so we
will limit ourselves to a few remarks on this issue. Most importantly, the measured
r has not yet stabilized to changes in the analysis. For example, there is still a large
spread in the maximum likelihood values of r for different models of foregrounds, roughly
0.12 < r < 0.21. We therefore caution against a premature judgement of the issue. Even
if the apparent tension survives further scrutiny, it has to be recognized that Planck and
BICEP are sensitive to tensors in different ways. While BICEP measures tensors quite
directly via their imprint on B-mode polarization, Planck constrains the combined effect
of tensors and scalars on the temperature power spectrum. The Planck constraint on
r is therefore model-dependent and weakens if the scalar power is suppressed on large
scales.
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Fig. 1.16. B-mode power spectrum measured by BICEP2, as well as 95% upper
limits from several previous experiments (figure adapted from [134]). Also shown
is the best-fit theoretical curve for r = 0.2. This has two components: one from
primordial tensors that peaks around ` ∼ 80, and one from the lensing conversion
of E-modes that peaks around ` ∼ 1000.

Despite the strong evidence already provided by BICEP2, a detection of
primordial B-modes is such a significant result that one should insist on
confirmation by a second, independent experiment looking at a different
part of the sky. There are many experiments looking for B-modes on degree
scales, including KeckArray [139], EBEX [140], SPIDER [141], ABS [142],
and CLASS [143]); and on arcminute scales, including POLARBEAR [144],
SPTpol [145], and ACTpol [146]). Finally, given the size of the signal seen
by the BICEP2 collaboration, the Planck satellite has a chance to see the
reionization peak in the B-mode spectrum at low `.

1.5 Future Tests of Inflation

Cosmological observations show no signs of slowing down. CMB observa-
tions continue to provide important measurements of the primordial fluc-
tuations, especially on small angular scales [97–100]. A large number of
ground-based and balloon-borne experiments are targeting high-precision
measurements of CMB polarization. Current and future large-scale struc-
ture surveys will provide additional information (see table 1.4). In this
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section, we discuss what one can hope to learn from measuring the pri-
mordial perturbations with increased precision and over a wider range of
scales.

1.5.1 Tensor Tilt

In inflation, the tilt of the tensor spectrum is related to the time-evolution
of the Hubble parameter:

nt = 2
Ḣ

H2 . (1.82)

Finding a nearly scale-invariant spectrum, |nt| � 1, would confirm that

|Ḣ| � H2 in the early universe. Since |Ḣ| � H2 was our definition of
inflation in §1.1.2, this would be as much of a ‘proof’ of inflation as we can
ever hope to get.

The sign of nt is also informative. Consider a spatially-flat FRW universe
filled with a perfect fluid with pressure P and energy density ρ. From (1.8)
we see that Ḣ > 0 is only possible if ρ+P > 0, corresponding to a violation
of the null energy condition (NEC).9 Thus, in all theories for which nt is
given by (1.82) and the NEC holds, we predict nt < 0.

Finally, in single-field slow-roll inflation, a consistency relation links the
tensor tilt to the tensor-to-scalar-ratio:

nt = −r
8
. (1.83)

If the BICEP2 finding of r ∼ O(0.1) is confirmed, then we expect nt ∼
O(0.0125). Measuring the tensor tilt at this level will be very challenging,
but does not seem impossible. Testing the consistency relation will be one
of the main targets of future CMB polarization experiments. Forecasts of
experimental sensitivities can be found in [108,147–149].

1.5.2 Scalar Tilt and Running

Models of inflation make specific predictions for the parameters ns and r.
Improving the measurements of either of these parameters will therefore
play a vital role in narrowing down the number of viable models [150].
Future galaxy surveys [151] may reduce the error on ns by a factor of 5. At
the same time, future CMB polarization experiments [26,152–155] have the
potential to reduce the error on r to the percent level.

A test of the slow-roll paradigm may come from measurements of the
running of the scalar spectrum. At second order in the Hubble slow-roll

9
The NEC states that the stress tensor satisfies Tµνn

µ
n
ν ≥ 0, for all null vectors n

µ
.

For a perfect fluid, the NEC reduces to ρ+ P ≥ 0.



1.5 Future Tests of Inflation 49

parameters, the running of the scalar spectrum is [156]

αs = 16ε2 − 6εη̃ + η̃χ , (1.84)

where χ ≡ ˙̃η/(Hη̃). Measuring αs would test the consistency of the slow-
roll expansion. However, because the running is second order in slow-roll,
we expect it to be small, αs ∼ (ns − 1)2. Current bounds on αs are still
two orders of magnitude larger than this target, but future galaxy surveys
may allow such a measurement [157] (see also [158]). Any detection of a
larger level of running would be a challenge for slow-roll inflation and would
require additional physics to explain.

1.5.3 Non-Gaussianity

The constraints on primordial non-Gaussianity from the CMB have almost
reached their limit. Silk damping of the small-scale anisotropies prohibits
using multipoles larger than `max ∼ 2000 to extract information about initial
conditions. This limits the number of modes available in the CMB to

NCMB ∼
(
`max

`min

)2

∼ 106 , (1.85)

which is nearly saturated by the recent Planck measurements.
More modes are in principle accessible through large-scale structure mea-

surements. This is because galaxy surveys probe the three-dimensional
cosmic density field, while the CMB is only a two-dimensional projection.
Hence, while NCMB ∝ `2max for the CMB, we have N LSS ∝ k3

max for LSS
(but see [159,160]), where kmax is associated with the smallest scale that is
both measurable and under theoretical control. Pushing to smaller scales
(larger kmax) therefore increases rather dramatically the amount of informa-
tion that can be extracted from the data. The total number of (quasi-)linear
modes in LSS is estimated to be

N LSS
linear ∼

(
kmax

kmin

)3

∼ 109 , (1.86)

where we have taken kmax ∼ 0.1 Mpc−1 and kmin ∼ 10−4 Mpc−1. Al-
though this shows the great potential of LSS observations, it assumes that
we measure the entire volume at low redshift. More realistically, we have
kmin ∼ 10−3 Mpc−1 (e.g. for the Euclid mission), and hence [161]

NEuclid
linear ∼

(
kmax

kmin

)3

∼ 106 , (1.87)

which is comparable to the result (1.85) for the CMB. However, while `max

for the CMB cannot be extended, for LSS kmax might be pushed to larger
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Name zmax V
[
(Gpc/h)

3]
ng
[
(Mpc/h)

−3]
kmax

[
h/Mpc

]
∆f

local
NL

SDSS LRG 0.315 1.48 1.36× 10
−3

0.1 5.62

BOSS 0.35 5.66 0.27× 10
−3

0.1 3.34

Big-BOSS 0.5 13.1 0.30× 10
−3

0.1 2.27

HETDEX 2.7 2.96 0.27× 10
−3

0.2 3.65

CIP 2.25 6.54 0.50× 10
−3

0.2 1.03

EUCLID 1.0 102.9 0.16× 10
−3

0.1 0.92

WFIRST 1.5 107.3 0.94× 10
−3

0.1 1.11

Table 1.4. Compilation of current and future LSS surveys. Here, zmax refers to the
maximal redshift of the survey, V is the survey volume and ng is the mean comoving

number density of objects. The projected errors on f local
NL are from measurements

of the galaxy bispectrum. (Data collected by Donghui Jeong.)

values through a better understanding of non-linearities in the dark mat-
ter evolution, the biasing, and the redshift space distortions. This is one
of the objectives of the recently developed ‘effective theory of large-scale
structure’ [162,163] (see also [164–169]).

Even from the CMB alone, the limit on the amplitude of local non-
Gaussianity, cf. (1.72), is getting close to an interesting threshold for multi-
field inflation. The conversion of hidden sector non-Gaussianity during re-
heating [170–172] or after inflation [173,174] typically leads to

|f local
NL | & O(1) . (1.88)

This possibility is now highly constrained, and further data from Planck
and LSS surveys (see table 1.4) has the potential to rule out the natural
parameter space of a large class of multi-field models.

As we explain in Appendix B, a similar threshold exists for equilateral
non-Gaussianity [175]:

f equil
NL ∼ O(1) . (1.89)

Not seeing a signal at the level of (1.89) would allow us to conclude that the
UV-completion of the effective theory is slow-roll inflation, up to pertur-
bative higher-derivative corrections. Conversely, a detection of equilateral

non-Gaussianity with f equil
NL > O(1) would imply that the theory has to be

UV-completed by something other than slow-roll inflation, such as DBI in-
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flation. The threshold (1.89) therefore provides an important observational
distinction between UV-completions of inflation corresponding to weakly-
coupled backgrounds and those that involve strongly-coupled backgrounds.

Unfortunately, f equil
NL ∼ O(1) is almost two orders of magnitude smaller than

the CMB bound (1.73). Future CMB data may improve the bound by a
factor of a few, but not by enough to reach the threshold (1.89). However,
optimistic estimates of galaxy lensing tomography suggest that this may
not be completely out of reach for future LSS observations [176].



2
Inflation in Effective Field Theory

Inflation is a well-understood phenomenon in quantum field theory coupled
to gravity, and many field theories that support inflationary phases have
been proposed. Nevertheless, deriving the inflationary action from a more
fundamental principle, or in the context of a well-motivated parent theory,
remains a central problem.

There are two approaches or perspectives that can be used to obtain a
quantum field theory suitable for inflation. In the ‘top-down’ approach,
one begins with a complete theory in the ultraviolet (UV), such as string
theory, and tries to derive inflation as one of its low-energy consequences.
This undertaking is discussed at length in Chapters 4 and 5. The more
conservative ‘bottom-up’ approach starts from the low-energy (IR) degrees
of freedom and parameterizes our ignorance about the UV theory. Both ap-
proaches arrive at an effective field theory (EFT) that is valid at inflationary
energies, but they do so from opposite directions. The two approaches are
complementary and can inform each other.

The outline of this chapter is as follows: in §2.1, we provide a general
overview of the essential principles of effective field theory.1 We apply
these concepts to inflation in §2.2, highlighting the sensitivity of inflation
to Planck-scale physics in §2.3.

2.1 Principles of Effective Field Theory

Natural phenomena occur across a vast range of length scales. Fortunately,
in many cases one can analyze physical processes involving distinct scales by
examining one relevant scale at a time. Fig. 2.1 illustrates this logic using a
few famous examples from the history of particle physics. For instance, at

1
More details on effective field theory can be found in [177–180].
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Fermi Theory Standard Model String Theory

Inflation?

+

Gravity

Fig. 2.1. Effective field theories in particle physics. Both Fermi theory and
general relativity are non-renormalizable and are interpreted as effective theories.

low energies, Fermi theory describes neutron-proton interactions by a four-
fermion contact interaction with coupling constant GF = (293.6 GeV)−2.
This theory is incomplete and breaks down (violates perturbative unitarity)
at about 100 GeV. What actually happens close to 100 GeV is that we start
to resolve the W -boson exchange interaction and Fermi theory is replaced by
the electroweak theory of the Standard Model. Similarly, interactions of the
Standard Model fields with gravitational degrees of freedom are determined
by Newton’s constant GN = (1.2×1019 GeV)−2. Just like the Fermi theory,
this theory breaks down at high energies, this time at the Planck scale

Mpl ≡
1√

8πGN
= 2.4× 1018 GeV . (2.1)

The Standard Model plus general relativity should therefore also be viewed
as an effective theory to be replaced by a more fundamental theory at some
energy at or below the Planck scale. In much of this work we will assume
that this more fundamental theory is string theory.

2.1.1 Effective Action

The first step in constructing effective field theories is identifying the degrees
of freedom that are relevant for the measurements of interest. For instance,
in particle physics we distinguish light and heavy degrees of freedom on the
basis of whether the corresponding particles can be produced on-shell at the
energies available to the experiment. Formally, we introduce a cutoff scale
Λ to define the regime of validity of the EFT. Light particles φ, with masses
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m < Λ, are included in the effective theory, while heavy particles Ψ, with
masses M > Λ, are ‘integrated out’, in a sense that we will make precise.

heavylight

Fig. 2.2. Effective field theories describe the physics of light degrees of freedom
below a cutoff scale Λ. We arrive at these theories either by integrating out the
heavy fields (if the complete UV theory is known) or by parameterizing their effects
(if the UV theory is not known or is not computable). In the latter case, symmetries
inform the choice of allowed interactions.

Top down: Integrating out

Imagine that we knew the full Lagrangian of the UV theory,

L[φ,Ψ] = Ll[φ] + Lh[Ψ] + Llh[φ,Ψ] , (2.2)

where Ll (Lh) describes the part of L involving only the light (heavy) fields,
and Llh includes all interactions involving both sets of fields. The Wilsonian
effective action Seff is defined via a path integral over the heavy modes (and
over the high-frequency contributions of the light fields):

eiSeff [φ] =

∫
[DΨ] eiS[φ,Ψ] . (2.3)

In practice, the effective action is rarely found by performing the path inte-
gral. Instead a so-called matching calculation order by order in perturbation
theory is usually more practical [177–180].

In the classical approximation, performing the path integral over the
heavy modes corresponds to using the equations of motion to eliminate the
heavy field Ψ. In the language of Feynman diagrams, this is the tree-level
approximation. The complete path integral, however, also includes loops of
the heavy fields. These loops describe how the heavy degrees of freedom
are eliminated from the quantum theory. The result is usually non-local,
meaning that it contains terms such as φ(−�+M2)−1φ. However, at low
energies, E � Λ ≤ M , these terms can be expanded in derivatives—for
example,

φ(−�+M2)−1φ =
φ

M2

(
1 +

�

M2 + · · ·
)
φ , (2.4)

and the EFT becomes approximately local. In other words, the effective
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action admits a systematic expansion in powers of the ratio (E/M),

Leff [φ] = Ll[φ] +
∑
i

ci(g)
Oi[φ]

M δi−4
, (2.5)

where ci are dimensionless constants that depend on the couplings g of the
UV theory, and Oi are local operators of dimension δi. This procedure
typically generates all operators Oi consistent with the symmetries of the
UV theory. The absence from the effective theory of an operator allowed
by the symmetries of the UV theory, or an anomalously small coefficient for
such an operator, is described as a fine-tuning.2

In (2.5) we have split the effective action into a renormalizable part Ll
and a sum of non-renormalizable corrections. Note that non-renormalizable
terms arise in the EFT even if the UV theory is renormalizable. Operators
of dimensions less than four (in four spacetime dimensions) are called rel-
evant operators. They dominate in the IR and become small in the UV.
Unsurprisingly, operators of dimensions greater than four are called irrel-
evant operators.3 These operators dominate in the UV but become small
in the IR: the contribution of an operator Oi of dimension δi to low-energy

observables is proportional to (E/M)δi−4. As a result, although the sum in
(2.5) includes operators of arbitrarily large dimension δi, only a finite num-
ber of terms are required to predict the results of experiments to a given
accuracy. On the other hand, by studying the low-energy effects of irrelevant
operators, we can learn about the structure of the UV theory. Measuring
or constraining irrelevant operators can therefore be very informative.

A toy model.—Let us illustrate this procedure with a simple toy example:
we take the Lagrangian of the UV theory to be4

L[φ,Ψ] = −1

2
(∂φ)2− 1

2
m2φ2− 1

4!
λφ4− 1

2
(∂Ψ)2− 1

2
M2Ψ2− 1

4
gφ2Ψ2 . (2.6)

Note that this Lagrangian respects the Z2 symmetry φ→ −φ. The effective

2
An important exception is an accidental symmetry: if all operators in the UV theory
violating a symmetry S are irrelevant in the sense of the renormalization group (RG),
then S is an approximate symmetry of the low-energy theory. However, in this case the
smallness of the S-violating terms is not mysterious: it is simply a consequence of RG
flow.

3
Operators of dimension equal to four are called marginal operators. Quantum correc-
tions decide if a marginal operator is relevant or irrelevant in the IR.

4
This is a simplified version of the example studied in [180].
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Lagrangian for the light field φ takes the form

Leff [φ] = −1

2
(∂φ)2 − 1

2
m2

Rφ
2 − 1

4!
λRφ

4

−
∞∑
i=1

(
ci(g)

M2i
φ4+2i +

di(g)

M2i
(∂φ)2φ2i + · · ·

)
. (2.7)

The parameters in (2.7) can be determined in an expansion in the couplings
of the UV theory (here, λ and g). For example, the bare values of the
mass m and the quartic coupling λ receive loop corrections with the heavy
particle Ψ running in the loop,5

m2
R = + + · · · , (2.8)

λR = + + · · · , (2.9)

The loop contributions diverge in the UV and have to be regularized. Cut-
ting off the (Euclidean) momentum integrals at the scale Λ, we find [177]

m2
R = m2 +

g

32π2 (Λ2 −M2L) + · · · , (2.10)

λR = λ− 3g2

32π2L+ · · · , (2.11)

where L ≡ ln(Λ2/µ2), with µ being an arbitrary renormalization scale.
Dimensional regularization would give the same result, except that we would
not find the Λ2 term in (2.10), and we would replace L by

L→ 1

ε
+ γ − ln(4π) , (2.12)

where ε ≡ 4 − d and γ ≡ 0.577 · · · . We see that the quadratic divergence
in (2.10) is scheme-dependent and hence not physical. However, notice
that the unphysical term comes with the same coupling g as the physical
contribution to the renormalized mass proportional to M2. It is therefore
common to use the dependence on the cutoff Λ as a proxy for the physical
dependence on the mass of the heavy particles, M ≥ Λ. However, see [181]
for examples where this logic fails. Finally, the Wilson coefficients in (2.7)

5
Of course, there are similar diagrams with the light particle φ running in the loop. For
simplicity, we hide those terms in the ellipses of eqs. (2.8) and (2.9).
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can also be computed in a loop expansion; e.g. the coupling of the operator
φ6 is

c1 = + · · · ∼ O(g3) + · · · . (2.13)

The trouble with light scalars.—From (2.10) we see that the effective mass
mR gets a large contribution from the mass of the heavy field M . Having
a light scalar field in the EFT is therefore unnatural [182] in the sense that
large quantum corrections, O(M), must be canceled by a large bare mass m
with opposite sign to achieve mR �M (see §2.1.2 for a detailed discussion).
This is a real problem, since for natural values of mR the fields φ are not
even part of the low-energy EFT! The apparent need to fine-tune the Higgs
boson mass is the famous electroweak hierarchy problem of the Standard
Model. As we will see in §2.3, a qualitatively similar (but quantitatively
less dramatic) hierarchy problem exists in inflationary models driven by
scalar fields. Notice that because the loop correction is proportional to the
coupling g, a hierarchy mR �M can be natural if we have reason to believe
that g � 1 (and m�M). Thus, the strength of the coupling between the
light and heavy fields is a critical parameter, and symmetry structures in
the UV theory that achieve g � 1 play an important role in discussions of
light scalar fields (see §2.1.3).

Decoupling.—All the divergences in (2.10) and (2.11) can be absorbed into
a renormalization of the parameters of the Lagrangian. Moreover, in the
limit M →∞ the effects of the heavy particles disappear completely. This
decoupling of UV physics [183] ensures that the physical effects of massive
particles are suppressed for large M . Decoupling is one reason that the
Standard Model of particle physics was constructed by focusing only on
renormalizable theories, although today we view it as an effective theory.

Bottom up: Parameterizing ignorance

Often we do not know the complete UV theory, so that we cannot con-
struct the EFT explicitly by integrating out the heavy modes. Instead we
parameterize our ignorance about the UV physics, by making assumptions
about the symmetries of the UV theory, and writing down the most general
effective action consistent with these symmetries:

Leff [φ] = Ll[φ] +
∑
i

ci
Oi[φ]

Λδi−4
, (2.14)

where the sum runs over all operators Oi[φ], of dimension δi, allowed by
the symmetries of the UV theory. The size of the higher-dimension opera-
tors is estimated in terms of the cutoff scale Λ, while the prefactors ci are
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dimensionless Wilson coefficients. Eq. (2.14) will be our starting point for
discussing inflation in EFT.

Several comments are important at this stage. First, making assump-
tions about the symmetries of the UV theory can be non-trivial: not all
low-energy symmetries have to admit ultraviolet completions. In §2.1.4, we
discuss this issue in the context of string theory. Second, in writing (2.14)
we have introduced an energy scale Λ and a collection of dimensionless co-
efficients ci.

6 It is clearly important to understand how to assign values for
the scale Λ and the coefficients ci. The guiding principle for this undertak-
ing, and more generally for the construction and interpretation of effective
field theories, is naturalness.

2.1.2 Naturalness

Naturalness arguments work in two directions, from the top down and from
the bottom up. We will discuss these two aspects of naturalness in turn.

Top-down naturalness

The top-down version of naturalness asserts that the Wilson coefficients in
an EFT will be of order unity if the cutoff Λ is chosen to be of order the
characteristic mass scale M of the UV theory.7

We emphasize that the coefficients in question are those of operators Oi
allowed by the symmetries of the UV theory: approximate or exact symme-
tries of the ultraviolet theory can lead to small or vanishing coefficients for
the corresponding operators in the effective theory. This top-down version
of naturalness is merely a formalization of the expectation of genericity.
When the ultraviolet theory is computable, naturalness is hardly needed, as
the effective theory can be constructed directly by integrating out the heavy
modes, and the Wilson coefficients can be obtained explicitly in terms of
the parameters of the UV theory. However, this favorable circumstance is
very rare, and in particular it does not arise in presently-studied compact-
ifications of string theory. We often only have partial information about
the UV theory. For instance, we might know the relevant scales, but not
the couplings to all light fields. Top-down naturalness is then widely used
as a systematic framework for guessing how the calculation of the effective
theory would turn out if we were strong enough to perform it.

6
At the level of (2.14), the joint rescaling Λ → κΛ and ci → κ

δi−4
ci leaves the theory

unchanged. Formalizing this leads to the renormalization group and to the running of
the renormalized couplings with energy.

7
The dimensionless couplings g of the light fields to the heavy fields are assumed to be
of order unity for this purpose. Systematically weaker couplings should be incorporated
by defining a higher effective mass scale, M̃ ∼M/

√
g.
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Bottom-up naturalness

The bottom-up version of naturalness allows one to infer, based on prop-
erties of a given low-energy effective theory, the plausible scale M of new
physics. Here, new physics refers to the scale of the lightest degrees of free-
dom that are part of the ultraviolet theory but not of the effective theory.
Because we generally learn about nature beginning at low energies and pro-
ceeding to higher energies, the bottom-up version of naturalness can be a
predictive tool for the results of experiments.

The logic of bottom-up naturalness arguments is the following: suppose
we are presented with partial information about an EFT like (2.14). Imagine
that we know all the renormalizable couplings of the light fields, but the UV
cutoff Λ and the higher-dimension contributions are unknown — this is, for
example, the situation for the Standard Model of particle physics. We would
like to make an educated guess about the size of Λ. In the low-energy theory,
we can calculate loop corrections to the parameters of the renormalizable
Lagrangian as functions of an unknown cutoff scale Λ. The parameters are
said to be bottom-up natural8 as long as their measured values are larger
than the loop corrections. As we extrapolate the EFT to higher energies
and increase Λ, some parameter may become unnatural, and insisting on
natural parameters therefore defines a maximal scale for the effective theory,
Λ = Λmax. Bottom-up naturalness asserts that ‘new physics’ should appear
at some scale Λ ≤ Λmax and modify the effective theory, thereby explaining
the smallness of the measured parameter values. The unnatural alternative
would be that multiple loop and/or bare contributions cancel against each
other for reasons beyond the purview of the effective theory. Bottom-up
naturalness is a formalization of the expectation — or more properly, the
hope — that this is not the case. In the quintessential example of the Higgs
boson, bottom-up naturalness predicts that new physics should appear at
O(102−103) GeV to cut off the quadratic divergence of the Higgs mass mH

and explain why mH = 125 GeV.

The naturalness criterion has been profoundly influential in motivating
physics beyond the Standard Model and it often plays an important role in
inflationary model-building. However, there are reasons to use it with care.
We digress briefly to discuss a few instructive examples illustrating both
successes and failures of the naturalness principle.9

Successes of naturalness.—Let us first look at examples where insisting on
natural parameter values has led (or could have led) to the correct physics.

8
We should stress that what we call ‘bottom-up naturalness’ here is universally referred
to as ‘naturalness’, but we find the distinction useful for the present exposition.

9
These comments are based on [184, 185] and on private communications with Nima
Arkani-Hamed.
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. Positron.—In classical electromagnetism the mass of the electron is
unnatural.. The electric field around an electron carries energy ∆E =
α/re, where α ≈ 1/137 is the fine structure constant and re is the size
of the electron, which is introduced to regulate the divergence. This
Coulomb self-energy of the electron contributes to its mass:

∆me = αΛ , (2.15)

where Λ ≡ r−1
e . In order for the observed mass of the electron (me ≈

0.511 MeV) to be natural we require Λ < 70 MeV. Indeed, in quantum
field theory, new physics in the form of the positron comes to the
rescue. In [186], Weisskopf showed that virtual positrons surrounding
the electron precisely cancel the linear divergence in (2.15), leaving
only a logarithmic dependence on the cutoff,

∆me = αme ln (Λ/me) . (2.16)

In the new effective theory, containing both the electron and the
positron, the small electron mass is natural even for large Λ.

. Rho meson.—The mass difference between the charged pions and the
neutral pion receives a quantum correction from photon loops

m2
π

+ −m2
π

0 =
3α

4π
Λ2 , (2.17)

where Λ is the UV cutoff of the effective theory of pions. In order
for (2.17) not to exceed the measured mass splitting, m2

π
+ − m2

π
0 =

(33.5 MeV)2, we require Λ < 850 MeV. New physics in the form of
the rho meson with mρ = 770 MeV comes in at exactly the scale
suggested by naturalness. The charged pion mass is natural in the
new EFT that includes the rho meson.

. Charm quark.—Historically, one of the most interesting applications
of the naturalness principle is K0-K̄0 mixing. In an effective theory
valid below the kaon mass scale, the mass splitting between the K0

L

and K0
S states takes the form

m
K

0
L
−m

K
0
S

m
K

0
L

=
G2
F f

2
K

6π2 sin2 θc Λ2 , (2.18)

in terms of the cutoff Λ, the Cabibbo angle sin θc ≈ 0.22, and the
kaon decay constant fK = 114 MeV. For (2.18) to be compatible with

the measured splitting (m
K

0
L
− m

K
0
S
)/m

K
0
L

= 7 × 10−15, we require

Λ < 2 GeV. In fact, new physics in the form of the charm quark, with
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mc ≈ 1.3 GeV, modifies the UV behavior of the theory. Gaillard and
Lee used this naturalness argument in a successful prediction of the
charm quark mass [187].

Failures of naturalness?—Naturalness arguments are not always applicable,
and need to be used with care.

. Phase transitions.—Condensed matter systems near critical points are
described by effective theories with fine-tuned parameters, and cor-
respondingly large correlation lengths. This ‘unnatural’ situation is
simply a consequence of explicit fine-tunings performed by the exper-
imentalist.

. Nuclear physics.—An example of fine-tuning in nature occurs in nu-
clear physics [188] (for reviews see [178,189]). In [190–192], Weinberg
observed that the scattering lengths measured in low-energy nucleon-
nucleon scattering are larger than would be expected from chiral per-
turbation theory. The fundamental scale of the EFT is the Comp-
ton wavelength of the pion, m−1

π = (140 MeV)−1, but the scattering

lengths in the spin singlet state, as ≈ (8 MeV)−1, and in the spin

triplet state, at ≈ (36 MeV)−1, are much larger than m−1
π . Corre-

spondingly, two neutrons fail to form a bound state by only 60 keV,
and the deuteron binding energy is just 2 MeV, even though the natu-
ral expectation would involve energies of order mπ = 140 MeV. These
results can be attributed to approximate cancellations of the kinetic
and potential energies of the nucleons, but the underlying reason for
these cancellations is poorly understood.

. Electroweak scale.—At the time of writing, experiments at the LHC
have discovered the Higgs boson, but have not yet revealed whether
the physics determining the hierarchy between the electroweak scale
and the Planck scale is natural. In the Standard Model, the dominant
quantum correction to the Higgs mass comes from the coupling to the
top quark,

∆m2
H ∼

y2
t

(4π)2 Λ2 , (2.19)

where yt ∼ 1 is the top Yukawa coupling. For the observed value of
the Higgs mass (mH = 125 GeV) to be natural, we require Λ < 1.5
TeV. This argument, which suggests that physics beyond the Standard
Model should appear at or below the TeV scale, has had far-reaching
impact on decades of work in theoretical and experimental particle
physics. Many physicists have anticipated detecting evidence for a
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natural mechanism stabilizing the electroweak hierarchy, e.g. super-
symmetric partners of known particles, both in earlier experiments
and in the first stages of the LHC. No such direct evidence has yet
materialized, and we must continue to wait for guidance from experi-
ment. We should emphasize that properly defining and characterizing
the predictions of natural mechanisms, such as supersymmetry, is a
major area of research, and it is far too soon to conclude that all
such mechanisms are excluded. Due to the close analogy between the
electroweak hierarchy problem and the problem of naturalness of the
inflaton mass (see §2.3), we may hope that the ultimate resolution of
the former will suggest a particular approach to the latter.

. Dark energy.—No discussion of naturalness is complete without ad-
dressing the cosmological constant problem. The vacuum of a quan-
tum field theory with local Lorentz invariance corresponds to a stress-
energy tensor of the form

〈Tµν〉 = −ρvac gµν . (2.20)

Quantum contributions to the vacuum energy scale as

∆ρvac ∼ Λ4 . (2.21)

Naturalness of the observed vacuum energy, ρvac ∼ (10−3 eV)4, there-

fore suggests new physics at Λ . 10−3 eV. Indeed, if the world were

supersymmetric down to 10−3 eV, the small value of the cosmological
constant would be natural. But the world is not supersymmetric at
low energies, and we have also not seen any other new physics at 10−3

eV that could account for the smallness of the vacuum energy.10 In
the absence of a mechanism explaining the small value of the cosmo-
logical constant, we have to entertain the possibility that it is simply
a fine-tuned parameter. Moreover, in the string theory landscape it is
conceivable that the observed value is environmentally selected [193],
consistent with anthropic arguments [194].

It seems clear from these examples that naturalness can at best serve as
a tentative guide towards new physics, rather than as a law of nature.

2.1.3 Symmetries

The interplay between symmetry structures in ultraviolet theories and light
scalars in effective theories is crucial for understanding inflation in effective

10
One or two neutrino masses may have the correct scale, but this has not led to a solution
to the cosmological constant problem.
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field theory and string theory, so we now discuss these issues in more depth.
A pivotal question in inflationary model-building in effective field theory
is whether light scalars with m � H can be natural (see §2.3). As we
have just explained, whether a given effective theory can be considered
natural depends on the properties of the ultraviolet theory, whether known
or assumed. Symmetries often play a central role in the radiative stability
of the low-energy theory. In this section, we explain this fact for theories
in flat space. In the next section, we will discuss some subtle aspects that
arise in the generalization to ultraviolet completions that include gravity.

SUSY in flat space.—We have seen that, in the absence of symmetries,
scalar masses receive loop corrections of the form

∆m2 ∝ Λ2 . (2.22)

There are only a few known ways to protect scalars from these effects. One
elegant possibility is unbroken supersymmetry (SUSY), which obliges boson
and fermion loops to cancel, so that the scalar mass is not renormalized.
However, as we will see, SUSY is necessarily broken during inflation, gener-
ating a mass of the order of the Hubble scale H. Although m ∼ H can be
significantly smaller than Λ, it still inhibits successful inflation. Below we
will have more to say about this.

Global symmetries in flat space.—Another possibility to stabilize light scalars
is a global internal symmetry. As a concrete example, suppose that the
renormalizable part of the EFT, Ll[φ], respects the shift symmetry

φ 7→ φ+ const. (2.23)

This may arise, for example, if φ is the Goldstone boson of a spontaneously
broken U(1) symmetry (corresponding to the angular flat direction in the
familiar Mexican hat potential). If (2.23) is exact, it forbids the mass term,
or any potential terms for that matter. To get nontrivial dynamics, we
are usually interested in the case where the shift symmetry (2.23) is only
approximate. Concretely, we imagine that the symmetry is broken by a
small mass term, ∆V = 1

2m
2φ2, with m� Λ. Loop corrections to the tree-

level mass must then scale with the symmetry breaking parameter (which
is m), so that

∆m2 ∝ m2 . (2.24)

At most, the correction can now scale logarithmically with the cutoff Λ.
Moreover, in the limit m→ 0, the exact symmetry (2.23) is restored and φ
becomes massless. A small mass for φ is therefore technically natural [195]:
the smallness of the symmetry-breaking parameter controls the renormal-
ization. At the level of model building, one is free to set the mass at any
desired level without risking destabilization through quantum effects. On



64 2 Inflation in Effective Field Theory

the other hand, it still makes sense to ask whether the fact that the symme-
try is weakly broken in the first place is dictated by some mechanism and
is natural in the top-down sense. In principle, a symmetry can be broken
explicitly by an operator whose coefficient is small purely because of fine-
tuning, and the resulting small parameters are technically natural but not
top-down natural.

Ultraviolet completion.—Exact or approximate symmetries of the UV the-
ory can control the sizes of the Wilson coefficients in the non-renormalizable
part of the effective Lagrangian. If the symmetry is weakly broken by the
heavy degrees of freedom, or if the light fields couple only weakly to the
symmetry-breaking terms, then the EFT enjoys an approximate symmetry,
and the Wilson coefficients of all symmetry-breaking operators will be nat-
urally small. This can be seen in our toy model (2.6): the coupling gφ2Ψ2

breaks the shift symmetry in the UV. In the EFT, this breaking shows up
through symmetry-breaking irrelevant operators. Since the symmetry is re-
stored in the limit g → 0, the Wilson coefficients of all symmetry-breaking
operators in (2.7) must satisfy

lim
g→0

ci(g) = 0 . (2.25)

For finite g, the ci are proportional to positive powers of the symmetry-
breaking parameter g. An approximate symmetry in the UV would explain
g � 1 and hence ci � 1 in the EFT. We emphasize that assuming ci � 1
in the effective theory amounts to assuming something about the couplings
to the degrees of freedom at the cutoff scale Λ. Whether a given low-energy
theory is deemed natural can hinge on which symmetries are thought to be
permissible in the UV completion. Consulting a UV-complete theory like
string theory can be valuable when general reasoning about what ought to
be typical does not give a sharp answer.

2.1.4 Gravity

Gravity plays a fundamental role in any description of cosmology, so our
effective theory must include gravitational degrees of freedom. Moreover,
semi-classical gravity itself has a limited range of validity. At or below the
Planck scale, graviton-graviton scattering violates perturbative unitarity,
and we expect new degrees of freedom to become relevant. In this section,
we discuss to what extent the UV completion of gravity can affect the matter
interactions in the low-energy effective theory.

Gravity as an effective theory.—The low-energy degree of freedom of gravity
is the spacetime metric gµν , whose leading interactions are determined by
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the Einstein-Hilbert action,

SEH =
M2

pl

2

∫
d4x
√
−g R . (2.26)

This theory is non-renormalizable and should be understood as an effective
theory [177, 196]. To see this, let us expand the metric in terms of small
perturbations around flat space, gµν ≡ ηµν + 1

Mpl
hµν . Schematically, the

Einstein-Hilbert action then becomes

SEH =

∫
d4x

[
(∂h)2 +

1

Mpl
h(∂h)2 +

1

M2
pl

h2(∂h)2 + · · ·

]
. (2.27)

This weak-field expansion of the Einstein-Hilbert action looks similar to the
action of Yang-Mills theory,

SYM =

∫
d4x

[
(∂A)2 + gA2∂A+ g2A4

]
. (2.28)

However, while the Yang-Mills action terminates at a finite order, the ex-
pansion of the Einstein-Hilbert action contains an infinite number of terms,
coming from the expansion of

√
−g and gµν . Gravity is therefore interpreted

as an effective quantum field theory with cutoff Λ = Mpl. The quantum per-
turbation theory of gravitons is organized in terms of the dimensionless ratio
(E/Mpl)

2, where E is the energy of the process, and this theory breaks down
at the Planck scale. At this point either new degrees of freedom become
important (like the massive excitations in string theory; see §3.1) or a non-
perturbative miracle happens (as in asymptotic safety [197]). In the absence
of detailed information about the UV completion, the simplest assumption
is that the low-energy effective action contains all terms that are consistent
with general coordinate invariance. We can organize this as a derivative
expansion,11

Sg =

∫
d4x
√
−g

[
M4

Λ +
M2

pl

2
R+ c1R

2 + c2RµνR
µν

+
1

M2 (d1R
3 + · · · ) + · · ·

]
, (2.29)

where ci and di are dimensionless numbers that may be expected to be
of order unity. For pure gravity, the scale M should also be the Planck
scale Mpl. However, couplings to matter fields might lead to a hierarchy

11
There is no RµνσρR

µνσρ
term, since by the generalized Gauss-Bonnet theorem R

2 −
4RµνR

µν
+RµνσρR

µνσρ
is topological, and equals the Euler characteristic of the space-

time.
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between M and Mpl. Note also that the renormalized value of the cosmo-
logical constant MΛ deduced from cosmological experiments is extremely
far from its natural value Mpl. This is, of course, the famous cosmological
constant problem.

In many string theories, the higher-curvature terms in (2.29) can be com-
puted order by order in the α′ and gs expansions detailed in §3.1. An
important example is type IIB string theory in ten dimensions, where one
finds12 [198]

Sg =

∫
d10X

√
−G

[
M2

10

2
R+

ζ(3)

3 · 25

1

M6R
4 + · · ·

]
, (2.30)

where M10 is the ten-dimensional Planck mass, ζ denotes the Riemann zeta
function, with ζ(3) ≈ 1.202; R4 is a particular quartic invariant constructed
from the Riemann tensor; and notably the omitted terms include additional
contributions at O(1/M6), and at higher orders, as well as terms that are
subleading in the string coupling gs. The mass M appearing in (2.30) corre-
sponds to the mass of the first excited level of the type II superstring, given
by

M2 =
4

α′
, (2.31)

where α′ is the inverse string tension defined in §3.1. This is the proper
physical cutoff scale because the higher-derivative term in (2.30) arises upon
integrating out the massive excitations of the string, which have the mass
spectrum m2 = 4N/α′, N ∈ Z. In the regime of weak coupling and weak
curvature where the corrections to the Einstein-Hilbert action are small, the
string scale M is small compared to the Planck scale Mpl, so the higher-
derivative contributions shown above are more significant in string theory
than general reasoning about quantum gravity would suggest. On the other
hand, the coefficient ζ(3)/(3·25) ≈ 10−2 is rather small, illustrating that the
general expectation of order-unity Wilson coefficients should not be viewed
as a precise and immutable law.

Global symmetries in quantum gravity.—A number of ‘folk theorems’ state
that exact continuous global symmetries are impossible in a theory of quan-
tum gravity. Instead, any continuous global symmetry must be merely an
accidental symmetry of the low-energy effective theory, broken by irrelevant
operators at a scale no larger than Mpl. We will briefly recall some of the
arguments; see [199] for a modern discussion of related issues.

12
The ten-dimensional cosmological constant is set to zero in (2.30) because we are dis-
playing the supersymmetric effective action, but the four-dimensional cosmological con-
stant arising upon compactification and supersymmetry breaking is subject to the usual
cosmological constant problem.
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The simplest argument against global symmetries in quantum gravity is
that Hawking evaporation of a black hole can destroy global charges. For
example, imagine tossing a substantial clump of baryons into a macroscopic
black hole, assumed to be large enough so that protons and neutrons make
up an arbitrarily small fraction of the Hawking quanta. The black hole will
lose most of its mass to light quanta that carry zero baryon number, and
by the time that the Hawking temperature is high enough for baryons to
be emitted, the black hole mass will be smaller than the mass of the initial
clump of baryons. Unless the theory contains states with an arbitrarily high
ratio of baryon number to mass, a sufficiently large black hole will be unable
to radiate away all of its initial baryon number in Hawking quanta, or to
deposit this baryon number in a highly charged remnant. Baryon number
is therefore violated in the black hole evaporation process and cannot be an
exact symmetry. The same applies to any continuous global internal sym-
metry with a well-defined conserved charge.13 Another class of arguments
appeals to the destruction of global charges by wormholes [200–202].

We should be clear that although these arguments show that global sym-
metries are broken by Planck-scale effects, they do not show that the break-
ing is necessarily of order unity. Indeed, it is conceivable the Wilson co-
efficients for the symmetry-breaking higher-dimension operators might be
suppressed for some reason. We know too little about the degrees of free-
dom at the Planck scale to make definitive statements about the strength
of the symmetry breaking, though in concrete examples in string theory it
is often possible to compute the symmetry-breaking effects.14

Global symmetries in string theory.—The absence of exact continuous global
internal15 symmetries is also a theorem in perturbative string theory [204].
Suppose that there is an exactly conserved global symmetry of the conformal
field theory on the string worldsheet, so that by Noether’s theorem there
is a corresponding conserved current on the worldsheet. This current can
be used to construct a vertex operator that corresponds to the emission
of a massless excitation of the string, which turns out to be nothing other
than a gauge boson associated to the symmetry [204]. Thus, the postulated
symmetry must be a gauge symmetry in the target spacetime.

We conclude that general arguments in quantum gravity, and specific

13
Shift symmetries are an important example where the absence of a conserved charge
requires a refinement of the black hole arguments.

14
For example, in §5.4, we will study axions in string theory. An axion φ with infinite
periodicity (f/Mpl → ∞) enjoys the exact shift symmetry φ 7→ φ + const., so the
above arguments suggest that such axions are not possible in quantum gravity. And
indeed, direct searches for axions with f & Mpl in parametrically controlled string
compactifications have been unsuccessful [46, 47]. A different argument against axions
with f �Mpl appears in [203].

15
Exact Lorentz symmetry is possible in string theory, cf. [204].
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findings in string theory, limit the sorts of global symmetries that are allowed
in an ultraviolet completion. Asserting a symmetry structure for the UV
theory and taking natural coefficients for the operators in the resulting
effective action may lead to an effective theory that is consistent at low
energies but cannot be embedded in a theory of quantum gravity. Because
constraints from quantum gravity can play a critical role in determining the
effective action, we view it as prudent to examine any postulated symmetry
structure in a theory of quantum gravity.

Coupling quantum field theory to gravity.—Thus far we have discussed flat-
space quantum field theories, as well as purely gravitational theories, but
the theories of interest in cosmology are quantum field theories coupled to
gravity. Let us illustrate this by coupling the toy model of (2.7) to a grav-
itational theory with higher-curvature corrections. The resulting effective
theory takes the form

Seff [φ, g] = Sg + Seff [φ] + Sg,φ , (2.32)

where Sg is given in (2.29), Seff [φ] is the action corresponding to the La-
grangian density (2.7), and

Sg,φ =

∫
d4x
√
−g

[∑
i

ci
Oi[g, φ]

Λδi−4

]
. (2.33)

Here, Oi[g, φ] are operators constructed from curvature invariants and from
φ and its derivatives. In spacetimes where the curvature is small in units of
the cutoff Λ, the only important coupling in Sg,φ is

S
(4)
g,φ =

∫
d4x
√
−g ξ φ2R , (2.34)

where ξ is a dimensionless coefficient. One can perform a Weyl rescaling of
the metric,

gµν 7→ ḡµν ≡ e
2ω(φ)gµν , (2.35)

so that by a suitable choice of the function 2ω(φ), one arrives at ξ = 0,
known as minimal coupling. However, the rescaling (2.35) also changes any
other terms in the full action that are not conformally invariant.

2.1.5 Time-Dependence

To complete our survey of the basic principles of effective field theory, we
need to discuss if and how effective field theory applies to time-dependent
settings such as those arising in cosmology. (For further discussion, see [177,
205,206].)
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An immediate concern might be that we have classified heavy and light
states relative to a cutoff energy, but energy conservation is inapplicable in
time-dependent backgrounds, and when the background evolution is rapid,
high-energy modes can be produced out of low-energy modes. Fortunately,
in many cosmological applications the time-dependence of the background is
sufficiently slow to be treated adiabatically. We can then define an adiabatic
notion of energy at a given time, and define the split into light and heavy
fields relative to a slowly evolving cutoff Λ(t). When the background evolu-

tion is sufficiently rapid to allow the production of heavy states, |Λ̇|/Λ2 � 1,
then the system may not admit a description in terms of an effective theory
containing only the light fields: the solutions to the equations of motion
of the EFT will contain only the adiabatic solutions of the full theory. In
inflation, the adiabatic approximation is justified as long as i) we start in
the Bunch-Davies vacuum (also called the adiabatic vacuum) and ii) the
subsequent evolution is adiabatic. This situation applies to a very broad
range of inflationary models, but there are interesting exceptions: for a
recent discussion of this issue see [207,208].

Even for slowly-evolving backgrounds, there may be level crossings: the
slow evolution of the cutoff, Λ(t), may cause some light fields to leave the
EFT, and/or may draw in light fields that were previously heavy enough
to integrate out. Thus, one effective theory evolves into another over time.
We will encounter this possibility in large-field inflation (see §2.3).

In summary, the methods of effective field theory are applicable in back-
grounds whose time evolution is sufficiently adiabatic, provided also that the
initial state is the Bunch-Davies vacuum. In this setting we can focus on the
evolution of low-energy states, without having to worry about the produc-
tion of high-energy states. In the rest of this work, we will mostly consider
adiabatic evolution, and any violations of adiabaticity will be noted.

2.2 Effective Theories of Inflation

In Chapter 1, we defined inflation as an extended period of quasi-de Sitter
evolution, with −Ḣ � H2, but we did not specify the physical origin of
the inflationary background H(t). In this section, we will show that the
dynamics of a slowly rolling scalar field leads to inflation. However, at
this level, models of slow-roll inflation are toy models that lack a clear
connection to the rest of physics. To make the models more realistic, we
will embed them into low-energy effective theories, allowing us to discuss
high-scale corrections to the slow-roll actions. A striking feature is that the
inflationary dynamics is sensitive even to Planck-suppressed corrections, as
we will explain in §2.3.
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2.2.1 Slow-Roll: Dynamics and Perturbations

One of the earliest and most influential models of inflation uses a single
scalar field, the inflaton φ, minimally coupled to gravity [19,20],

S =

∫
d4x
√
−g

[
M2

pl

2
R− 1

2
(∂φ)2 − V (φ)

]
, (2.36)

where we have allowed for an arbitrary inflaton potential V (φ) (see fig. 2.3).

Fig. 2.3. Example of a slow-roll potential. Inflation occurs in the shaded part of
the potential. In addition to the homogeneous evolution φ(t), the inflaton experi-
ences spatially-varying quantum fluctuations δφ(t,x).

Classical dynamics.—The Friedmann equation and the Klein-Gordon equa-
tion for the homogeneous background field φ(t) are

3M2
plH

2 =
1

2
φ̇2 + V and φ̈+ 3Hφ̇ = −V ′ , (2.37)

where V ′ ≡ ∂φV . These equations can be combined into

ε = − Ḣ

H2 =
1
2 φ̇

2

M2
plH

2 . (2.38)

Inflation (ε < 1) therefore occurs when the potential energy of the field

dominates over the kinetic energy, V � 1
2 φ̇

2. The kinetic energy stays small

and slow-roll persists if the acceleration of the field is small, |φ̈| � 3H|φ̇|.
The conditions for prolonged slow-roll inflation can be expressed as con-

ditions on the shape of the potential [209]:

ε ≡
M2

pl

2

(
V ′

V

)2

� 1 , |η| ≡M2
pl
|V ′′|
V
� 1 . (2.39)
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During a slow-roll period, the ‘potential slow-roll parameters’ ε and η are
related to the ‘Hubble slow-roll parameters’ ε and η̃ (see §1.2) via ε ≈ ε
and η ≈ η̃ + ε. We will see that realizing the slow-roll conditions (2.39) in
a theory of fundamental physics is a nontrivial task. In particular, |η| � 1
requires a small hierarchy between the inflaton mass and the Hubble scale,
m2 = V ′′ � 3H2 ≈ V/M2

pl. Explaining the small inflaton mass is one of the
key challenges for any microscopic theory of inflation.

Quantum fluctuations.—As we explained in Chapter 1, light fields experi-
ence quantum fluctuations during inflation. As a result of fluctuations in the
inflaton, δφ(t,x), some regions of space remain potential-dominated longer
than others, and different parts of the universe undergo slightly different
evolution. After inflation, these differences in the evolution induce curva-
ture perturbations R(t,x), which lead to density perturbations δρ(t,x).

We note that the inflaton fluctuation δφ plays the role of the Goldstone
boson π of broken time translations (see §1.2). In spatially flat gauge the
two are simply proportional,

π =
δφ

φ̇
. (2.40)

Using (1.14), we then find

R(t,x) = −Hπ(t,x) = −H
φ̇
δφ(t,x) . (2.41)

During the slow-roll period, the sound speed of the Goldstone boson is equal
to the speed of light, cs = 1 (see Appendix B). The analysis of §1.2 then
implies the following results for the spectra of scalar and tensor fluctuations:

∆2
R =

1

24π2

1

ε

V

M4
pl

, ∆2
h =

2

3π2

V

M4
pl

. (2.42)

The scalar spectral index and the tensor-to-scalar ratio are

ns − 1 = 2η − 6ε (2.43)

r = 16ε . (2.44)

These observables should be evaluated at the time when the pivot scale16—
a representative scale among the scales probed by the CMB—exited the
horizon. This moment corresponds to a specific point in field space, φ?, at
which the number of e-folds of inflation remaining is (for φ? > φend)

N? =

∫ φ?

φend

dφ

Mpl

1√
2ε

. (2.45)

16
In the WMAP analysis the pivot scale was chosen to be k? = 0.002 Mpc

−1
, while for

Planck k? = 0.05 Mpc
−1

.
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The value of N? depends on the inflationary model and on the details of
reheating. Typically, one finds 40 . N? . 60. In the next subsection,
we give a few examples of specific slow-roll models and their observational
predictions.

2.2.2 Slow-Roll: Selected Models

You know how sometimes you meet somebody and they’re really nice, so you

invite them over to your house and you keep talking with them and they keep

telling you more and more cool stuff? But then at some point you’re like,

maybe we should call it a day, but they just won’t leave and they keep talking

and as more stuff comes up it becomes more and more disturbing and you’re

like, just stop already? That’s kind of what happened with inflation.

Max Tegmark [210].

We will not provide a comprehensive account of the vast landscape of slow-
roll models, but instead give a brief sketch of some of the most important
classes of models. For more details on slow-roll model-building we refer the
reader to [211–214].

Chaotic inflation.—An important class of inflationary models arises when
the potential is a simple monomial,

V (φ) = µ4−pφp , (2.46)

where p > 0, and µ is a parameter with the dimensions of mass. For
historical reasons, such models are called chaotic inflation [33].

The slow-roll parameters in chaotic inflation are

ε =
p2

2

(
Mpl

φ

)2

, η = p(p− 1)

(
Mpl

φ

)2

. (2.47)

Notice that ε and η do not depend on the scale µ. Using (2.45), the number
of e-folds occurring in the region φ ≤ φ? is found to be

N? ≈
1

2p

(
φ?
Mpl

)2

, (2.48)

implying that in a model of chaotic inflation, prolonged inflationary expan-
sion requires a super-Planckian displacement, φ? �Mpl. At the pivot scale,
the spectral index and the tensor-to-scalar ratio are

ns − 1 = −(2 + p)

2N?
, r =

4p

N?
. (2.49)
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(c) (d)

(b)(a)

Fig. 2.4. Examples of different classes of slow-roll potentials: (a) chaotic inflation,
(b) natural inflation, (c) hilltop inflation and (d) inflection point inflation. The light
grey regions indication the parts of the potential where slow-roll inflation occurs.
The dark grey regions denote regions of eternal inflation. The figures are not drawn
to scale: (a)+(b) correspond to large-field models (∆φ > Mpl), while (c)+(d) are
small-field models (∆φ < Mpl).

Let us illustrate these results in a few simple cases, setting N? = 60 for
definiteness:

p = 1 : ns ≈ 0.975 , r ≈ 0.07 , φ? ≈ 11Mpl , (2.50)

p = 2 : ns ≈ 0.967 , r ≈ 0.13 , φ? ≈ 15Mpl , (2.51)

p = 3 : ns ≈ 0.958 , r ≈ 0.20 , φ? ≈ 19Mpl , (2.52)

p = 4 : ns ≈ 0.950 , r ≈ 0.27 , φ? ≈ 22Mpl . (2.53)

An approximate shift symmetry can make a model of chaotic inflation
bottom-up natural (see §2.3.3), but to establish top-down naturalness a re-
alization in string theory is necessary. Attempts to embed chaotic inflation
in string theory are described in §5.4.

Natural inflation.—An influential idea in inflationary model-building is that
the inflaton could be a pseudoscalar axion. At the perturbative level, an ax-
ion enjoys a continuous shift symmetry, but this is broken nonperturbatively
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to a discrete symmetry, leading to a potential of the form

V (φ) =
V0

2

[
1− cos

(
φ

f

)]
, (2.54)

where f is the axion decay constant. For f & 4Mpl, the potential (2.54)
supports natural inflation [35]. Due to the shift symmetry, the model is
bottom-up natural. Establishing top-down naturalness requires finding ax-
ions in string theory whose effective decay constant can be larger than the
Planck scale — see §5.4. At the pivot scale, one finds the following expres-
sions for the scalar tilt and the tensor-to-scalar ratio [212]:

ns − 1 = −α e
N?α + 1

eN?α − 1

α�1−−−−→ − 2

N?
, (2.55)

r = 8α
1

eN?α − 1

α�1−−−−→ +
8

N?
, (2.56)

where we have defined α ≡M2
pl/f

2. As expected, the predictions for natural

inflation reduce to those of m2φ2 chaotic inflation for f �Mpl: cf. eq. (2.49)
with p = 2.

Hilltop inflation.—Consider the situation where inflation occurs near the
fixed point of a symmetry, that is at a point in field space with V ′0 = 0.
Expanding the potential around this point gives

V (φ) = V0 +
1

2
m2φ2 + · · · . (2.57)

For positive m2, the symmetry is intact, while for negative m2 the symmetry
get spontaneously broken. Consider the latter case and write the potential
as

V (φ) = V0

[
1 +

1

2
η0

φ2

M2
pl

+ · · ·

]
, where η ≈ η0 < 0 . (2.58)

For small η0, hilltop inflation [215] occurs (see fig. 2.4c). The higher-order
terms in (2.58) become important for large values of φ. They define the
precise value φend at which inflation ends, and determine the value of the
cosmological constant in the global vacuum after inflation. We will assume
that φend .Mpl. If the higher-order terms in (2.58) are irrelevant when the
pivot scale exits the horizon, then the spectral tilt and the tensor-to-scalar
ratio are [215,216]

ns − 1 = 2η0 , (2.59)

r = 2(1− ns)
2e−N?(1−ns)

(
φend

Mpl

)2

≈ 10−3

(
φend

Mpl

)2

. (2.60)
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The model has two free parameters: the curvature of the hilltop, η0, and
the field value at the end of inflation, φend.

hilltop

natur
al

chaotic

1.000.980.960.940.92

0.001

0.01

0.1

1

Fig. 2.5. Some slow-roll predictions in the ns-r plane, assuming 60 e-folds of
inflation.

Inflection point inflation.—Away from any symmetry points, a generic po-
tential has the expansion, around φ = 0,

V (φ) = V0

[
1 + λ0

φ

Mpl
+

1

2
η0

φ2

M2
pl

+
1

3!
µ0

φ3

M3
pl

+ · · ·

]
. (2.61)

Again, higher-order terms may become important towards the end of in-
flation, but are assumed to be irrelevant when the pivot scale exits the
horizon. To get enough e-folds of inflation, we require |η0| � 1. The special
case η0 = 0 corresponds to inflection point inflation (V ′′0 = 0, see fig. 2.4d):

V (φ) ≈ V0

[
1 + λ0

φ

Mpl
+

1

3!
µ0

φ3

M3
pl

+ · · ·

]
. (2.62)

This type of potential arises in D-brane inflation [217, 218] (see §5.1). The
spectral tilt derived from the potential (2.62) is [218,219]

ns − 1 = −4

√
λ0µ0

2
cot

(
N?

√
λ0µ0

2

)
, (2.63)

and is uncorrelated with the value of the tensor-to-scalar ratio:

r = 16λ2
0 . (2.64)
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Constraints on the total number of e-folds and the scalar amplitude typically
force λ0 to be very small and the tensor signal to be unobservable, r � 0.01.

Hybrid inflation.—Inflationary models with small-field potentials, such as
(c) and (d) in fig. 2.4, often end through an instability induced by coupling
the inflaton field φ to an additional ‘waterfall’ field Ψ. The combination of a
slow-roll potential and a waterfall instability is called hybrid inflation [220].
As a simple example, consider the two-field potential (see fig. 2.6)

V (φ,Ψ) = V (φ) + V (Ψ) +
1

2
gφ2Ψ2 , (2.65)

where V (φ) is the slow-roll potential and V (Ψ) is a potential of symmetry-
breaking type,

V (Ψ) ≡ 1

4λ

(
M2 − λΨ2

)2
. (2.66)

We assume that V (φ) � M4/4λ, so that the dominant contribution to
the inflationary energy density comes from the false vacuum energy of the
symmetry-breaking potential. The coupling between φ and Ψ induces an

Fig. 2.6. A typical potential of hybrid inflation. A tachyonic instability ends
inflation while the slow-roll parameter ε is still small.

effective mass for the waterfall field that depends on the value of the inflaton,

M2
Ψ(φ) = −M2 + gφ2 . (2.67)

This vanishes at the special point φ = φc ≡M/
√
g. For φ > φc, the field Ψ

is stabilized at Ψ = 0, and can be integrated out, so that the theory reduces
to that of single-field slow-roll inflation with Veff(φ) ≈ M4/4λ + V (φ). As
φ approaches φc from above, Ψ becomes light and the effective description
involves both fields. Finally, for φ < φc, the field Ψ becomes tachyonic and
ends inflation. Notice that hybrid inflation requires a hierarchy between the
masses of the two fields, V,φφ �M2. This issue is discussed, and technically
natural examples are constructed, in [221,222].
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Starobinsky’s R2 inflation.—One of the earliest models of inflation was writ-
ten down by Starobinsky in 1980 [223].17 Motivated by [227], Starobinsky
considered one-loop corrections to the Einstein-Hilbert action. These lead
to an effective action of the form of (2.29). Starobinsky’s model considers

only the R2 correction,

S =
M2

pl

2

∫
d4x
√
−g

(
R+

α

2M2
pl

R2

)
. (2.68)

For sufficiently large α, this action leads to inflationary dynamics. The
easiest way to see this is to perform a conformal transformation, gµν 7→
g̃µν = Ω2gµν , with Ω2 ≡ 1 +αR/M2

pl, to arrive at the action of a minimally

coupled scalar field φ ≡Mpl

√
2
3 ln(1 + αR/M2

pl),

S =

∫
d4x
√
−g̃

(
M2

pl

2
R̃− 1

2
(∂φ)2 − V (φ)

)
, (2.69)

with potential

V (φ) =
M4

pl

4α

(
1− exp

[
−
√

2

3

φ

Mpl

])2

. (2.70)

The slow-roll parameters associated with the potential (2.70) are

η = −4

3
e−
√

2/3φ/Mpl , ε =
3

4
η2 . (2.71)

Inflation occurs for φ > Mpl. The normalization of the scalar amplitude
requires

α = 2.2× 108 . (2.72)

Such a large parameter seems unnatural from a top-down perspective. Its
bottom-up naturalness is discussed in [228,229]. The scalar spectral tilt and
the tensor-to-scalar ratio are

ns − 1 ≈ − 2

N?
, r ≈ 12

N2
?

. (2.73)

Non-minimally coupled inflation.—It is also interesting to consider a scalar
field ϕ with a non-minimal coupling to gravity [230–235]. The simplest such

17
The Starobinsky model has recently received renewed attention—see [224] for a super-
conformal generalization and [225,226] for a no-scale supergravity version.
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coupling is the operator ϕ2R.18 Adding this to the action (2.36), we get

S =

∫
d4x
√
−g

[
M2

pl

2

(
1 + ξ

ϕ2

M2
pl

)
R− 1

2
(∂ϕ)2 − λ

4
ϕ4

]
, (2.74)

where, for concreteness, we have chosen a quartic polynomial for the inflaton
potential. The parameter ξ determines the strength of the non-minimal
coupling to gravity. Again, it is convenient to go to Einstein frame by
performing a conformal rescaling, g̃µν = Ω2gµν , with Ω2 ≡ 1 + ξϕ2/M2

pl.
The action then takes the form

S =

∫
d4x
√
−g̃

[
M2

pl

2
R̃− 1

2
k(ϕ)(∂ϕ)2 − V (ϕ)

]
, (2.75)

where

k(ϕ) =
1 + (6ξ + 1)ψ2

(1 + ψ2)2 , (2.76)

V (ϕ) =
λM4

pl

4ξ2

ψ4

(1 + ψ2)2 , ψ2 ≡ ξϕ2

M2
pl

. (2.77)

The canonically-normalized field, φ =
∫ √

k(ϕ) dϕ, is

φ

Mpl
=

√
6ξ + 1

ξ
sinh−1

(√
6ξ + 1ψ

)
−
√

6 sinh−1

√6ξ
ψ√

1 + ψ2

 .

(2.78)
For ξ � 1, this can be approximated as

φ

Mpl
≈
√

3

2
ln(1 + ψ2) , (2.79)

and the potential becomes

V (φ) =
λM4

pl

4ξ2

(
1− exp

[
−
√

2

3

φ

Mpl

])2

. (2.80)

This is identical to the potential (2.70) in the Starobinsky model. In the
limit ξ � 1, the model (2.74) therefore has the same phenomenology as
(2.68). The constraint (2.72) translates into

ξ = 47000
√
λ , (2.81)

18
This interaction played a fundamental role in the revival of Higgs inflation [236].
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and the predictions for ns and r are those of (2.73). The predictions for
general ξ were derived in [234,235]:

ns − 1 = − 32ξ

16ξN? − 1

ξ�1−−−−→ − 2

N?
, (2.82)

r = +
12

N2
?

6ξ + 1

6ξ

ξ�1−−−−→ +
12

N2
?

. (2.83)

These results are illustrated in fig. 2.5. We see that the model interpolates
between φ4 chaotic inflation (for ξ = 0) and the Starobinsky model (for
ξ � 1).

2.2.3 Non-Slow-Roll: K-Inflation

So far, we have only considered slow-roll models with canonical kinetic
terms. An alternative class of models—known as k-inflation [39, 237] or
P (X) theories [121]—considers the possibility that inflation was driven by
non-trivial kinetic effects rather than by a flat potential. An efficient way
to model these effects is through the action

S =

∫
d4x
√
−g

[
M2

pl

2
R+ P (X,φ)

]
, (2.84)

where P (X,φ) is (so far) an arbitrary function of the inflaton field φ and

of its kinetic energy X ≡ −1
2(∂φ)2. The stress-energy tensor arising from

(2.84) corresponds to a perfect fluid with pressure P and energy density
ρ = 2XP,X − P , where P,X denotes a derivative with respect to X. The
Friedmann equation and the Klein-Gordon equation are

3M2
plH

2 = 2P,XX − P and
d

dt

(
a3P,X φ̇

)
= a3P,φ , (2.85)

so the inflationary parameter (1.4) becomes

ε = − Ḣ

H2 =
3XP,X

2XP,X − P
. (2.86)

The condition for inflation is still ε � 1, but it is now a condition on the
functional form of P (X). The fluctuations in P (X) theories propagate with
a nontrivial speed of sound (see Appendix B),

c2
s =

dP

dρ
=

P,X
P,X + 2XP,XX

. (2.87)
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The predictions for ns and r are the same as in §1.2:

ns − 1 = −2ε− η̃ − κ , (2.88)

r = 16εcs , (2.89)

where η̃ and κ were defined in (1.30). We saw in §1.4.2 that a small sound
speed leads to observable equilateral-type non-Gaussianity. We will discuss
this further in §2.3.4, where we also emphasize the need to UV-complete
theories such as (2.84). In §5.3, we present DBI inflation [38,40] as a specific
example in string theory.

2.2.4 Inflation in Effective Field Theory

The models that we have presented so far are toy models: they are decou-
pled from the rest of physics and lack ultraviolet completions. The most
conservative way to address these deficiencies is to work in effective field
theory. In the remainder of this chapter, we will discuss the embedding of
slow-roll inflation in the framework of effective field theory.

The starting point is the EFT Lagrangian (2.14) minimally coupled to
gravity,

Seff [φ] =

∫
d4x
√
−g

[
M2

pl

2
R+ Ll[φ] +

∑
i

ci
Oi[φ]

Λδi−4

]
, (2.90)

where Ll[φ] includes the canonical kinetic term −1
2(∂φ)2 as well as any

renormalizable interactions. As we explained at length above, the sum over
non-renormalizable terms parameterizes the effects of massive fields on the
EFT of the light fields. When the UV theory is unknown, one can at
best make assumptions about the symmetry structure of the UV theory,
and then include all higher-dimension operators Oi consistent with these
symmetries. Following the remarks in §2.1.4, the maximal cutoff of the
EFT is the Planck scale, Λ .Mpl. In order for the effective theory (2.90) to
remain valid during the freeze-out of cosmological perturbations, i.e. when
ω = H, the minimal cutoff is the inflationary Hubble scale, Λ & H. Thus, all
fields with masses m . H are part of the EFT. We will begin by discussing
the case where the only light degrees of freedom are the graviton and a
single real inflaton scalar; models with multiple light scalars are discussed
in subsequent sections and in Appendix C.

In most particle physics applications of effective field theory, higher-
dimension operators only contribute small (‘irrelevant’) corrections to the
leading dynamics. As the cutoff is pushed to the Planck scale, these con-
tributions typically become negligible. (One notable exception is gravity-
mediated supersymmetry breaking.) It is a special feature of the effective
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theory of inflation (2.90) that some irrelevant operators play a crucial role at
low energies, not just for precision observables, but even for the zeroth-order
dynamics. Slow-roll inflation is sensitive even to Planck-suppressed opera-
tors. The next section is devoted to a careful discussion of this important
fact.

2.3 Ultraviolet Sensitivity

We will highlight four aspects of the UV sensitivity of inflation. The first two
(eta problem I and II) are universal and apply to any slow-roll19 model of in-
flation. The last two (super-Planckian displacements and non-Gaussianity)
only apply to specific classes of inflationary theories.

2.3.1 Eta Problem I: Radiative Corrections

As we have explained in §2.1, the unknown heavy physics above the cutoff
scale has two effects: i) it renormalizes the couplings of the light fields and
ii) it introduces new non-renormalizable interactions. Both effects have to
be addressed in a complete discussion of the inflationary dynamics.

We have seen that quantum corrections tend to drive scalar masses to
the cutoff scale, unless the fields are protected by symmetries. In the case
of inflation, this implies the following quantum correction to the inflaton
mass:

∆m2 ∼ Λ2 . (2.91)

Since consistency of the EFT treatment requires that Λ > H, we find a
large renormalization of the inflationary eta parameter (2.39),

∆η ∼ Λ2

H2 & 1 , (2.92)

and sustained slow-roll inflation appears to be unnatural. This difficulty is
known as the eta problem. The eta problem in the context of supergravity
was emphasized long ago in [238]. However, the issue is actually far more
general, afflicting any construction of slow-roll inflation in effective field
theory.

Two strategies are available for addressing the eta problem: fine-tuning
the potential, or appealing to symmetries. The problem is a resilient one
because approaches based on symmetries face serious limitations, and have

19
Variations of these problems arise in most non-slow-roll models as well. For example,
when non-trivial kinetic terms make a rapidly-varying potential innocuous (cf. §2.2.3),
one must still ensure that the necessary kinetic terms are not affected by Planck-
suppressed contributions. The general problem is to arrange that the action, not just
the potential, changes slowly during inflation.
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only occasionally been successful. The symmetry options are the same as
discussed in §2.1.3: supersymmetry and/or global internal symmetries. We
will discuss these in turn, but it is worth stating the upshot in advance:
supersymmetry ameliorates but cannot completely solve the problem, while
global symmetry arguments require precise control of Planck-suppressed op-
erators breaking the symmetry, motivating a treatment in quantum gravity.

Supersymmetry.—Even if the inflaton is part of a supersymmetric action,
the inflationary background solution spontaneously breaks SUSY, because
the energy density is necessarily positive. Nevertheless, SUSY still limits
the size of radiative corrections, because sufficiently high frequency modes
are insensitive to the effects of the spacetime curvature during inflation.
The cancellation between boson and fermion loops therefore still applies in
the high-energy regime, just as in flat space. On the other hand, modes
with frequencies below the Hubble scale, ω . H, do experience non-trivial
effects from the expanding background. Boson and fermion propagators
are then modified by the coupling to the spacetime curvature, with mass
splittings within supermultiplets that are typically of order H, and the
corresponding loops no longer cancel. Radiative corrections to the inflaton
mass are therefore naturally of order of the Hubble scale,

∆m2 ∼ H2 . (2.93)

This is smaller than the correction in (2.91), but not small enough to evade
the eta problem:

∆η ∼ 1 . (2.94)

This qualitative argument is confirmed in detail by investigations of inflation
in supergravity [238] and in string theory (see §4.2). Hence, although SUSY
ameliorates the eta problem, it does not solve it: successful inflation still
requires fine-tuning of the mass term [239,240], although much less than in
an EFT without SUSY.

The degree of fine-tuning implied by (2.94) depends to some extent on
the underlying model. In small-field models with ε � η, the value of η
at horizon crossing is related to the scalar spectral index, η ≈ 1

2(ns − 1).
For the Planck best-fit, ns ≈ 0.96, this implies η ≈ 0.02, so the required
fine-tuning is at the percent-level.

Global symmetries.—We have discussed global symmetries extensively in
§2.1.3. As we explained there, a small scalar mass is ‘bottom-up natural’
if the renormalizable part of the Lagrangian (the ‘IR theory’) respects an
approximate shift symmetry

φ 7→ φ+ const. (2.95)

In other words, the theory contains no relevant or marginal operators that
violate (2.95). Then, loops of the light fields do not drive the scalar mass
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up to the cutoff: quantum corrections to the scalar mass are suppressed
by the parameter measuring the weak breaking of the symmetry. Whether
inflationary models based on (2.95) are ‘top-down natural’ is an important
question for a theory of quantum gravity.

2.3.2 Eta Problem II: Higher-Dimension Operators

We saw in §2.1.3 that not all desirable symmetries of the IR theory can
be realized in a consistent UV theory: in particular, we recalled the com-
mon lore that quantum gravity breaks all continuous global symmetries.
Correspondingly, although a low-energy theory with light scalars that re-
spects (2.95) is radiatively stable, such a theory is not necessarily ‘top-down
natural’: irrelevant operators may spoil the desired symmetry. Whether the
symmetry survives is a question for the ultraviolet completion, and cannot
be addressed by studying the renormalizable Lagrangian.

As an example, consider the dimension-six operator

O6 = cVl(φ)
φ2

Λ2 , (2.96)

where c is a constant, and Vl(φ) consists of the renormalizable terms in the
potential, cf. (2.90). Even if Vl(φ) respects an approximate shift symmetry,
this is broken by O6. Provided that the inflaton vev is smaller than the
cutoff, φ < Λ, the operator O6 makes only a small correction to the infla-
tionary potential, ∆V � V (φ). Nevertheless, its effect on the inflaton mass
is significant:

∆η ≈ 2c

(
Mpl

Λ

)2

. (2.97)

For c ∼ O(1) and Λ < Mpl, the theory again suffers from the eta problem.
(Notice that the overall scale of the potential cancels in (2.97).) Even if the
operator in (2.96) is Planck-suppressed, Λ → Mpl, it cannot be ignored in
discussions of the inflationary dynamics.

In a theory with a single real scalar φ, it is difficult to give a convincing
argument for the absence of couplings of the form (2.96). Note in particular

that if one forbids φ2 via a global symmetry under which φ transforms
linearly, one would simultaneously exclude the kinetic term −1

2(∂φ)2. An
influential approach is therefore to take φ to transform nonlinearly under a
global symmetry (e.g. by taking φ to be an axion — see §5.4), and/or to be
the phase of a complex scalar (cf. e.g. [241]).

Although operators of the simple form (2.96) arise in many ultraviolet
completions (see §4.2 and Chapter 5), more general non-renormalizable in-
teractions are also common, and can give comparable (or larger) effects.
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Consider an operator of the form

Oδ = c〈V 〉
(
φ

Λ

)δ−4

, (2.98)

where 〈V 〉 is the vacuum energy at some stage of inflation. The correction
to η is

∆η ≈ c(δ − 4)(δ − 5)

(
Mpl

Λ

)2(φ
Λ

)δ−6

. (2.99)

If Λ = Mpl and φ < Λ, operators with δ � 6 can be neglected. For this
reason, addressing the eta problem in small-field inflation requires, at a
minimum, characterizing Planck-suppressed interactions up to dimension
six. However, operators with δ slightly larger than six are not strictly neg-
ligible unless φ � Λ, while taking Λ < Mpl increases ∆η in (2.99).20 The
threshold beyond which non-renormalizable interactions can be neglected
therefore varies from model to model, and depends on Λ/Mpl and φ/Mpl.

Explaining the absence of operators like (2.98) — including the special
case (2.96) — requires an understanding of the leading high-energy correc-
tions to the inflationary Lagrangian. When a symmetry is assumed in the
EFT, one must demonstrate, in the context of an ultraviolet completion,
that the symmetry survives non-renormalizable corrections such as (2.98).
This sensitivity to UV physics is the key challenge for realizing inflation in a
theory of fundamental physics. At the same time, the fact that Planck-scale
effects do not decouple from inflation presents a striking opportunity: one
can hope to use cosmological observations as a laboratory for physics at the
highest energy scales.

2.3.3 Gravity Waves and Super-Planckian Fields

Inflationary models that predict a detectably-large primordial gravitational
wave signal are extraordinarily sensitive to ultraviolet physics. To see this,
we will derive the Lyth bound [242], which relates observable tensor modes
to super-Planckian displacements of the inflaton, ∆φ &Mpl. We will begin
with a derivation of the Lyth bound in single-field slow-roll inflation, and
then present extensions to more general scenarios.

20
Notice that for 4 < δ < 6, δ 6= 5, the correction ∆η increases for small φ/Λ. Irrelevant
operators with non-integer dimensions δ < 6 can therefore dominate the dynamics in
small-field inflation. For an example, see §5.1.
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Fig. 2.7. Evolution of the inflaton field from the time when modes that are ob-
servable in the CMB exited the horizon, φ?, to the end of inflation, φend. The total
field displacement ∆φ is related to the tensor-to-scalar ratio r by (2.105).

The Lyth Bound

Substituting (2.38) into r = 16ε, we can relate the tensor-to-scalar ratio r
to the evolution of the inflaton field:

r = 8

(
1

Mpl

dφ

dN

)2

, where dN ≡ Hdt . (2.100)

Integrating (2.100) from the time N? when modes that are observable in the
CMB exited the horizon, until the end of inflation at Nend ≡ 0 (see fig. 2.7),
we get [242]

∆φ

Mpl
=

∫ N?

0
dN

√
r(N)

8
. (2.101)

To evaluate the integral in (2.101), it is useful to define

Neff ≡
∫ N?

0
dN

√
r(N)

r?
, (2.102)

where r? is the tensor-to-scalar ratio measured in the CMB, so that

∆φ

Mpl
= Neff

√
r?
8
. (2.103)

In slow-roll inflation, one can show that

d ln r

dN
= −

[
ns − 1 +

r

8

]
, (2.104)

Because both ns − 1 and r are constrained by observations, one can limit
Neff in slow-roll models: a conservative estimate is Neff & 30 [243] (see also
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[244]), while more typically Neff & 50. Taking Neff & 30, we conclude that21

∆φ

Mpl
&
( r

0.01

)1/2
. (2.105)

To arrive at a maximally conservative bound in single-field slow-roll infla-
tion, one can assume that slow-roll is valid only while the observed multi-
poles of the CMB exit the horizon, corresponding to Neff ≈ 7. This leads
to (cf. [242], which used a smaller Neff because fewer multipoles had been
observed in 1996)

∆φ

Mpl
& 0.25×

( r

0.01

)1/2
. (2.106)

It is quite a remarkable coincidence that the level of tensors that is experi-
mentally accessible (r & 0.01) is tied to the fundamental scale of quantum
gravity, Mpl.

We strongly caution against viewing ∆φ = Mpl as an absolute dividing
line: the theoretical challenges of models with ∆φ > Mpl are shared by
models with slightly smaller displacements. In particular, although gravity
itself becomes strongly coupled around the scale Mpl, parametrically con-
trolled ultraviolet completions of gravity generally involve additional scales
Λ < Mpl. For instance, the string scale and the Kaluza-Klein scale (see §4.1)
are typically well below the Planck scale. Field excursions that are large
compared to those scales raise concerns similar to the super-Planckian issues
we describe below.

Finally, let us emphasize that the Lyth bound (2.105) is a purely kine-
matic statement, relating r to the distance in field space over which the
inflaton moves. Although the bound has profound consequences in the con-
text of effective field theory reasoning about natural Planck-suppressed in-
teractions (see below), the derivation of (2.105) relied in no way on notions
of naturalness, or on a Taylor expansion of the potential.

Super-Planckian Fields in Effective Field Theory

The simplest scenarios for large-field inflation involve a scalar field minimally
coupled to gravity, with a monomial (or sinusoidal) potential that varies
slowly over super-Planckian distances in field space. To understand the
theoretical status of these models, it is instructive to examine them first from
a purely bottom-up perspective, in quantum field theory coupled to general
relativity, without accounting for necessity of an ultraviolet completion of
gravity. The only degrees of freedom are then the graviton and a single

21
One should not assume that simple models will approximately saturate (2.105): for
example, chaotic inflation scenarios involve displacements roughly four times larger
than required by the bound.
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scalar inflaton. From this perspective, there are two issues that appear
dangerous at first glance, but are in fact not at all problematic [245].

First, one might worry that super-Planckian displacements of the inflaton
will lead to super-Planckian energy densities, and correspondingly large
gravitational backreaction. This concern is misplaced: the normalization
(2.42) of the scalar fluctuations requires that V � M4

pl. For instance,

in m2φ2 chaotic inflation, (2.42) implies that the inflaton mass is small,

m ∼ 10−5Mpl, so that the energy density never becomes significant even for
super-Planckian fields.

A second concern is radiative stability: do quantum corrections, from
graviton loops and/or φ loops, destabilize the classical potential V (φ)? No:

the small value of the inflaton mass22 m is technically natural, because the
theory enjoys a shift symmetry in the limit m → 0. Quantum corrections
therefore do not destabilize the potential. In particular, the one-loop cor-
rection from graviton loops is [246]

∆V

V
= c1

V ′′

M2
pl

+ c2
V

M4
pl

, (2.107)

where c1 and c2 are order-one numbers. Because m � Mpl and V � M4
pl,

this is a small correction.
To summarize, in the low-energy theory of the inflaton and the graviton,

potentials supporting large-field inflation can be radiatively stable, and in
particular free of significant corrections from inflaton-graviton interactions.
Thus, from the bottom-up perspective, large-field inflation is not problem-
atic.

The essence of the problem of large-field inflation is that gravity requires
an ultraviolet completion, and couplings of the inflaton to the degrees of
freedom that provide this ultraviolet completion do not necessarily respect
the symmetry structures needed to protect the inflaton potential in the low-
energy theory. The effects of classical gravity (i.e. backreaction) and of semi-
classical gravity (i.e. graviton loops) are not problematic, but full quantum
gravity effects — corresponding to integrating out fields with Planck-scale
or string-scale masses — are subtle, and have the potential to be ruinous.23

22
A parallel argument applies to chaotic inflation with a non-quadratic monomial poten-
tial.

23
Some authors have argued that quantum gravity effects are necessarily small when
all energy densities are sub-Planckian. As a general statement about an arbitrary
quantum gravity theory, this is false: the fact that the eta problem appears in string
theory, cf. §4.2, is one simple counterexample, and the diverse failure modes of large-
field models in string theory discussed in §5.4 provide many more. Ignoring quantum
gravity effects purely because all energy densities are small in Planck units amounts to
attributing to the quantum gravity theory underlying our universe a property that is
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From our general discussion of effective actions, we know that integrating
out fields of mass Λ with order-unity couplings to the inflaton φ will lead
to an effective theory of the form

Leff [φ] = Ll[φ] +
∞∑
i=1

(
ci

Λ2i
φ4+2i +

di

Λ2i
(∂φ)2φ2i +

ei

Λ4i
(∂φ)2(i+1) + · · ·

)
,

(2.108)
where the omitted terms involve additional derivatives acting on φ (or on
the metric), and ci, di, ei are dimensionless Wilson coefficients that are
typically of order unity.

To begin, we discuss contributions to the potential, i.e. the terms involving
ci in (2.108). For ci ∼ O(1), we expect that the dominant functional form of
the potential will change when the field moves a distance of order Λ: there is
‘structure’ in the potential on scales of order Λ (see fig. 2.8). Even under the
optimistic assumption that Λ = Mpl, the potential (2.108) will not support
large-field inflation unless one effectively fine-tunes the infinite set of Wilson
coefficients ci. One might object that the expansion (2.108) is not a useful
description over distances & Λ: as a practical matter one would not compute
an infinite number of corrections. This is true, but (2.108) nevertheless
serves to show how badly an expansion in low-dimension operators can fail
in large-field inflation; the challenge is then to show that a more sensible
potential arises in some controlled setting.

(a)

(b)

Fig. 2.8. (a): Observable tensor modes require a smooth inflaton potential over
a super-Planckian range. (b): In the absence of symmetries, effective field theory
predicts that generic potentials have structure on sub-Planckian scales, Λ < Mpl.

not seen in string theory. This is a logically consistent position but is very far from
being agnostic about quantum gravity.
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As should be clear from the effective Lagrangian (2.108), the problem of
controlling super-Planckian displacements is not simply a matter of pro-
tecting the potential: other terms receive equally dramatic corrections from
higher-dimension operators. The terms involving di in (2.108) correspond
to modifications of the two-derivative kinetic term for φ, i.e. corrections to
the metric on moduli space. For di ∼ O(1), these corrections are large over
distances of order Λ.

The leading idea for implementing large-field inflation is to use a sym-
metry to suppress the dangerous higher-dimension contributions in (2.108).
For example, an unbroken shift symmetry

φ 7→ φ+ const. (2.109)

forbids all non-derivative operators in (2.108), including the desirable parts

of the inflaton potential, while a suitable weakly-broken shift symmetry24

can give rise to a radiatively stable model of large-field inflation. Whether
such a shift symmetry can be UV-completed is a subtle and important
question for a Planck-scale theory like string theory. We will return to the
problem of super-Planckian fields in Chapter 4 (see also §5.4).

Evading the Lyth bound?

Because the Lyth bound raises the specter of catastrophic quantum grav-
ity corrections in all models producing detectable primordial gravitational
waves, it is natural to pursue models that evade the bound by violating one
or more of the assumptions that entered the derivation. As we now review,
the bound is quite robust.

Let us be precise about what it means to ‘evade the Lyth bound’. In
a model involving a single inflaton with canonical kinetic term, beginning
in the Bunch-Davies vacuum, and with slow-roll unbroken throughout in-
flation, the bound (2.105) generally applies. If slow-roll holds only during
the Neff ≈ 7 directly-observed e-folds, and the subsequent evolution is arbi-
trary, the more conservative bound (2.106) remains applicable. Particularly

because Mpl = 2.4 × 1018GeV is not a precise and absolute marker of the
realm where quantum gravity corrections are large, one should be wary of
the claim that a marginal violation of (2.105), or even of (2.106), diminishes

24
Note that to realize an approximate shift symmetry in the low-energy theory, it would
suffice for the inflaton to have weak couplings g � 1 to all the degrees of freedom of
the UV completion: the Wilson coefficients in (2.108) would then be suppressed by
powers of g. Equivalently, the effective cutoff scale would become Mpl/g � Mpl. The
coupling of the inflaton to any additional degrees of freedom would be weaker than
gravitational [247].
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the problem of ultraviolet sensitivity in large-field inflation.25 For this rea-
son, to truly evade the physical content of the Lyth bound, one should alter
an assumption entering the derivation in such a way as to parametrically
violate the conservative bound (2.106). In other words, the task is to avoid
the conclusion that ‘detectable gravitational waves imply displacements of
order Mpl’.

With this in mind, we comment on a few ideas for evasion of the Lyth
bound:

. Nontrivial evolution.—A number of authors have proposed scenarios
in which nontrivial evolution after the horizon exit of the CMB fluctu-
ation — for example, a steep drop in the potential — renders (2.105)
inapplicable: see e.g. [248–251]. However, these models do still sat-
isfy (2.106), and correspondingly involve displacements of order the
Planck scale for r & 0.01. For a recent discussion see [252].

. Non-canonical kinetic terms.—It is natural to ask whether the Lyth
bound can be evaded if the inflationary phase is supported by kinetic
energy. As an explicit example, consider the P (X) theories of §2.2.3.
The naive bound for the excursion of φ becomes [243]

∆φ

Mpl
= (csP,X)−1/2

√
r

8
∆N . (2.110)

This seems to suggest that the Lyth bound could be evaded by choos-
ing P,X � 1 for fixed cs. However, when P,X � 1 we are far from
a canonical kinetic term for φ, and must worry about corrections to
the entire P (X) action, not just to the potential. In particular, one
should inquire about Planck-suppressed corrections of the form

∆L = P

(
X − V (φ)

φ2

M2
pl

)
= P (X)− P,XV (φ)

φ2

M2
pl

+ · · · . (2.111)

For P,X � 1, the corrections (2.111) are enhanced over potential cor-
rections. Thus, even though taking P,X � 1 does technically lead
to models violating (2.106), the problem of Planck-suppressed correc-
tions to the effective Lagrangian is undiminished, and merely moved
from one class of terms to another. A generalization of the Lyth bound
to a totally general single-field Lagrangian [51] was derived in [253] —
see Appendix B for further details.

25
The Lyth bound is sometimes misunderstood as the statement that ‘detectable grav-
itational waves imply ∆φ > 1.0 ×Mpl’, or equivalently — upon imposing a legalistic
definition of small-field inflation as inflation with ∆φ < 1.0 ×Mpl — that detectable
gravitational waves are impossible in ‘small-field’ inflation. Neither statement is true,
so exhibiting counterexamples has limited utility.
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. Multiple fields: arc length versus geodesic distance.—The distance ∆φ
that enters (2.105) is the arc length along the inflaton trajectory, not
the geodesic distance between the starting and ending points of the
trajectory. The importance of this distinction is that large displace-
ments appear unnatural when the inflaton travels outside the radius of
convergence of a Taylor expansion of the low-energy potential. If one
can arrange that the inflaton trajectory winds or meanders to achieve
a large arc length while remaining within the radius of convergence,
then the problem of ultraviolet sensitivity is much diminished, even
though the resulting models do obey (2.105). This point was stressed
in [254], where monodromy in a two-axion system leads to a winding
trajectory (see §5.4.2).

. Multiple fields: modified scalar perturbations.—Because the scalar am-
plitude (1.28) entering the derivation of (2.105) applies only to a single
inflaton scalar, one can ask whether contributions to the scalar per-
turbations by other light fields can lead to a weaker bound. Let us
first consider a multi-field inflation model in which as the observed
CMB multipoles exit the horizon, slow-roll is applicable, and more-
over the field trajectory does not bend sharply.26 Then, as explained
in Appendix C, the fluctuations of fields transverse to the inflation-
ary trajectory make strictly positive contributions to ∆2

R: see (C.107).
As such, the contributions of additional fields actually strengthen the
Lyth bound, increasing the displacement ∆φ required to produce a
given observed value of r.

The bound can be (rather weakly) violated if the slow-roll, slow-turn
approximations assumed above are invalid: fluctuations of additional
fields can then contribute negatively to ∆2

R, increasing the effective
value of r — see [255] for explicit examples. However, we are not
aware of a plausible construction in which this effect is large enough
to induce a meaningful weakening of the bound (2.106).

A more dramatic example of the effect of multiple fields arises if
the inflaton contribution to the scalar perturbations is negligible in
comparison to the perturbations arising from a curvaton [131], or
through modulated reheating [172, 256]. In typical scenarios the in-
flaton does still fluctuate during inflation, but the modulated contri-
butions imprinted later are much larger, substantially increasing the
power in scalar perturbations and correspondingly strengthening the
Lyth bound. To evade the Lyth bound via a curvaton or modulated
reheating one would have to suppress the inflaton fluctuations.

26
Specifically, we require that the usual slow-roll parameters are small, and moreover the
parameter η⊥ defined in (C.94) obeys η⊥ � 1.
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. Modifications of the initial state.—The tensor amplitude (1.34) is ap-
plicable when the initial state in which the two-point function is com-
puted is the Bunch-Davies vacuum. A significant modification of the
initial state may allow violations of (2.106) [257, 258], and the re-
sulting tensor spectrum can be expected to display significant scale-
dependence [258,259].

. Other sources of gravitational waves.—An alternative mechanism for
generating gravitational waves during inflation, as in e.g. [260–262],
can readily violate (2.106), as the bound incorporates only the pri-
mordial gravitational waves from quantum fluctuations of the gravi-
tational field. A zeroth-order challenge in such approaches is to ensure
that the dynamics producing gravitational waves does not render the
scalar spectrum non-Gaussian [263].

2.3.4 Non-Gaussianity

Single-field slow-roll inflation has an approximate shift symmetry27 (2.95)
that constrains inflaton self-interactions in the potential and prevents large
non-Gaussianity: fNL ∼ O(ε, η)� 1 [116]. To generate observable levels of
non-Gaussianity requires either higher-derivative interactions or couplings
to extra fields. Both options can be ultraviolet sensitive.

Non-Gaussianity from higher derivatives.—When higher-derivative interac-
tions are important, the dynamics deviates significantly from slow-roll. In
§2.2.3, we presented P (X) theories as a specific example. We mentioned
that fluctuations propagate with a nontrivial speed of sound,

c2
s =

P,X
P,X + 2XP,XX

. (2.112)

However, the effective theories corresponding to cs � 1 cry out for ultravio-
let completion. In an EFT, one thinks of the function P (X) in a derivative
expansion, cf. eq. (2.108),

P = X +
1

2

X2

Λ4 + · · · , (2.113)

which truncates to a finite number of terms if X � Λ4. However, the
condition X � Λ4 also implies that the deviation from the slow-roll action,
Ps.r. ≡ X − V (φ), is a perturbative correction, and the non-Gaussianity is

27
This symmetry does not have to be fundamental, but may be the result of fine-tuning.
Its presence is motivated by the observed scale-invariance of the primordial fluctuations.
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correspondingly small [121,122,264]:∣∣f equil
NL

∣∣ ∼ 1

c2
s

− 1 ≈ X

Λ4 + · · · � 1 . (2.114)

On the other hand, |f equil
NL | > 1 can only arise for X & Λ4, in which case it is

inconsistent to truncate the expansion in (2.113). Instead, an infinite num-
ber of higher-derivative terms—those proportional to ei in (2.108)—become
relevant. Observably-large non-Gaussianity in single-field inflation is there-
fore UV sensitive.28 Special symmetries, such as the higher-dimensional
boost symmetry of DBI inflation [38] (see §5.3), are required to make sense

of the UV completion of (2.113).29

Non-Gaussianity from hidden sectors.—As we will see in Chapters 4 and 5,
ultraviolet completions of inflation invariably involve extra fields coupled to
the inflaton. We will collectively denote these fields by ψ. If these fields are
sufficiently heavy (mψ � H), they can be integrated out and only affect the
couplings of the single-field EFT. Light hidden sector fields (mψ < H), on
the other hand, can affect the inflationary fluctuations and may therefore
leave imprints in cosmological observables.

Although the approximate shift symmetry (2.95) sharply limits the non-
Gaussianity that can arise from self-interactions of the inflaton, the cou-
plings of hidden sector fields are much less constrained, and hidden-sector
self interactions can lead to visible non-Gaussianity, as we now explain. Sup-
pose that the shift symmetry of the inflaton is preserved by the coupling to
a hidden sector field ψ. Then the leading interaction between the hidden
sector and the visible sector is the dimension-five operator [267]

O5 =
ψX

Λ
. (2.115)

This coupling converts any non-Gaussianity in the hidden sector into ob-
servable non-Gaussianity in the inflaton sector.

Under rather natural circumstances, the fluctuations in the hidden sector
can be highly non-Gaussian. For example, suppose that supersymmetry is

28
This issue is also visible in the effective theory of fluctuations [51] (see Appendix B). In
the limit of observable non-Gaussianity, the theory of the fluctuations becomes strongly
coupled below the symmetry-breaking scale φ̇ [265], and must therefore be UV-completed
below φ̇. This is in contrast to the slow-roll limit, where questions about the UV
completion are deferred to scales above φ̇.

29
Another class of ghost-free, radiatively stable higher-derivative models is Galileon infla-
tion [266]. In these models the renormalization of the action is protected by the Galilean
symmetry φ 7→ φ+ bµx

µ
+ c, which is a combination of the shift symmetry (2.95) and

a spacetime translation. No candidate for an ultraviolet completion of a Galileon model
in string theory has been proposed, and whether one exists is an open question.
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spontaneously broken during inflation. A generic hidden sector scalar field
ψ that is not sequestered from the inflationary supersymmetry breaking
will acquire a soft mass mψ ∼ H and cubic coupling (or A-term) Aψ3, with
A ∼ H [267, 268], by coupling to the inflationary vacuum energy. Unless
ψ has a large supersymmetric mass, it can fluctuate during inflation, and
because A ∼ H, the correlations of ψ are order-one non-Gaussian. Via the
operator (2.115), this gets communicated to the visible sector.30 The signal
can be large while keeping the effective theory under perturbative control,
with X < Λ4.

Through the coupling (2.115), the Planck limits (1.72)–(1.74) become
precision constraints on light hidden sector scalars [267, 269]. For scalars

with cubic couplings ∼ Hψ3, one finds the bound [267]

Λ & 105H . (2.116)

This is a constraint on physics many orders of magnitude above the in-
flationary Hubble scale. Using (1.38), one can write the bound (2.116) in
terms of the Planck scale:

Λ &
( r

0.01

)1/2
Mpl . (2.117)

It is a striking coincidence that a detection of primordial tensors, r > 0.01,
would push the lower bound on Λ to the Planck scale. The bispectrum re-
sults of Planck would then imply constraints on Planck-suppressed couplings
to hidden sectors. Specifically, we would learn that all hidden sector scalars
are either massive (mψ � H), sequestered from inflationary supersymmetry
breaking (A� H), or sequestered from the inflaton itself (Λ > Mpl).

To understand the strength of a constraint of the form Λ & Mpl, one
should recognize that in parametrically controlled ultraviolet completions of
gravity, the actual cutoff scale of an inflationary EFT is generally far below
the Planck mass. Thus, an unambiguous detection of primordial tensors
would exclude a broad range of constructions involving light hidden sector
fields, providing a powerful selection principle for ultraviolet completions of
inflation.

30
Order-one non-Gaussianity in the observed curvature perturbations would correspond
to fNL∆R ∼ 1, not to fNL ∼ 1.
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Elements of String Theory

String theory is the subject of a vast literature.1 Our aim in this section is to
assemble the results that are most relevant for the study of string inflation
(the subject of Chapters 4 and 5), making no pretense of completeness. We
will particularly focus on the four-dimensional effective actions arising in
cosmologically realistic solutions of string theory. Careful attention is paid
to the problem of moduli stabilization, and de Sitter solutions are critically
analyzed.

3.1 Fundamentals

3.1.1 From Worldsheet to Spacetime

An elementary starting point for string theory is the worldsheet action for
a string, which defines a (1+1)-dimensional quantum field theory. We will
begin by describing bosonic string theory, and then turn to string theories
whose worldsheet theories include fermionic fields.

Bosonic string theory.—The Polyakov action for a bosonic string propagat-
ing in D-dimensional Minkowski space [284,285] is

SP = − 1

4πα′

∫
d2σ
√
−hhab∂aX

M (σ)∂bX
N (σ)ηMN , (3.1)

where XM , with M = 0, · · · , D − 1, are the coordinates in the target
spacetime; σa, with a = 0, 1, are the coordinates on the string worldsheet;

hab is an independent metric on the worldsheet; and 2πα′ is the inverse
of the string tension. The action (3.1) describes a two-dimensional field
theory with D scalar fields. At the classical level, this theory is invari-
ant under two-dimensional diffeomorphisms and under the Weyl symmetry

1
The fundamentals of the theory can be found in the classic textbooks [270–273], as well
as the lecture notes [274–280]. More recent advances are described in [281–283].

95
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hab 7→ e2ω(σ)hab. Famously, these classical symmetries are non-anomalous
if and only if D = 26 [286]. The symmetries can be used to set2 hab 7→ ηab,
known as conformal gauge, so that the action takes the more convenient
form

SP = − 1

4πα′

∫
d2σ ∂aXM∂aXM , (3.2)

in which theXM are recognized asD free fields that respect a global SO(D−
1, 1) symmetry.

Upon quantizing the string, one finds that the massless spectrum consists
of a graviton GMN , an antisymmetric tensor BMN , and a scalar Φ known
as the dilaton. In addition, the spectrum contains massive excitations with

scale set by Ms ≡ (α′)−1/2. The Polyakov action (3.1) can be extended
to a nonlinear σ-model action describing strings propagating in a target
spacetime involving background profiles for the massless excitations:

Sσ = − 1

4πα′

∫
d2σ
√
−h

([
habGMN (X) + εabBMN (X)

]
∂aX

M∂bX
N

+ α′Φ(X)R(h)

)
, (3.3)

where R(h) is the Ricci scalar constructed from hab. Expanding the back-

ground fields around a given point, XM = XM
(0) + δXM , one finds inter-

action terms such as hab∂PGMN (X(0))δX
P ∂aδX

M∂bδX
N . The nonlinear

σ-model defined by (3.3) therefore describes an interacting quantum field
theory. When the gradients of the background fields are small in units of α′

— and in particular, when all curvatures are small in string units — these
interactions can be treated perturbatively. The corresponding expansion is
known as the σ-model expansion or the α′ expansion. Absence of anomalies
in the quantum field theory defined by (3.3) requires that the background
fields in the target spacetime obey certain differential equations that can be
obtained order by order in the α′ expansion. Consistency of string theory
at the quantum level on the worldsheet therefore imposes equations of mo-
tion in the target spacetime [287]. Remarkably, the equation of motion for
GMN (X) at leading order in α′ is the Einstein equation!

The equations of motion for the background fields can also be shown to
follow from a D-dimensional spacetime action that parameterizes the in-
teractions of the massless excitations of the bosonic string. The idea is to
construct an effective action in the sense described in Chapter 2: one imag-
ines performing the path integral by first integrating out massive excitations

2
This assumes that there is no topological obstruction to the existence of a metric that
is flat everywhere.
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of the string, leaving an effective action for the massless modes. The theory
that emerges at energies below the string scale Ms takes the form (see [272]
for details)

SB =
1

2κ2
D

∫
dDX

√
−Ge−2Φ

(
R+4(∂Φ)2− 1

2
|H3|

2− 2(D − 26)

3α′
+O(α′)

)
,

(3.4)
where κD is a coupling constant, and H3 = dB2 is the field strength of the
antisymmetric tensor BMN , or equivalently of the two-form B2. Although
the effective action (3.4) lacks the good ultraviolet behavior of the full string
theory (it violates perturbative unitarity at E ∼ Ms), it is nevertheless a
convenient way to organize the interactions at energies below the cutoff,
E � Ms. The omitted terms of higher order in α′ correspond to higher-
dimension operators, including invariants constructed from the Riemann
curvature of the target space.

In practice, the effective action (3.4) is obtained by computing scattering
amplitudes for strings via a path integral over worldsheets connecting initial
and final states. The path integral involves a sum over surfaces connecting
the initial and final configurations, and the genus of the surface is a loop
counting parameter: worldsheets of Euler number χ appear in the path
integral with weight

e−Φχ = e−Φ(2−2g) ≡ g2g−2
s , (3.5)

where g is the genus of the worldsheet and gs ≡ eΦ is the string coupling.
Amplitudes are then defined order by order in the genus expansion, although
except in special cases only one-loop results are available. One can then
ask which effective action in D-dimensional spacetime results in the same
scattering amplitudes. The amplitudes obtained at tree level in the genus
expansion can be shown to follow from the effective action (3.4), the very
theory whose equations of motion enforce the absence of anomalies in the
worldsheet theory (3.3).

In summary, the full D-dimensional action can be expressed in a double
expansion, in gs and in α′. The genus expansion corresponds to the ~ expan-
sion in the effective theory, while the α′ expansion controls the appearance of
certain higher-dimension operators. These expansions are controlled by vevs
of dynamical fields, rather than by fundamental dimensionless parameters:
the coupling ‘constant’ in the genus expansion, gs(Φ), is the expectation
value of the dilaton, while the expansion parameter of the σ-model is the
curvature of the target spacetime in units of α′.

Superstring theories.—The bosonic string theory defined by (3.1) is unsuit-
able as a description of nature: the spacetime spectrum is devoid of fermions,
and the theory suffers from a tachyonic instability [272]. Supersymmetric
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string theories are far more promising, and differ in important details. Most
fundamentally, the worldsheet actions involve additional fermionic terms: in
the simplest case, known as N = (1, 1) worldsheet supersymmetry, the total
action in conformal gauge takes the form [270]

S = SP + SF = − 1

4πα′

∫
d2σ

(
∂aXM∂aXM − iψ̄

Mρa∂aψM

)
. (3.6)

Here, ρa are two-dimensional Dirac matrices obeying the Dirac (or Clifford)
algebra

{ρa, ρb} = −2ηab , (3.7)

and ψM is a Dirac spinor on the worldsheet that transforms as a vector
under Lorentz transformations in the target space (which correspond to
global symmetry transformations of the worldsheet theory). In terms of the

two independent components of ψM ,

ψM ≡
(
ψM−

ψM+

)
, (3.8)

the fermion action takes the form

SF =
i

2πα′

∫
d2σ

(
ψM− ∂+ψ

N
− + ψM+ ∂−ψ

N
+

)
ηMN , (3.9)

where ∂± ≡ 1
2(∂τ ± ∂σ), with τ ≡ σ0 and σ ≡ σ1. The worldsheet fermions

therefore separate into left-moving and right-moving modes. The fermions
ψM± contribute to the central charge of the worldsheet field theory, so that
the theory defined by S = SP + SF, with SP given in (3.2), has the critical
dimension D = 10.

The action (3.9) for the worldsheet fermions does not completely de-
termine the spacetime spectrum of the theory: one must also specify the
periodicity of the fermions under transport around the closed string world-
sheet. Periodic fermions obeying ψM± (σ+π) = +ψM± (σ) are said to be in the

Ramond sector, while antiperiodic fermions with ψM± (σ+π) = −ψM± (σ) are
said to be in the Neveu-Schwarz sector. This choice can be made separately
for the left-moving and right-moving fermions, so that there are four pos-
sible sectors: NS-NS, R-R, R-NS, and NS-R. The ten-dimensional effective
actions describing the interactions of massless states of the superstring are
supergravity theories involving additional fermionic and bosonic fields in
comparison to (3.4). Bosonic fields in the target spacetime arise from string
states in the NS-NS and R-R sectors, while the R-NS and NS-R sectors give
rise to spacetime fermions.

To construct a consistent closed string theory with spacetime fermions,
it turns out to be necessary to impose a particular projection, the GSO
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projection, on the spectrum. This entails one further choice: one can per-
form identical GSO projections in the R-NS and NS-R sectors, or opposite
projections. The former choice leads to type IIB string theory, which has
a chiral spectrum in spacetime—in particular, the two gravitinos have the
same chirality. The latter choice produces type IIA string theory, which has
a non-chiral spectrum.

Three other consistent superstring theories are known. To arrive at type I
string theory, we consider the worldsheet parity operation Ω, which reverses
the orientation of the string worldsheet, and hence relates left-moving and
right-moving modes. In type IIB string theory, the R-NS and NS-R sectors
have the same spectra, so that worldsheet parity is a symmetry of the theory,
and it is consistent to project the spectrum onto states with Ω = +1. This
operation, which corresponds to gauging the discrete symmetry of world-
sheet parity, leads to a theory of unoriented strings, because for any given
string its orientation-reversed image under Ω is also retained. The projec-
tion removes one of the two gravitinos from the spectrum, yielding a theory
with N = 1 supersymmetry in ten dimensions, the type I string.

The two remaining theories also have ten-dimensional N = 1 supersym-
metry, but have a different structure on the worldsheet. While above we
have discussed theories with left-moving and right-moving bosons, and left-
moving and right-moving fermions, it is also consistent to take the left-
moving sector to be that of the bosonic string, and the right-moving sector
to be that of the superstring. Two supersymmetric heterotic string theories
arise from this construction: the SO(32) heterotic string, and the E8 × E8

heterotic string.
The five superstring theories described above are interrelated by a number

of dualities (see fig. 3.1), and correspond to different limits of an underlying
theory which is sometimes called M-theory.

Supergravity limit.—The low-energy limit of each of the consistent super-
string theories is a ten-dimensional supergravity theory. We will now de-
scribe the corresponding effective actions for type IIA and type IIB string
theory, focusing on the bosonic fields, which are directly relevant for obtain-
ing classical solutions. The actions for type I string theory and the heterotic
string theories may be found in e.g. [273].

The NS-NS sector of type II supergravity in ten dimensions contains the
metric GMN , the dilaton Φ and the two-form B2. The action for these fields
is

SNS =
1

2κ2

∫
d10X

√
−Ge−2Φ

(
R+ 4(∂Φ)2 − 1

2
|H3|

2

)
, (3.10)

where H3 = dB2. The coupling constant κ2, corresponding to the Newton
constant in ten dimensions, can be related to the string tension by comparing
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M-theory

IIA

IIB

S-dual

T-dual

heterotic

heterotic

I

T-dual

S-dualorientifold

Fig. 3.1. Dualities relating the supersymmetric string theories and M-theory. S-
duality exchanges strong coupling and weak coupling, while in compactification on
a circle, T-duality exchanges momentum and winding.

the worldsheet and supergravity actions: one finds [272]

2κ2 = (2π)7(α′)4 . (3.11)

In addition, type IIA supergravity has an R-R one-form C1 and a three-form
C3. The complete action then takes the form

SIIA = SNS + S
(IIA)
R + S

(IIA)
CS , (3.12)

where

S
(IIA)
R = − 1

4κ2

∫
d10X

√
−G

(
|F2|

2 + |F̃4|
2
)
, (3.13)

S
(IIA)
CS = − 1

4κ2

∫
B2 ∧ F4 ∧ F4 , (3.14)

with Fp = dCp−1 and F̃4 = F4 + C1 ∧ H3. The R-R fields in type IIB
supergravity are a zero-form (scalar) C0, a two-form C2, and a four-form C4

with self-dual field strength. The complete action is

SIIB = SNS + S
(IIB)
R + S

(IIB)
CS , (3.15)

where

S
(IIB)
R = − 1

4κ2

∫
d10X

√
−G

(
|F1|

2 + |F̃3|
2 +

1

2
|F̃5|

2

)
, (3.16)

S
(IIB)
CS = − 1

4κ2

∫
C4 ∧H3 ∧ F3 , (3.17)
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with Fp = dCp−1, F̃3 = F3 −C0 ∧H3, and F̃5 = F5 − 1
2C2 ∧H3 + 1

2B2 ∧ F3.
In addition, one must impose the self-duality constraint

F̃5 = ?F̃5 . (3.18)

We have written the NS-NS sector (3.10) of the actions (3.12) and (3.15)
in ‘string frame’, meaning that the Ricci scalar R appears with the dilaton-
dependent prefactor e−2Φ. This frame is convenient for comparing to the
results of string perturbation theory. However, for many questions involving
gravity, it is more practical to work in Einstein frame, in which the dilaton
prefactor is absent. The action can be written in the Einstein frame by
performing the Weyl rescaling

GE,MN ≡ e
−Φ/2GMN .

In type IIB string theory, it is convenient to define the combinations

G3 ≡ F3 − τH3 , (3.19)

τ ≡ C0 + ie−Φ , (3.20)

in terms of which the action (3.15), written in Einstein frame, takes the
form

SIIB =
1

2κ2

∫
d10X

√
−GE

[
RE −

|∂τ |2

2(Im(τ))2 −
|G3|

2

2Im(τ)
− |F̃5|

2

4

]

− i

8κ2

∫
C4 ∧G3 ∧ Ḡ3

Im(τ)
. (3.21)

The action (3.21) is the starting point for our discussion of type IIB flux
compactifications in §3.3.1.

3.1.2 D-branes

In addition to fundamental strings, string theory contains solitonic objects.
Most famous are D-branes, which are charged under the gauge symmetry
of the R-R fields. A Dp-brane is an object with p spatial dimensions that
is charged under Cp+1 via the electric coupling3

SCS = µp

∫
Σp+1

Cp+1 , (3.22)

3
Type IIA string theory contains stable Dp-branes with p even, while type IIB string
theory contains stable Dp-branes with p odd. Type I string theory has stable Dp-branes
with p = 1, 5, 9. Dp-branes and D(6− p)-branes are charged under R-R potentials Cp+1

and C7−p, whose field strengths Fp+2 and F8−p are dual to each other, ?F8−p = Fp+2.
Thus, D(6−p)-branes carry magnetic charge under Cp+1. In string theories with an NS-
NS two-form B2, fundamental strings carry charge under B2 and are stable. Moreover,
there is an additional soliton, the NS5-brane, which is magnetically charged under B2.
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where Σp+1 is the Dp-brane worldvolume and µp is the brane charge. The
Chern-Simons action (3.22) is simply a higher-dimensional generalization
of the coupling of a charged point particle to a gauge potential,

∫
dxµAµ ≡∫

A1.
A defining characteristic of D-branes is that they are surfaces on which

strings can end. The D in D-brane stands for Dirichlet, referring to the fact
that open strings ending on a D-brane have Dirichlet boundary conditions in
the directions transverse to the brane, i.e. the open string endpoints cannot
leave the D-brane. Open strings have Neumann boundary conditions in the
directions along the spatial extent of a Dp-brane with p > 0: the endpoints
are free to slide along the D-brane.

Quantization of the open strings residing on a D-brane yields a spectrum
of bosonic and fermionic fields living on the worldvolume. At the mass-
less level, one finds scalar fields parameterizing fluctuations of the D-brane
position, a worldvolume gauge field Aa with field strength Fab, and their
superpartners. The effective action for these fields is an important object,
because it encapsulates the low-energy dynamics of the D-brane. Just as the
low-energy effective action for the massless modes of a closed string could be
determined by computing closed string scattering amplitudes in perturba-
tion theory, the low-energy effective action that governs the massless fields
on a D-brane can be derived by computing scattering amplitudes involving
open strings ending on the D-brane. Moreover, by computing amplitudes
in which open strings on the D-brane interact with closed strings, one can
determine the couplings of the D-brane to a closed string background.

A general background solution of type II or type I4 string theory will in-
volve profiles for all the massless bosonic fields. We would like to understand
the effective action for the light fields on a Dp-brane in such a background.
For simplicity, we will restrict attention to the bosonic sector.

D-brane action.—An uncharged p-dimensional membrane moving in a curved
spacetime with metric GMN can be described by the Dirac action, which is
simply a higher-dimensional generalization of the Polyakov action (3.1):

SD = −Tp
∫

dp+1σ
√
−det(Gab) , (3.23)

where

Gab ≡
∂XM

∂σa
∂XN

∂σb
GMN . (3.24)

Here, Gab is the pullback of the metric of the target spacetime, and Tp is
the tension of the membrane.

4
The heterotic string theories contain no R-R fields, and correspondingly lack D-branes.
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Next, we recall Born-Infeld theory, a non-linear generalization of Max-
well’s electromagnetism. The Born-Infeld action in p + 1 flat spacetime
dimensions, for an Abelian gauge field Aa with field strength strength Fab,
is

SBI = −Qp
∫

dp+1σ

√
−det(ηab + 2πα′Fab)

= −Qp
∫

dp+1σ

(
1 +

(2πα′)2

4
FabF

ab + · · ·

)
, (3.25)

where Qp is a constant with the dimensions of a p-brane tension.
By computing open string amplitudes, and open+closed amplitudes, one

finds that the action for a Dp-brane in a general closed string background
involves a combination of the Dirac and Born-Infeld actions, the Dirac-
Born-Infeld action

SDBI = −gsTp

∫
dp+1σ e−Φ

√
−det(Gab + Fab) , (3.26)

where Fab is the gauge-invariant field strength

Fab ≡ Bab + 2πα′Fab , (3.27)

and Bab is the pullback of BMN onto the D-brane worldvolume. From the
string amplitude computations one infers that the Dp-brane tension is5

Tp ≡
1

(2π)pgs (α′)(p+1)/2
, (3.28)

leading to the important result that Dp-branes are heavy at weak string
coupling, gs � 1. Next, the D-brane tension Tp can be related to the charge
µp appearing in (3.22). The stable D-branes of type I and type II string the-
ories are BPS objects, and preserve half of the spacetime supersymmetries.
A BPS Dp-brane (p > 0) corresponds to a higher-dimensional generalization
of an extremal black hole, with tension equal to its charge when expressed
in appropriate units. In our conventions, one finds µp = gsTp.

The Chern-Simons action in the presence of background fields in the tar-
get space and on the D-brane worldvolume takes the form

SCS = i µp

∫
Σp+1

∑
n

Cn ∧ e
F , (3.29)

where the sum runs over the R-R n-forms of the theory in question, and
only (p+1)-forms contribute to the integral in (3.29). The complete bosonic

5
In a background with constant dilaton Φ, one has gse

−Φ
= 1.
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action for D-branes in a supergravity background is then the sum of the
Dirac-Born-Infeld action (3.26) and the Chern-Simons action (3.29),

SDp = SDBI + SCS . (3.30)

When N Dp-branes coincide, the worldvolume gauge theory becomes non-
Abelian, and the action becomes much more complicated, with a potential
involving commutators of the worldvolume scalars — see [288].

D-branes as sources.—The coupling of D-branes to the background fields
has important consequences: in addition to responding to the closed string
solution in which it is embedded, a D-brane contributes to the profiles of
the massless closed string fields. Specifically, a D-brane provides a local-
ized source of stress-energy and R-R charge, causing it to source curvature
and R-R fluxes in proportion to its tension and charge. Incorporating this
‘backreaction’ is sometimes difficult, as explained in §4.1.4.

The supergravity solution sourced by one or more Dp-branes corresponds
to a spatially-extended extremal black hole, or extremal p-brane. For N
coincident Dp-branes, the characteristic radius of curvature r+ is given by
[289]

r7−p
+ = dp gsN(α′)

1
2

(7−p) , (3.31)

where dp ≡ (4π)
1
2

(5−p) Γ
(

1
2(7− p)

)
. The dilaton profile in the radial (r)

direction takes the form

eΦ = gs

(
1 +

(r+

r

)7−p
) 1

4
(3−p)

. (3.32)

A classical supergravity description is valid if the curvatures are small in
string units and moreover gs � 1. For p < 7, we find from (3.31) that
the curvature is small at large gsN — see §4.1.4 for further discussion of
this point. Moreover, for the important special case p = 3, the dilaton
is constant, and can be small everywhere: D3-branes decouple from the
dilaton. Thus, if p = 3 and

1� gsN � N , (3.33)

the α′ and gs corrections to leading-order classical supergravity can be ne-
glected everywhere. On the other hand, for p 6= 3 the non-trivial dilaton
profile (3.32) presents an obstacle to extending the classical supergravity
solution over the entire spacetime. See [290] for a more extensive review of
extremal p-brane solutions.

3.2 Compactification

For our purposes, a solution of string theory is a configuration of the massless
fields that solves the equations of motion of the effective theory, and hence
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leads to a worldsheet theory without anomalies. In supersymmetric string
theories, a geometric solution involves a ten-dimensional spacetime M10,
and the solutions that are most relevant for cosmology include a spacetime
M4 with four large dimensions. We therefore consider geometries of the
form

M10 =M4 ×X6 , (3.34)

where X6 is a compact six-manifold. This is referred to as a compactification
of string theory on X6.

Vacuum compactifications.—We will distinguish vacuum configurations, i.e.
solutions of the ten-dimensional vacuum Einstein equations6 without sources
of stress-energy, from solutions involving sources, and begin by considering
vacuum solutions. A suitable ansatz for vacuum configurations is

GMN dXMdXN = ηµνdxµdxν + gmndymdyn , (3.35)

where ym, m = 1, . . . , 6 are coordinates on X6, and gmn is a metric on X6.
Such a geometry is an allowed vacuum configuration if and only if GMN

solves the ten-dimensional vacuum Einstein equations, i.e. if and only if
Rµν = Rmn = 0. Thus, in vacuum solutions the compactification manifold
must have vanishing Ricci tensor. The best-understood non-trivial vacuum
configurations take the form (3.34) with X6 a Calabi-Yau three-fold.

Warped compactifications.—Vacuum configurations of the form (3.34), solv-
ing the vacuum Einstein equations, are a simple and well-understood start-
ing point. However, the ten-dimensional effective action involves fields be-
yond just the metric, and these fields can contribute stress-energy. Further-
more, the extended objects described above (fundamental strings, D-branes,
and NS5-branes) are local sources of stress-energy and of charge. In non-
vacuum solutions containing these sources — or carrying the corresponding
charges without any local sources — the compactification manifold is gener-
ally not Ricci-flat. For non-vacuum configurations with maximal symmetry
in the noncompact spacetime, the product ansatz (3.36) is generalized to a
‘warped’ product:

GMN dXMdXN = e2A(y)gµνdxµdxν + e−2A(y)gmndymdyn , (3.36)

where now gµν is the metric of a maximally symmetric spacetime, the warp
factor A(y) is a function onX6, and the internal metric gmn is not necessarily
Ricci-flat.

Supersymmetric compactifications.—The supergravity actions described in
§3.1.1 enjoy N = 1 or N = 2 supersymmetry in ten dimensions, but the so-

6
The Einstein equations receive corrections in the α

′
expansion, which can be important

at large curvatures.
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lutions of the equations of motion need not preserve supersymmetry. Never-
theless, the best-understood solutions of string theory are supersymmetric,7

for reasons that we briefly explain. The first reason is geometric: the Ricci-
flatness condition required in vacuum solutions is closely tied to reduced
holonomy (see Appendix A for details). Suitably reduced holonomy leads
to the existence of invariant spinors and hence to unbroken supersymmetry
in four dimensions. Most notably, Calabi-Yau three-folds have holonomy
SU(3) and correspondingly preserve one quarter of the ten-dimensional su-
persymmetry: a Calabi-Yau compactification of type II string theory has
N = 2 supersymmetry in four dimensions. The second reason is that unbro-
ken supersymmetry provides unrivaled theoretical control, by guaranteeing
stability and by imposing intricate relations among the couplings in the ef-
fective theory. A third reason is the historical and continuing interest in
finding solutions of string theory with N = 1 supersymmetry broken near
the electroweak scale, in order to address the hierarchy problem.

Inflationary configurations necessarily break supersymmetry, but a fruit-
ful strategy is to study solutions with minimal (N = 1) supersymmetry
in four dimensions, and use these as the foundation for determining the
effective action in N = 0 solutions. Before examining supersymmetric com-
pactifications, we will first briefly describe the structure of the corresponding
supergravity theories.

N = 1 supergravity in four dimensions.—The bosonic fields of a general
four-dimensional N = 1 supergravity theory are the metric gµν , gauge po-

tentials Aaµ, and complex scalar fields φi. The low-energy interactions of

the scalars are encoded by the superpotential W (φi), which is a holomor-

phic function of the φi, and by the Kähler potential K(φi, φ̄i), which is a
real analytic function of the fields. In the absence of gauge interactions, the
Lagrangian for the scalar fields is

LΦ = −Kī ∂
µφi∂µφ̄

j − VF , (3.37)

where Kī ≡ ∂i∂̄K is the Kähler metric. The F-term potential VF appearing
in (3.37) is

VF (φi, φ̄i) = eK/M
2
pl

[
KīDiWDjW −

3

M2
pl

|W |2
]
, (3.38)

where Kī is the inverse Kähler metric and DiW ≡ ∂iW + 1

M
2
pl

(∂iK)W .

7
Compactifications that break supersymmetry at the Kaluza-Klein scale (for construc-
tions with stabilized moduli, see e.g. [291–293]) present an important alternative to
supersymmetric compactifications.
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A primary task in studying a string compactification with N = 1 super-
symmetry is to compute the superpotential and Kähler potential in terms of
geometric data. Through (3.37) and (3.38) these data determine the four-
dimensional effective theory, to leading order in the low-energy (derivative)
expansion.

3.2.1 Dimensional Reduction

To compute the four-dimensional effective action of a string compactifica-
tion, one begins with the appropriate ten-dimensional action and performs
a Kaluza-Klein reduction. In order to develop intuition for this process, we
will begin with a simple example.

Consider the ten-dimensional geometry

GMN dXMdXN = e−6u(x)gµνdxµdxν + e2u(x)ĝmndymdyn , (3.39)

where ĝmn is a reference metric with fixed volume,∫
X6

d6y
√
ĝ ≡ V , (3.40)

while eu(x) is a ‘breathing mode’ that represents the variations in size of
the internal space X6 as a function of the four-dimensional coordinate xµ.

The factor of e−6u(x) in the first term is a convenient choice for which the
gravitational action in four dimensions will appear in Einstein frame. We
now examine the dimensional reduction of the Einstein-Hilbert term

S
(10)
EH =

1

2κ2

∫
d10X

√
−Ge−2ΦR10 , (3.41)

where R10 is the Ricci scalar constructed from GMN . We would like to
express R10 in terms of R4 and R̂6, the Ricci scalars constructed from gµν
and ĝmn, respectively. For this purpose we note that if two D-dimensional
metrics gMN and ḡMN are related by the conformal rescaling

ḡMN = e2ω(x)gMN , (3.42)

then the corresponding Ricci scalars are related by

e2ωR̄ = R− 2(D − 1)∇2ω − (D − 2)(D − 1)gMN∇Mω∇Nω . (3.43)

Similarly, the Laplacians constructed from gMN and ḡMN are related by

e2ω∇̄2 = ∇2 + (D − 2)gMN∇Mω∇N . (3.44)
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Using these results, we find

S
(10)
EH =

1

2κ2

∫
d4x
√
−g

∫
X6

d6y
√
ĝ e−2Φ

(
R4 + e−8uR̂6 + 12∂µu∂

µu
)
.

(3.45)

If the string coupling gs ≡ eΦ is constant over the internal space, then the
four-dimensional Einstein-Hilbert term can be written

S
(4)
EH =

M2
pl

2

∫
d4x
√
−g R4 , (3.46)

with the four-dimensional Planck mass defined as

M2
pl ≡

V
g2

s κ
2 . (3.47)

We recognize the combination of derivatives of u(x) appearing in (3.45)
as the kinetic term for a four-dimensional scalar field u(x). This field is
a modulus corresponding to a spacetime-dependent deformation of the ten-
dimensional solution. As we will see below, in Calabi-Yau compactifications
the breathing mode u corresponds to one of the Kähler moduli: the kinetic
term for u in (3.45) follows from the Kähler potential

K = −3 ln (T + T̄ ) , (3.48)

where we have set Mpl = 1, and T is a complex scalar field with Re(T ) = e4u.
(The imaginary part of T comes from the dimensional reduction of the four-
form potential: see §3.2.3.)

Notice that the Ricci scalar R̂6 yields a potential term for the scalar u:
positive internal curvature (R̂6 > 0) contributes a negative potential term

V ∝ −e−8u in four dimensions, driving the compactification toward small
volume, while negative internal curvature contributes a positive potential
term V ∝ +e−8u, leading to a decompactification instability. In Ricci-flat
compactifications, the internal curvature term is absent and u has vanishing
potential in the classical theory.

More general Kaluza-Klein reductions involve both more complicated ten-
dimensional actions, for example involving p-form fields, as well as geomet-
ric deformations that generalize the very simple breathing mode described
above. However, the principles underlying the general analysis are captured
by the above example.

3.2.2 Moduli

In the simple Kaluza-Klein reduction described above, the breathing mode
corresponding to an overall dilation of the internal space gave rise to a four-
dimensional scalar field u(x) parameterizing spacetime-dependent changes
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in the compactification volume. We will now describe the analogous moduli
fields that arise in Calabi-Yau compactifications. To simplify the presenta-
tion, we primarily discuss four-dimensional scalars, i.e. moduli, leaving the
actions for vector and tensor fields to the references.8

Calabi-Yau compactifications with N = 2 supersymmetry.—We begin by
summarizing the effective theory that results from Kaluza-Klein reduction
in Calabi-Yau compactifications of type II string theory. Consider the ten-
dimensional geometry (3.35), with gmn the Ricci-flat metric on a Calabi-Yau
three-fold X6. Compactification of type II string theory on this background
leads to a four-dimensional theory with N = 2 supersymmetry.9 The ge-
ometric moduli of this compactification are scalar fields corresponding to
deformations of the metric gmn that preserve the Calabi-Yau condition: the
Kähler moduli are deformations of the Kähler form

J ≡ i gī dzi ∧ dz̄ ̄ , (3.49)

where zi, z̄ ̄, with i, ̄ = 1, . . . , 3 are complex coordinates on X6, while
complex structure moduli are deformations of the complex structure on X6.

To parameterize the moduli, we introduce a set of harmonic (1,1)-forms ωI ,

I = 1, . . . , h1,1, comprising a basis for the Dolbeault cohomology group H1,1,
as well as a set of harmonic (1,2)-forms χA, A = 1, . . . , h1,2, that form a

basis for H1,2. In terms of this basis, the Kähler form is

J = tI(x)ωI , (3.50)

where tI(x) are h1,1 four-dimensional scalar fields, the Kähler moduli. Sim-
ilarly, complex structure deformations may be written

δgij =
i

||Ω||2
ζA(x)(χA)īı̄ Ωı̄̄

j , (3.51)

where Ω is the holomorphic (3,0)-form of X6 and ||Ω||2 ≡ 1
3!ΩijkΩ̄

ijk. The

h1,2 four-dimensional scalar fields ζA(x) are the complex structure moduli.
Additional scalar fields arise from expanding the NS-NS and R-R poten-

tials in the bases of harmonic forms. We henceforth specialize to type IIB
string theory, where the relevant forms are B2, C2, C4, with the expansions

B2 = B2(x) + bI(x)ωI , (3.52)

C2 = C2(x) + cI(x)ωI , (3.53)

C4 = ϑI(x)ω̃I . (3.54)

8
A complete treatment can be found in [294], which we follow in this section. See
e.g. [282] for background on Calabi-Yau geometry.

9
Calabi-Yau compactifications of type I string theory, or of the heterotic string, yield
N = 1 supersymmetry. We will primarily discuss type II compactifications.
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Here, B2(x) denotes the four-dimensional two-form Bµν(x)dxµdxν , to be
distinguished from the ten-dimensional two-form B2, and similarly for C2.
In (3.54), we have suppressed vector field contributions to the final equality

(see [294] for the complete expression), and have defined ω̃I , I = 1, . . . , h1,1,

as a basis for H2,2. Finally, the dilaton Φ and the R-R zero-form C0 give
rise to two more real scalars.

The scalar fields just described appear in multiplets of four-dimensional
N = 2 supersymmetry. The 4h1,1 scalars vI , ϑI , bI , cI furnish the bosonic
content of h1,1 hypermultiplets, while the h1,2 real scalars ζA appear in N =

2 vector multiplets (in combination with the vector fields V µ
A ∼ C

µ

ijk̄
(χA)ijk̄

from the dimensional reduction of C4, which we have suppressed above).
Finally, Φ, C0, B2, C2 form the ‘universal hypermultiplet’, after dualizing
the two-forms to scalars in four dimensions — see Appendix A.

Calabi-Yau orientifolds with N = 1 supersymmetry.—Type II Calabi-Yau
compactifications with unbroken N = 2 supersymmetry do not yield re-
alistic models of Nature: in particular, N = 2 supersymmetry does not
allow fermions in chiral representations of gauge groups. More promising
are type II compactifications that include local sources, such as D-branes, in
addition to p-form fluxes. The resulting gauge theories can be rich enough to
include the Standard Model, and spontaneous breaking of supersymmetry
in a metastable vacuum is plausibly achievable.

A fundamental consistency requirement for flux compactifications with D-
branes is cancellation of all tadpoles associated with the charge and tension
of the sources. Most dramatically, the gravitational tadpole associated to
the positive tension of a D-brane requires the presence of a negative-tension
source [295]. The best-understood negative-tension objects are orientifold
planes, which are non-dynamical extended objects that appear at the fixed
point loci of an involution O that reverses the orientation of the string
worldsheet.

We will describe the essential aspects of orientifolds here, referring the
reader to [272] for a complete treatment. An orientifold action O is a sym-
metry that includes the worldsheet orientation reversal Ωws. The orientifold
actions of primary interest here take the form

O = (−1)FLΩwsσ , (3.55)

where (−1)FL is the worldsheet fermion number in the left-moving sector
— cf. the decomposition implied by (3.9) — and the geometric involution
σ reverses the sign of the holomorphic (3, 0) form Ω of X6, but leaves the
metric and complex structure invariant. The fixed point loci of an orien-
tifold action of the form (3.55) are points or four-cycles in X6. Because
the geometric action on the noncompact dimensions is trivial, the resulting
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orientifold planes have three or seven spatial dimensions, and are known as
O3-planes and O7-planes, respectively.

Under the action (3.55), the cohomology group H1,1 can be decomposed
as

H1,1 = H1,1
+ ⊕H1,1

− , (3.56)

with the subscript denoting the parity of the corresponding two-forms under
the orientifold action. Correspondingly, the basis ωI , I = 1, . . . , h1,1 for H1,1

decomposes into a basis for the even eigenspace, ωi, i = 1, . . . , h1,1
+ , and a

basis for the odd eigenspace ωα, α = 1, . . . , h1,1
− .

To understand the effect of orientifolding on the four-dimensional fields,
we note that vI , ϑI , Φ, C0 are even under the orientifold action, while ζA,

bI , cI , B2(x), C2(x) are odd. Invariant four-dimensional fields arise from
even ten-dimensional fields expanded in terms of even forms, or from odd
ten-dimensional fields expanded in terms of odd forms. The Kähler form
can be written

J = ti(x)ωi , (3.57)

so that the orientifold-invariant Kähler moduli are the h1,1
+ real scalars ti,

which measure the volumes of two-cycles that are even under the involu-
tion. Similarly, noting that the orientifold action projects out the four-
dimensional two-forms B2(x) and C2(x), we have the invariant fields (again
omitting vector contributions)

B2 = bα(x)ωα , (3.58)

C2 = cα(x)ωα , (3.59)

C4 = ϑi(x)ω̃i . (3.60)

Likewise, the invariant complex structure moduli are ζα, for α = 1, . . . , h1,2
− .

Finally, Φ and C0 are automatically invariant.
It is important to assemble the invariant scalars into the bosonic compo-

nents of chiral multiplets of four-dimensional N = 1 supersymmetry, i.e. to
determine the proper Kähler coordinates on the moduli space. First of all,
the axion C0 and dilaton Φ combine to form the complex axiodilaton,

τ = C0 + ie−Φ . (3.61)

The complex structure moduli ζα are automatically good Kähler coordi-
nates. The ‘two-form scalars’ bα and cα form the complex combination

Gα ≡ cα − τ bα . (3.62)

To go further, we note that the compactification volume V can be written
in terms of the Kähler form J as follows:

V =
1

6

∫
X6

J ∧ J ∧ J =
1

6
cijkt

itjtk , (3.63)
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where cijk are the triple intersection numbers of X6. Then, the Kähler
coordinates describing complexified four-cycle volumes are [294]

Ti ≡
1

2
cijk t

jtk + iϑi +
1

4
eΦ ciαβG

α(G− Ḡ)β , (3.64)

The expression (3.64) is not supposed to be obvious, but we can provide
some intuition by dropping the contribution of Gα, so that

Ti =
1

2
cijk t

jtk + iϑi . (3.65)

Now, we recall that the two-cycle volumes ti are related to the four-cycle
volumes τi by

τi =
∂V
∂ti

=
1

2
cijkt

jtk , (3.66)

so that (3.65) can be recognized as

Ti = τi + iϑi . (3.67)

This is the familiar complexification of four-cycle volumes τi by ϑi, i.e. by
the integral of C4 over the corresponding four-cycle. The more involved
expression (3.64) shows that the corresponding proper Kähler coordinate

depends on the vev of the two-form Gα.10

In summary, the Kähler coordinates on the moduli space are the h1,1
+ com-

plexified four-cycle volumes Ti (3.64), the h1,1
− two-form scalars Gα (3.62),

the axiodilaton τ (3.61), and the h1,2
− complex structure moduli ζα. All

told, a compactification of type IIB string theory on an O3/O7 orientifold

of a Calabi-Yau manifolds leads to h1,1
+ + h1,1

− + h1,2
− + 1 = h1,1 + h1,2

− + 1
complex moduli scalars in the four-dimensional theory. Further scalar fields
can arise from the open string sector.

3.2.3 Axions

One class of fields deserves special discussion: these are axions, i.e. pseu-
doscalar fields enjoying Peccei-Quinn (PQ) shift symmetries of the form

a 7→ a+ const. (3.68)

The QCD axion is the original and most famous example of an axion, and
some authors reserve the word ‘axion’ for this field alone, but we stress that
the axionic fields discussed here need not couple to QCD.

10
This fact might seem to be an irrelevant technicality, but we will see in §5.4.2 that the
mixing (3.64) is the fatal flaw in one otherwise-compelling scenario for inflation in string
theory.
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Axions from p-forms.—Axions arise in string compactifications from the
integration of p-form gauge potentials over p-cycles of the compact space.
For example, in type IIB string theory, there are axions associated with
the NS-NS two-form B2, the R-R two-form C2, and the R-R four-form C4,

integrated over suitable 2-cycles ΣI
2 and 4-cycles ΣI

4:

bI =
1

α′

∫
Σ
I
2

B2 , cI =
1

α′

∫
Σ
I
2

C2 , ϑI =
1

(α′)2

∫
Σ
I
4

C4 , (3.69)

where we have chosen the following normalizations for the forms in (3.54):∫
Σ
I
2

ωJ = α′δ J
I ,

∫
Σ
I
4

ω̃J = (α′)2δ J
I . (3.70)

Finally, there are three universal contributions: the R-R axion C0, and two
axions, b and c, from dualizing B2(x) and C2(x), respectively. In sum, a
hypermultiplet arising in N = 2 Calabi-Yau compactifications of type IIB
string theory contains three axions: for the h1,1 ‘non-universal’ hypermul-
tiplets, the axions descend from B2, C2, and C4, while the axions in the
universal hypermultiplet are C0, bU , and cU .11 We will collectively call
these axions a ≡ {bI , cI , ϑI , C0, bU , cU}. Orientifolding by an involution
(3.55) with O3/O7 fixed planes projects out some of the axions. Those that

remain are C0; bα and cα, for α = 1, . . . , h1,1
− ; and ϑi, for i = 1, . . . , h1,1

+ .

Axionic shift symmetries.—At the classical level, each axion inherits a con-
tinuous shift symmetry, a 7→ a + const., from the corresponding p-form
gauge invariances of the ten-dimensional theory. Specifically, in a back-
ground with vanishing fluxes, the type IIB action (3.21) is independent of
C0, C2, C4, B2, and involves only the associated field strengths. The con-
tinuous shift symmetry holds to all orders in perturbation theory, but is
broken nonperturbatively, by instanton effects. What remains is a discrete
symmetry, a 7→ a+ (2π)2.

We now explain this important point in the concrete example of the b
axion, following the classic arguments by Dine, Seiberg, Wen, and Witten
[299–302] that established the shift symmetry to all orders in the gs and α′

expansions. The extension to axions from other p-forms is straightforward.
We start with (3.3), the worldsheet coupling of the two-form B2,

Sσ ⊃ −
1

4πα′

∫
Σ2

d2σ εab∂aX
M∂bX

NBMN (X) , (3.71)

or, equivalently,

Sσ ⊃ −
1

2πα′

∫
Σ2

B2 ≡ −
b

2π
, (3.72)

11
The structure of shift symmetries arising in the universal hypermultiplet has been stud-
ied in [296–298].
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where the integral is taken over the string worldsheet. We recognize (3.72)
as a topological coupling. Expanding BMN (X) around a fiducial point
X(0) ≡ 0 yields

BMN (X) = BMN (X(0)) +XP∂PBMN (X(0)) + · · · . (3.73)

The constant term BMN (X(0)) gives rise in (3.71) to a worldsheet total
derivative,

− 1

4πα′

∫
Σ2

d2σ ∂a

(
εabXM∂bX

NBMN (X(0))
)
, (3.74)

which vanishes unless the worldsheet either wraps a topologically non-trivial
cycle, or has a boundary. The remaining terms in (3.73) involving spacetime
derivatives of BMN are nonvanishing in general, but correspond to finite-
momentum couplings (i.e. derivative interactions involving only ∂µb in the
effective theory). As derivative interactions do not break the shift symme-
try, it suffices, for the purpose of ascertaining the symmetry structure, to
consider the zero-momentum coupling arising from BMN (X(0)).

We conclude that the shift symmetry b 7→ b + const can only be broken
if the string worldsheet wraps a non-trivial cycle in the target spacetime,
or has a boundary. Both sources of symmetry breaking play significant
roles in model-building, and we will discuss them in turn. At any order in
σ-model perturbation theory, the string worldsheet wraps a topologically
trivial cycle, but the fundamental nonperturbative contribution in the σ-
model is a worldsheet instanton, i.e. a worldsheet wrapping a non-trivial
cycle Σ2. The corresponding spontaneous breaking of the shift symmetry is
nonperturbative in α′, and is measured by the Euclidean action

Sinst = exp

(
− 1

2πα′

∫
Σ2

(
J + iB2

))
∝ exp

(
−i b

2π

)
, (3.75)

where J is the Kähler form. The result is a periodic potential for b, with
periodicity12 (2π)2.

Next, we consider the string loop expansion. The preceding arguments
made no assumption about the genus of the worldsheet, and so must hold
to any order in the string loop expansion. However, nonperturbatively in gs

a new possibility arises: the closed string worldsheet can break open on a
soliton (i.e. a D-brane) and hence acquire a boundary. Correspondingly, the
shift symmetry can be broken by the presence of spacetime-filling D-branes.

Finally, certain types of Euclidean D-branes can break the shift symmetry,
because B2 appears in the Euclidean D-brane action. Just as for worldsheet

12
In this section we follow the conventions of [34].
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instantons, the resulting contribution to the potential is periodic, with scale

SEDp = exp
(
−Tp Vol(Σp)

)
, (3.76)

for a Euclidean Dp-brane wrapping a cycle Σp.
We conclude that the axion field b in the four-dimensional effective theory

enjoys a continuous shift symmetry b 7→ b+const that is spontaneously bro-
ken by worldsheet and/or D-brane instantons to a discrete shift symmetry

b 7→ b+ (2π)2, and may be explicitly broken if D-branes are present in the
compactification.

Axion decay constants.—The discrete shift symmetry a 7→ a + (2π)2 con-
strains the axion Lagrangian to take the form

L(a) = −1

2
f2(∂a)2 − Λ4

[
1− cos(a/2π)

]
+ · · · , (3.77)

where Λ is a dynamically-generated scale; f is a constant with dimensions
of mass, known as the axion decay constant; and the omitted terms contain
higher-derivative interactions and multi-instanton contributions. In terms
of the canonically-normalized field φ ≡ af , the axion periodicity is (2π)2f .

After dimensional reduction, the decay constants can be deduced from
the effective Kähler potential. On the other hand, it is also instructive to
compute them directly. We again take the b axions as an example. The
two-form B2 can be expanded in terms of the four-dimensional fields bα(x)

and the (1,1)-forms ωα, α = 1, . . . , h1,1
− :

B2 = bα(x)ωα . (3.78)

To determine the axion kinetic terms, and hence the decay constants, we
dimensionally reduce the ten-dimensional action for the two-form,

1

2(2π)7 g2
s (α′)4

∫
d10X |dB2|

2 ⊃ 1

2

∫
d4x
√
−g γαβ(∂µbα∂µbβ) , (3.79)

where

γαβ ≡ 1

6(2π)7g2
s (α′)4

∫
X6

ωα ∧ ?6 ω
β . (3.80)

Performing the integral in (3.80) and diagonalizing the result (i.e. γαβ 7→
f2
αδαβ), one can extract the axion decay constants fα. For purposes of

illustration, we consider an isotropic compactification with characteristic
length L and volume V = L6/α′3. Using (3.47) to relate the compactification
volume to the four-dimensional Planck mass, we find

f2

M2
pl

≈ 1

6

α′2

L4 . (3.81)
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Since computational control requires L �
√
α′, we infer that f � Mpl.

Qualitatively similar upper bounds on the decay constants occur in all com-
putable limits of string theory that have been explored to date [46,47].

3.3 Moduli Stabilization

Generic Calabi-Yau compactifications come with many moduli,13 i.e. zero-
energy deformations arising from the plethora of topologically distinct cycles
in typical Calabi-Yau manifolds. Understanding the dynamics of moduli is
crucial for describing cosmological evolution. During inflation, the posi-
tive vacuum energy tends to induce instabilities of massless scalar fields,
along directions that reduce the energy and swiftly end inflation. Moreover,
quantum fluctuations of moduli during inflation contribute to the primor-
dial perturbations. Furthermore, the impact of moduli on cosmology after
the time of inflation is profound and complex: moduli can affect Big Bang
nucleosynthesis, overclose the universe, comprise some of the dark matter,
decay to dark radiation, or mediate long-range interactions. However, a
modulus that acquires a mass m & 30 TeV decays before nucleosynthesis,

eliminating nearly all14 late-time effects. A full treatment of the cosmolog-
ical moduli problem is beyond the scope of this book, and we will content
ourselves with describing the effects of moduli during inflation.

A principal challenge in the search for cosmological models in string
theory is the task of controlling instabilities associated with the moduli,
i.e. finding vacua in which all the moduli have positive masses-squared: this
is known as moduli stabilization. As we will explain in Section 4, giving
non-zero masses to all moduli does not suffice to dispel the moduli prob-
lem — for this purpose, the masses must be large compared to the scales
accessed during inflation. Even so, identifying the leading contributions to
the moduli potential is an essential first step toward constructing realistic
models. We now turn to a characterization of the moduli potential in the
example of flux compactifications of type IIB string theory.

13
The word ‘moduli’ actually has several different meanings in different contexts, so a clar-
ification is appropriate. The geometric notion is that moduli parameterize continuous
families of solutions, for example families of Ricci-flat metrics. In physics, a modulus is
a scalar field with gravitational-strength couplings that has vanishing potential at some
level of approximation. Some moduli have exactly vanishing potential before supersym-
metry breaking, while others have vanishing classical potential but obtain a mass from
quantum effects. In some contexts, ‘moduli’ refers exclusively to parity-even real scalar
fields, as distinguished from pseudoscalar axions, but we will generally refer to complex
moduli.

14
Moduli that decay early, but to fields that themselves linger and affect late-time ob-
servables, are a very interesting exception: see e.g. [303–309].



3.3 Moduli Stabilization 117

3.3.1 Classical Solutions

In this section, we will review the essential features of type IIB flux com-
pactifications on Calabi-Yau orientifolds, following the pioneering work by
Giddings, Kachru, and Polchinski (GKP) [295]. Space limitations prevent
us from detailing the many advances generalizing and extending the analy-
sis of [295], most notably to time-dependent backgrounds and to solutions
with strong warping (see [310–313]). The literature on flux compactifica-
tions beyond type IIB orientifolds is so extensive that we will not attempt
to summarize it: more complete discussions of flux compactifications, where
the original references can be found, include [44,314,315].

Type IIB supergravity.—At leading order in α′ and gs, the ten-dimensional
action for the bosonic fields in Einstein frame is given by (3.21). In addition,
there may be local sources, such as D-branes and orientifold planes, with
corresponding action Sloc. We search for warped solutions with the ansatz15

(3.36), but now taking gµν = ηµν :

ds2 = e2A(y)ηµνdxµdxν + e−2A(y)gmndymdyn . (3.82)

Four-dimensional Poincaré invariance requires that the three-form flux G3

has no nonvanishing components in the noncompact spacetime, while the
self-dual five-form flux takes the form

F̃5 = (1 + ?10) dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (3.83)

where ?10 is the ten-dimensional Hodge star and α(y) is a scalar function
on X6.

Equations of motion.—The trace of the ten-dimensional Einstein equation
yields

∇2e4A =
e8A

2Im(τ)
|G3|

2 + e−4A
(
|∂α|2 + |∂e4A|2

)
+ 2κ2e2AJloc , (3.84)

where ∇2 is the Laplacian on X6, and the effects of local sources are pa-
rameterized as

Jloc ≡
1

4

(
9∑

M=4

TMM −
3∑

M=0

TMM

)
loc

, (3.85)

with TMN the stress-energy tensor derived from Sloc. In the absence of local
sources, i.e. for Jloc = 0, the solution is trivial, with constant A, constant
α, and vanishing G3. (To see this, note that the l.h.s. of (3.84) integrates

15
For time-dependent solutions, we would require a more general ansatz [310].
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to zero on X6, while the first three terms on the r.h.s. are all non-negative.)
A non-trivial warped compactification requires one or more sources with
Jloc < 0 [316], for example orientifold planes.

Next, the Bianchi identity for the five-form flux is

dF̃5 = H3 ∧ F3 + 2κ2T3ρ
loc
3 , (3.86)

where ρloc
3 is the D3-brane charge density due to the local sources. Because

F̃5 is self-dual, (3.86) may also be thought of as an equation of motion. Inte-
grating (3.86) over X6 leads to a tadpole-cancellation condition (i.e. Gauss’s
law constraint)

1

2κ2T3

∫
X6

H3 ∧ F3 +Qloc
3 = 0 , (3.87)

where Qloc
3 is the total charge associated with ρloc

3 . Substituting (3.83) into

(3.86) and combining with (3.84), we get16

∇2
(
e4A − α

)
=

e8A

24Im(τ)
|iG3 − ?6G3|

2 + e−4A|∂(e4A − α)|2

+ 2κ2e2A (Jloc −Qloc) , (3.88)

where ?6 is the six-dimensional Hodge star and Qloc ≡ T3ρ
loc
3 . The l.h.s. of

(3.88) integrates to zero on X6, while the non-localized sources on the
r.h.s. are non-negative. As for the localized contribution Jloc −Qloc, many
well-understood localized sources satisfy the BPS-like condition

Jloc ≥ Qloc . (3.89)

The condition (3.89) is saturated by D3-branes and O3-planes, and by D7-
branes wrapping four-cycles (in such a way as to respect the N = 1 super-
symmetry preserved by D3-branes). It is satisfied, but not saturated, by
anti-D3-branes and by D5-branes wrapped on collapsed two-cycles. How-
ever, O3-planes and O5-planes violate (3.89), because they are incompatible
with the supersymmetry preserved by D3-branes.

Consider a compactification in which all sources satisfy (3.89). Integrating
(3.88) reveals that we must in fact demand that all sources saturate (3.89)
— i.e. only D3-branes, O3-planes, and D7-branes are allowed — and that
the three-form flux is imaginary self-dual (ISD),

?6G3 = iG3 , (3.90)

while the warp factor is equal to the four-form potential

e4A = α . (3.91)

16
This corrects the numerical factor appearing in [295], cf. [317].
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A configuration meeting these criteria is called an ISD solution.

To recapitulate, the Einstein equation and five-form Bianchi identity can
be combined to give, at leading order in α′ and gs, the key relations (3.84)
and (3.88). These expressions are parallel in form: the l.h.s. expressions in-
tegrate to zero, while the r.h.s. in each case involves a sum of non-localized
(‘bulk’) terms that are everywhere non-negative, as well as a localized con-
tribution. If the localized contribution is non-negative, it must in fact be
zero, and then the bulk terms must be identically zero. In the case of
the Einstein equation (3.84), this implies that in the absence of negative
tension sources, only unwarped solutions (without positive tension sources)
are allowed. From the Einstein equation minus Bianchi identity (3.88),
we learn that in the absence of sources violating (3.89), only ISD solutions
are allowed. Because well-understood supersymmetric configurations of O3-
planes and O7-planes (as well as D3-branes and D7-branes) yield negative
tension without violating (3.89), it is straightforward to exhibit ISD warped
solutions. Non-ISD solutions are much less studied at present, because of
the difficulty of controlling the comparatively exotic orientifold planes that
violate (3.89).

A significant property of compactifications with three-form flux, including
ISD solutions, is that the complex structure moduli ζα and the axiodilaton
τ experience a potential. To see this, we note that the ten-dimensional type
IIB action (3.21) contains the term

Vflux =
1

2κ2

∫
d10X

√
−GE

[
− |G3|

2

2Im(τ)

]
, (3.92)

which involves the complex structure moduli via the metric contraction, and
the axiodilaton both through the denominator and through the definition
(3.19) of G3. As a result, for a generic choice of quantized fluxes, τ and all
of the ζα receive masses at the classical level, i.e. at leading order in α′.

Effective supergravity.—The data of the four-dimensional effective theory of
an ISD compactification can be usefully repackaged in terms of a Kähler
potential and superpotential of N = 1 supergravity. At leading order in the
α′ and string loop expansions, the Kähler potential is

K0 = −2 ln(V)− ln (−i(τ − τ̄))− ln

(
−i
∫

Ω ∧ Ω̄

)
. (3.93)

Here, the volume V and the holomorphic three-form Ω depend implicitly
on the Kähler moduli Ti and the complex structure moduli ζα, respectively.
The ISD condition (3.90) can be derived from the Gukov-Vafa-Witten flux
superpotential [318]

W0 =
c

α′

∫
G3 ∧ Ω , (3.94)
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where c is a constant (see [319]). Since G3 depends on the dilaton and Ω
involves the complex structure moduli, the superpotential (3.94) leads to a
non-trivial potential for these moduli. The scalar potential associated with
K0 and W0 is

VF = eK0

[
KIJ̄

0 DIW0DJW0 − 3|W0|
2
]
, (3.95)

where I, J run over all the moduli (Ti, ζα and τ). Supersymmetry is pre-

served if all F-terms vanish,17 i.e. if

DIW0 ≡ ∂IW0 + (∂IK)W0 = 0 , (3.96)

where I runs over all the moduli.

No-scale structure.—The Kähler potential (3.93) is of a specific form that
satisfies ∑

I,J=Ti

KIJ̄
0 ∂IK0∂J̄K0 = 3 . (3.97)

Since the superpotential (3.94) is independent of the Kähler moduli, the
scalar potential (3.95) is of the no-scale type, i.e. it is independent of the
F-terms of the Kähler moduli,

VF = eK0
∑
I,J 6=Ti

KIJ̄
0 DIW0DJW0 . (3.98)

This potential is positive semi-definite, and VF = 0 when DI 6=TiW0 = 0.
The minimum is not necessarily supersymmetric, as in general we may have
DTi

W0 6= 0.

No-scale structure and D3-branes.—Thus far we have discussed the effective
action for massless closed string fields, but the positions of D-branes provide
an important additional class of open string moduli. Consider a D3-brane
that fills spacetime and sits at a point in a flux compactification on a Calabi-
Yau manifold. Evaluating the DBI+CS action (3.30) in an ISD background,
one finds that the potential energy for D3-brane motion vanishes identically:
the complex scalars zα, α = 1, 2, 3, that parameterize the D3-brane posi-
tion are massless moduli. The four-dimensional action derived from the
dimensional reduction of (3.30) can be expressed in N = 1 supergravity via
the DeWolfe-Giddings Kähler potential, which for a compactification with
a single Kähler modulus T takes the form [320]

K(T, T̄ , zα, z̄α) = −3 ln
[
T + T̄ − γk(zα, z̄α)

]
, (3.99)

17
When gauge multiplets are present in the effective theory, D-term contributions are an
important alternative source of supersymmetry breaking, but our present discussion is
confined to the moduli sector.
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where γ is a constant, and k(zα, z̄α) is the Kähler potential for the metric on
the Calabi-Yau manifold. The Kähler potential (3.99) is of no-scale type: if
the superpotential W is independent of T and of the zα, then the F-terms
of these fields do not appear in the F-term potential. The mixing between
the Kähler modulus T and the D3-brane position moduli implied by (3.99)
has significant ramifications for inflationary model building with D3-branes:
see §5.1.

In summary, in a ‘no-scale’ compactification with imaginary self-dual
fluxes, one finds, at leading order in α′ and gs, that the vacuum energy
vanishes,18 the complex structure moduli and axiodilaton are stabilized,
the Kähler moduli and D3-brane position moduli have vanishing potential.

3.3.2 Quantum Effects

Perturbative and nonperturbative corrections to the effective action are
known to break the no-scale symmetry, lifting or destabilizing the flat direc-
tions and altering the vacuum energy. We will begin by discussing pertur-
bative corrections to the Kähler potential, in both the α′ and gs expansions,
and then discuss nonperturbative corrections to the superpotential.

Perturbative Corrections

The most famous perturbative correction to the Kähler potential descends
from an (α′)3 curvature correction in ten dimensions, namely the quar-

tic invariant R4 appearing in (2.30). This term is part of the classical,
higher-curvature ten-dimensional supergravity theory: it arises via a four-
loop correction to the β-function of the worldsheet σ-model [198], rather
than from a loop in spacetime. In the four-dimensional effective theory, the
result takes the form [321]

K = −2 ln

[
V +

ξ

2g3/2
s

]
, ξ ≡ −χ(X6)ζ(3)

2(2π)3 , (3.100)

where χ(X6) is the Euler characteristic of X6, and ζ(3) ≈ 1.202 is Apéry’s
constant. The Kähler potential (3.100) does not satisfy the no-scale condi-
tion (3.97) (unless χ = 0).

Perturbative corrections from loop effects in spacetime, i.e. from higher-
genus string worldsheets, will also generically spoil the no-scale structure
(3.97). The only explicit results available are for N = 1 compactifications

18
Having a non-supersymmetric vacuum with vanishing vacuum energy seems too good
to be true, and it is: no-scale structure on its own is not a solution to the cosmological
constant problem, because it does not survive quantum corrections.
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on the toroidal orientifold T 6/(Z2×Z2) [322,323]. To give a concrete picture
of string loop corrections, we now sketch this specific result. The correction
to the Kähler potential takes the form

δK(gs)
= δKKK

(gs)
+ δKW

(gs)
, (3.101)

where the term δKKK
(gs)

comes from the exchange of closed strings with

Kaluza-Klein (KK) momentum between D7 and D3-branes, while δKW
(gs)

comes from the exchange of closed strings with nonvanishing winding (W).
The former is given by

δKKK
(gs)

= − 1

128π2

3∑
i=1

EKK
i (ζ, ζ̄)

Re(τ)τi
, (3.102)

where τi stands for the Kähler modulus associated with the four-cycle
wrapped by the i-th D7-brane. The second term in (3.101) takes the form

δKW
(gs)

= − 1

128π2

3∑
i=1

EW
i (ζ, ζ̄)

τjτk

∣∣∣∣∣
j 6=k 6=i

. (3.103)

These results have a complicated dependence on the complex structure mod-
uli ζ (encoded by the functions EKK

i (ζ, ζ̄) and EW
i (ζ, ζ̄) given in [322,323]),

but have a simple scaling with the Kähler moduli τi. A conjectural general-
ization of the results of [322,323] to general Calabi-Yau three-folds appears
in [324] (see also [325] for related earlier work), but giving an explicit char-
acterization of this leading string loop correction remains an open problem.

Even though the perturbative corrections (3.102) and (3.103) manifestly
violate no-scale structure, the corresponding contributions to the scalar po-
tential cancel to some extent: see the discussion in §5.5.2.

Nonperturbative Effects

Although the Kähler potential for the Kähler moduli receives perturbative
corrections in the α′ and gs expansions, the superpotential receives no cor-
rections in either expansion, to any order in perturbation theory, as we now
explain.

The fact that the superpotential of a supersymmetric field theory receives
no perturbative corrections in the ordinary ~ expansion, corresponding to
the gs expansion in string theory, was originally established directly [326].
Elegant non-renormalization theorems in string theory [299–302] arrived at
the same end by combining holomorphy and shift symmetry arguments.
In the heterotic string setting emphasized in [299–302], the argument for
non-renormalization in gs is more straightforward than in type IIB flux
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compactifications, because the classical superpotential in the heterotic string
is independent of the dilaton, whereas the classical GVW flux superpotential
(3.94) involves the dilaton through the definition (3.19) of G3. A careful
demonstration of the absence of string loop corrections to (3.94) appears in
[327].

Next, to address α′ corrections, we recall that the axionic imaginary parts
of the Kähler moduli (3.67) are protected by shift symmetries, ϑi 7→ ϑi +
const., which hold to all orders in perturbation theory, as explained in §3.2.3.
(These shift symmetries rely in no way on supersymmetry.) Holomorphy
dictates that the superpotential can only depend on Ti, rather than on
Ti+ T̄i, but no non-trivial polynomial in Ti is invariant under the shift of the
axion. Thus, the superpotential can depend on Ti only nonperturbatively.
Because corrections in the α′ expansion must change in magnitude as the
Ti are varied, but the superpotential is independent of the Ti to all orders,
it follows that W receives no perturbative α′ corrections.

Let us now discuss nonperturbative contributions to the superpotential.
Consider a compactification in which a stack of Nc D7-branes wraps a four-
cycle Σ4. The worldvolume theory of the D7-branes includes a Yang-Mills
action for four-dimensional gauge fields Aµ, of the form

S =
1

2g2
7

∫
Σ4

d4σ
√
gind e

−4A(y) ·
∫

d4x
√
−g Tr

[
FµνF

µν] , (3.104)

where the indices are raised with the unwarped metric gµν , and g7 is the
gauge coupling of the (7+1)-dimensional Yang-Mills theory,

g2
7 = 2(2π)5(α′)2 . (3.105)

The gauge coupling of the four-dimensional Yang-Mills theory is

1

g2 =
T3V4

8π2 , (3.106)

where we have defined the volume of Σ4 as

V4 ≡
∫

Σ4

d4σ
√
gind e

−4A(y) , (3.107)

and gind is the induced metric on the D7-brane. Because of the appearance

of e−4A(y), V4 as defined in (3.107) is sometimes called the ‘warped volume’.
Given certain topological conditions on Σ4, discussed further below —

heuristically, one asks that Σ4 have no deformations that could correspond
to charged matter fields — the four-dimensional gauge theory arising upon
dimensional reduction is pure glue N = 1 super Yang-Mills theory. At low
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energies, this field theory generates a nonperturbative superpotential from
gaugino condensation [328–333] (cf. [334]):

|Wλλ| = 16π2M3
UV exp

(
− 1

Nc

8π2

g2

)
∝ exp

(
−T3V4

Nc

)
. (3.108)

The volume V4 is proportional to the real part19 of a corresponding Kähler
modulus T , so the gaugino condensate superpotential may be written as

Wλλ = A e−aT , (3.109)

where a = 2π
Nc

and the prefactor A is independent of all the Kähler moduli,

but generally depends on the complex structure moduli and on the positions
of any D-branes. One might suspect from (3.108) that A ∝ M3

KK, but
because MKK/Mpl depends on T + T̄ , such a dependence would not be
holomorphic. Instead, for typical complex structure moduli vevs and D-
brane positions, one has A ∼M3

pl: see [34,319].
A very similar superpotential contribution arises if Σ4 is wrapped not

by spacetime-filling D7-branes, but by Euclidean D3-branes, also known as
D3-brane instantons [337] (see [338] for a review). A Euclidean Dp-brane is
an instantonic contribution to the path integral whose Euclidean action has
a real part that is proportional to the volume of the (p+ 1)-cycle wrapped
by the Euclidean brane, while the imaginary part is determined by the
corresponding Chern-Simons action. For a Euclidean D3-brane wrapping
Σ4, the resulting superpotential term is

WED3 = A e−aT , (3.110)

where a = 2π, and as in (3.109) the prefactor A can depend on the complex
structure moduli and on D-brane positions, but is independent of the Kähler
moduli.

We now turn to the necessary and sufficient topological conditions for the
generation of a nonperturbative superpotential, focusing on the case of Eu-
clidean D3-branes. These conditions can be expressed most simply in terms
of an auxiliary eight-dimensional geometry Y , in which the axiodilaton τ
parameterizes an elliptic fibration over the six-dimensional manifold X on
which the type IIB theory is compactified.20 This construction is known as

19
Supersymmetry requires that the superpotential is a holomorphic function of the moduli,
but verifying that V4 is the real part of a holomorphic function is highly non-trivial
[218, 335]. When D3-branes are present, their backreaction on the volume V4 must be
incorporated in order to maintain holomorphy [335]. This effect was first understood in
the open string channel, as a threshold correction to the gauge coupling g [336].

20
An elliptic fibration is a fibration in which almost all fibers are non-singular and have
the topology of two-tori, but a finite number of singular fibers can appear. The possible
singular fibers have been classified by Kodaira in [339].
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F-theory [340]: one says that F-theory has been compactified on Y , which
is an elliptically-fibered four-fold over the base X.

Witten observed in [337] that a necessary condition for a non-vanishing
Euclidean D3-brane superpotential term associated with a four-cycle Σ4 ⊂
X is that Σ4 is the projection of a six-cycle D ⊂ Y obeying

χ(OD) ≡
3∑
i=0

(−1)ih0,i(D) = 1 . (3.111)

where OD denotes the trivial line bundle defined on D (see e.g. [341] for
the relevant mathematical background). The number χ(OD) is known as
the holomorphic Euler characteristic of D [341], or the arithmetic genus of

D.21 Next, a sufficient condition for a non-vanishing Euclidean D3-brane
superpotential is [337]

h0,1(D) = h0,2(D) = h0,3(D) = 0 . (3.112)

A six-cycle D obeying (3.112) is said to be rigid: the Hodge numbers in
(3.112) count the independent deformations of D.

The sufficient condition (3.112) is unmodified by the presence of flux,
but in flux backgrounds the necessary condition (3.111) is modified and
becomes less restrictive [334, 343–348]. Couplings to flux can give mass
to (some of the) deformations of Euclidean D3-branes, and of D7-branes,

counted by h0,2. Generalizations of (3.111) to backgrounds with flux, and
further consistency conditions, are described in [334,343–350] and reviewed
in [338,351].

3.3.3 Volume Stabilization

Having assembled the known perturbative and nonperturbative corrections
to the potential for the Kähler moduli in type IIB flux compactifications,
we are in a position to ask whether the quantum-corrected theory has cos-
mologically interesting metastable vacua, even though the classical theory
has unstabilized Kähler moduli.

There is a very general problem [352] underlying any search for string
compactifications in which flat directions are stabilized by perturbative or
nonperturbative corrections. The Dine-Seiberg problem [352] can be summa-
rized as follows: when corrections are important, they are not computable,

21
In the mathematics literature, some authors define the arithmetic genus pa(D) so that
pa(D) = 1 − χ(OD), for D a six-manifold [341]. Here, as in most of the string theory
literature, the arithmetic genus and the holomorphic Euler characteristic are both equal
to χ(OD), cf. [337, 342]. In (3.111), the notation χ(OD) for the holomorphic Euler
characteristic is used instead of χ(D) because the latter can be confused with the more
familiar topological Euler characteristic.
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and when they are computable, they are not important [351]. To understand
the observation of [352] in more detail, let ρ be a modulus that controls a
weak coupling expansion, such that ρ → ∞ is the free limit. Concretely, ρ
could be the Kähler modulus that measures the compactification volume,
ρ = T + T̄ , so that ρ → ∞ corresponds to decompactification to ten di-
mensions; or, for the string loop expansion, ρ = g−1

s = e−Φ. We now ask
whether perturbative or nonperturbative corrections generate a potential
for ρ that has a minimum at finite ρ. Because the leading-order classical
action is valid for ρ→∞, the potential V (ρ) generated by perturbative and
nonperturbative corrections must vanish for ρ → ∞. In particular, V (ρ)
must approach zero from above or from below as ρ → ∞ (see fig. 3.2). If
V (ρ) is positive for large ρ, then the leading correction term in V (ρ), which
dominates for ρ → ∞, creates an instability that drives the theory toward
ρ = ∞. If instead V (ρ) is negative for large ρ, then the leading correc-
tion to the free theory creates an instability that drives the theory toward
smaller ρ, and hence toward stronger coupling. Either way, the leading
correction term creates an instability, and a (meta)stable vacuum can arise
only if higher-order corrections make comparably important contributions
that counterbalance the instability. But once two22 consecutive terms in the
weak coupling expansion are comparable, one expects that the entire series
must be included. While it could happen that the first and second non-
vanishing terms are competitive because the second is accidentally large,
verifying that this leads to a consistent solution requires examining higher
terms in the series to rule out unanticipated accidental enhancements at
higher orders. Thus, metastable vacua are quite generally found at points
in moduli space where the weak coupling expansions break down. This fact
presents a major obstacle to the search for metastable string vacua, be-
cause in nearly all cases, at most the first non-vanishing correction in each
expansion (α′ or gs) is known explicitly.

(c)(a) (b)

Fig. 3.2. The Dine-Seiberg problem [352] for a modulus ρ. In case (a), there is
a runaway to ρ = ∞, where the theory is free. In case (b), the leading correction
drives the theory toward small ρ, where it is strongly coupled. The existence of
the minimum in case (c) requires competition among at least three terms.

22
When V > 0 for large ρ, three separate terms are required — see [351,353].
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In the case of Kähler moduli stabilization in type IIB flux compactifica-
tions, no-scale structure ensures that the classical potential for the Kähler
moduli vanishes, so the leading correction to the potential is in fact the
dominant potential energy term overall. At generic points in the parameter
space, one expects that the correction of leading importance will come from
the first non-vanishing perturbative correction, which is necessarily the first
correction23 to K, because the superpotential is not renormalized in pertur-
bation theory. Following [352], we conclude that vacua at generic points in
the parameter space are the result of competition among terms at different
perturbative orders. Because of the absence of perturbative computations
beyond leading order, it has proved very difficult to find controllable vacua
in this regime (however, see e.g. [323,354,355]).

The two leading ideas for Kähler moduli stabilization, the KKLT sce-
nario [356] and the Large Volume Scenario (LVS) [357], succeed by target-
ing regions of parameter space where vacua result from competition among
known correction terms. To anticipate slightly, the KKLT mechanism in-
volves competition between a classical flux superpotential (3.94), made small
by fine-tuning fluxes, and the nonperturbative superpotential (3.109). The
LVS construction works in a region of Kähler moduli space where some
cycles are exponentially larger than others, so that the leading α′ correc-
tion (3.100) involving the large overall volume V competes with nonper-
turbative superpotential terms (3.109) involving the small cycles. In both
cases, one can argue that the unknown higher corrections do not spoil the
vacuum structure. We now turn to explaining these mechanisms in more
detail.

KKLT Scenario

The seminal KKLT proposal [356] for constructing stabilized vacua bypasses
all perturbative corrections and instead makes use of nonperturbative con-
tributions to the superpotential.

In the presence of three-form flux the complex structure moduli and dila-
ton acquire supersymmetric masses via the classical superpotential (3.94),
cf. §3.3.1. If we denote the typical mass scale by mflux, then at energies
E � mflux the complex structure moduli and dilaton can be integrated out
(see the discussion below), and the classical superpotential W0 becomes a
constant. The fields remaining in the low-energy effective theory are the
Kähler moduli,24 which do not appear in the classical superpotential.

23
Whether the leading perturbative correction to the potential comes from the first α

′

correction to K, or instead from the first gs correction to K, is not obvious a priori,
and can depend on parameter values — see §5.5 for a detailed discussion.

24
If spacetime-filling D3-branes are present, their positions are also light fields in the
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Fig. 3.3. Potential for the Kähler modulus T in a KKLT scenario with h1,1
+ = 1.

The dashed line shows the potential in the absence of a supersymmetry-breaking
anti-D3-brane. The figure was generated for A = 1, a = 0.1, and W0 = −10−4.

As shown in §3.3.2, nonperturbative effects can generate superpotential
interactions for the Kähler moduli, either through strong gauge dynamics
(such as gaugino condensation) on D7-branes, or through instanton contri-
butions from Euclidean D3-branes. The combination of the constant flux su-
perpotential (3.94) with the nonperturbative terms (3.109) or (3.110) leads
to

W = W0 +

h
1,1
+∑
i=1

Ai e
−aiTi + · · · , (3.113)

where the ellipses denote higher-order nonperturbative effects. In writing
(3.113), we have assumed that there is a nonperturbative term for each of the
Kähler moduli Ti. The status of this important assumption is not completely
understood: while examples do exist in which there is a nonperturbative
term for each Kähler modulus [358, 359], it has not been shown that this

situation is generic.25

For an arbitrary Kähler potential K, the superpotential (3.113) leads to

effective theory, as explained in detail in §5.1.
25

The stabilization scenario of [360] is very similar to the KKLT construction, but requires
only one nonperturbative term, arising on a four-cycle Σ4 that is ample. Roughly
speaking, Σ4 is ample if it is a positive linear combination of a basis of four-cycles of
positive volume — see [360] for further background and a precise definition.
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the scalar potential

V(np) = eKKjı̄
[
ajAjaı̄Āı̄ e

−(ajTj+aiT̄i)

−
(
ajAj e

−ajTjW̄∂ı̄K + aı̄Āı̄ e
−aiT̄iW∂jK

)]
. (3.114)

Taking K = K0 = −2 ln(V), cf. eq. (3.93), and considering the single-

modulus case (h1,1
+ = 1), V = (T + T̄ )3/2, one finds

V(np) =
aA e−a(T+T̄ )

2(T + T̄ )2

[(
1 +

T + T̄

3

)
aA e−a(T+T̄ ) +W0

]
. (3.115)

This potential is plotted in fig. 3.3 (dashed line). It is easy to see that the
vacuum solution is supersymmetric anti-de Sitter space. Letting (T + T̄ )?
be the value of the Kähler modulus at the minimum, we find (∂TV(np))? =
(DTW )? = 0 and

W0 = −A e−a(T+T̄ )?

(
1 +

2

3
a(T + T̄ )?

)
. (3.116)

Control over the instanton expansion of the superpotential, corresponding
to neglecting the ellipses in (3.113), requires that a(T + T̄ )? � 1. Moreover,
perturbative (α′ and gs) corrections to the Kähler potential (3.93) may

be neglected if (T + T̄ )? � 1.26 We see from (3.116) that the volume is
stabilized in a controlled limit only for an exponentially small value of the
flux superpotential, W0 � A. This can be achieved through a fine-tuned
choice of quantized flux, following [193].

A number of authors have critically examined the two-step procedure of
integrating out the complex structure moduli and dilaton, and then studying
the effective theory for the Kähler moduli, instead of analyzing all moduli on
the same footing [361–365]. The underlying justification for a two-step pro-
cedure is that the mass scale mflux is set by the flux quantization condition,
and does not diminish as W0 is fine-tuned to be small, whereas the mass of
the Kähler modulus T at the minimum is proportional to W0. To under-
stand this, we expand the flux superpotential around the supersymmetric
minimum,27

W0 = W0|Z=0 + `AZ
A +mABZ

AZB + · · · , (3.117)

26
String loop corrections to K are suppressed at large volume, and not only by factors of
gs, because K0 involves V, so that any additive correction to K is subleading in volume;
see §5.5.

27
To be precise, we mean the minimum determined by DζαW0 = DτW0 = 0, where we
stress that W0 is the flux superpotential (3.116), not the full superpotential (3.113).
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where ZA ≡ {τ, ζα}, and W0|Z=0, `A,mAB are constants dictated by the
quantized three-form fluxes. Via a fine-tuned choice of fluxes, one can ar-
range for W0|Z=0 to be small, and this contrivance does not render mAB

atypically small at the same time — in fact, a further fine-tuning would
be needed to reduce mAB. This fact is true in generic configurations, but
can fail in simple examples with special structures. For example, because
W0 involves the dilaton only through the definition (3.19) of G3, which is
linear in τ , we see that mττ = 0. As a result, the dilaton acquires a mass
from W0 only by mixing with the complex structure moduli ζα, through
couplings mτζ

α . In a compactification with h1,2
− = 0, where there are no

complex structure moduli, no such coupling is possible, the dilaton does
not acquire a mass of order mflux, and it is not consistent to integrate out
τ before studying the Kähler moduli [361, 362]. However, this example is
of limited interest because the mechanism of [193] is inoperative there. In
summary (see [365]), integrating out the complex structure moduli and dila-
ton is consistent when these fields have large supersymmetric masses, which
is the generic situation.28 One can therefore treat W0 as a constant, taking
W0 = W0|Z=0, as we have done in the remainder of this section.

Large Volume Scenario

The Large Volume Scenario [357] achieves stabilization of the Kähler moduli
by balancing the leading α′ correction (3.100) to K against the nonpertur-
bative superpotential (3.109). The success of this approach rests on stabi-
lizing the overall volume V at such large values that one can consistently
neglect the (unknown) α′ and gs corrections that are formally subleading in
V compared to (3.100).

Combining the constant flux superpotential (3.94) with the α′-corrected
Kähler potential (3.100) leads to the following contribution to the scalar
potential:

δV(α
′
) = 3 ξ̂eK

(
ξ̂2 + 7ξ̂V + V2)(
V − ξ̂

)(
2V + ξ̂

)2 W 2
0 ≈

3

4
ξ̂W 2

0
1

V3 , (3.118)

where we have defined ξ̂ ≡ ξ/g3/2
s , cf. (3.100). Adding (3.118) to (3.114),

28
Some care is needed to ensure that holomorphy is maintained in this process, as ex-
plained in [362] and described in an explicit example in [364].
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one finds29

V(np) + δV(α
′
) = eK

{
Kjı̄

[
ajAj aı̄Āı̄ e

−(ajTj+aiT̄i)

−
(
ajAj e

−ajTjW̄∂ı̄K + aı̄Āı̄ e
−aiT̄iW∂jK

)]
+

3

4
ξ̂W 2

0
1

V

}
. (3.119)

At very large volume, the perturbative term (3.118) dominates over the
nonperturbative terms (3.114). Competition between (3.118) and (3.114)
can occur if one or more cycles are exponentially smaller than the largest
cycles. Denoting the small cycle volumes by τs ≡ 1

2(Ts + T̄s), the idea is to
take the limit

V → ∞ , with asτs = lnV . (3.120)

Along the ray in the Kähler moduli space defined by (3.120), the exponen-

tials e−asTs in (3.114) are proportional to 1/V, and all terms in (3.119) are
of the same order in 1/V. Notice that the hierarchy (3.120) is only possible

for h1,1
+ > 1 — we will therefore take h1,1

+ > 1 for the remainder of this
discussion.

The sign of ξ̂ is determined by the topology of the compactification, with
ξ̂ > 0 corresponding to χ(X6) < 0. In this section we will assume that ξ̂ > 0,
which implies that the contribution (3.118) is positive, so that the poten-
tial (3.119) approaches zero from below at large V along the ray (3.120). To
establish the existence of a minimum, one then needs to argue, first, that
the potential along (3.120) becomes positive at sufficiently small V, so that
by continuity the potential restricted to (3.120) is minimized at an interme-
diate point V?. Second, one must show that at V?, (3.119) is non-decreasing

in the h1,1
+ − 1 directions in the Kähler moduli space that are perpendicular

to the ray (3.120).
A useful heuristic argument that is valid in certain simple cases (with

provisos enumerated below) goes as follows. If the term (3.118) is dominant
over the exponential terms at small volume, this establishes that (3.119)
likewise becomes positive at small volume. Next, if the leading exponential
terms in (3.119) are positive, and all h1,1

+ − 1 Kähler moduli appear in
the nonperturbative superpotential, the potential increases in the directions
transverse to the ray (3.120). In combination, these assumptions imply the
existence of a minimum at exponentially large volume. This minimum has

29
For the α

′
and string loop expansions to be valid, we require V � ξ̂ � 1, as discussed

further below; see [366] for a systematic exposition of the α
′

expansion in this setting.
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negative vacuum energy, so the spacetime solution is AdS4. Because the F-
terms are non-vanishing in the minimum, supersymmetry is spontaneously
broken [357].

Let us now discuss the conditions for a minimum in more detail, following
[367]. We divide the Kähler moduli into two classes; those corresponding to
big and small cycles,

{Ti} = {T ρb } ∪ {T
r
s } , (3.121)

where r = 1, . . . , Ns and ρ = 1, . . . , Nb = h1,1
+ −Ns. We consider the large

volume limit

V → ∞ , with arsτ
r
s = lnV for all r = 1, . . . , Ns . (3.122)

To check for the existence of a minimum in the limit (3.122), one needs to

examine in detail the inverse Kähler metric Kī, and in particular the block

corresponding to the small cycle moduli T (a)
s . A systematic treatment for

Ns = 1 and Ns = 2 appears in [367].

To understand the results of [367], one piece of geometrical background
is necessary. Suppose thatM is a complex manifold (potentially containing
singularities) of complex dimension n, and let p be a point inM. The blowup

ofM at a non-singular point p replaces p with a copy of Pn−1, known as the
exceptional divisor. The blowup of a singular point can result in more gen-
eral exceptional divisors. When the blowup ofM is a Calabi-Yau threefold,
the exceptional divisor is a four-cycle, with size parameterized by one of the
Kähler moduli. When the exceptional divisor satisfies the rigidity condi-
tion (3.112), the corresponding Euclidean D3-brane superpotential term is
non-vanishing [337].

A necessary condition for an LVS minimum is that at least one of the Ns ≥
1 small cycles is a rigid exceptional divisor arising from blowing up a singular
point [367]. When Ns = 1, this condition guarantees that (3.119), restricted
to the ray (3.122), has a minimum at exponentially large volume. Whether
this is a minimum of the full potential depends on the curvature in the Nb−1
directions perpendicular to (3.122), as we discuss further below. For the case
Ns = 2, if the two small cycles correspond to blowups of distinct points,
then (3.119) restricted to (3.122) again has a minimum at exponentially
large volume, with the same caveat about transverse directions. If instead
the two small cycles are two independent resolutions of the same singular
point, then an LVS minimum along (3.122) exists only if there is a basis in

which the volume V is symmetric in the two Kähler moduli T 1
s and T 2

s . For

a discussion of the necessary conditions on Kī in the context of a survey of
a class of Calabi-Yau manifolds, see [368].

A canonical class of examples of LVS vacua arise in what are known as
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‘Swiss-cheese’ Calabi-Yau manifolds, whose volumes can be written as30

V = ατ
3/2
b − p(3/2)(τ rs ) , (3.123)

where α > 0, and p(3/2) is a homogeneous polynomial of degree 3/2 in
the small cycle moduli τ rs , r = 1, . . . , Ns. A proper subset of Swiss-cheese
Calabi-Yau manifolds take the ‘strong’ form

V = α

τ3/2
b −

Ns∑
r=1

λr(τ
r
s )3/2

 , (3.124)

with λr > 0. This compactification has a single large four-cycle, with vol-
ume τb, and Ns = h1,1

+ − 1 small four-cycles, with volumes τ rs . Increasing
one of the τ rs with all else fixed decreases V, so the small cycles act like
holes in a large cheese. The structure (3.124) can arise if the Ns small cy-
cles correspond to the blowups of Ns distinct singular points. In the case
of a compactification of strong Swiss cheese form (3.124), the necessary
conditions described in [367] are readily met, for any Ns > 0.

The final, critical question is whether the potential is stable or unstable in
the Nb−1 directions perpendicular to (3.122). In fact, (3.119) per se, which
includes only the leading α′ correction to K, viz. (3.100), has Nb − 1 flat
directions. The exact moduli potential, incorporating all perturbative and
nonperturbative effects in gs and α′, very plausibly depends on the Nb − 1
fields that are unlifted by (3.119).31 However, appealing to an unknown and
uncomputable potential to lift these remaining moduli is problematic, not
least because there is no evidence that the resulting masses-squared will all
be positive. That is, further perturbative corrections beyond (3.100) could
well introduce instabilities along one or more of the Nb− 1 flat directions of
(3.119), leading to an LVS saddle point rather than a minimum.32 Indeed,
as we argue in §3.5.3 below, in certain ensembles of supergravity theories it
is overwhelmingly improbable that all Nb − 1 flat directions are stabilized
rather than destabilized: the probability of stability is exponentially small
in Nb. Whether the assumptions of §3.5.3 are applicable to the moduli
potential in LVS is an important open question (see [369] for recent work).

30
See [368] for a study of the incidence of the form (3.123) in a class of Calabi-Yau
manifolds.

31
As we will explain in §5.5.2, it has been suggested [43,367] that the leading gs correction
to K, with form conjectured in [324] following computations in [322,323], can stabilize
the Nb − 1 flat directions. However, a more detailed demonstration of stability would
be valuable.

32
However, if it can be established that the potential increases as one moves toward each
of the boundaries of the moduli space, then one can again make a continuity argument
for the existence of a minimum. We thank Joe Conlon and Fernando Quevedo for
discussions of this point.
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In summary, the necessary conditions for an LVS minimum are the fol-
lowing: ξ̂ > 0; h1,1

+ ≡ Ns + Nb > 1; Ns ≥ 1 Kähler moduli corresponding
to the blowups of points. For Ns > 1, further conditions on the blowups
are necessary [367], while for Nb > 1, it is necessary that further correc-
tions, beyond (3.119), render stable the Nb − 1 flat directions of (3.119).
Explicit examples with Nb = 1 that meet all other necessary criteria are
now well-known [357,366,367].

Several differences between LVS and the KKLT scenario should be em-
phasized. In LVS, some cycles are exponentially larger than others, while in
KKLT the cycles are not hierarchically different in size. In KKLT, the clas-
sical flux superpotential W0 is fine-tuned to be exponentially small, while
in LVS W0 is of order unity. In KKLT, the AdS4 vacuum is supersymmet-
ric, whereas in LVS the AdS4 vacuum is non-supersymmetric. However,
in both scenarios some form of ‘uplifting’ effect is required to achieve a de
Sitter vacuum, as we now explain.

3.4 De Sitter Vacua

The KKLT and LVS vacua just described are fully stabilized, in the sense
that there are no remaining instabilities and no flat directions of the poten-
tial. Even so, these vacua have negative energy and are therefore unsuitable
for a realistic cosmology. To describe the early universe (inflation) and the
late universe (dark energy) requires vacua with positive energy, i.e. de Sitter
solutions. Constructing metastable de Sitter vacua in string theory turns
out to be far more difficult than constructing stable anti-de Sitter vacua. As
a first step toward appreciating the problem, one can ask what it is about
AdS vacua that makes them a natural endpoint of the moduli stabilization
procedure. In the KKLT scenario, supersymmetry guarantees the stability
of the AdS solution. In LVS, the AdS vacua are not supersymmetric, but
their stability can be established by asymptotic arguments, in particular by
the fact that V → 0 from below for V → ∞. In contrast, dS vacua are much
more susceptible to instabilities. This becomes apparent when one tries to
construct explicit de Sitter solutions in string compactifications.

3.4.1 Uplifting to De Sitter

The leading paradigm for constructing metastable de Sitter solutions from
stabilized AdS solutions is known as uplifting. The stable vacuum is in-
terpreted as a background solution to which the effects of supersymmetry
breaking in some new sector, not considered in the original stabilization,
may be added. Although the steps of stabilization and uplifting are conve-
niently described as sequential, in reality the full set of equations of motion,
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for all fields, must of course be solved simultaneously. This presents a dif-
ficulty, because the vacuum energy contribution from the uplifting sector
cannot be a perturbatively small correction to the original vacuum energy.
In most approaches the stabilization in AdS is analyzed in a supersymmet-
ric effective action, and one must take care that the large supersymmetry
breaking from the uplifting sector does not invalidate this treatment. In
summary, the task in uplifting is to identify a sector that breaks super-
symmetry dynamically, in a parametrically controlled manner, and makes a
positive contribution to the vacuum energy without disrupting the physics
that led to a stabilized AdS vacuum. As we explain in the following, these
requirements are very challenging, even taken in isolation.

First of all, one must engineer a sector of fields that breaks supersymme-
try. As a concrete example, consider placing multiple D-branes at the sin-
gular apex of a Calabi-Yau cone, leading to a supersymmetric gauge theory
in four dimensions. Some of the resulting gauge theories have metastable
vacua in which supersymmetry is dynamically broken [370–376], while in
other cases, such as [377–379], there are runaway instabilities in directions
parameterized by Kähler moduli [378, 380, 381]. But even if one finds a
configuration of D-branes on a noncompact Calabi-Yau cone leading to a
flat space gauge theory that dynamically breaks supersymmetry, establish-
ing that metastability survives compactification is highly non-trivial (but
see [374]). The essential issue is that in the low-energy Lagrangian of a
compactification, all parameters are determined by the vevs of fields, and
are therefore dynamical at sufficiently high energies. Any gauge theory con-
struction relying on a non-dynamical parameter — for example, the mass
of a quark flavor, as in [382] — is potentially vulnerable, upon compactifi-
cation, to an instability along which this parameter evolves. Often a second
stage of model-building is required in which one generates the desired vev
dynamically and establishes the absence of instabilities — see e.g. [373].

After identifying a supersymmetry-breaking sector, one must compute the
effects of supersymmetry breaking on the remaining fields. A pervasive but
potentially deceptive picture for uplifting is that the uplifting sector exists
‘somewhere else’ in the compactification: stabilization in AdS is imagined to
result from sources and fields in one region, while supersymmetry breaking
arises in another region, and the vacuum energy contributions are therefore
approximately additive, by locality in the extra dimensions. One problem
with this modular picture, as we explain in detail in §4.2, is that geometric
separation does not imply complete decoupling of two sectors. At the very
least, the supersymmetry-breaking sector interacts with the remaining fields
by its coupling to the overall compactification volume V: any source S of
positive energy33 in the four-dimensional theory must be negligible in the

33
A ten-dimensional cosmological constant would be an exception, but this is excluded
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limit V → ∞, and so must enter the Lagrangian as

ρS =
D

Vα
, (3.125)

asymptotically at large V, with D and α being positive constants. The po-
tential (3.125) contributes to the equation of motion for the Kähler modulus
parameterizing the volume V: because D > 0, there is a force toward larger
volume, cf. §3.2.1. This force can substantially change the vev of V, or even
drive runaway decompactification. The net result is that a computation of
physical parameters in the original AdS vacuum will not necessarily give an
accurate prediction for these quantities in the dS solution. Accurate deter-
mination of the effective action in metastable de Sitter solutions remains a
core challenge for inflationary model-building in string theory, as we discuss
further in Section 4.

Many constructions of uplifting to de Sitter vacua along the lines of [356],
as well as alternatives to uplifting, have been proposed: see e.g. [355, 383–
400]. Analyses in type IIA string theory include [292, 293, 401–410], while
for proposals in the heterotic string, see [411–415]. See [416] for an early
construction of de Sitter vacua in supercritical string theory, i.e. for total
spacetime dimension D > 10. Discussions of de Sitter vacua of M-theory,
and of supergravity theories with N > 1 supersymmetry in four dimensions,
can be found in e.g. [417–424].

3.4.2 SUSY Breaking from Antibranes

The archetypal configuration [425] for uplifting to de Sitter space consists of
p anti-D3-branes placed at the tip of a Klebanov-Strassler (KS) throat [426],
which is a smooth, asymptotically conical supergravity solution described
in detail in §5.1.1. The tip of the KS throat is a three-sphere threaded by
three-form flux:

1

(2π)2α′

∫
S

3
F3 ≡M , (3.126)

with M an integer. The KS solution preserves N = 1 supersymmetry in
four dimensions, but the anti-D3-branes are incompatible with these super-
symmetries, so the total configuration is non-supersymmetric.

Because the anti-D3-branes carry negative D3-brane charge, cf. eq. (3.22),
while the fluxes in the KS solution carry positive D3-brane charge, annihi-
lation of anti-D3-branes and flux is possible in some circumstances. For a
given background there is a critical value p? ≈ 0.08M such that for p > p?,
rapid classical annihilation can occur, while for p < p? the leading annihila-
tion instability involves quantum tunnelling [425], and is nonperturbatively

by ten-dimensional supersymmetry.
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slow. It was therefore argued in [425] that a collection of p < p? anti-D3-
branes in a KS throat is a metastable, supersymmetry-breaking configura-
tion. In [356], and in many subsequent works, this configuration was used
as a module effecting uplifting: see fig. 3.3.

The idea of antibrane uplifting has recently been challenged [427]. In
particular, it was observed that the known, approximate solutions for p
anti-D3-branes in a KS background are singular. If one could establish that
the corresponding full, exact solution manifests unphysical singularities, this
would imply that anti-D3-branes in a KS throat do not provide a consistent
metastable supersymmetry-breaking configuration. To discuss this impor-
tant point [427–441], we first have to explain the sense in which the known
solutions are approximations (see also §4.1.4).

The meaning of exact and approximate.—By an exact solution of string
theory, we mean a configuration of the massless fields that solves the exact
equations of motion, i.e. the equations of motion that incorporate all per-
turbative and nonperturbative corrections in the α′ and gs expansions. In
contrast, an exact solution of classical, two-derivative34 supergravity — gen-
erally abbreviated as an ‘exact supergravity solution’ — solves the equations
of motion expressed to leading order in α′ and gs. These are the equations
of motion determined by the two-derivative, ten-dimensional actions (3.12),
(3.15) for type IIA and type IIB string theory, respectively. Next, we recall
exact and approximate solutions involving D-brane sources (see §3.1.2 for
more details). Consider, for example, a stack of N coincident D3-branes
placed in ten-dimensional Minkowski space. The D3-branes warp the space:
comparing to (3.31), the characteristic radius of curvature R is

R4 = 4πgsN(α′)2 , (3.127)

so that corrections in the α′ expansion can be ignored for gsN � 1, while
as usual corrections in the string loop expansion can be ignored for gs � 1.
Thus, the exact supergravity solution determined by the D3-brane sources
is an approximation to an underlying exact string theory solution, and the
small expansion parameters governing the approximation are gs � 1 and
(gsN)−1 � 1. Notice that for any fixed N , the string loop and α′ expansions
cannot both be arbitrarily accurate. In particular, if one imagines sending
gs → 0 for N fixed, a curvature singularity develops, and the α′ expansion
becomes invalid near the source. For one or more D3-branes in flat space,
this singularity is not surprising, and is not indicative of any sickness: at
weak string coupling a D3-brane is a heavy source whose transverse thickness

is of order
√
α′. This system is well-behaved and can be defined by referring

to the conformal field theory describing open strings ending on the D-branes.

34
The ‘two-derivative’ qualifier refers to omission of higher-curvature contributions, and
is usually assumed implicitly.
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Less practically, one could imagine incorporating all α′ corrections in order
to obtain a solution that does not break down near the source. Summarizing,
a single D3-brane in flat space is a singular source in supergravity: this is
the expected and allowable singularity that arises from a localized source,
just as for a point charge in electromagnetism. For N coincident D3-branes,
the curvature of the supergravity solution is small at large gsN .

Singular antibranes.—In view of the above remarks, it should come as no
surprise that a single anti-D3-brane placed in a KS throat is a singular
source in supergravity. More generally, for p anti-D3-branes, there is no
reason to expect a smooth supergravity solution if gsp � 1: this would
amount to better behavior than that of D3-branes, which are supersymmet-
ric in the KS background and hence are ‘maximally innocuous’. On the
other hand, for gsp � 1 it is reasonable to expect that a smooth, exact
supergravity solution exists, but none has been constructed to date: only
singular approximate solutions have been obtained. The important question
is whether the singularities are a signal of unphysical behavior, or instead
merely reflect our technical limitations.

In the following, we will discuss two aspects of the singularity problem:
first, we will ask whether the singularities could be artifacts of the approxi-
mations involved in the analysis. Even if one can argue that approximations
are not the cause of the singularity, one still has to ask whether the singu-
larities are unexpected and signal an inconsistency for antibranes in KS
throats.

Approximate treatments.—Determining the supergravity solution for an-
tibranes in KS is extremely complicated, and two further approximations,
beyond the fundamental expansions described above, have been employed
to simplify the task: these are linearization and smearing. Linearization
refers to an expansion of the supergravity equations of motion to first or-
der in the strength of the source. The smearing approximation replaces
anti-D3-branes at a specific location on the S3 with an equivalent charge
and tension uniformly distributed over the S3. This reduces the equations
of motion from PDEs to ODEs. One may wonder whether either of these
approximations could be the source of the apparent singularity.

. Linearization.—The linearized supergravity solution for p anti-D3-
branes smeared around the S3 has been obtained in [429, 430] (for
related earlier work see [442,443]), and passes non-trivial consistency
checks [428, 439]. The characteristic radius of curvature near the

source isRp = (4πgsp)
1/4α′1/2, so the linearized solution can be trusted

at radial distances r � Rp away from the tip: nearer to the tip it is

inconsistent to neglect α′ corrections, and some of the background
fields become singular. In particular, the three-form fluxes are singu-
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lar near the source. It has been argued in [435] that the singularity
in the flux is not a consequence of linearization: the nonlinearly back-
reacted, but still smeared, solution displays singularities. This leaves
smearing as perhaps the most plausible cause of the singularities. (See
e.g. [433,438,444] for related work on the problem of singularities from
localized sources.)

. Smearing and brane polarization.—What sort of smooth supergrav-
ity solution might one expect for p � g−1

s non-smeared anti-D3-
branes? As noted in [425], anti-D3-branes that are initially coincident

are driven to redistribute themselves along an S2 in the S3, mani-
festly breaking some of the symmetries preserved by a configuration
smeared on the S3. This process can be viewed as polarization of the
branes [288] by the flux background, as in the related solution found
by Polchinski and Strassler [445], where brane polarization resolves
the singularity present in the unpolarized configuration. In [429], it
was conjectured that a smooth anti-D3-brane solution can be modelled
on the system in [445], with polarization of the anti-D3-branes along

an S2 ⊂ S3 being responsible for removing the singularities.35 Such a
solution is clearly incompatible with a smearing approximation, but
solving the equations of motion in this setting is a formidable technical
challenge, and at present it is not known whether brane polarization
will resolve the singularities.

Expected and unexpected singularities.—One further issue in the study of sin-
gularities from anti-D3-branes concerns the nature of the singular behavior.
No one should be surprised by the fact that the electric field sourced by a
pointlike electron in classical Maxwell theory is singular near the electron.
The corresponding potential Φ obeys

∇2Φ = 4πe δ(x) , (3.128)

for an electron at position x, which is solved by

Φ(x′) = − e

|x− x′|
. (3.129)

The singularity of (3.129), and of the corresponding electric field, is ex-
pected, because the electron is a singular, perfectly localized source for the

35
D-branes can generally polarize in multiple ways, and an alternative to the polarization
identified in [425], where the anti-D3-branes spread along an S

2 ⊂ S
3
, is for the anti-

D3-branes to spread along a different S
2
, namely the S

2
that shrinks toward the tip of

the throat (see §5.1.1). This process moves the anti-D3-branes radially outward, away
from the tip, a direction of motion that is opposed by the classical potential from fluxes.
It was shown in [436] that this alternative, radial polarization is not possible, but this
does not exclude the expected polarization of [425].
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electric field. Of course, the divergence in the energy of the electric field is
removed in the quantum theory.

The question, then, is whether the singularities seen in [427,429,430] are
expected, and therefore plausibly resolved in the exact solution. A central
concern raised by [427] is that the singularities in three-form flux “do not
appear to have a distinct physical origin” [427]. That is, according to [427]
it is not obvious how the anti-D3-brane can serve as a source for singular
three-form flux, and correspondingly these singularities are unexpected.

It is certainly true that the only flux sourced by an anti-D3-brane in empty
flat space is five-form flux F5, just as for a D3-brane: see the Chern-Simons
coupling eq. (3.22). For an anti-D3-brane in a classical flux background, the
problem is more subtle: the supergravity equations of motion are nonlinear,
and the various fluxes are coupled to each other, as we will explain below. To
understand this case, we begin by developing intuition in a simpler example.

Let us see how a point source of one field A, in a classical background of
a second field B, can source a singular profile of a third field C, even if the
source does not have a direct coupling to C in the Lagrangian. Consider
classical four-dimensional electromagnetism coupled to an axion φ, with
Lagrange density

L = −1

2
(∂φ)2 − 1

4
FµνF

µν − φ

f
FµνFρσε

µνρσ , (3.130)

where f is the axion decay constant. Suppose that there is a constant
classical background magnetic field B = B ẑ, and place an electron in this
field, at rest at the origin. The electron sources an electric field E = −e r̂/r2,
so that in spherical polar coordinates (r, θ, ϕ) one has

E ·B = −eB
r2 cos θ . (3.131)

The equation of motion for φ is therefore

∇2φ =
eB

fr2 cos θ . (3.132)

Thus, the axion φ effectively has a local source, even though the electron
alone does not couple to φ. This example illustrates that in theories with
local sources and multiple coupled fields, not every singular field profile
arises from a ‘one field, one source’ coupling in the Lagrangian: classical
background fields can also play a role.

In the case of an anti-D3-brane in a KS throat, the classical background
field analogous to B is the three-form flux G3 of the KS solution. Schemat-
ically, the anti-D3-brane sources singular five-form flux, which couples to
the non-singular background three-form flux, and thereby sources a singu-
lar three-form flux. To see this more explicitly, we consider the equation of
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motion of the three-form flux. In the KS solution the dilaton is constant
and the imaginary anti-self-dual component of the flux, G− ≡ (?6 − i)G3,
satisfies

dG− = −d

(
Φ−G+

Φ+

)
, (3.133)

where G+ ≡ (?6 + i)G3 and Φ± ≡ e
4A ± α. The anti-D3-brane is a singular

source for Φ−, while G+ 6= 0 and Φ+ 6= 0 in the KS background. Thus,
solving (3.133) requires that G− be singular. As a result, divergences in
three-form flux are to be expected when anti-D3-branes are placed in a
KS throat.

Summary.—Let us summarize the key facts and questions about singular-
ities from anti-D3-branes. The linearized solution describing p anti-D3-
branes smeared around the tip of a Klebanov-Strassler throat has been
obtained in [427,429,430], and passes multiple consistency checks [428,439].
The three-form flux in this solution is singular near the source [427]. The sin-
gularity is not an artifact of linearization [435], but it is not known whether
the smearing approximation is responsible for the singularity. We have ar-
gued that singularities in flux should in fact be expected in this setting,
but to show definitively that the singularities found in the solutions of
[427, 429, 430] are (or are not) physical, the most compelling course is to
exhibit the corresponding non-singular solution (or show that none exists).
A leading proposal for a non-singular resolution, for gsp � 1, involves the
anti-D3-branes polarizing [288], as in the Polchinski-Strassler solution [445],
but this necessarily breaks the symmetries used to smear the anti-D3-branes,
and obtaining the corresponding solution is a difficult open problem.

3.5 Statistics of String Vacua

I would be happy personally if the multiverse interpretation is not correct, in

part because it potentially limits our ability to understand the laws of physics.

But none of us were consulted when the universe was created.

Edward Witten [446].

At the fundamental level, string theory contains no continuously-adjust-
able dimensionless parameters, but the theory has an astronomical number
of solutions, or vacua. These solutions are distinguished from each other
by the vevs of continuously-adjustable moduli fields, and also by discrete
data, consisting of topological invariants of the compactification itself, such
as Hodge numbers; topological properties of any branes wrapping internal
cycles, and of gauge bundles on these branes; and the number of units
of quantized flux threading each cycle. The number of distinct choices
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of integer data is extremely large, because many compactifications have
hundreds of independent cycles on which flux can be placed.

3.5.1 Landscape of Stabilized Vacua

For the purposes of cosmology, it is important to understand solutions whose
effective theories contain no massless scalar fields, i.e. solutions without
moduli. Such vacua are necessarily isolated: classical transitions from one
to another require energy input. The string landscape is the collection of all
consistent solutions of string theory that have four large spacetime dimen-
sions36 and do not have moduli. The expectation that string theory has a
vast array of isolated solutions dates back to the early days of the theory
[447, 448], but detailed understanding of flux compactifications in recent
years has brought the landscape into focus and has made explicit investi-
gation possible. In the same period, the discovery of dark energy [1, 2] has
made understanding de Sitter solutions of string theory an urgent question.

What are the prospects for understanding the structure of the string
landscape? There are two overarching challenges: accurately characteriz-
ing the effective theories whose isolated solutions comprise the landscape,
and then exploring their innumerable vacua. At present, there is some de-
gree of understanding of the effective theories resulting from Calabi-Yau
compactifications of type II, type I, and heterotic strings, in the regime
of weak coupling and large volume. Certain compactifications of M-theory
and F-theory are likewise understood. However, despite prolonged study,
non-Calabi-Yau compactifications (even if supersymmetric) are less under-
stood, in part because fewer geometric and topological tools are applicable.
It would be premature to declare that the properties of the effective theories
of presently-understood compactifications are in fact general characteristics
of string theory. Indeed, we find it plausible that most of the landscape
remains to be discovered. Even so, in the absence of an alternative, one can
begin by surveying the part of the landscape that rests on known compact-
ifications.

This brings us to the second difficulty, of working out the characteristics
of the set of vacua of a fully specified ensemble of effective theories. Un-
derstanding through enumeration is inconceivable for systems with 10500

vacua, which strongly motivates a statistical approach, initiated by Douglas
in [449]. Instead of computing all physically relevant quantities (a.k.a. ‘ob-
servables’) — such as gauge groups, coupling constants, and mass spectra —
in a small number of actual vacua, one can instead determine the statistical

36
The four-dimensional spacetime is often assumed to be maximally symmetric, i.e. de
Sitter space, Minkowski space, or anti-de Sitter space. Isolated solutions without four
large spacetime dimensions could also be considered to be part of the landscape, but
we will focus on the class of vacua that are directly relevant for cosmology.
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distribution of a given observable, or the correlations among observables, in
a broad class of vacua. We stress that the motivation for a statistical treat-
ment of observables in the landscape goes beyond the practical difficulty of
computing observables in explicit examples. Few now believe that string
theory has a unique vacuum consistent with all observations, and the press-
ing task is not so much to find ‘the’ vacuum describing our universe, but
rather to understand the characteristic properties of realistic vacua. Solving
the Schrödinger equation for one single microstate of the ocean is of much
less practical use than understanding thermodynamic and hydrodynamic
quantities: the statistical description is simpler, but also more important as
a description of the phenomena of the system. Equally, in the landscape,
the distributions of observables can display emergent simplicity. Examples
of simple patterns seen in the distributions of observables can be found
in [44, 314, 315, 450]. For a comprehensive account of the statistics of flux
vacua, we refer the reader to the excellent review [44].

3.5.2 Counting Vacua

There is a general consensus37 that the number of vacua in the landscape is
immense, but it will be worthwhile to review key aspects of the argument.
For concreteness, we will consider type IIB flux compactifications on Calabi-
Yau orientifolds (or more generally, compactifications of F-theory).

Consider an orientifold of a Calabi-Yau threefold, with a specified choice
F of quantized three-form fluxes: that is, for each independent three-cycle
Σ3, one chooses

∫
Σ3
F3 ∈ (2π)2α′ Z and

∫
Σ3
H3 ∈ (2π)2α′ Z. The result is a

potential on the complex structure moduli space MC ,

V = VF(ζ1, . . . , ζh2,1) . (3.134)

As reviewed above, this flux-induced potential is responsible for the stabi-
lization of the complex structure moduli: the local minima of VF are gener-
ally isolated points {p1, . . . , pK} in MC , and the complex structure moduli
masses are generically nonvanishing at such minima. However, the number
K of local minima of VF is not the primary large number responsible for the
scope of the landscape: instead, the large number of choices NF of quantized
flux F, corresponding to distinct possibilities for the elementary topological
data of the compactification, is the origin of the diversity of vacua. As ex-
plained in [44], NF is large in Calabi-Yau compactifications because there
are many — typically, hundreds — of independent three-cycles that the two
fluxes can thread. Each choice F creates a distinct potential VF onMC , and

37
Limitations and weaknesses of the current evidence have been described in e.g. [427,
436,437,451–453].
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the number NF of such choices is inarguably stupendous, at least of order

10500.
Let us now describe more carefully how the number of choices of flux
NF is related to the number of vacuum solutions. As a first step toward
understanding the statistics of string vacua, one can count supersymmetric
vacua in type IIB flux compactifications. More precisely, following [454],

we will discuss configurations in which the F-terms38 Dζi
W0 of the complex

structure moduli ζi vanish. At this stage the Kähler moduli sector is ignored
completely, so one must bear in mind that what we term ‘vacua’ here are
merely solutions to the equations of motion in one sector, not full-fledged
solutions of the total theory.

To count vacua, a natural object to consider is the density of vacua as a
function of the location ζ in moduli space:

dNmin(ζ) ≡
∑
i

δ(ζ − ζi) . (3.135)

In practice, dNmin is far more challenging to study than the related index
density dImin, defined by

dImin(ζ) ≡
∑
i

δ(ζ − ζi) (−1)Fi , (3.136)

where (−1)Fi is the sign of the determinant of the fermion mass matrix
(see [44]). The integral of dImin over the moduli space is manifestly not the
total number of vacua: it is instead a sum weighted by signs. The advantage
of considering dImin is that it is computable: one can obtain the elegant
Ashok-Douglas formula [454]39

∑
L≤Lmax

dImin =
(2πLmax)b3

πb3/2b3!
det(−R− ω) , (3.137)

where ω is the Kähler form on the moduli space, R is the curvature two-
form, b3 is the third Betti number of the compactification, and the number
Lmax represents a tadpole constraint on the flux. Equipped with (3.137), one
can estimate the actual number of vacua by attempting to place bounds on
the degree of difference between dImin and dNmin. One pivotal observation
is that the number of vacua is exponential in b3.

38
The F-terms described here are those due to the classical flux superpotential W0, but
nonperturbative contributions to the superpotential — for example, from Euclidean
D3-branes — introduce further dependence on the complex structure moduli.

39
Evidence supporting the result (3.137) in explicit flux compactifications on Calabi-Yau
three-folds was obtained in [455,456], building on [457].
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There are two critical caveats that prevent one from concluding at this
stage that type IIB string theory compactified on a Calabi-Yau manifold
with large b3 has an exponentially large number of metastable de Sitter
vacua. First, we have thus far described only the complex structure moduli,
and a local minimum of the potential onMC may or may not correspond to a
local minimum of the exact potential on the full moduli spaceMtotal, which
also includes the Kähler moduli and the positions of D-branes. Second,MC
is noncompact, as isMtotal: in particular, the Kähler moduli spaceMK can
be continued toward infinite volume, where one recovers ten-dimensional flat
space. Noncompactness ofMC implies that VF may not have a minimum in

MC .
40 Thus, one is not strictly guaranteed any vacua for a given choice of

flux. Equation counting does certainly suggest that VF will generically have
one or more minima inside MC , but topology does not necessitate this.

With this background, we emphasize that the celebrated counting of 10500

vacua in the landscape (cf. [44]) does not refer to a counting of metastable
vacua of the full potential for all moduli (at any level of approximation): it is
a counting of supersymmetric vacua of the complex structure moduli sector,
neglecting the Kähler moduli and postponing the question of metastable
supersymmetry breaking.

Let us therefore ask whether one can extrapolate from this result to esti-
mate the number of de Sitter vacua in type IIB flux compactifications. One
might be tempted to argue as follows: suppose that one single metastable
de Sitter vacuum is found, e.g. a KKLT solution on a particular Calabi-
Yau with a particular choice F? of quantized flux. As famously explained
by Bousso and Polchinski [193], the many possible choices of quantized p-
form flux in compactifications with many p-cycles lead to a ‘discretuum’ of
closely-spaced vacuum energy densities. Can one then apply this logic and
appeal to the existence of many fluxes F′?,F

′′
?, · · · that differ (by discrete

quanta) from F?, but lead to a very similar cosmological constant, in order
to replicate the single de Sitter vacuum into O(NF) de Sitter vacua? No:
the fact that VF? has a metastable local minimum in no way implies that
VF′?

has a local minimum. This fact can also be understood in concrete

examples: a change of quantized fluxes that leads to a small change in the
cosmological constant generally involves large changes in the individual flux
quanta, and correspondingly makes an order-unity change to the effective
action, entirely changing the distribution of extrema (if any exist).

One must therefore be cautious when using the vast number of super-
symmetric (or ‘no-scale’ supersymmetry-breaking) vacua in the complex
structure moduli sector, cf. (3.137), to argue for the existence of a compa-
rable number of metastable de Sitter vacua of the full potential on the total

40
For MK, one manifestation of the corresponding fact is that the potential can have its
minimum at infinite compactification volume.
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moduli space: NdS 6= NF in general. We will now discuss this issue in detail.

3.5.3 Random Supergravity

As a practical matter, it is far easier to find critical points of VF, i.e. points
where ∂aVF = 0, than it is to find minima of VF. For the problem of
counting metastable vacua, one can therefore employ a strategy of counting
the number Nc.p. of critical points and estimating NdS via

NdS = Nc.p. × fdS , (3.138)

where fdS , defined by (3.138), is the fraction of all critical points that are
in fact metastable de Sitter vacua. (Precisely analogous logic applies for
vacua with any other property—for example, one could estimate the number
of vacua with Standard Model gauge group by computing Nc.p. and the
associated fraction fSM.) To further simplify the analysis, one can first ask
what fraction fmin of all critical points are local minima, without demanding
that the cosmological constant at the minimum be positive:

Nmin = Nc.p. × fmin . (3.139)

The number of local minima, Nmin, obviously provides an upper bound on
NdS .

The problem of counting de Sitter vacua therefore hinges on determining
the probability that a randomly-chosen critical point is in fact a metastable
minimum. Let us be very precise about the notion of probability that is
relevant here. The intent is to begin with a compactification of fixed topol-
ogy — for example, a Calabi-Yau with specified Hodge numbers — and
consider all consistent choices of quantized flux F. For each choice F?, one

imagines finding all the critical points {p(F?)
i } of VF? in the moduli spaceM

(rather than in its compactification M), and assembling the ensemble C of
all critical points,

C ≡
⋃
F?

{
p

(F?)
i

}
, (3.140)

for any choice of flux. Equation counting suggests that for a generic choice
of flux, there will be at least one critical point, so we expect41

Nc.p. & NF . (3.141)

However, it still remains to estimate fdS . In [48] it was shown that for
broad classes of supergravity theories with N � 1 scalar fields, fdS is spec-
tacularly small, and can even be smaller than 1/NF. We will now summarize
the argument of [48].

41
In some circumstances one can show that the number of critical points per choice of
flux is exponentially large. We thank Edward Witten for this observation.
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Consider an N = 1 supergravity theory with N chiral superfields. The
F-term potential, in units with Mpl = 1, is

V = eK
(
FaF̄

a − 3|W |2
)
. (3.142)

The object of primary interest is the Hessian matrix H at a critical point p
of the potential,

H =

(
∂2
ab̄V ∂2

abV

∂2
āb̄V ∂2

ābV

)
. (3.143)

At a local minimum of the potential, the eigenvalues λ1 ≤ λ2 . . . ≤ λN of H
are nonnegative, so

fmin = P (λ1 > 0) , (3.144)

where as explained above, the probability P is computed in the ensemble
consisting of the Hessian matrices at each of the critical points in C.

To express H in a convenient form [48, 458], we perform a coordinate
transformation to set Kab̄ = δab̄ at p, and a Kähler transformation to set
K = 0 at p. We denote the geometrically-covariant and Kähler-covariant
derivative by Da, and define the first three covariant derivatives of the su-
perpotential as

Fa ≡ DaW , Zab ≡ DaDbW , Uabc ≡ DaDbDcW . (3.145)

The Hessian then takes the form [48,458]

H =

(
Z c̄
a Z̄b̄c̄ − FaF̄b̄ −Rab̄cd̄F̄

cF d̄ UabcF̄
c − ZabW

U āb̄c̄F
c̄ − Z̄āb̄W Z̄ c

ā Zbc − FbF̄ā −Rbācd̄F̄
cF d̄

)

+ 1
(
F 2 − 2|W |2

)
, (3.146)

where indices are raised with δab̄, 1 is the 2N × 2N identity matrix, and
Rab̄cd̄ is the Riemann tensor of the metric on field space.

The idea at this stage is to recognize that the large dimension N of
the field space need not remain an obstacle, but can instead be an expan-
sion parameter! The Hessian is a large matrix, and random matrix theory
[459] provides a powerful tool for determining its eigenvalue spectrum. The
foundational insight in random matrix theory [460] is that one can make
sharp predictions about the statistical properties of the eigenvalues of a
large (N ×N) diagonalizable matrix given very limited information about
the actual entries of the matrix. The guiding principle here is universality,
which states that for N � 1, the statistics of the eigenvalues have little
dependence on the statistics of the matrix entries. This may be thought of
as central limit behavior for matrices.
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Universality will be essential to the argument, so we pause for a brief illus-
tration; see [461–463] for in-depth discussions. Consider a real, symmetric
N × N matrix M , whose independent entries Mij (i ≥ j) are indepen-
dent stochastic variables drawn from a normal distribution N (0, σ) with
mean zero and standard deviation σ. Compare to this a real, symmetric
N ×N matrix M̃ that has the same symmetries as M , but whose indepen-
dent entries M̃ij (i ≥ j) are stochastic variables that are not necessarily
independent—i.e. the entries may have some correlations—and are drawn
from diverse non-Gaussian distributions. The magic of universality is that
for N � 1, M and M̃ have the same eigenvalue spectrum: the correlations
and non-Gaussianities disappear42 at large N .

To apply random matrix theory to vacuum statistics, following [48, 449,
454,458], we first define a random supergravity as a four-dimensional N = 1
supergravity theory whose superpotential W and Kähler potential K are
random functions, in the sense that the components of their covariant deriva-
tives, such as Fa, Zab, and Uabc, are stochastic variables drawn from one or
more statistical distributions. (See [466] for related work.) In view of uni-
versality, it will suffice to take all the independent tensor components to
be drawn from normal distributions (though this choice is not central to
the analysis), but with the possibility of distinct scales Frms, Zrms, and Urms

for the components of Fa, Zab, and Uabc, respectively. These relative scales
control the degree of supersymmetry breaking: the soft supersymmetry-
breaking masses are of order F/Mpl, while the size msusy of the supersym-
metric mass terms is determined by the eigenvalues of Zab. Strictly unbroken
supersymmetry would imply vacuum stability, while for

F � msusyMpl (3.147)

supersymmetry breaking is a small effect, and supersymmetry may be ex-
pected to increase the likelihood of stability. If instead

F & msusyMpl , (3.148)

the supersymmetry-breaking masses are at least as large as the supersym-
metric masses, and supersymmetry has little protective effect. When the
scales appearing in the input statistical distributions are taken to be com-
parable, i.e. when

Frms ∼ Zrms ∼ Urms , (3.149)

42
The fine print is that the correlations cannot be too numerous [464], and the statistical
distributions must have appropriately bounded moments. Universality has been formu-
lated and established rigorously in many settings — cf. [461,465] — but to simplify the
discussion we will continue to omit the associated technicalities. More details can be
found in [48].
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then (3.148) holds for a typical member of the ensemble, while approximate
supersymmetry as in (3.147) can occur via a rare fluctuation. We will refer
to the ensemble of critical points generated via (3.149) as generic critical
points; it was argued in [48] that the overwhelming majority of critical
points are in fact of this form.

In a random supergravity theory with N chiral superfields, the Hessian
(3.146) is a 2N × 2N matrix whose entries are stochastic variables. Con-
siderable structure is evident in (3.146), and the next step, following [48],
is to decompose (3.146) into a sum of constituent random matrices with
simple properties. The eigenvalue spectrum of H — which is the quan-
tity controlling the probability of metastability — can then be obtained by
appropriately convolving the spectra of the constituents.

To this end, we briefly outline the properties of two classic ensembles
of random matrices. The (complex) Wigner ensemble, also known as the
Gaussian Unitary Ensemble, consists of N × N Hermitian matrices M of
the form

M = A+A† , (3.150)

where the entries Aij are stochastic complex variables with uniformly-distri-
buted phase and normally-distributed magnitude, |Aij | ∈ N (0, σ). The
eigenvalue density ρ(λ) of a typical member of the Wigner ensemble is given
by the Wigner semicircle law,

ρ(λ) =
1

2πNσ2

√
4Nσ2 − λ2 . (3.151)

Next, the complex Wishart ensemble consists of matrices of the form

M = AA† , (3.152)

where A is a complex N × P matrix (P ≥ N), and again Aij are stochastic
variables with magnitude drawn from N (0, σ). From the form (3.152) it is
clear that the eigenvalues of a Wishart matrix are necessarily nonnegative.
The eigenvalue spectrum of a typical member of the Wishart ensemble is
given by the Marčenko-Pastur law,

ρ(λ) =
1

2πNσ2λ

√
(η+ − λ)(λ− η−) , (3.153)

with η± ≡ Nσ
2(1±

√
P/N )2.

We are now prepared to use random matrix theory to analyze the eigen-
value spectrum of the supergravity Hessian matrix (3.146), in a random
supergravity theory. We will begin by studying generic critical points, as
defined by (3.149). One recognizes (3.146) as the sum of constituent matri-
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ces with simple structures: for example,

HZ ≡
(
Z c̄
a Z̄b̄c̄ 0

0 Z̄ c
ā Zbc

)
(3.154)

is manifestly positive-definite, and is well-approximated by a Wishart ma-
trix. By continuing along these lines, one finds [48] that the eigenvalues of
the Hessian (3.146) are well-approximated by those of

HWWW ≡ HWigner +H(I)
Wishart +H(II)

Wishart , (3.155)

where HWigner is a Wigner matrix, and H(I),(II)
Wishart are Wishart matrices.

To obtain the spectrum of HWWW , one convolves the spectra of the con-
stituents, which are given in (3.151) and (3.153). Because the matrices in
question do not commute with each other, this must be what is known as a
free convolution [467], denoted by �:

ρ(HWWW ) = ρ(HWigner)� ρ(H(I)
Wishart)� ρ(H(II)

Wishart) . (3.156)

An analytic expression for ρ(HWWW ) was obtained in [48] (we omit it here
for brevity). In fig. 3.4 we compare a histogram of the eigenvalues of the full
Hessian matrix (3.146) in random supergravity, making no approximation,
to the analytic result of the Wigner � Wishart � Wishart (WWW ) model
(3.156). The model has no freely-adjustable parameters: we take N = 200
fields in both the simulations and the analytic model. The agreement is
excellent; the slight tail at the right edge is a consequence of finite N .
Although formal results in the subject often require the limit N → ∞,
fig. 3.4 makes it clear that N = 200, which is an entirely reasonable number
of fields in Calabi-Yau compactification, is a sufficiently large value of N .
We conclude that the Hessian matrix (3.146) at a generic critical point of
a random supergravity theory is very well approximated by the analytic
model (3.156).

At first glance, the eigenvalue spectrum (3.156) depicted in fig. 3.4 may
appear to determine fmin as follows: according to the probability density
ρ(λ), a single eigenvalue is positive with probability

f> ≡
∫∞

0 ρ(λ)∫∞
−∞ ρ(λ)

, (3.157)

suggesting that fmin = (f>)N . This is not correct: ρ(λ) describes the eigen-
value density for a typical Hessian matrix in the ensemble, and can be used
to compute the probability that a single eigenvalue λi falls in some given
interval, provided that the remaining N − 1 eigenvalues are unconstrained.
However, the eigenvalues of a random matrix are strongly correlated, and
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0 2 4 6 8

Fig. 3.4. The histogram shows the spectrum of eigenvalues of the full Hessian
matrix in random supergravity (for N = 200 fields), while the curve gives the
analytic result from the WWW model (3.156) [48]. The curve is a parameter-free
prediction of the model, not a fit. (Figure adapted from [48].)

manifest eigenvalue repulsion (see [459]): if N − 1 eigenvalues happen to be
positive, the probability density for the final eigenvalue λi is very different
from (3.156).

What is needed, beyond knowledge of the typical eigenvalue spectrum,
is a means of computing the probability of finding a very atypical matrix
HWWW in the WWW ensemble (3.155), one that has only positive eigenval-
ues. Fortunately, there is a well-developed theory, pioneered by Tracy and
Widom [468], describing fluctuations of the extreme (i.e. largest and small-
est) eigenvalues of a random matrix. For a large class of random matrix
ensembles, including the WWW ensemble [469], one finds [470–472]

P (λ1 > ζ) = exp
(
−N2 Ψ(ζ)

)
, (3.158)

where the function Ψ(ζ), which depends on the particular ensemble and is
computable in simple cases, is N -independent at leading order in large N .

In summary, eigenvalue repulsion dictates that the probability that a Hes-
sian matrix in the ensemble defined by (3.149) has only positive eigenvalues
is given by

fmin ≡ P (λ1 > 0) = exp
(
−cN2

)
, (3.159)

for a constant c. Thus, at large N , an overwhelming fraction of generic crit-
ical points are unstable saddle points, not metastable minima.43 This is to

43
The extreme scarcity of minima in a landscape whose Hessian matrices are governed by
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be contrasted to the naive estimate fmin = (f>)N , which is ‘only’ exponen-
tially small at large N . Furthermore, we recall from (3.137) that the number

of choices of flux is exponential in N , NF ∝ edN , for a positive constant d.
Comparing to (3.159), we conclude that when the assumptions of the above
random supergravity analysis hold to good approximation, there are hardly
any vacua at large N — at least, none that correspond to critical points
that are generic in the sense of (3.149), with soft supersymmetry-breaking
masses at least as large as the supersymmetric masses.

Because metastability is so improbable in the absence of supersymme-
try, it is natural to examine the sub-population of critical points that are
approximately supersymmetric, obeying (3.147). Unbroken supersymmetry

would guarantee stability,44 and one expects greatly increased likelihood
of stability in the approximately-supersymmetric regime [458].45 Detailed
investigation [481] shows that at an approximately-supersymmetric critical
point,

fmin ≡ P (λ1 > 0) = exp (−dN ) , (3.160)

where d ≈ 0.35 is a constant. We conclude that most metastable flux vacua
arise in regions of approximate supersymmetry.

An important proviso is that the WWW model (3.156) describes the
spectrum of eigenvalues of H in a random supergravity theory, in which
K and W are random functions (as defined above). Although universality
blunts the effect of non-random correlations on the eigenvalue spectrum,
there are well-motivated supergravity theories in which K and W have so
much structure that (3.159) must be modified. The simplest example46

consists of two sectors, heavy and light, with additively-separable K and
W :

K = Kl(φ, φ̄) +Kh(Σ, Σ̄) , (3.161)

W = Wl(φ) +Wh(Σ) . (3.162)

Wigner’s Gaussian Orthogonal Ensemble was first discussed in the context of cosmology
in [473]. An analysis of uplifting of supersymmetric AdS vacua of type IIA string theory,
leading to the same conclusion, appears in [474].

44
Unbroken supersymmetry in AdS does not guarantee the absence of tachyons allowed
by the Breitenlohner-Freedman bound [475], but the techniques described above can be
used to compute the probability that there are no tachyons [476]. See also [477].

45
The principal instability corresponds to the scalar partner of the Goldstino — see [478]
for an analysis of geometric conditions that ensure stability in this direction, and [479,
480] for discussions of inflation along this direction.

46
A second important example is the Large Volume Scenario, cf. §3.3.3, which leads to
non-supersymmetric AdS4 vacua that have been argued to be automatically tachyon-
free in certain cases [357, 367]. The incidence of instabilities in LVS has been analyzed
in [369].
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If the Nh heavy fields Σ receive large supersymmetric masses at a high scale
Λh, and supersymmetry is spontaneously broken in the sector of Nl light
fields φ at a much lower scale Λl, then only the light fields will be vulnerable
to instabilities caused by supersymmetry breaking. One therefore finds

fmin ≡ P (λ1 > 0) = exp
(
−cN2

l

)
, (3.163)

which for Nh � Nl is a vastly increased probability of stability, compared
to the estimate P (λ1 > 0) = exp(−c (Nl+Nh)2) that overlooks the fact that
the heavy fields are robustly stabilized. The lesson is that the number N
appearing in (3.159) is the number of fields that are dynamically accessible

at the energy scale of the critical point in question.47

The principal reason for using caution in applying the results (3.159) and
(3.160) was already noted above: we have only a rudimentary understanding
of the array of effective theories that emerge from string theory, so it is too
early to give a complete account of the vacua of string theory, by any means.
Nevertheless, we would like to stress that the assumption of a random super-
potential and Kähler potential that underpinned the discussion of random
supergravity is not tantamount to assuming that the supergravities arising
in string theory have ‘no structure’. Instead, universality ensures that in
the large N limit, the eigenvalue spectrum of H takes the universal form,
unless the correlations in K and W are extremely strong. In other words,
many sorts of underlying patterns in the N = 1 data are compatible with
(3.159) and (3.160): such patterns are obscured in the eigenvalue spectrum,
and the only patterns that do survive in the spectrum are those determined
by the macroscopic structure of (3.146), not by the statistical properties of
K and W themselves. For this reason, random matrix theory is actually a
conservative approach to the problem of counting vacua: it serves to expose
structure that is inherent in supergravity, through the form of (3.146), while
blurring out detailed — and presently unknown — microphysics.

The techniques described above have a wealth of applications, most no-
tably to the problem of characterizing inflation in a potential with many
fields [473,483–488], which we will briefly discuss in §4.4, §5.1.2, §5.1.6, and
§5.4.1.

47
See also [482], where the probability of metastability in a Gaussian landscape was shown
to be anticorrelated with the magnitude of the vacuum energy.
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What is String Inflation?

Inflationary scenarios constructed in effective field theory have limitations
stemming from incomplete knowledge of the ultraviolet completion. Because
the inflationary dynamics is extraordinarily sensitive to Planck-suppressed
operators in the effective theory, merely parameterizing our ignorance of
quantum gravity is untenable: predictions obtained in this approach amount
to reflections of implicit or explicit assumptions about the characteristics
of quantum gravity. This fundamental problem motivates pursuing a more
complete understanding of inflation in the context of string theory.

In Chapter 5, we will discuss an array of attempts to derive inflation
in string theory. Before grappling with model-dependent details, however,
it is worthwhile to have a broad overview of the subject. Many of the
technical challenges that arise in string inflation are cognate across a range
of models, and the phenomenological characteristics are likewise parallel.
In this chapter, we provide a schematic account of the essential aspects of
inflation in string theory. We will sharpen these considerations with detailed
case studies in Chapter 5.

4.1 From Strings to an Inflaton

The aim of most work on the subject can be summarized by the simple
expression

S10[C] 7→ S4[Φ(t)] . (4.1)

where the configuration C refers to the ten-dimensional data of geometry,
fluxes, localized sources, and quantum effects, while Φ(t) represents a time-
dependent configuration of scalar fields in the four-dimensional effective
theory. The task is to specify compactification data C that lead, upon
dimensional reduction, to an effective theory S4 with interesting cosmology.
To describe inflationary solutions, we require that S4 has a positive vacuum

154
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energy contribution and one or more light moduli Φ whose time-dependent
vevs describe a controlled instability of the vacuum.

4.1.1 Energy Scales

Understanding the primary energy scales that are involved provides a useful
perspective on the problem. Observations of the CMB directly probe ener-
gies of order the inflationary expansion rate H when modes cross the horizon
and freeze (see Chapter 1). However, as shown in Chapter 2, inflation is
sensitive to physics at higher energy scales. When inflation is formulated in
effective field theory, these scales parameterize unknown ultraviolet physics,
but in string theory they are computable and have specific meanings, as we
now explain.

The fundamental scale of string theory is the string scale Ms = (α′)−1/2.
At energies below Ms, only the massless states of the string are excited,
and the theory reduces to an effective supergravity in ten dimensions. Most
models of inflation in string theory are formulated in this island of the-
oretical control. The drawback of being in the regime H � Ms is that
truly stringy effects are highly suppressed as far as CMB observables are
concerned. To describe situations with H > Ms, one would need to use
the full string theory: the time dependence of the background would create
excited string states. Quantitative analysis of such a regime is out of reach
at present.

Compactification on an internal space of volume VM−6
s introduces one

or more additional scales, the Kaluza-Klein scales MKK ∼ MsV
−1/6. We

will usually work in the regime where MKK � Ms, so that the theory
is a ten-dimensional supergravity for intermediate energies, MKK < E <
Ms, while it reduces to a four-dimensional effective theory at low energies,
E < MKK. The four-dimensional theory will itself be supersymmetric if the
compactification preserves some of the ten-dimensional supersymmetries,
for example by having suitably reduced holonomy. Most models of string
inflation satisfy H < MKK, and as a result it is hardly surprising that many
such models reduce to well-known EFT models. Formulating inflation (or
alternatives to inflation) as a truly higher-dimensional phenomenon would
be interesting, but requires rethinking many of the fundamental aspects of
the problem, such as the horizon problem and the generation of primordial
perturbations.

The four-dimensional Planck scale becomes a derived scale in string the-
ory. It is related to the string scale, the Kaluza-Klein scale and the string
coupling via (3.47), which has the schematic form

Mpl ∼ g
−1
s (Ms/MKK)3Ms �Ms . (4.2)



156 4 What is String Inflation?

We note that applying the standard inflationary slow-roll analysis requires
that one works in the four-dimensional Einstein frame and normalizes all
fields with respect to the fixed Planck scale.

Finally, we have the scale of supersymmetry breaking in the early uni-
verse, MSUSY, by which we mean the highest scale of supersymmetry break-
ing that is unrelated to inflation. The fact that no superpartners have been
observed to date plausibly puts the scale of supersymmetry breaking in the
present vacuum at or above the TeV scale, but the breaking of supersymme-
try may well have been different at the time of inflation. For MSUSY < H,
supersymmetry is only spontaneously broken during inflation, and can par-
tially protect against radiative corrections (see [239] for a recent discus-
sion). The associated theoretical control provides crucial underpinning for
most models of inflation in string theory. However, supersymmetry could be
much more badly broken: indeed, in non-supersymmetric compactifications
MSUSY &MKK.

To sum up, most controlled treatments of string compactifications, and
of inflation within it, rely on the hierarchy of scales

MSUSY < H < MKK < Ms < Mpl . (4.3)

As our understanding of string theory improves, it may be possible to move
away from the comfort of this particular hierarchy of scales and explore a
wider parameter space of string cosmologies.

4.1.2 Spectrum of States

Fields with masses that are smaller than the Hubble scale, m < 3
2H, are

both classically and quantum-mechanically active during inflation. To char-
acterize effective theories of inflation, we need to determine the spectrum
and the interactions of these light fields. The simplest toy models of infla-
tion assume that only one field is light and the rest have masses far above
the Hubble scale (see fig. 4.1): the heavy fields can then be integrated out,
and one is left with a model of single-field inflation. If several fields are
light one speaks of multi-field inflation. In both scenarios, the heavy fields
only affect the couplings of the low-energy theory, but do not participate
actively in the generation of the primordial perturbations.

However, this hierarchy of mass scales is rarely the situation one encoun-
ters in actual constructions of inflation in string theory. Even if one manages
to arrange for one or more very light fields, it is typically hard to avoid hav-
ing extra fields with intermediate masses. In particular, most models of
inflation in string theory constructed to date involve spontaneously broken
supersymmetry (MSUSY < H), which generally leads to moduli fields with
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I II

spontaneously
broken SUSY

UV-completion

fine-tuning 
or symmetry

Fig. 4.1. Mass spectra of inflationary models. Phenomenological models of infla-
tion frequently assume a large hierarchy between one or more light inflaton fields
and the extra states of the UV completion (I). On the other hand, concrete ex-
amples of inflation in string theory often contain fields with masses of order the
Hubble scale (II) arising from the spontaneous breaking of supersymmetry. Ro-
bust symmetries, or fine-tuning, are required to explain the presence of scalars with
masses m ∼ √ηH.

masses of order H [239].1 These fields fluctuation quantum-mechanically
during inflation and therefore have to be included in the computation of
the primordial perturbations. The phenomenology of these models of quasi-
single-field inflation [490] has been explored in [118, 207, 208, 239, 255, 265,
267,491–497].

4.1.3 Inflaton Candidates

Models of string inflation can be classified by the nature of the field that
serves as the inflaton. A few of the leading candidates are:

. Brane moduli.—The positions of mobile, spacetime-filling branes2 in
the internal space can be moduli in the four-dimensional effective the-
ory. Many leading models of string inflation are built on the time

1
Lighter moduli, with m� H, may be natural in certain circumstances: see e.g. [489].

2
The primary examples are Dp-branes with p ≥ 3, NS5-branes, or M5-branes, wrapping
suitable cycles. Orientifold planes, in contrast, are non-dynamical: their positions are
not parameterized by light scalars.
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dependence of these brane position moduli. The complex interac-
tions of a brane with other sources in the compactification create the
inflaton potential. If the forces on the brane are weak enough, it
moves non-relativistically and may source slow-roll evolution in the
four-dimensional spacetime. In §5.1 and §5.2, we will analyze sev-
eral examples of this sort. If instead the brane moves relativistically,
kinetic effects dominate the dynamics. This leads to the interesting
possibility of inflation being driven not by a flat slow-roll potential,
but by the non-linear interactions in the kinetic part of the DBI action
(3.26) for the brane. Models of DBI inflation are explored in §5.3: we
will see that string theory plays an important role in explaining the
radiative stability of these theories.

. Kähler moduli.—Models of Kähler moduli inflation identify the infla-
ton with time-dependent deformations of the volumes of even-dimen-
sional cycles. Some of the most promising configurations involve
changes in the volume of one or more four-cycles, keeping the overall
volume fixed. In constructions in type IIB string theory, the inflaton
potential arises from the leading effects that violate no-scale structure,
typically a combination of α′ corrections, string loop corrections and
nonperturbative effects. We describe various realizations of Kähler
moduli inflation in §5.5.

. Complex structure moduli.—In the best-understood moduli stabiliza-
tion scenarios in type IIB string theory, the complex structure moduli
are stabilized at a high scale by flux and can be integrated out at the
time of inflation. Unsurprisingly, time dependence of complex struc-
ture moduli has played a limited role in models of inflation in type IIB
flux compactifications. In stabilized flux compactifications of type IIA
string theory [498–500], in contrast, complex structure moduli could a
priori be natural inflaton candidates. However, in the best-understood
classes of type IIA compactifications, there are no-go theorems for in-
flation [501, 502] (see also [503]). As a result, it appears difficult to
construct explicit scenarios for inflation driven by complex structure
moduli.

. Axions.—String compactifications typically contain a plenitude of ax-
ion fields. These axions are particularly attractive inflaton candidates
because they enjoy shift symmetries to all orders in perturbation the-
ory. Such symmetries are a key ingredient in technically natural mod-
els of inflation [35], including the large-field models required for signif-
icant primordial gravitational waves. String theory offers the oppor-
tunity to determine which low energy shift symmetries are compatible
with quantum gravity. Inflation driven by a single axion field requires
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a super-Planckian decay constant, a feature that is difficult to realize
in controlled string compactifications [46]. In §5.4, we show how mod-
els of axion inflation in string theory can overcome this obstacle, and
we discuss the rich phenomenology of axion inflation.

4.1.4 Approximations

In an ideal world, one would derive the inflaton action from first principles,
beginning with fundamental integer data C for a compactification, solving
the equations of motion of the ten-dimensional effective supergravity theory
S10, order by order in α′ and in gs, and then integrating out massive degrees
of freedom (including the Kaluza-Klein modes of the compactification) to

arrive at a four-dimensional effective theory S4.3 Unfortunately, computing
the effective action in a metastable non-supersymmetric compactification
is a formidable technical challenge: a direct approach, making no approxi-
mations, would require unforeseen advances in our understanding of string
theory. Indeed, even in compactifications that preserve N = 2 supersym-
metry in four dimensions, such as compactifications of type II string theory
on Calabi-Yau three-folds, the metric on the internal space cannot be com-
puted analytically; in non-supersymmetric solutions, the difficulties are far
greater. In practice, a four-dimensional effective theory is deduced based
on a partial specification of the compactification data C, and an arsenal of
approximation schemes is used in place of a complete calculation.

We will outline some of the most important expansion parameters, sys-
tematic (and non-systematic!) approximation schemes, and simplifying as-
sumptions that are used in determining four-dimensional effective theories
and extracting their dynamics. It will be important to remember these
limitations when we present our case studies in Chapter 5.

. α′ expansion.—The α′ expansion is reliable when the gradients of the
background fields are small in units of α′. However, the compacti-
fication volume is finite, and is typically restricted by the desire to
achieve the hierarchy H < MKK, so that inflation is inherently four-
dimensional. As a result, the α′ expansion is often a barely-controlled
approximation scheme, rather than a convergent parametric expan-
sion, in the regions of interest. This issue is particularly severe in
models of high-scale (equivalently, large-field) inflation, because the
lower limits on the Kaluza-Klein mass become more stringent.

. String loop expansion.—The weak coupling approximation retains only
the leading terms in gs � 1. One might hope to make gs = eΦ small

3
More ambitiously, one might pursue solutions that are exact in α

′
and gs, but there has

been very little progress in this direction.
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in a stabilized vacuum through appropriate choices of flux, but be-
cause the dilaton Φ couples to most fields and localized sources, taking
gs � 1 very often disrupts the delicate balance of energies responsi-
ble for moduli stabilization. As a result, arbitrarily weak coupling is
rarely achievable in practice.

. Probe approximation.—Localized objects, such as D-branes or ori-
entifold planes, are often treated as probes, meaning that they are
not included as sources in the ten-dimensional equations of motion.
For sources that respect some of the supersymmetries preserved by
the background, the backreaction can be restricted to a limited set
of fields, and sometimes obeys a superposition principle, e.g. in the
case of D3-branes in a background of ISD flux. However, for non-
supersymmetric sources this approximation is tenable only at consid-
erable distances, which are not always available in a compact space.
For lack of an alternative, an unjustified probe approximation is occa-
sionally made for low-codimension objects such as D7-branes and D8-
branes, whose effects can be felt at arbitrarily large distances. Many
instances have been found in which the probe approximation misses
crucial aspects of the inflationary dynamics.

. Large charge approximation.—The polar opposite of the probe ap-
proximation takes the number of backreacting localized sources, or
the total corresponding charge, to be so large that the radii of curva-
ture of the resulting geometry are large in units of α′. While this limit
has proved very fruitful in noncompact geometries, e.g. taking a large
D3-brane charge leads to the large N limit in the AdS/CFT corre-
spondence [504], Gauss’s law presents difficulties in compact models.
In many compact examples the large charge approximation is used
despite being marginally valid at best.

. Smeared approximation.—When computing the backreaction of local-
ized sources is unmanageably complex, considerable simplifications
can be achieved by imagining that the sources are distributed in a
highly symmetric manner, or are distributed throughout the entire
space. For example, D-brane sources in Calabi-Yau cones are often
treated as smeared over one or more angular directions of the cone, so
that a problem that is properly posed as a system of PDEs is approxi-
mated by a system of ODEs. Similarly, negative tension contributions
from orientifolds are sometimes taken to be uniformly distributed in
the compactification, postponing the question of possible singularities
near an actual localized orientifold. This approximation is very effec-
tive at reducing the difficulty of a problem, but its accuracy is poorly
characterized.
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. Linear approximation.—Linearization in the strength of a source for
some of the supergravity fields is very common, but not always self-
consistent. For example, in [42] it was shown that the leading con-
tribution to the action for a D3-brane in a warped region arises at
quadratic order in an expansion in the strength of sources in the bulk
of the compactification.

. Noncompact approximation.—Although analytic expressions for met-
rics on compact Calabi-Yau three-folds remain unavailable, metrics
are known for many noncompact Calabi-Yau manifolds, i.e. Calabi-
Yau cones. The noncompact approximation attempts to represent a
region in a Calabi-Yau compactification as a finite portion of a non-
compact Calabi-Yau cone, subject to boundary conditions in the ul-
traviolet that represent the effects of compactification.

. Large volume expansion.—Although the α′ expansion corresponds to
an expansion in inverse volumes, there is a special sort of large volume
expansion that deserves separate mention. When the compactification
volume is exponentially large, as in the large volume scenario [319,357],
then a considerable number of corrections to the effective action in the
α′ and string coupling expansions can be ignored. In particular, it has
been argued that only a subset of the terms arising at order (α′)3

make leading contributions.

. Adiabatic approximation.—It is often assumed that heavy fields adi-
abatically follow their instantaneous minima as a light field evolves.
The detailed form of the inflaton potential can depend on the precision
with which heavy fields are integrated out (see §5.1 for an example).
As discussed in §2.1.5, a heavy mode of frequency ω can be integrated
out in this way only when the adiabatic condition ω̇/ω2 < 1 holds:
more rapid evolution leads to excitation of the heavy modes. (Anal-
yses of the effects of heavy fields include [493, 496, 505, 506]. See also
the discussion of resonance in §5.4.3.)

. Truncation.—Often the low-energy effective theory is truncated by
omitting one or more fields that would be integrated out in a more
sophisticated analysis. Omitting fields with m� H, which evolve and
fluctuate during inflation, is widely understood to be inconsistent. A
more reasonable — but not always justified — approximation omits
fields with m & H.

. Moduli space approximation.—An unjustified and misleading oversim-
plification asserts that the existence of a moduli space for some field
ϕ in a supersymmetric compactification ‘suggests’ that ϕ will have
a relatively flat potential even after supersymmetry breaking. This
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serves only to mask the actual problem, which is understanding the
effective action of the non-supersymmetric theory.

Zealous application of the approximation schemes described above can
eventually lead to a well-characterized four-dimensional effective action, but
inflation is not an automatic consequence. In the following sections, we will
describe the most common obstacles that arise after the effective theory has
been determined.

4.2 The Eta Problem

The eta problem is omnipresent in realizations of inflation in string theory,
but it takes various guises in different models. In this section, we will
summarize the causes of the eta problem in string inflation at a conceptual
level, to provide a framework for understanding the detailed incarnations of
the problem in the examples of Chapter 5.

4.2.1 Compactness and Non-Decoupling

A pivotal insight about inflation in string theory is that the effects of com-
pactification and moduli stabilization do not decouple from the inflation-
ary dynamics. The problem of stabilizing the moduli and the problem of
computing the inflaton potential cannot be treated independently, and the
inflaton sector cannot be understood in isolation from the other sectors
of the theory. The importance of moduli stabilization in string inflation
is widely appreciated in the recent literature, but achieving control of the
moduli potential remains one of the main technical challenges of the subject.
Moreover, the failure of decoupling of different sectors in string compact-
ifications has important consequences for the dynamics of inflation in the
presence of moduli-stabilizing ingredients.

An instructive picture of decoupling is possible in compactifications with
D-branes, where one often constructs distinct sectors of the theory on collec-
tions of D-branes located in different parts of the compactification. These
sectors are said to decouple if the details of one sector are irrelevant for
the dynamics in another, i.e. if the sectors serve as non-interacting mod-
ules for the purpose of computing some four-dimensional observable. Com-
plete decoupling is not always desirable: the interaction between two sectors
could be responsible for inflationary evolution, as in the example of a well-
separated brane-antibrane pair — see §5.1 and §5.2. However, the problem
is that hardly any sector decouples from inflation, so detailed understanding
of all hidden sectors is necessary [507].

A common but dangerous assumption is that sufficient geometric sepa-
ration of two sectors, A and B, makes the couplings between the sectors
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negligible. (More refined criteria involve separation along a warped direc-
tion, or separation without any branes stretched between the sectors, but
the principle is the same.) To check this assumption, one has to compute the
couplings between the sectors by integrating out massive fields that couple
to both A and B. In particular, open strings with one end on A and another
end on B lead to massive fields in the four-dimensional theory. Integrating
out these strings leads to operators of the form4

∆L ⊃ 1

M
δA+δB−4
AB

O(δA)
A O(δB)

B , (4.4)

where O(δA)
A is an operator of dimension δA consisting of the fields of sector

A, and similarly for O(δB)
B , while MAB is the mass of the strings stretched

between the sectors. For example, if O(4)
B ≡ V0 is a constant contribution

to the vacuum energy originating in sector B, and taking φ to be a scalar

field in sector A, then with O(2)
A ≡ φ

2 we find the coupling

∆L ⊃ V0

M2
AB

φ2 . (4.5)

This is precisely the dimension-six ultraviolet-sensitive inflaton mass term
discussed in §2.3. The problematic interaction (4.5), and kindred couplings,
will be negligible if MAB � Mpl, but will otherwise alter the inflationary
dynamics. Notice that two sectors decouple, for the purposes of inflation, if
the interactions between the sectors are more than Planck-suppressed. The
general expectation in effective field theory is that Planck-mass degrees of
freedom that participate in the ultraviolet completion of gravity will induce
Planck-suppressed interactions: the absence of such couplings requires a
special structure or symmetry in the quantum gravity theory. We will see
that this expectation is borne out in string theory.5

The erroneous intuition that supports decoupling is that MAB is dictated
by the distance d between the sectors, via MAB ∼ d/α′, so that the effects

4
In many settings it is more efficient to compute the couplings between two separated sec-
tors by working in supergravity, rather than by integrating out stretched open strings.
In this closed string approach, one finds a supergravity solution that incorporates the
backreaction of sector A, and then evaluates the probe action for sector B at the appro-
priate location in this solution, in order to determine the effect of sector A on sector B.
This method has been used, for example, to determine the coupling between D3-branes
and quantum effects stabilizing the Kähler moduli [335].

5
If B is taken to be a supersymmetry-breaking sector, and A is the visible sector, then
the notion of decoupling described here corresponds to what is called sequestering [508]
in the literature on supersymmetry breaking. Investigations of sequestering in string
theory [509–514] have confirmed that complete decoupling is extremely rare, but partial
suppression of some couplings can occur in certain cases [512].
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of A on B can be made negligible by taking d to be large. Of course, in
a compactification, the distance d is bounded by the diameter L of the
compact space. Moreover, in a roughly isotropic compactification, the total
volume scales as V ∝ L6, so that Mpl ∝ L

3/(gs(α
′)2) and hence6

MAB

Mpl
. gs

(
`s
L

)2

. (4.6)

Thus, MAB/Mpl < 1 when the volume is controllably large: the stretched
string mass cannot parametrically exceed the Planck mass in an isotropic
compactification. Consequently, the couplings between spatially separated
D-brane sectors will generically be at least gravitational in strength: the
corresponding operators will be suppressed by no more than the Planck
mass.

Isotropy is a strong assumption, and it is important to check whether
decoupling arises automatically in suitably anisotropic compactifications. If
the compactification has p large directions of size L and 6−p small directions
of size S, then

MAB

Mpl
. gs

(
`s
L

) 1
2
p−1(`s

S

) 1
2

(6−p)
, (4.7)

so that for p > 1 the coupling is again at least gravitational in strength at
large volume. (For the case p = 1, see §4.3.) A significant example consists
of a warped throat geometry: a warped cone over an angular manifold X5 is
an example of a highly anisotropic space, if X5 is chosen appropriately — for
example, one might consider X5 = S5/Zk for k � 1. Rather surprisingly, it
was shown in [243] that for any X5, the stretched string mass is less than
the Planck mass (see §5.1.1). Thus, ‘slender’ warped throats do not evade
the general argument that gravitational-strength couplings are unavoidable.

The fact that compactness prevents decoupling leads to important con-
straints on the interactions between localized sources. We will illustrate
the issues in the example of a D3-brane/anti-D3-brane pair in a general
unwarped six-manifold X6, though the problem is more general (see 5.1).

The Coulomb potential of a D3-brane/anti-D3-brane pair separated by a
distance r is

V (r) = 2T3

(
1− 1

2π3

T3g
2
sκ

2

r4

)
, (4.8)

where T3 is the D3-brane tension (3.28), and κ is the gravitational coupling
defined in (3.11). The canonically-normalized field φ is related to r by

6
We display only the parametric scaling: factors of 2π can be important for this relation,
but depend on the precise geometry and must be analyzed on a case-by-case basis.
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φ =
√
T3 r. Computing the slow-roll parameter η, we find

η ≈ −10

π3

V
r6 , (4.9)

where we have used (3.47) and T 2
3 g

2
sκ

2 = π. The Coulomb potential (4.8) is
evidently steep at small separations and grows flatter at large separations.
However, the brane-antibrane pair cannot be separated by a distance greater
than the diameter of the compactification, so unless X6 is highly anisotropic,
the potential (4.8) is too steep to support inflation [515].7 This is one of the
simplest examples of the phenomenon of non-decoupling described above.

4.2.2 Compactness and Backreaction

In a warped background, the version of the eta problem that we just dis-
cussed seems to disappear [41]. However, a more subtle issue arises: the
backreaction of the D3-branes on the compact geometry leads to instabil-
ities and to a recurrence of the eta problem. We will briefly sketch the
argument.

Going beyond the probe approximation, a D3-brane located at the posi-
tion yb in a six-dimensional space with coordinates y acts as a point source

for a perturbation δe−4A of the geometry (3.36):

∇2
y

(
δe−4A(yb;y)

)
= −C

(
δ(yb − y)√

g(y)
− ρ̄(y)

)
, (4.10)

with C ≡ 2g2
sκ

2T3 = (2π)4gs(α
′)2. In order to satisfy Gauss’s law on the

compact space [295], we have included a background charge density ρ̄(y),

with
∫

d6y
√
g ρ̄(y) = 1. To be precise, the tadpole in question is gravita-

tional, so that ρ̄(y) corresponds to a negative tension source, as in §3.3.1.
The solution to (4.10) can be written as [335]

δe−4A(yb;y) = C
(
G(yb; y)−

∫
d6y′
√
g G(y; y′) ρ̄(y′)

)
, (4.11)

where the function G(y; y′) satisfies

∇2
y
′G(y; y′) = ∇2

y
G(y; y′) = −δ(y − y

′)
√
g

+
1

V
. (4.12)

7
When the background is warped, the Coulomb potential (4.8) takes the modified form
(5.30) [41], and is extremely flat even at modest separations: see §5.1.
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Acting with ∇2
yb

on (4.11), we find

∇2
yb

(
δe−4A(yb;y)

)
= −C

(
δ(yb − y)√

g(yb)
− 1

V

)
, (4.13)

which does not depend on the background charge distribution8 ρ̄(y). The
leading term in the scalar potential for a D3-brane is therefore (see §5.1 for
more details)

V (yb) = 2T3e
4A(yb) ≈ 2T3

(
1− δe−4A(yb)

)
. (4.14)

Computing the trace of the Hessian, we find

Tr(η) ≈ −
M2

pl

T3
∇2
yb

(
δe−4A(yb;y)

)
= −2 , (4.15)

where we used (4.13) and (3.47). Thus, the potential for a D3-brane in
the presence of an anti-D3-brane, with no other sources beyond those re-
quired by tadpole cancellation, necessarily has a steep unstable direction,
preventing sustained inflation [41].

Although we have presented the problem in the example of D3-branes,
parallel considerations apply to any scenario in which the backreaction of
a source creates a potential for the motion of some object within the com-
pactification: the instabilities that arise will quickly end inflation. On the
other hand, all realistic models involve additional sources of stress energy
— at the very least, to stabilize the moduli — and the moduli-stabilizing
contributions can in principle lead to a potential suitable for inflation. This
almost always requires some degree of fine-tuning. To make this fine-tuning
explicit, and thus to obtain a complete inflationary scenario in string the-
ory, rather than a plausibility argument for inflation, requires computing
the moduli potential in extraordinary detail.

4.2.3 The Eta Problem in Supergravity

Most contemporary scenarios for string inflation preserve supersymmetry
down to the scale H < MKK, and hence can be described in four-dimensional
N = 1 supergravity. The positive vacuum energy during inflation sponta-
neously breaks supersymmetry. Inflation then often suffers from a particular
form of the eta problem that arises from couplings in supergravity [238].

We sketched the basics of N = 1 supergravity in four dimensions in §3.2.
Let us take the inflaton ϕ to be a complex9 scalar in the chiral multiplet.

8
For discussions of the effects of the background charge, see [516].

9
The actual inflationary instability will generally involve one real component of ϕ, e.g. the
real or imaginary part, phase, or magnitude of ϕ.
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Assuming that ϕ is a gauge singlet, its interactions are determined by the
Kähler potential K(ϕ, ϕ̄) and the superpotential W (ϕ). The Lagrangian for
the inflaton is

L = −Kϕϕ̄∂µϕ∂
µϕ̄− eK/M

2
pl

[
Kϕϕ̄DϕWDϕW −

3

M2
pl

|W |2
]
. (4.16)

In (4.16) we have omitted the F-terms DχW of additional moduli χ: includ-
ing these terms is straightforward and does not change our conclusions. We
have also omitted a possible D-term contribution, which we will comment
on below.

Expanding the Kähler potential around a reference location ϕ ≡ 0,

K = K(0) +Kϕϕ̄(0)ϕϕ̄+ · · · , (4.17)

the Lagrangian (4.16) becomes

L ≈ −∂µφ∂
µφ̄− V (0)

(
1 +

φφ̄

M2
pl

+ · · ·

)
, (4.18)

where we have defined the canonically-normalized field φφ̄ ≡ Kϕϕ̄(0)ϕϕ̄.
The ellipses in (4.18) correspond to terms arising from the expansion of
K and W inside the square brackets in (4.16). These terms are model-
dependent and can be of the same order as the model-independent term
that we have shown explicitly. However, without fine-tuning the model-
dependent terms against the universal term, we get a large contribution to
the inflaton mass and hence to the eta parameter:

m2
φ =

V (0)

M2
pl

+ · · · = 3H2 + · · · ⇒ η = 1 + · · · . (4.19)

Thus, a generic inflationary model in N = 1 supergravity suffers from the
eta problem [238].

An instructive special case is the theory of a spacetime-filling D3-brane
in a compactification with a single Kähler modulus T . Parameterizing the
D3-brane position in the compact space with three complex scalars zα, α =
1, 2, 3, the Kähler potential takes the DeWolfe-Giddings [320] form (3.99):

K = −3 ln
[
T + T̄ − γk(zα, z̄α)

]
≡ −2 lnV , (4.20)

in units where Mpl ≡ 1. In the second equality we have indicated the
dependence on the physical volume V, as contrasted with the holomorphic
volume T . The latter is the proper Kähler coordinate on the moduli space,
and can appear in the superpotential. On the other hand, the rescaling to
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four-dimensional Einstein frame entering (3.39) involves a power of V, and
so all sources of positive energy in four dimensions contribute to a runaway
potential for V.

In the absence of a superpotential for T and zα, all four fields have vanish-
ing potential. One might hope that T could be stabilized by superpotential
interactions, leaving zα as flat directions. However, in the presence of a su-
perpotential for T , the F-term potential (4.16) depends both on T , through

the superpotential, and on V, through the prefactor eK . Displacement of
the D3-brane changes k(zα, z̄α), and hence alters either T or V. As a result,
superpotential stabilization of T leads to a mass for zα, through the mixing
in (4.20). This is another manifestation of the eta problem.

It has been suggested that the eta problem in supergravity may be evaded
if inflation is driven by a D-term potential [517]: the argument given above
is then inapplicable. Moreover, the D-term potential has been argued to be
less sensitive than the F-term potential to inflaton-dependent corrections to
the Kähler potential. A significant difficulty10 is that all known scenarios for
complete moduli stabilization involve some F-term potential for the moduli,
and in general VF & VD. Expanding VF as in (4.18), the eta problem
reappears, because of the inflaton dependence of the F-term contribution to
moduli stabilization. See [519] and §5.2.1 for discussions of this effect in an
explicit string inflation scenario.

By particle physics standards, the fine-tuning required to go from η ∼
O(1) to η ∼ O(0.01) is not extreme. Nevertheless, it would certainly be
preferable if a symmetry principle made inflation technically natural. A
simple way to achieve this in the present context [520]11 is to impose a shift
symmetry on one of the real components of the complex scalar φ, e.g. (φ+
φ̄) 7→ (φ + φ̄) + const. If this symmetry is exact, then the superpotential
is independent of φ and the Kähler potential can only be a function of the
imaginary part φ− φ̄, i.e. at lowest order we have

K = (φ− φ̄)2 . (4.21)

Now the eK factor in (4.16) is independent of φ+ φ̄, and the real part of φ
is protected from a dangerous mass term. This time only the unprotected
field φ−φ̄ receives a mass of order H. Examples of supersymmetric inflation
models with these structures can be found in [221, 222, 239, 241, 522, 523].
Further work on inflation in supergravity includes [480,524–529].

A fundamental limitation of simply assuming a shift symmetry in the
low-energy supergravity is that couplings to Planck-mass degrees of freedom

10
A criticism of D-term inflation based on consistency conditions in supergravity can be
found in [518].

11
See also [521], in which an assumed Heisenberg symmetry protects the flatness of the
potential.
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can readily spoil the symmetry (see §2.1.4). Thus, asserting an exact shift

symmetry in supergravity is untenable,12 and the question is how badly the
symmetry is lifted in string theory. In §5.2.1 and §5.4, we will encounter
examples of inflation in string theory that try to exploit shift symmetries to
construct natural models of slow-roll inflation. This is a prime example of
the utility of string theory in assessing ultraviolet-sensitive questions: the
nature of the remnant symmetry can be determined by direct calculation
within string theory. A fair summary is that approximate symmetries are
ubiquitous in string theory, but symmetries that are powerful enough to
resolve the eta problem and make inflation natural are considerably less
common.

4.3 Super-Planckian Fields

The recent BICEP2 detection of primordial B-modes makes it essential to
understand inflationary scenarios involving super-Planckian inflaton dis-
placements, ∆φ & Mpl. As we explained in §2.3, such large-field models
are exquisitely sensitive to Planck-scale physics: at least naively, an infinite
series of non-renormalizable terms should be incorporated in the inflaton
action. Examining large-field inflation in string theory sharpens and refines
the problem: the task of understanding and controlling the effective inflaton
action becomes a matter of explicit computation.

It is useful to divide constraints on super-Planckian displacements into
two classes, kinematic and dynamic. Kinematic constraints on the field
range are purely geometric: if the field space has a finite diameter, then
by definition there is a maximum possible geodesic distance between two
points, although the path length between an initial and final configuration
can still be arbitrarily large. For fields in string theory that have restricted
ranges for purely geometrical reasons, one can make very strong statements
about the impossibility of using those fields to construct inflationary mod-
els with observable tensors. Even for the fields that kinematically allow
super-Planckian vevs, one must consider the dynamical question of whether
inflation can persist over such a displacement, i.e. whether controllably flat
potentials can extend over such large distances in field space. This requires
careful study of corrections to the inflaton potential.

12
In certain field theories with special structures, it is possible to suppress all dangerous
symmetry breaking terms to the necessary level. For example, in [241], it was shown
that if the inflaton is the phase of a baryonic operator in SUSY QCD with gauge groups
SU(N ≥ 5), symmetry breaking operators only arise at dimension seven or larger. In
this case, the inflaton shift symmetry is an accidental symmetry and symmetry breaking
effects are controlled by gauge symmetry. (The same mechanism controls proton decay
in the Standard Model.) Similarly, coupling the inflaton to a conformal field theory can
suppress the Wilson coefficients of the dangerous operators by RG flow [523].
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In this section we will describe some of the general aspects of the kinematic
and dynamic problems. A definitive treatment of dynamics requires detailed
information about the geometry and potential energy in a metastable com-
pactification, and is therefore deferred to the examples of Chapter 5.

4.3.1 Geometric Constraints

First, we will examine the size of the moduli space for a Dp-brane in a
simple toroidal compactification. Consider a Dp-brane that fills the four-
dimensional spacetime and wraps a (p−3)-cycle of volume Vp−3 = (2πL)p−3

on an isotropic six-torus of volume V = (2πL)6. The dynamics of the brane
is then that of a point particle in 9− p compact dimensions. We will derive
a kinematic constraint on the canonical range of this particle. Suppose that
the Dp-brane moves along one of the circles in the T 6, with coordinate y;
the maximum possible distance from its starting point is then ∆y = πL.
Dimensional reduction of the DBI action defines the canonically-normalized
field as φ2 = TpVp−3 y

2, so that the maximal displacement is

∆φ2 <
1

8π

M2
s

gs

(
L

`s

)p−1

. (4.22)

It may appear that we can make this field range arbitrarily large by choosing
L� `s and/or gs � 1. However, what is relevant for the Lyth bound is the
canonical field range in units of the four-dimensional Planck mass (3.47),

M2
pl =

1

π

M2
s

g2
s

(
L

`s

)6

. (4.23)

We find
∆φ2

M2
pl

<
gs

8

(
`s
L

)7−p
. (4.24)

For p < 8, the Planck mass grows faster with L than ∆φ does, so that in
the limit of theoretical control (L > `s and gs < 1), the field excursion is
sub-Planckian.

The constraint (4.24) is clearly weakest for a high-dimensional brane on
an anisotropic compactification with one large dimension. Consider the
spacetime R1,3 × S1/Z2 × X5, where X5 is a compact manifold of volume

V5 and the interval S1/Z2 has length πL. A D8-brane that fills R1,3 and

wraps X5 is then a point particle on S1/Z2. Going through the same logic
as above, one finds

∆φ2

M2
pl

<
gs

4π

L

`s
, (4.25)
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with no dependence on V5. The field range now becomes parametrically
large for L � `s. This result closely parallels the finding in §4.2.1 that
stretched string masses can become super-Planckian in compactifications
with one large dimension and five small dimensions.

4.3.2 Backreaction Constraints

Although the kinematic range (4.25) accessible to a probe D8-brane can
be very large, the low codimension of the D8-brane makes backreaction a
serious problem. In fact, backreaction by the D8-brane restricts the range
to be sub-Planckian.13

First, we note that the D8-brane charge and tension lead to tadpoles that
must be canceled. For a consistent compactification on R1,3 × S1/Z2 ×X5,
we introduce a pair of O8-planes that sit at each end of the interval and
wrap X5, and take the total number of D8-branes to be 16, initially situated
in two groups of eight on top of the orientifold planes.14 Now the inflaton
candidate is the position y of a single D8-brane, leaving the remaining D8-
branes at the endpoints of the interval. The backreaction problem is that
the moving D8-brane has charge and tension, and sources corrections to the
metric and dilaton once it is removed from the O8-plane: cf. (3.32). Because
of the low codimension of the source, it turns out that the dilaton diverges
before the D8-brane can be displaced by ∆φ = Mpl. Thus, consistently
incorporating backreaction prevents super-Planckian displacements.

A rather different example where the would-be inflaton induces correc-
tions that limit its own field range arises in N-flation [530], as detailed in
§5.4.1. The essential idea is that, as in assisted inflation [531], the inflaton
Φ is a collective excitation of N � 1 elementary fields φi. If the φi each
have kinematic range ∆φ, the total range is

∆Φ =
√
N∆φ . (4.26)

The backreaction problem in this scenario is that the Planck mass is renor-
malized by loops of the N light fields. Without detailed knowledge of the
ultraviolet completion, one can estimate this correction as

δM2
pl ∼

N

16π2 Λ2
UV , (4.27)

in terms of an ultraviolet cutoff ΛUV. Because the correction (4.27) has the
same scaling with N as the displacement (4.26), taking N large does not

13
We thank Juan Maldacena for discussions of this point.

14
This is known as a compactification of the type I

′
theory — see for example the discus-

sion in [282].
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parametrically increase the field range in a theory where the quantum cor-
rections take the form (4.27). Overcoming this problem requires replacing
the estimate (4.27) with a precise computation in an ultraviolet completion,
and then identifying circumstances in which the scaling differs from (4.27):
see §5.4.1.

4.3.3 Stability Constraints

Given a field space in which super-Planckian displacements are possible,
sustained large-field inflation requires a potential energy source that varies
slowly over this distance. A significant obstacle to constructing a gently
sloped potential in a string compactification is that the inflationary energy
itself backreacts on the geometry, and can disrupt the stabilization of the
moduli, as we now explain.

Many sources contribute to the moduli potential in a general string com-
pactification: p-form fluxes, localized D-branes and orientifold planes, and
perturbative and nonperturbative quantum effects are among the best-
studied examples. A single source generally induces an instability, as ex-
plained in §3.3.3, and the characteristic of solutions with stabilized moduli is
a delicate — and often precarious — balance among multiple contributions
to the potential energy, leading to a moduli potential Umod with a local
minimum. The inflationary potential energy itself is one such contribution,
but, crucially, this energy V necessarily diminishes as inflation proceeds,
with initial and final energies differing by Vi−Vf ≡ ∆V . In scenarios where
V � Umod and ∆V � Umod, the inflationary energy poses a limited risk
to stability. When instead V & Umod, the initial inflationary energy may
overcome the barriers in the moduli potential, driving runaway evolution.
Even worse, when ∆V & Umod the inflationary contribution changes so
dramatically during the course of inflation that instabilities are unavoid-
able unless the remaining sources for the moduli potential provide precisely
compensating energies with just the right time-dependence.

Destabilization is a particular difficulty for large-field inflation in string
theory, because the inflationary energy density V is necessarily large, of
order M4

GUT, and changes significantly during inflation.15 With only two
decades of energy between the inflationary energy and the Planck scale,
there is little room for a hierarchy of the form

V 1/4 � MKK � Ms � Mpl (4.28)

that would underpin theoretical control, as in (4.3). The Kaluza-Klein scale

MKK sets the maximal scale of the moduli potential, Umod . M4
KK, so the

15
While the precise change is model-dependent, the ratio of initial to final energies is
generally sizable: for example, Vi/Vf ∼ 10

2
in m

2
φ

2
chaotic inflation.
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first relation in (4.28), V � M4
KK, indicates the separation of scales that

could be compatible with V � Umod.
While destabilization that leads to runaway decompactification is ruinous,

more controllable backreaction of the inflationary energy on the moduli po-
tential can alter the character of an inflationary model without preventing
sustained inflation. In particular, given sufficiently high barriers around a
local minimum of the moduli potential, a time-dependent inflationary en-
ergy can induce evolution of the moduli within the basin of attraction of
the minimum. Incorporating the motion of the moduli can then change the
form of the inflaton potential, as in the rather general flattening mecha-
nism of [532].16 Thus, although shifts of the moduli do not necessarily end
inflation, their effects must be taken into account.

The twin issues of limited parametric separation and of backreaction by
the inflationary energy are common to all scenarios for large-field inflation in
compactifications of string theory: the problem is simply an outcome of the
high energy scale (1.38), combined with the existence of extra dimensions
with radii greater than the Planck length. Even so, these fundamental
problems take many different guises in explicit constructions, and can be
subtle to identify and extirpate. In Chapter 5, we will encounter these
challenges explicitly: e.g. backreaction by relativistic D-branes in the DBI
model (§5.3), and by induced charge on NS5-branes in axion monodromy
models (§5.4.2).

4.4 Multi-Field Dynamics

Moduli fields are ubiquitous in string compactifications, as we explained in
§3.2. After integrating out ultraviolet degrees of freedom, incorporating the
effects of fluxes, localized sources, and quantum corrections to the action,
one generally finds a complicated potential for the moduli. Although a
subset of the moduli may acquire large supersymmetric masses, m� H —
e.g. complex structure moduli in type IIB flux compactifications, cf. §3.3
— the generic outcome is that a significant number of moduli have masses
m . H, and are therefore dynamically active during inflation. The resulting
inflationary models are quite complex, and are just beginning to be explored
in detail.

The challenge of analyzing a model with multiple light moduli can be
divided into two principal tasks: i) determining the effective Lagrangian,
and ii) computing the observational signatures. We will address these issues
in turn.

16
See also [218, 533], where the slight shift of the overall volume induced by motion of a
D3-brane leads to important corrections to the D3-brane potential.
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4.4.1 Ensembles of Effective Theories

As explained in §2.1, the effective Lagrangian for N scalar fields Φ ≡
{φ1, . . . , φN} can be written in the form (2.14),

Leff [Φ] = Ll[Φ] +
∑
i

ci
Oi[Φ]

Λδi−4
, (4.29)

whereOi[Φ] stands for operators of dimension δi constructed from φ1, . . . , φN
and their derivatives,17 and ci are the associated Wilson coefficients.18 The
Wilson coefficients depend on unknown details of the compactification, and
computing them is impractical. Moreover, we lack any principle that could
select a single compactification, and are therefore obliged to marginalize over
the unconstrained details of the bulk. Said differently, scenarios for inflation
in flux compactifications of string theory lead not to one fully specified La-
grangian, but to an ensemble of possible inflationary Lagrangians, each with
the same operator content {Oi} but with different sets of associated Wil-
son coefficients {ci}. Fine-tuning the parameters of a model — implicitly,
by adjusting quantized fluxes and other integer data — ultimately involves
selecting an appropriate Lagrangian from the ensemble.

How can anything be learned if the Wilson coefficients are unknown? One
strategy is to take the ci to be elements of some statistical distribution Ω,
and then determine only the statistical properties of the ensemble of effective
Lagrangians. A natural concern is that the conclusions might depend on Ω,
which, just like the values of the individual ci, is usually not computable.
Fortunately, in effective theories with many fields — and therefore a large
number of operators with19 δ . 6 — the potential is a sum of many terms,
with the consequence that central limit behavior can wash out most of the
dependence on the shape of Ω. Universality therefore restores some degree of
predictivity. Concretely, one can approximate Ω by a Gaussian distribution
with zero mean and standard deviation20 σ, even if the true distribution of
the individual Wilson coefficients ci is highly non-Gaussian.

In this approach, inflation can arise from accidental cancellations among
two or more terms in the potential. A primary goal for a statistical analysis
is then to determine how frequently inflation occurs, and when it does, what
the characteristic properties of the evolution are.

17
Curvature invariants are also allowed in principle, but can usually be neglected during
an inflationary phase with H �Mpl.

18
Symmetries of the high-scale theory may forbid certain operators, or suppress different
Wilson coefficients to varying degrees, as detailed in §2.1. Incorporating these effects in
the ensemble is straightforward, cf. e.g. [42,240,534].

19
See §2.3.2 for an explanation of the cutoff value δ ∼ 6 in small-field inflation.

20
The standard deviation σ controls the rms size of non-renormalizable contributions to
the potential, and is therefore physical; one can estimate σ by the general logic of §2.1.



4.4 Multi-Field Dynamics 175

Although numerical experiments in the particular example of warped D-
brane inflation (see §5.1) give strong evidence that six fields can be large
enough for universality to take hold [240,535], much remains to be learned
about the statistics of general multi-field models — see [255, 488, 536–542]
for related work.

4.4.2 Multi-Field Perturbations

Extracting the cosmological signatures of an effective theory with multiple
light fields is challenging. We will briefly describe the qualitative problems
(and opportunities), deferring details to Appendix C.

Super-horizon evolution.—The essential difference between a model with one
light field and a model with two or more light fields is that in the former
case there is only one clock, so that the evolution of the perturbations is
captured by the Goldstone action (1.16) for π. The resulting curvature
perturbations, R = −Hπ, are purely adiabatic, and are conserved outside
the horizon. In multi-field models, the vevs of additional fields ψ provide
additional clocks, whose fluctuations correspond to entropy perturbations.

Entropy fluctuations can evolve outside the horizon, and also couple to
the curvature perturbations in such a way as to permit the latter to evolve
outside the horizon, so that the late-time curvature perturbation can be a
complicated function of all the fluctuations at horizon crossing,

R = f(π?, ψ?) . (4.30)

In some cases, the entropy perturbations eventually decay and the evolution
reaches an adiabatic limit, where the curvature perturbation can again be
expressed asR = −Hπ. After that time, the superhorizon curvature pertur-
bations are conserved. If instead reheating occurs before an adiabatic limit
is reached, the late-time curvature perturbations are extremely sensitive to
the details of reheating, leading to a loss of predictivity.

Single-field slow-roll models automatically predict curvature perturba-
tions that are adiabatic, approximately scale-invariant, and approximately
Gaussian, in excellent agreement with observations. None of these proper-
ties is automatic in a general multi-field model. For mψ ∼ H, the entropy
fluctuations have a strongly scale-dependent spectrum. If these fluctua-
tions give the dominant contribution in (4.30), this can destroy the scale-
invariance of the spectrum of curvature perturbations. Scale-invariance can
be preserved, however, if the couplings of the inflaton to the additional fields
preserve the approximate shift symmetry of the inflaton [239,490].

Alternative sources for curvature perturbations.— Models with multiple light
fields offer alternative mechanisms for generating the observed density per-
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turbations, including modulated reheating [170–172, 256] and the curvaton
scenario [131,132,173,543].

In modulated reheating, superhorizon fluctuations in one or more light
spectator fields ψ modulate the end of inflation, or the decay rate of the
inflationary energy density. In other words, if the decay rate Γ is a function
of the fields, Γ = Γ(ψ), then the decay rate inherits the spatial variations
of the ψ fields. This converts fluctuations of ψ to density fluctuations in
the post-inflationary universe. The observed curvature perturbations can
be non-Gaussian if the function Γ(ψ) is non-linear.

In the curvaton scenario, a light spectator field ψ, the ‘curvaton’, survives
until after reheating. Once the Hubble rate drops below the mass mψ, the
curvaton begins to oscillate, evolving as non-relativistic matter. The energy
density associated with the curvaton therefore redshifts more slowly than the
post-inflationary radiation background, and eventually the curvaton makes
a significant contribution to the total energy density of the universe. When
ψ ultimately decays, its superhorizon fluctuations are imprinted into density
fluctuations in the visible sector. The fluctuations may be non-Gaussian if
the potential V (ψ) is anharmonic and/or if the decay rate Γ(ψ) is non-linear.

4.5 Reheating

Any complete model of inflation must explain how the energy stored in the
inflaton eventually reaches the visible sector and initiates the hot Big Bang.
There are two basic requirements for the process of reheating: Standard
Model degrees of freedom must be heated to a temperature sufficient for
baryogenesis, and the cosmic history must not be spoiled by overproduction
of relic particles in other sectors. The rich structure of inflationary models
in string theory leads to significant challenges for successful reheating, as
well as a range of novel phenomena, as we now review.21

4.5.1 Heating the Visible Sector

The universal feature of string constructions that complicates reheating is
the existence of fields beyond the inflaton, the Standard Model fields, and
the four-dimensional graviton. Light, long-lived hidden-sector fields, such
as moduli, have long been known to threaten the successes of the standard
thermal history. Moduli decays occurring after baryogenesis can dilute the
baryon asymmetry, while decays occurring during or after Big Bang nucle-
osynthesis can photodissociate the light elements, ruining the prediction of
their abundances. On the other hand, cosmologically long-lived relic parti-
cles can yield too much dark matter or even overclose the universe. String

21
See [544] for a review of reheating in field theory.
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theory provides a plethora of candidates for dangerous relics, including com-
pactification moduli, Kaluza-Klein modes, excited strings, axions, as well
as hidden sector matter and radiation.22

In conventional field-theoretic studies of reheating, as well as of the related
nonperturbative process known as preheating, a primary question is the
efficiency with which the inflaton transfers its energy into other degrees
of freedom. The difficulty in many string-theoretic constructions is rather
different [545]: the inflaton readily liberates its energy into hidden sector
fields, and the question is whether a sufficiently large fraction ends up in the
Standard Model rather than in harmful relics. The challenge of reheating
after inflation in string theory can be compared to that of keeping a house
warm in a cold winter: a furnace alone is insufficient, and one must also
have insulation to direct a large fraction of the energy output to the desired
region.

Reheating crucially involves the Standard Model, so to discuss reheating
in a string construction one cannot remain agnostic about how the visible
sector is realized. In D-brane models in type II and type I string theory,
as well as in the strongly-coupled heterotic string, the visible sector is gen-
erally localized on one or more branes (or at the intersections of branes).
When the inflationary energy is also localized on a brane, one can take a
modular approach, in which the inflationary sector and the visible sector
constructed separately, in local geometries approximating regions of some
unspecified compactification, and their interactions are then computed or
parameterized. This strategy has been fruitful in extensive explorations
[545–556] in the context of warped D-brane inflation[41], as we review in
§5.1. Reheating in other models involving D-branes has been studied in
e.g. [557–559].

In models where the inflaton is a closed string modulus (see §5.5), new
challenges arise, as described in [560, 561]. Investigations in models where
the inflaton is a closed string modulus include [562–566].

The phenomenology of reheating in string theory is quite rich. A vio-
lent end to inflation, e.g. through brane-antibrane annihilation, provides
a setting in which fields that can otherwise be omitted from the effective
theory play a role: strong violations of the adiabatic approximation allow
very massive fields to contribute to the dynamics, as further discussed in
§5.6. Furthermore, the existence of multiple light fields can lead to ‘mod-
ulated reheating’, in which the dominant contribution to the temperature
anisotropies arises from spatial variations in the couplings between the in-
flaton and the visible sector, or to the conversion of entropic perturbations
to curvature perturbations: investigations of these effects in string theory

22
Dark radiation, corresponding to relativistic species in a hidden sector, can have dis-
tinctive signatures: see e.g. [303–305,307].
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include [563,566] and [255,535,552], respectively. Finally, condensation of a
complex tachyon produces a network of topological defects, cosmic strings,
which have striking signatures, as we now explain.

4.5.2 Cosmic Strings

Symmetry-breaking phase transitions can lead to the formation of topo-
logical defects classified by the topology of the vacuum manifold. Cosmo-
logically important examples include zero-dimensional defects, such as mag-
netic monopoles; one-dimensional defects, known as cosmic strings; and two-
dimensional defects, i.e. domain walls. Magnetic monopoles from a GUT
phase transition could overclose the universe [567], and one of the early
successes of inflation was explaining how monopoles could be diluted [18].
Domain walls likewise come to dominate the energy density of the universe,
and are ruled out. Cosmic string networks, on the other hand, evolve so
that their density tracks the density of the dominant component (radiation
or matter): this is called scaling. As a result, cosmic strings are constrained,
but not excluded, and they produce spectacular, unmistakable signatures
that could be detected in coming experiments. Moreover, cosmic strings
arise very naturally in constructions of inflation in string theory. Here, we
will review key facts about cosmic strings, referring the reader to the text-
book [568] and the reviews [569–572] for many more details. We will begin
with generalities that apply to all cosmic strings, and then describe the spe-
cial aspects of the cosmic superstrings that arise in string theory, following
[570].

Cosmic strings arise whenever a U(1) symmetry is broken: the winding
number of the U(1) around the core of the string is the topological conserved
quantity responsible for stability. The minimum cosmic string density pro-
duced in a cosmological phase transition in which a U(1) symmetry is broken
is set by the Kibble mechanism [573]: causality prevents the phase of the
complex scalar order parameter from being correlated on super-horizon dis-
tances, so that at least one horizon-spanning string defect is produced per
horizon volume.

Cosmic string evolution involves: stretching along with the expansion of
the universe; intersection and reconnection, including loop formation; and
energy loss through emission of gravitational radiation. Reconnection of a
string after intersection is known as intercommutation, and the probability
P of intercommutation is a key phenomenological parameter. The self-
intersection and intercommutation of a long string leads to the formation of
a loop, which breaks off of the long string and gradually decays by emitting
gravitational waves. Thus, the network of strings involves a number of long,
horizon-crossing strings, as well as populations of loops in different stages
of decay.
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The signatures of cosmic strings are distinctive. A string produces a con-
ical defect geometry: denoting the string tension by µ, the deficit angle is
8πGµ, where G is Newton’s constant. The associated gravitational lensing
of background objects can lead to double images.23 Moreover, a moving cos-
mic string generates a temperature contrast in the CMB [578]—this is known
as the Kaiser-Stebbins effect (for related signatures in 21 cm radiation, see
[579]). Stochastic contributions to the CMB anisotropy are also important:
cosmic strings with high tension could produce density perturbations suffi-
cient to seed large-scale structure. However, the corresponding anisotropies
lack phase coherence, and so do not manifest acoustic peaks. Thus, cosmic
strings can at most contribute a subdominant component [580–584] of the
primordial perturbations. The continual emission of gravitational radiation
produces a stochastic background of gravitational waves, which could be de-
tected directly by LIGO or Virgo [585], or indirectly by inducing stochastic
fluctuations in the arrival of pulsar signals (see e.g. [586]). Finally, smooth
loops of string develop one or more sharp cusps in each period of oscillation.
Near the cusp, the string is extremely relativistic, and emits an intense burst
of gravitational waves in a cone pattern [587–589]. A cusp event directed
toward a gravitational wave detector such as LIGO could allow detection of
strings with comparatively low tension.24 Bursts can also occur if strings
break following the formation of monopole-antimonopole pairs [591,592].

For many years, the study of cosmic strings focused exclusively on strings
arising in quantum field theory — Nielsen-Olesen strings [593], also called
vortex lines — rather than on the fundamental strings of superstring the-
ory. Witten had observed in [594] that in perturbative constructions, the
tension of fundamental strings was large enough so that cosmic F-strings
were excluded by the isotropy of the CMB.25 Furthermore, he showed that
heterotic cosmic strings form the boundary for axion domain walls, whose
tension causes the strings to contract rapidly and disappear.

A renewed study of cosmic superstrings was initiated by Tye and collab-
orators in [595–597]. The essential new insight was that if the Standard
Model arises on D-branes, the visible sector couplings and the string ten-
sion in Planck units can be adjusted independently, by changing the string

23
Most searches for cosmic string lensing involve extragalactic objects (cf. e.g. [574]), but
microlensing of stars within the galaxy [575] (rather than of distant quasars [576]) could
probe very low tensions, particularly if the string loops cluster substantially [577].

24
Cosmic strings of even lower tension might be detectable if they passed through the
Earth [590], causing devastating earthquakes while simultaneously providing a window
on Planck-scale physics.

25
The isotropy of the CMB gives an upper limit on the inflationary scale, and hence
on the tension of cosmic strings that could be produced in a phase transition after
inflation. Moreover, high-tension strings can be excluded by searches for lensing and
for the Kaiser-Stebbins effect.
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coupling gs and the compactification volume. Thus, the string tension can
be low enough to satisfy observational constraints. (A similar argument
applies in the strongly coupled heterotic string [598].) Moreover, in infla-
tionary scenarios involving moving D-branes, reheating typically proceeds
by the condensation of a complex tachyon [599], leading to cosmic string
defects via the Kibble mechanism.

Cosmic superstrings have several important characteristics that distin-
guish them from strings arising as topological defects in perturbative quan-
tum field theories [600–602]. In type IIB string theory, there are two ele-
mentary one-dimensional objects: the fundamental string, or ‘F-string’, and
the D1-brane, or ‘D-string’. These strings can form bound states involving
p F-strings and q D-strings, if p and q are relatively prime [603, 604]. The
resulting (p, q) string has tension [604]

µp,q =
1

2πα′

√
(p− C0 q)

2 + e−2Φq2 . (4.31)

Networks of (p, q) strings yield scaling solutions [605], just like simpler cos-
mic strings. The intercommutation probabilities of cosmic F-strings and
D-strings can be much smaller than those for field theory cosmic strings,
as carefully examined in [602]. In particular, a colliding pair of strings can
miss each other in the compact dimensions [597, 600, 602], and the string
coupling gs also suppresses the intercommutation probability.

Perhaps the most compelling setting for cosmic superstring production is
warped D-brane inflation [41], in which annihilation of a D3-brane/anti-D3-
brane pair via condensation of a complex tachyon automatically produces
a collection of cosmic strings, and warping provides a natural parametric
mechanism through which the tension can be small enough to obey obser-
vational bounds. The stability and tension of these strings depend on the
the details of the model [601, 606, 607], and we defer further discussion to
§5.1.6.

One might hope that cosmic superstrings can be distinguished from strings
arising as topological defects in field theory — see [570] for a thorough dis-
cussion of this point. This hope is not entirely unjustified: cosmic super-
strings with P < 1 can be told apart from strings in a perturbative field
theory, which have P ≈ 1. Furthermore, the spectrum of tensions (4.31)
appears distinctive. On the other hand, a field theory with SL(2,Z) invari-
ance would reproduce (4.31). More generally, the duality between string
theory and field theory makes it difficult, even in principle, to distinguish
F-strings, D-strings, or (p, q) strings of string theory from corresponding de-
fects in strongly-coupled field theories [570]: for example, the (p, q) strings
produced in warped D-brane inflation can also be viewed as strings of the
dual gauge theory. Even so, the detection of a network of cosmic (p, q)
strings would be an unsurpassed opportunity to probe high-scale physics!
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4.6 Inflation in String Theory: a Checklist

An ideal model of the early universe in quantum gravity would begin from
fundamental topological data, arrive at an effective theory via an explicit
and well-controlled computation, and make definitive, distinctive predic-
tions that are consistent with current data but could be falsified or verified
with future experiments. There is little prospect of deriving such a model
in the near future. A more realistic hope is to specify some integer data
(for example, the topology of a Calabi-Yau orientifold) and explicitly solve
some equations of motion (e.g. those of the Kähler moduli) while appealing
to the existence of generic solutions for the remaining equations (e.g. the
complex structure moduli and dilaton equations of motion given a choice of
quantized three-form flux).

Let us summarize the essential requirements for a successful model of
inflation derived in string theory:

. The inflaton action should be computed in an expansion around a
metastable de Sitter vacuum, with all approximations under good con-
trol.

. For every physical effect contributing to the moduli potential, one
must know the corresponding correction to the inflaton potential.

. All assertions about ultraviolet-sensitive quantities must be justified
through controlled calculations.

. If a dimensionless parameter needs to be large or small in order for
inflation to succeed, one should know whether the required value can
be achieved in a consistent compactification.

. For each field with a mass m� H, the small mass should be explained
either by fine-tuning of explicitly known, fully specified operators in
the effective theory, or by a symmetry that can be shown to survive
in string theory.

. All quantum-mechanically active fields, i.e. fields with m < 3
2H, must

be included in the phenomenology.

. The model should contain a mechanism to produce density fluctua-
tions that are nearly scale-invariant, Gaussian and adiabatic.

. The inflationary phase must end, and then transition to successful
reheating of the Standard Model, without overproduction of relics.

Distinctive observational signatures, while obviously desirable, are ultimately
optional.
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In the next chapter, we will review some of the leading examples of string
inflation. We will see that no model is completely successful on all points
of the above checklist.



5
Examples of String Inflation

In this chapter, we will survey a number of representative examples of infla-
tion in string theory. We will try to be reasonably complete in our discussion
of inflationary mechanisms, within the limitations of space and expertise,
but we will not be able to present all the results in the subject. Our focus
will be on extracting a few important lessons from the collective works of
many researchers.

Some of the scenarios that we will discuss make predictions that appear
incompatible with the observational bounds described in Chapter 1. At the
time of writing, the predictions of most models of inflation in string theory
are works in progress, because the inflaton Lagrangian depends on details
of the compactification for which we currently have only zeroth-order ap-
proximations. Indeed, we will argue below that theoretical uncertainties
in determining the scalar power spectrum (and its tilt ns − 1) are system-
atically understated in most of the literature on inflation in string theory.
On the other hand, because the tensor amplitude (or the tensor-to-scalar
ratio r) is linked to a purely kinematic quantity, the length of the inflaton
trajectory, one can sometimes determine with high confidence whether r
is large or small in a given model. Then, in view of the detection of pri-
mordial gravitational waves reported by BICEP2 [134], small-field models
may be rejected as candidates for the history of our universe. Even so, we
provide details of a number of small-field scenarios in this chapter, because
they serve as comparatively simple building blocks from which more real-
istic models can be developed. This is in the same spirit as the study of
string compactifications with unbroken supersymmetry, which certainly do
not describe our universe, but facilitate the construction of more complete
models.

The individual sections are largely self-contained and can be read in any
order. In §5.1, we consider the motion of a D3-brane [608] in a warped
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throat region [41] as a source for inflation. We present a number of in-
terrelated perspectives on the potential energy of a D3-brane in a warped
flux compactification, and then discuss the challenge of achieving slow-roll
behavior in this setup. In §5.2, we study a few examples of brane infla-
tion in unwarped compactifications, including D3/D7 inflation [609–613],
fluxbrane inflation [614, 615] and M5-brane inflation [616, 617]. In §5.3, we
discuss relativistic brane motion as a source of non-slow-roll inflation. We
describe DBI inflation [38] as an effective field theory and highlight micro-
physical constraints imposed by compactification. In §5.4, we argue that
string axions are promising inflaton candidates. We give detailed analyses
of N-flation [530] and axion monodromy inflation [34]. In §5.5, we describe
models in which the inflaton is a Kähler modulus (or the associated axion),
including racetrack inflation [618, 619] and inflationary scenarios in large
volume compactifications [43, 620, 621]. Finally, in §5.6, we look at dissi-
pative effects as a source of inflation and critically assess the prospects for
dissipative inflation in string compactifications [622–625].

5.1 Inflating with Warped Branes

The positions of localized sources in a string compactification correspond to
scalar fields in the four-dimensional effective theory. In [608], Dvali and Tye
proposed that the separation between two branes could serve as an inflaton
candidate. This idea was made more precise in [515, 626], where the two
branes were taken to be a D3-brane and an anti-D3-brane, respectively.
These objects attract each other gravitationally, and also through the R-R
four-form potential C4, under which they carry opposite charges; moreover,
at small separations a tachyon appears in the spectrum, and the brane and
antibrane annihilate, providing a natural end to inflation. (See [627] for a
proposal in which the annihilation itself drives inflation.)

In [515, 626], the Coulomb interaction (4.8) of the brane-antibrane pair
was computed and identified with the inflaton potential. The Coulomb
force diminishes with increasing distance, suggesting that for sufficiently
large separations, the Coulomb interaction could drive slow-roll inflation.
However, Burgess et al. [515] demonstrated that the branes would have to
be separated by a distance that is larger than the size of the compact space
to give a potential that can source slow-roll inflation (see §4.2).

The character of the problem changed when Kachru et al. (KKLMMT) [41]
made two pivotal observations about D-brane inflation. First, they estab-
lished that warping of the extra dimensions suppresses the Coulomb force
between the brane-antibrane pair, flattening the potential even for modest
brane separations. However, building on advances in moduli stabilization
(cf. §3.3.3), they also showed that the inflaton potential for a D-brane sys-
tem is not given by the Coulomb potential alone: the leading contributions
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to the curvature of the inflaton potential come from the physical effects that
stabilize the moduli. This was the first of many manifestations of the eta
problem in the context of stabilized string compactifications. The task is
therefore to specify the moduli-stabilizing effects and derive the complete
inflaton potential. We pick up the story at this stage.1

5.1.1 D3-branes and Warped Geometries

The scenario of [41] operates in the context of flux compactifications of type
IIB string theory (see §3.3.3), which can naturally contain warped throat
regions. In this section, we will introduce some geometrical facts about
these spacetimes. We will first approximate the warped region by five-
dimensional anti-de Sitter space, and then upgrade to the warped deformed
conifold geometry [426,628]. In §5.1.2, we will derive the D3-brane potential
in these warped backgrounds.

D3-branes in Anti-de Sitter Space

Consider a stack of N D3-branes in ten-dimensional Minkowski space. The
D3-branes source a non-trivial background for the massless fields of type
IIB supergravity. In string frame, the solution for the metric is

ds2 = e2A(r)ηµνdxµdxν + e−2A(r)
(

dr2 + r2dΩ2
S5

)
, (5.1)

where dΩ2
S5

is the metric on a five-sphere and e4A(r) is a harmonic function
of the transverse coordinates,

e−4A(r) = 1 +
L4

r4 , with
L4

(α′)2 = 4πgsN . (5.2)

This is a simple example of a warped solution, as in (3.36). The solution

has constant dilaton2 and a non-trivial four-form potential

α(r) ≡ (C4)
tx
i = e4A(r) . (5.3)

Eq. (5.3) corresponds to the self-dual five-form flux F̃5 = (1 + ?10)dC4.
Recalling the line element of five-dimensional anti-de Sitter space, AdS5, in

1
This section is based mostly on refs. [41,42,217].

2
Recall from §3.1.2 that D3-branes decouple from fluctuations of the dilaton. Moreover,
their backreaction on the metric of an ISD compactification (cf. §3.3.1) is completely
captured by an overall warp factor, as in (5.1). D3-branes are therefore considerably
simpler to treat than branes of other dimensionality.
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Poincaré coordinates,

ds2
AdS5

=
L2

r2 dr2 +
r2

L2 ηµνdxµdxν , (5.4)

we see that (5.1) reduces to AdS5 × S
5 for r � L.

mobile 
D3-brane

Fig. 5.1. Brane inflation in AdS5. A mobile D3-brane fills four-dimensional space-
time and is pointlike in the extra dimension.

We now consider the dynamics of a mobile D3-brane in the AdS5 × S
5

background (see fig. 5.1). The action for a D3-brane in Einstein frame is3

SD3 = −T3

∫
d4σ

√
−det(GEab) + µ3

∫
C4 . (5.5)

To preserve four-dimensional Poincaré symmetry, the D3-brane is spacetime-
filling, i.e. its worldvolume coordinates σa coincide with the spacetime co-
ordinates xµ. The brane is pointlike in the extra dimensions. We denote
its radial location in anti-de Sitter space by r. Since the angular isometries
of S5 are unbroken, we can (for now) assume that the D3-brane has a fixed
location along the angular coordinates. Evaluating the action (5.5) in the
background (5.1) gives the following Lagrangian for the brane position:

L = −T3e
4A(r)

√
1 + e−4A(r)gµν∂µr∂νr + T3α(r) . (5.6)

3
We have taken the gauge field strength F2 on the D3-brane worldvolume to vanish,
which corresponds to considering a D3-brane without dissolved D1-brane charge.
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For small velocities, ṙ2 � e4A(r), we can expand the square root to get

L ≈ −1

2
(∂φ)2 − T3

(
e4A(φ) − α(φ)

)
, (5.7)

where we have defined the canonically-normalized field φ2 ≡ T3r
2. From

(5.3), we see that a single D3-brane experiences no force in the anti-de
Sitter background: electrostatic repulsion from the four-form background
exactly cancels the gravitational attraction.

D3-branes on the Conifold

An anti-de Sitter background is not a realistic setting for D-brane inflation.
First of all, the spacetime is not compact, but ranges from r = 0 to r =∞.
Furthermore, the metric becomes singular, with infinite redshift, at r = 0.
A more promising scenario for D-brane inflation4 involves a D3-brane in
a finite warped throat region of a flux compactification [41]. We will now
review a few geometric prerequisites for a discussion of this model.

Singular conifold.—The singular conifold is a six-dimensional Calabi-Yau
cone X6 that can be presented as the locus in C4 defined by

4∑
A=1

z2
A = 0 , (5.8)

where A ∈ {1, 2, 3, 4}. This describes a cone over a base Y5, which is topolog-

ically — but not metrically — equivalent to S2×S3. To see this, note that if
zA is a solution to (5.8) then so is λzA, with λ ∈ C. Writing zA = xA+ iyA,
the complex equation (5.8) may be recast as three real equations,

x · x =
1

2
ρ2 , y · y =

1

2
ρ2 , x · y = 0 . (5.9)

The first equation defines a three-sphere S3 with radius ρ/
√

2, while the last

two equations describe a two-sphere S2 fibered over the S3. More precisely,
the base Y5 of the cone is the Einstein manifold5 T 1,1, which is the coset
space

T 1,1 = [SU(2)× SU(2)]/U(1) , (5.10)

4
Mirage cosmology [629] is an alternative to inflation in which the spacetime metric is
the induced metric on a D-brane moving through a background supergravity solution.
Discussions of mirage cosmologies involving D3-branes in warped throat regions include
[630–632].

5
An Einstein manifold satisfies Rab ∝ gab.
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with isometry group SU(2)× SU(2)× U(1). The metric on T 1,1 is

dΩ2
T

1,1 ≡
1

9

(
dψ +

2∑
i=1

cos θidφi

)2

+
1

6

2∑
i=1

(
dθ2

i + sin2 θidφ
2
i

)
, (5.11)

where θi ∈ [0, π], φi ∈ [0, 2π] and ψ ∈ [0, 4π]. The metric on the conifold
can then be written as

ds2 = dr2 + r2dΩ2
T

1,1 , (5.12)

where r ≡
√

3/2 ρ2/3. To express (5.12) as a manifestly Kähler metric, we
introduce three complex coordinates zα, α ∈ {1, 2, 3}. The Ricci-flat Kähler
metric on the singular conifold,

ds2 = kαβ̄ dzαdzβ , (5.13)

then follows from the Kähler potential [633]

k(zα, z̄α) =
3

2

(
4∑

A=1

|zA|2
)2/3

, (5.14)

via kαβ̄ = ∂α∂β̄k.

Deformed conifold.—In the singular conifold, the base manifold T 1,1 shrinks
to zero size at zA = 0, and the metric on the cone has a curvature singularity.
To remove the singularity, we consider a small modification of the embedding
condition (5.8),

4∑
A=1

z2
A = ε2 . (5.15)

This defines the deformed conifold. The deformation parameter ε can be
made real by an appropriate phase rotation. Eq. (5.15) can then be written
as

x · x− y · y = ε2 , (5.16)

x · x+ y · y = ρ2 . (5.17)

At the tip of the cone, ρ2 = ε2, the S3 remains finite (x · x = ε2), while

the S2 shrinks to zero size (y · y = 0). Sufficiently far from the tip, the
right-hand side of (5.15) can be ignored and the metric of the deformed
conifold is well-approximated by that of the singular conifold. Most models
of D-brane inflation operate in this regime.
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D3-branes on the conifold.—Now consider placing a stack of N D3-branes
at the singular tip, zA = 0, of the singular conifold. As before, the branes
backreact on the geometry, producing the warped ten-dimensional line ele-
ment [628]

ds2 = e2A(r)ηµνdxµdxν + e−2A(r)
(

dr2 + r2dΩ2
T

1,1

)
, (5.18)

where

e−4A(r) = 1 +
L4

r4 with L4 ≡ 27π

4
gsN(α′)2 . (5.19)

For r � L, the solution is AdS5 × T
1,1 [634].

Warped deformed conifold.—Finally, we describe the warped deformed coni-
fold, or Klebanov-Strassler (KS) geometry [426]. This is a noncompact,
smooth solution of type IIB supergravity in which warping is supported by
background fluxes. The KS solution can be obtained by considering the
backreaction of N D3-branes at the tip of the singular conifold, together
with the backreaction of M D5-branes wrapping the collapsed S2 at the
tip, but we will find it useful to give an alternative presentation in which all
D-branes are replaced by fluxes carrying the associated charges (cf. [635]).

The geometric substrate for the solution is the deformed conifold (5.15),

which contains two independent three-cycles: the S3 at the tip, known as
the A-cycle, and the Poincaré dual three-cycle, known as the B-cycle. The
background three-form fluxes of the KS solution are quantized

1

(2π)2α′

∫
A
F3 = M and

1

(2π)2α′

∫
B
H3 = K , (5.20)

where M � 1 and K � 1 are integers. These fluxes give rise to non-trivial
warping. The line element for the KS solution takes the form

ds2 = e2A(r)ηµνdxµdxν + e−2A(r)ds̃2 , (5.21)

where ds̃2 is the metric of the deformed conifold defined by (5.15). As in the
deformed conifold, the infrared geometry is smooth: the A-cycle is finite in

size, with radius rA =
√
gsMα′, so the supergravity approximation remains

valid near the tip provided that gsM � 1. For our purposes, it will suffice
to cut off the radial coordinate at a minimum value rIR, and work at r � rIR

(but see [426] for a precise description of the tip geometry). Far from the
tip, the line element is well-approximated by (5.8), with

e−4A(r) =
L4

r4

(
1 +

3gsM

8πK
+

3gsM

2πK
ln

r

rUV

)
, (5.22)
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where

L4 ≡ 27π

4
gsN(α′)2 , N ≡MK . (5.23)

Here, rUV is an ultraviolet cutoff, discussed further below. The logarithmic
running of the warp factor corresponds to that seen in the singular warped

conifold solution of [628]. The warp factor eA(r) in (5.21) reaches a minimal

value eA(rIR) ≡ eAIR at the tip, and is given in terms of the flux quanta by
[295]

eAIR = exp

(
− 2πK

3gsM

)
. (5.24)

The exponential hierarchy is a consequence of the logarithmic running in
(5.22). The KS solution given in (5.21) and (5.22) is the canonical example
of a warped throat geometry, and provides the basis for the most explicit
studies of warped D-brane inflation.

Before proceeding, we should emphasize that the ten-dimensional KS so-
lution, involving a noncompact warped deformed conifold, does not give rise
to dynamical gravity upon dimensional reduction to four dimensions: the
compactification volume, and hence the four-dimensional Planck mass, are
infinite. For model-building purposes, one considers instead a flux compact-
ification containing a finite warped throat region that is well-approximated
by a finite portion of the KS solution, from the tip r = rIR to some ul-
traviolet cutoff r = rUV. Beyond this, the throat attaches to a bulk space,
corresponding to the remainder of the compactification (see fig. 5.2). The
metric of the bulk is poorly characterized in general, but the influence of
the bulk supergravity solution on dynamics in the throat region can be pa-
rameterized very effectively. The validity of the finite throat approximation
was systematically investigated in [42] — see §5.1.2.

A Field Range Bound

The total compactification volume is the sum of the throat volume,

VT ≡
∫

dΩ2
T

1,1

∫ rUV

rIR

r5dr e−4A(r) = 2π4gsN(α′)2 r2
UV , (5.25)

and the volume VB of the bulk space. The Planck mass (3.47), M2
pl =

V/g2
sκ

2, is finite, with V ≡ VT +VB. Ignoring the bulk volume gives a lower
bound on the Planck mass,

M2
pl >

N

4

r2
UV

(2π3)gs(α
′)2 . (5.26)
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The amount of canonical field range available to a D3-brane in the throat
region (the region of controlled evolution) is bounded from above by

∆φ2 < T3r
2
UV =

r2
UV

(2π3)gs(α
′)2 . (5.27)

Combining (5.26) and (5.27), we arrive at the remarkably simple formula [243]

∆φ

Mpl
≤ 2√

N
. (5.28)

Since the validity of the supergravity approximation requires N � 1, this
result precludes super-Planckian field ranges in models of inflation based
on D3-branes in warped throats. The geometric bound (5.28) implies that
warped D3-brane inflation does not allow for observable gravitational waves.
Note that this argument is purely kinematic, and does not involve the D3-
brane potential.

5.1.2 The D3-brane Potential

Eq. (5.7) gives the potential for a D3-brane in the warped backgrounds (5.1),
(5.8), and (5.21) as

V (φ) = T3

(
e4A(φ) − α(φ)

)
. (5.29)

This vanishes for compactifications with imaginary self-dual (ISD) fluxes
[295]. However, generic string compactifications contain various sources
that break the ISD condition and generate a non-trivial potential for the
D3-brane.

Coulomb potential.—In [41], an anti-D3-brane was added to the compacti-
fication, following [356,425]. The antibrane minimizes its energy in regions
of maximal warping, and is therefore stabilized at the tip of the conifold,
r = rIR. The anti-D3-brane perturbs the background supergravity solution,
and the D3-brane experiences a corresponding force. This is described by
the Coulomb potential [41, 428,442]

VC(φ) = D0

(
1− 27

64π2

D0

φ4

)
, (5.30)

where the scale of the potential, D0 � 2T3, is set by the warped tension of
the antibrane

D0 ≡ 2T3e
4A(rIR) . (5.31)

The potential (5.30) is extremely flat, even for small values of the field
φ. If this were the end of the story, warped D-brane inflation would be a
strikingly natural scenario, but life is not so simple.
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Curvature coupling.—To source inflation, the system has to be coupled to
dynamical gravity. Besides the Einstein-Hilbert term, the four-dimensional
effective action contains a curvature coupling [41]

VR(φ) =
1

12
Rφ2 . (5.32)

In de Sitter space, the four-dimensional spacetime curvature R equals 12H2.
During inflation, the coupling in (5.32) therefore induces a dangerous mass
term for the inflaton

V (φ) = VC(φ) + VR(φ) + · · ·

≈ V0 +H2 φ2 + · · · ⇒ η ≈ 2

3
+ · · · . (5.33)

This is an incarnation of the eta problem. The flatness of the Coulomb po-
tential has been completely destroyed by the curvature coupling. However,
this is still not the final answer [41]. In all stabilized string compactifica-
tions there are additional contributions to the D3-brane action, and these
must be included in order to determine whether inflation can occur.

Beyond the probe approximation.—To compute these corrections we have to
go beyond the probe approximation and allow the D3-brane to backreact
on the geometry. In fact, the curvature coupling (5.32) can be interpreted
as such a backreaction effect [42]. The presence of the D3-brane perturbs
the overall volume of the compactification, V. Moreover, this perturbation
will depend on the position of the brane. As the brane moves through the
warped region, its effect on the volume varies. The compactification volume
therefore develops a dependence on the brane position, V = V(φ). As a
result, a potential that is flat in string frame need not stay flat in Einstein
frame, since the transformation between the frames involves a factor of the
volume. The eta problem in (5.33) arises from precisely this effect: see
§4.2.3.

However, it is easy to see that there will be further corrections. In §3.3.3,
we explained that Kähler moduli stabilization in the KKLT scenario in-
volves nonperturbative effects on D7-branes (or from Euclidean D3-branes)
wrapping certain four-cycles. The volumes V4 of these four-cycles will also
depend on the D3-brane position, V4(φ). As the D3-brane moves, the four-
cycle volume adjusts. This changes the gauge coupling on the wrapped
D7-branes (or the Euclidean D3-brane action) and hence the strength of
the nonperturbative effects. This leads to important corrections to the D3-
brane potential.

In the following, we will describe the complete D3-brane potential from
two different perspectives: first we will derive the potential in four-dimen-
sional supergravity, and then we will provide an equivalent treatment in
ten-dimensional supergravity.
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4D Perspective

The four-dimensional effective theory can be described by the F-term po-
tential of N = 1 supergravity,

VF = eK
[
KIJ̄DIWDJW − 3|W |2

]
, (5.34)

where I, J runs over all moduli. We make the standard KKLT assumption
that the complex structure moduli and the dilaton are stabilized at suffi-
ciently high energies. The remaining moduli are then the Kähler moduli Ti
and the brane position moduli zα (α = 1, 2, 3). For simplicity of presenta-
tion, we restrict to compactifications with only a single Kähler modulus T ,
but all our considerations generalize to h1,1

+ > 1. We define ZI ≡ {T, zα}.
The tree-level Kähler potential is the logarithm of the compactification vol-
ume

K = −2 ln(V) , (5.35)

where V is an implicit function of the ZI . Corrections to (5.35) are im-
portant in many other contexts, cf. §5.5, but can be neglected in D3-brane
inflation.

Backreaction on the volume.—As mentioned above, a D3-brane with finite
energy density backreacts on the overall compactification volume, which
therefore depends on the brane position zα [218,320]:

V =
(
T + T̄ − γk(zα, z̄α)

)3/2
, (5.36)

where k(zα, z̄α) is the Kähler potential (5.14) and γ is a constant. In Ap-
pendix B of [218], the parameter γ was related to the stabilized value of the
Kähler modulus,

γ ≡ T3

6

(
T + T̄

)
IR
. (5.37)

Here, TIR ≡ T (rIR) stands for the value of the Kähler modulus when the D3-
brane is near the tip of the throat. In [218], it was shown that the minimum
of the potential for the Kähler modulus T shifts slightly as the D3-brane
moves, and the effect of this shift was further examined in [533].

F-term potential.—Combining (5.35) and (5.36), we find that the Kähler
potential is of the form postulated by DeWolfe and Giddings [320], cf. (3.99):

K(ZI , Z̄I) = −3 ln
[
T + T̄ − γk(zα, z̄α)

]
≡ −3 ln

[
U(ZI , Z̄I)

]
. (5.38)

The F-term potential for (5.205) combined with a general superpotential
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W (ZI) was determined in [218,636,637]

VF (T, zα) =
1

3U2

[(
T + T̄ + γ

(
kγk

γδkδ − k
))
|W,T |

2 − 3
(
WW,T + c.c.

)
+
(
kαδkδW,TW,α + c.c.

)
+
kαβ

γ
W,αW,β︸ ︷︷ ︸

∆VF

]
, (5.39)

where kα ≡ ∂αk and kαβ̄ ≡ ∂α∂β̄k. The label ∆VF has isolated terms that
arise exclusively from the dependence of the superpotential on the brane
position zα. The remainder is the standard KKLT F-term potential [356].

First consider the situation in which the superpotential does not depend
on the brane coordinate, W = W (T ). In this case, ∆VF = 0 and the
remaining terms in the square bracket in (5.39) depend only weakly on the
inflaton. The potential can therefore be written as

VF (r) ≈ V0

(1− 1
6φ

2)2 ≈ V0 +
1

3

V0

M2
pl

φ2 , (5.40)

where in the second equality we have made the dependence on the Planck
mass explicit. We see that the inflaton has a mass of order the Hubble scale,
H2 ≈ V0/(3M

2
pl). This is how the curvature coupling (5.32) arises in the

effective supergravity description.

warped throat

bulk CY

D3 D7

Fig. 5.2. Schematic of a finite warped throat containing D7-branes wrapping a
compact four-cycle. A portion of the four-cycle extends into the throat region.
Gaugino condensation on the D7-branes leads to a D3-brane potential.

Backreaction on D7-branes.—Gaugino condensation on a stack of Nc D7-
branes leads to

|∆W | ∝ exp
(
−2π

Nc
V4

)
, (5.41)
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where V4 is the ‘warped volume’ (3.107) wrapped by the D7-branes. Chang-
ing the position φ of a spacetime-filling D3-brane alters the warp factor
A(φ), and hence V4(φ), so that ∆W = ∆W (φ). To quantify this effect, one
computes the backreaction of the D3-brane on the four-cycle wrapped by
the D7-branes [335]. For a four-cycle defined by a holomorphic embedding

f(zα) = 0 , (5.42)

the result can be written as

W (T, zα) = W0 +A(zα)e−aT , a ≡ 2π

Nc
, (5.43)

where the function A(zα) is defined in terms of the embedding (5.42),

A(zα) = A0

(
f(zα)

f(0)

)1/Nc

. (5.44)
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Fig. 5.3. Example scan through the parameter space of warped D3-brane inflation
(figure adapted from [218]). The scan parameter s is the ratio of the antibrane
energy to the F-term energy before uplifting. Successful inflation occurs in the
gray shaded region.

Fine-tuning to produce a flat potential.—Which embedding functions f(zα)
lead to forces that can balance the curvature coupling? This question was
addressed in a number of papers [217, 218, 636, 637]. An important no-go
result was proven in [218, 636]. The infinite class of embeddings studied
in [638] does not allow any inflationary solutions. In fact, to date only a
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single explicit embedding is known in which inflation can occur [218, 637].
This is the so-called Kuperstein embedding [639]

f(z1) = µ− z1 . (5.45)

In this example, the scalar potential (5.40) receives a correction scaling as

φ3/2 (∝ z1),

VF (φ) ≈ V0 + · · ·+ λφ3/2 +
V0

M2
pl

φ2 + · · · . (5.46)

The last two terms shown in (5.46) contribute to η with opposite signs.
Let φ0 be the point in field space where the second slow-roll parameter
vanishes, η(φ0) = 0. Near this point we have |η| � 1. This is not even
a fine-tuning, but arises dynamically. What does involve fine-tuning is the
requirement that φ0 is in the region of control (i.e. inside the warped throat)
and that the potential is monotonic and has a small first derivative (small
ε) at the same point. If this can be arranged, then we get inflation near
an approximate inflection point. Fig. 5.3 shows an example of a successful
scan in the parameter space of warped D3-brane inflation [218].

10D Perspective

The example above provides an existence proof for inflation in warped throat
geometries, but the setup is too special to provide a good sense for the range
of possibilities. Moreover, the above analysis implicitly assumed that the
physics inside the throat decouples completely from the physics of the bulk,
which as we stressed in §4.2 is rarely the case. Finally, we have modeled the
warped throat region by a finite portion of a noncompact warped Calabi-
Yau cone. This approximation fails where the finite throat is attached to
the remainder of the compactification. In this section, we describe a more
general analysis that addresses these deficiencies.

The essential idea is that all ‘compactification effects’ — i.e. all infor-
mation about moduli stabilization and supersymmetry breaking in the re-
mainder of the compactification — can be expressed as non-normalizable
perturbations of the noncompact solution [42,640],

δΦ(r) = δΦ(rUV)

(
r

rUV

)∆

. (5.47)

Here, δΦ is the deviation of some supergravity field Φ from its value in
the noncompact solution, rUV is the radial location of the ultraviolet end
of the throat, and ∆ is the scaling dimension of δΦ.6 By determining the

6
In AdS/CFT, this corresponds to the dimension of the operator dual to the perturbation
δΦ.
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spectrum of perturbations of the warped conifold, we will be able to identify
the leading corrections to the D3-brane potential.

Locality in the internal space dictates that the effective action for a D-
brane probe at some point is specified by the supergravity fields at that
point. This suggests the following strategy: find the most general super-
gravity solution for a finite warped throat that asymptotes in the infrared to
the Klebanov-Strassler solution, by classifying all possible perturbations δΦ.
Far from the ultraviolet region, the solution is given to good approximation
by retaining the subset of modes with the lowest values of ∆, i.e. the modes
dual to the most relevant perturbations of the dual field theory Lagrangian.

In a general six-dimensional cone, it would be challenging to determine
the spectrum of dimensions ∆. However, the conifold is a cone over the
coset space T 1,1, which is amenable to harmonic analysis via group theory
techniques. Thus, by approximating a finite warped region as a portion of
the warped conifold and using the spectroscopy of T 1,1, one can determine
the leading non-normalizable modes. Correspondingly, one obtains the form
of the leading contributions to the potential of a D3-brane in a KS throat.
We now give a few details of this analysis.

UV perturbations

probe D3-brane

warped conifold

Fig. 5.4. Compactification induces UV perturbations to the warped conifold so-
lution. In the IR the lowest-dimension perturbations dominate in the D3-brane
potential.

10D Supergravity.—To determine the D3-brane potential (5.29), we need

solutions for the warp factor e4A(r) and the four-form potential α(r). In
particular, we will be interested in the solution for the field

Φ− ≡ e
4A − α . (5.48)
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Taking the metric ansatz

ds2 = e2A(y)gµνdxµdxν + e−2A(y)gmndymdyn , (5.49)

where gµν is the metric of a maximally symmetric four-dimensional space-
time, the field equations of ten-dimensional type IIB supergravity imply the
master equation7

∇2Φ− = R4 +
gs

96
|Λ|2 + e−4A|∇Φ−|

2 + Sloc , (5.50)

where ∇2 is the Laplacian constructed using the conifold metric (5.12), Sloc

is a localized source due to anti-D3-branes, and

Λ ≡ Φ+G− + Φ−G+ , (5.51)

with
G± ≡ (?6 ± i)G3 and Φ± ≡ e

4A ± α . (5.52)

At the same time, the three-form flux must satisfy the equation of motion

dΛ +
i

2

dτ

Imτ
∧ (Λ + Λ̄) = 0 . (5.53)

The solutions to (5.50) can be organized as follows:

V (x,Ψ) = V0 + VC(x) + VR(x) + VB(x,Ψ) , (5.54)

where x ≡ r/rUV and Ψ stands collectively for all five angular coordinates.
We will describe each of the terms in (5.54) in turn.

Constant contributions.—The constant V0 represents possible contributions
from distant sources of supersymmetry breaking — in the bulk of the com-
pactification, or in other throats — that exert negligible forces on the D3-
brane, and only contribute to the inflationary vacuum energy. This situation
corresponds to maximal decoupling of the source of supersymmetry break-
ing from the D3-brane action: the two sectors communicate only through
four-dimensional curvature. As explained in §4.2, complete decoupling of
this sort is very rare. We have in fact made an artificial but convenient
division, using V0 to represent the sum of all8 constant contributions to the
potential, from diverse sources, each of which will in general also contribute
non-constant terms in other categories described below.

7
In comparison to (3.88), we have now allowed the four-dimensional curvature R4 to be
nonvanishing: compare (3.82) and (5.49).

8
In fact, one constant contribution is grouped in VC rather than in V0: this is the vacuum
energy contributed by the brane-antibrane pair, denoted D0 in (5.55).
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Local sources.—As before, VC(x) is the Coulomb potential sourced by Slocal,

VC(x) = D0

(
1− 27

64π2

D0

T 2
3 r

4
UV

1

x4

)
. (5.55)

In the inflationary regime (far from the tip), the dependence on the D3-
brane position x is a subdominant effect. This is a restatement of the fact
that warping — captured by the smallness of D0 in (5.55) — makes the
Coulomb potential extremely flat.

The eta problem revisited.—The Friedmann equation relates the Ricci cur-
vature in four dimensions, R4 = 12H2, to the inflationary energy density,
V ≈ V0 +D0. Integrating (5.50), we find a curvature-induced mass term

VR(x) =
1

3
µ4x2 + · · · , where µ4 ≡ (V0 +D0)

T3r
2
UV

M2
pl

. (5.56)

This is how the curvature-coupling aspect of the eta problem arises in ten-
dimensional supergravity.

Bulk contributions.—Finally, we have a term that characterizes all possible
contributions from stress-energy in the bulk of the compactification,

VB(x,Ψ) = µ4
∑
LM

cLM x∆(L) fLM (Ψ) , (5.57)

where cLM are constant coefficients, L ≡ (j1, j2, R) and M ≡ (m1,m2) label

the SU(2)× SU(2)× U(1) quantum numbers under the isometries of T 1,1,

and the functions fLM (Ψ) are angular harmonics on T 1,1 (whose explicit
forms can be found in [42]). The exponents ∆(L) have been computed
in detail in [42], building on a spectroscopic analysis of perturbations on

AdS5 × T 1,1 [641]. We briefly summarize the results. We split the bulk
contributions into homogeneous solutions of the six-dimensional Laplace
equation [317]

∇2Φh = 0 , (5.58)

and inhomogeneous contributions sourced by flux [640],

∇2Φf =
gs

96
|Λ|2 . (5.59)

The solutions are characterized by their scaling dimensions ∆(L). Solutions
to (5.58) satisfy

∆h(L) ≡ −2
√
H(j1, j2, R) + 4 , (5.60)

where

H(j1, j2, R) ≡ 6

[
j1(j1 + 1) + j2(j2 + 1)− 1

8
R2

]
. (5.61)
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Taking into account selection rules [640,641] for the angular quantum num-
bers, the first few scaling dimensions are

∆h =
3

2
, 2 , 3 ,

√
28− 2 , · · · (5.62)

The flux contributions in (5.59) lead to the following solutions:

∆f (L) = δi(L) + δj(L)− 4 , (5.63)

where

δ1(L) ≡ −1 +
√
H(j1, j2, R+ 2) + 4 , (5.64)

δ2(L) ≡
√
H(j1, j2, R) + 4 , (5.65)

δ3(L) ≡ 1 +
√
H(j1, j2, R− 2) + 4 . (5.66)

Incorporating the selection rules, we find [534,640]

∆f = 1 , 2 ,
5

2
,
√

28− 5

2
, · · · (5.67)

The total bulk potential (5.57) therefore contains terms with the scaling
dimensions

∆ =
{

∆h,∆f

}
= 1 ,

3

2
,
√

28− 5

2
, 3 ,

√
28−2 ,

7

2
,
√

28− 3

2
, · · · (5.68)

A few remarks about the analysis leading to (5.68) are necessary. One
should recognize that (5.59) is non-linear in perturbations of the back-
ground: a linear treatment would capture only the homogeneous solutions
solving (5.58), with dimensions given in (5.62), while the leading term at
small r, corresponding to ∆f = 1 in (5.67), actually arises at quadratic
order in perturbations of three-form flux. This is possible because the per-
turbations corresponding to various supergravity fields do not enter on equal
footing: some perturbations are allowed by the ISD background, and hence
have order-unity perturbations δΦ at r = rUV, while other perturbations

are forbidden in the ISD solution, and have perturbations δΦ ∼ e−aT at
r = rUV. These hierarchies can be captured by a careful spurion analysis
[42,534].

Notice that we again have a contribution scaling as φ3/2, just as in the
four-dimensional analysis. This suggests that the basic phenomenology is
again that of inflection point inflation, and a number of numerical investi-
gations [240,255,535,642,643] have confirmed this expectation.
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5.1.3 Multi-Field Dynamics

The effective theory describing an inflating D3-brane in a conifold region
attached to a stabilized compactification has a natural mass scale: the infla-
tionary Hubble parameter, H. Moreover, all continuous global symmetries
are broken by the compactification. The general arguments reviewed in
§2.1 then suggest that the six real scalar fields parameterizing the D3-brane
position should have masses m ∼ O(H). Inflation will not occur naturally,
and some accidental cancellations among terms in the potential are required
in order for one of the scalars to have a mass m� H. Once such a cancel-
lation has occurred, it is quite unlikely that all five of the other fields will
have masses m� H: a more probable outcome is that one or more of these
fields will be light enough to evolve and fluctuate during inflation. Thus,
the warped D3-brane inflation scenario generically gives rise to models of
multi-field inflation, or more precisely of quasi-single-field inflation [490].

To understand the phenomenology of these models, neither a slow-roll
approximation nor a single-field truncation is appropriate, and one must
solve the equations of motion for the perturbations numerically, without
making any approximations. The exact power spectra for more than 104

realizations from the ensemble of [240] were obtained in [255], with key
results summarized in §5.1.6.

One intriguing finding of [255] is that the spectrum of scalar masses is
predicted to good accuracy by a very simple matrix model inspired by [48],

cf. §3.5. The model for the 6× 6 mass matrix M takes the form9

M =

(
AĀ+BB̄ C

C̄ ĀA+ B̄B

)
, (5.69)

in terms of 3 × 3 complex symmetric matrices A, B, and C whose entries
are assumed to be random complex numbers drawn from a Gaussian dis-
tribution. The eigenvalue spectrum of M agrees surprisingly well with the
empirical mass spectrum found in [255], even though the methods of ran-
dom matrix theory are formally applicable only to large matrices: evidently
3 is a sufficiently large number in the present context.

The procedure described above led to an EFT for six real fields, the co-

9
The physical relevance of the matrix model (5.69) can be understood by comparing it
to the Wigner+Wishart+Wishart model (3.156) of [48]. The positive-definite blocks
AĀ and BB̄ are consequences of spontaneously broken four-dimensional supersymme-
try: in the limit of unbroken supersymmetry the mass matrix must be positive defi-
nite. The methods used in [42] to construct the ensemble of effective Lagrangians were
inherently ten-dimensional, and made no direct connection to the structure of four-
dimensional N = 1 supersymmetry. The fact that the stability properties enjoined
by four-dimensional supersymmetry nevertheless emerge after the intricate analysis de-
scribed above is encouraging evidence that the entire construction is self-consistent.
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ordinates of the D3-brane. This captures completely general contributions
to the action for these fields that stem from heavy degrees of freedom in
the remainder of the compactification. However, the open string EFT con-
structed in this way can differ from the complete EFT that arises from di-
mensional reduction of all open and closed string fields. We have implicitly
truncated the spectrum (see §4.1.4), assuming that the closed string moduli
have masses m � H. For complex structure moduli and the axiodilaton,
which acquire large supersymmetric masses from three-form flux, trunca-
tion is generally justified; but without special model building (cf. [644]) the
typical mass scale of the Kähler moduli is m ∼ H. As a result, the EFT
may include a number of relatively light Kähler moduli, in addition to the
six open string fields studied above, and there is comparatively little hope
of determining the precise form of the potential for these closed string mod-
uli.10 However, in view of the successes of universality and random matrix
theory in characterizing the six-field effective theory [240,255], and bearing
in mind that having more fields makes these methods more robust, we find it
plausible that the statistical signatures of scenarios with dynamical Kähler
moduli can be obtained in like manner.

5.1.4 Reheating

The reheating stage of warped D-brane inflation was carefully examined
in [545, 546, 548, 551, 553], revealing a complex cascade of energy from the
inflaton to the visible sector and to invisible relics. To set the stage, we
remark that a modular approach to reheating is very natural in this con-
text: because the inflaton sector involves a D3-brane in a local geometry,
it is reasonable to identify the warped throat where inflation occurs as one
module, and to situate the Standard Model on D-branes in a different re-
gion of the geometry, either in another warped throat or in the unwarped
bulk region. These model-building choices critically affect the success of
reheating. We will not review all possibilities here, and will emphasize
the interesting ‘two-throat’ scenario in which the visible sector resides in
a warped throat distinct from that in which inflation occurs. This choice
affords much latitude in model-building, as well as leading to novel phe-
nomenology for reheating. Moreover, if the Standard Model D-branes were
inside the inflationary throat, any relic cosmic strings would quickly disinte-
grate through contact with these D-branes; in the bulk or in another throat,
the D-branes are at a safe distance, and long-lived cosmic strings, with the
associated interesting signatures, are possible.

10
As noted above, some effects of a single light Kähler modulus were considered in [533],
and the response of the overall volume to the displacement of the D3-brane played a
key role in the stability analysis of [218].
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The outline of the end of inflation, and of reheating, is as follows. Infla-
tion occurs while the D3-brane passes through the vicinity of an inflection
point in its potential, and accelerated expansion ends once the D3-brane
reaches a steeper portion of the potential. The D3-brane then falls rapidly
toward the anti-D3-brane at the tip of the throat. Eventually, the separa-
tion of the brane-antibrane pair becomes small enough that a tachyon de-
velops. The tachyonic instability causes the D3-brane pair to fragment, and
to decay into highly-excited, non-relativistic closed string modes [645–647],
which quickly decay into massive Kaluza-Klein excitations of the supergrav-
ity fields (i.e. massless string modes) in the inflationary throat.

A few words about interactions in warped throats are necessary. The
Kaluza-Klein modes of a warped throat have wavefunctions that peak ex-
ponentially in the infrared, and their mutual interactions are suppressed by
the infrared scale mIR ∼ eAIR Mpl � Mpl, where eAIR is the warp factor at
the tip of the throat. On the other hand, their couplings to Kaluza-Klein
zero modes, including the graviton, are suppressed by Mpl. The warping
creates a gravitational potential barrier that confines massive particles to
the infrared region: access to other throats is via tunnelling11 through the
bulk of the compactification, which is very slow compared to perturbative
decays [545, 546, 548, 550, 649]. As a result, the characteristic timescales
typically obey

τtherm � τgraviton � τtunnel , (5.70)

where τtherm denotes the thermalization time for Kaluza-Klein modes of
the inflationary throat, τgraviton is the timescale for decay to gravitons, and
τtunnel is the tunnelling timescale.

Shortly after the decay of excited strings to excited Kaluza-Klein modes,
the energy previously stored in the inflaton condensate is still largely con-
fined to the inflationary throat. The success of reheating depends on chan-
neling a sufficiently large fraction of this energy into Standard Model degrees
of freedom, rather than into four-dimensional gravitons; long-lived relic par-
ticles protected by approximate isometries; or matter or radiation in other
sectors. We now discuss these challenges in turn.

. Overproduction of gravitons.—KK modes decay to four-dimensional
gravitons with a rate set by Mpl. If no other channels extract energy
more quickly from the inflationary throat, the universe will be dom-
inated by gravitational radiation, ruining Big Bang nucleosynthesis.
Tunneling can transfer energy to other throats, but because generically
τgraviton � τtunnel (cf. [546]), additional mechanisms may be needed to
dilute the graviton abundance.

11
See [648] for an analysis of energy transfer in warped reheating via induced motion of
D-branes.
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Fig. 5.5. The stages of reheating after warped D-brane inflation (figure adapted
from [545]).

The heaviest Kaluza-Klein modes have the wavefunctions that reach
farthest into the ultraviolet, and so have the largest tunnelling prob-
ability. Efficient tunnelling therefore requires that the lifetime τKK of
the heaviest Kaluza-Klein modes obeys τKK & τtunnel. This presents
a further constraint on the parameters [546].

. Kaluza-Klein relics from angular isometries.—Suppose that one of the
throats in the compactification enjoys approximate angular isometries,
such as the SU(2)×SU(2) isometry of the Klebanov-Strassler solution.
The associated angular momentum is approximately conserved, and
Kaluza-Klein modes carrying this charge can only decay12 through
symmetry-violating interactions. Charged Kaluza-Klein modes pro-
duced during reheating will be long-lived Kaluza-Klein relics [545],
and can readily overclose the universe.

To determine whether Kaluza-Klein relics decay sufficiently quickly

12
Annihilation can in principle reduce the relic density [551], but only for problematically
small values of the warp factor [553].
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for successful cosmology, one can examine the isometry-breaking per-
turbations sourced by the compactification [545,553,650], as explained
in §5.1.2. A detailed analysis of this issue appeared in [553], where
it was concluded that for the relics to decay before nucleosynthesis,
irrelevant13 perturbations that break supersymmetry at a sufficiently
high scale must be introduced. The conclusion obtained in [551] is
more positive: the effects of warping and of the compact bulk were
argued to lead to a much smaller relic abundance than that found in
[545,553].

. Excitation of other sectors.—Some scenarios consider an additional
‘intermediate’ throat (for example, where supersymmetry is broken)
whose warp factor falls between those of the inflationary and visible-
sector throats. In that case, tunneling leads to Kaluza-Klein excita-
tions of this throat. These are only very slowly depopulated by trans-
fer to the visible-sector throat, presenting a serious problem [545].
More generally, if light moduli associated with other sectors become
populated, these can come to dominate the energy density of the uni-
verse, with consequences discussed in e.g. [303–308].

. Reheating above the local string scale.—The reheating temperature

can exceed the warped string scale eAIR/
√
α′ in a throat that is much

more strongly warped than the inflationary throat — for example, if
the electroweak hierarchy is addressed by warping of the visible-sector
throat. Reheating can then induce copious production of excited
strings in the strongly warped throat [547]. Analyzing this process
in detail remains challenging.

5.1.5 Fine-Tuning

Considerable effort has been directed at finding mechanisms that can al-
leviate the fine-tuning of the potential in warped D-brane inflation — see
[38,651–656]. Here, we will outline a few of the leading approaches. The DBI
mechanism, which turns a steep potential from a liability into an asset, will
be discussed in §5.3. Discrete symmetries can be used to forbid problematic
mass terms [652], and in some cases have been shown to be compatible with
moduli stabilization [657]. Dynamical mechanisms have also been found: it
was shown in [653,655] that if N D3-branes become trapped in a metastable

13
The restriction to irrelevant perturbations in [553] rests on the requirement that the
background throat solution is a good approximation in the infrared. However, [42,534]
showed that certain relevant perturbations are necessarily present in Klebanov-Strassler
regions of KKLT compactifications. Approximate no-scale symmetry ensures that these
perturbations have exponentially small coefficients and do not destroy the throat. The
effects of such perturbations on Kaluza-Klein relic decays have not been assessed.
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minimum of the potential in the throat, and sequentially tunnel out, the bar-
rier diminishes with each tunneling event. For favorable parameter values,
the potential for the final D3-brane is an inflationary inflection point.

The second fine-tuning problem of warped D-brane inflation — indeed, of
most scenarios for inflation in string theory — is that rather special initial
conditions are required for successful inflation to occur. When the poten-
tial is approximately flat in a small fraction of the field space, and is steep
elsewhere, then generic trajectories passing through the would-be inflation-
ary region will overshoot the flat portion without initiating an inflationary
phase, as emphasized long ago in [658]. The DBI kinetic term (see §5.3) has
been argued to ameliorate the overshoot problem [659], though this con-
clusion was challenged by [660]. Negative spatial curvature resulting from
tunneling entirely removes overshooting in certain classes of potential, and
reduces its severity in general [661,662]. Finally, it was argued in [663] that
the overshooting of an inflection point is ameliorated by particle production
near points in field space where new species become light [664–667].

A different perspective on overshooting was given in [240], in which in-
flationary solutions were found by Monte Carlo sampling of the ensemble
of potentials obtained in [42], followed by numerical solution of the six-field
equations of motion. In this setting, the potential was fine tuned by chance,
rather than by hand. Surprisingly, the overshoot problem was absent: for
each inflationary trajectory that was found for a given potential V and for
some fixed initial conditions, an O(1) fraction of the space of possible initial
positions likewise led to prolonged inflation. Thus, while inflation was not
a generic outcome in the joint space of Lagrangians and initial conditions,
for each successful Lagrangian that was found, inflation occurred for generic
initial positions14 of the D3-brane.

5.1.6 Phenomenology

The phenomenology of warped D-brane inflation has been the subject of
intense investigation (e.g. [218,240,255,533,535,637,668–670]). In this sec-

tion, we will summarize some of the main conclusions.15 We will start with
the simplified single-field treatment [218, 637] in which the angular degrees
of freedom are integrated out using an adiabatic approximation. This is not
always consistent, as the angular fields can have masses that are smaller
than the inflationary Hubble scale, but serves to develop intuition for the
more complex multi-field dynamics studied in [240, 255, 533, 535, 673, 674].

14
The initial kinetic energy of the D-brane was required to be somewhat smaller than the
initial potential energy.

15
We will emphasize the original scenario [41] in which a D3-brane falls toward the tip of
a Klebanov-Strassler throat. Scenarios involving D-branes moving on the S

3
at the tip

of the throat include [671,672].
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We will then present the multi-field results of [240, 255, 535], which incor-

porate the complete potential derived in [42], and follow the full six-field16

dynamics numerically, making no approximation.

Single-Field Expectations

In [218,637], the six-dimensional field space was analyzed analytically. The
potential was minimized in the angular directions and an effective potential
for the radial direction was determined. As expected, the potential for the
effective radial coordinate has an inflection point. Near the inflection point,
we can write the potential as

V (φ) ≈ V0

[
1 + λ0

φ

Mpl
+

1

3!
µ0

φ3

M3
pl

+ · · ·

]
, (5.71)

where the constants V0, λ0 and µ0 can be related to microscopic parameters
of the model [218]. A slow-roll analysis of this potential leads to the following
predictions [218]:

. Power spectrum.— The spectral index derived from (5.71) has the
analytic solution [218,219]

ns − 1 ≈ − 4π

Ntot
cot

(
π
N?

Ntot

)
≈ − 4

N?

(
1 +O

(
N2
?

N2
tot

))
, (5.72)

where N? corresponds to the number of e-folds between the horizon
exit of the pivot scale and the end of inflation and Ntot denotes the
total number of e-folds, defined as

Ntot =

∫ ∞
−∞

1√
2ε

dφ

Mpl
= π

√
2

λ0λ1
. (5.73)

The number of e-folds from some initial vev φ until the end of inflation
at φend is

Ne(φ) =

∫ φ

φend

1√
2ε

dφ

Mpl
=
Ntot

π
arctan

(
η(φ)Ntot

2π

)∣∣∣∣∣
φ

φend

. (5.74)

For Ntot not much greater than N? ≈ 60 the spectrum is strongly blue
and the model is hence ruled out by observations (see fig. 5.6). For
Ntot ≈ 2N?, the spectrum on CMB scales is exactly scale-invariant,
while for Ntot > 2N?, the spectrum is red and asymptotes to the lower
limit ns → 1− 4/N? ≈ 0.93 for Ntot � 2N?.

16
As explained above, light Kähler moduli may also evolve during inflation.
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Fig. 5.6. Prediction for ns as a function of the total number of e-folds. The gray
band shows the range of ns allowed by Planck.

The running of the spectral index follows from (5.72),

αs = − 4π2

N2
tot

sin−2

(
π
N?

Ntot

)
≈ − 4

N2
?

(
1 +O

(
N2
?

N2
tot

))
. (5.75)

Notice that both the tilt ns and the running αs are determined by
Ntot alone (for fixed N?).

. Absence of tensors.—Combining the geometric bound (5.28) on the

inflaton field range17 with the Lyth bound (2.105), we find [243]

r <
4

N
× 0.01 � 0.01 . (5.76)

This is a conservative bound that assumes that inflation occurs over
the entire length of the throat, and that the bulk makes a negligible
contribution to the total compactification volume. In all known exam-
ples, inflation is confined to a small part of the throat (the part where
the potential is tuned to be flat) and the tensor amplitude is much
smaller than the maximum allowed by the geometric bound. This
implies that gravitational waves are unobservable in warped brane
inflation.18

17
See [675] for another discussion of geometric constraints in warped D-brane inflation,
with implications for eternal inflation.

18
If inflation is driven by the motion of a Dp-brane wrapping a (p−3)-cycle, the field range
can be larger than that for a D3-brane [676, 677]. However, arranging for a nearly-flat
potential is challenging, and backreaction of the moving brane can be important.
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Multi-Field Effects

As explained in §5.1.3, a proper description of warped D-brane inflation
involves all six D3-brane coordinates (and ultimately any light Kähler mod-
uli). Here, we summarize a few key phenomenological results that emerge
from an intensive Monte Carlo investigation of the dynamics and signa-
tures of the six-field effective theory [240, 255, 535]. A few words about the
methodology are necessary: in [240, 255, 535], scalar potentials were drawn
at random from the ensemble described in §5.1.3, and the equations of mo-
tion were solved numerically beginning from a random initial condition. The
cosmological signatures were then evaluated in the subset of trials that led
to Ne ≥ 60 e-folds of inflation.

. Inflationary probabilities.—First, one can compute the relative prob-
ability P (Ne) of Ne e-folds of inflation in the ensemble. In [240], it
was shown that

P (Ne) = P (N?)

(
N?

Ne

)3

, (5.77)

where N? & 10 is a reference value encoding the absolute probabil-
ity. Thus, the probability of Ne e-folds of inflation is proportional to
1/N3

e . This result can be derived analytically in an inflection point
model [240] (see [661] for earlier work in a slightly different model),
and is consistent with the simpler analytic arguments of §5.1.2, which

focused on the appearance of the term φ3/2 in an effective single-field
description. Of course, the total number of e-folds is not itself an
observable, but whether or not Ne � 60 strongly influences the like-
lihood of observing relics of a pre-inflationary stage, such as traces of
bubble collisions [678–682].

. Violations of slow roll.—A useful measure of violations of the slow-roll
approximation is the ratio m2

σ/H
2, where mσ is the mass of fluctua-

tions in the adiabatic direction (see Appendix C for a precise defini-
tion and further discussion). Slow-roll violations are strongly corre-
lated with the total number of e-folds of inflation: realizations with
Ne � 100 have m2

σ ≈ −0.1H2 at the moment when the CMB exits
the horizon, agreeing with the analytic result for single-field inflection
point inflation. However, realizations with Ne ≈ 60 have m2

σ ≈ H
2, so

that the slow-roll approximation is marginally valid at best. The effect
on the spectrum is a slight increase in ns compared to the slow-roll
result [255], see fig. 5.7.

. Bending of the trajectory.— Characteristic trajectories leading to pro-
longed inflation begin by spiraling in the angular directions, and then
settle down to an inflection point that is approximately parallel to
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Fig. 5.7. Multi-field effects on the spectral index in warped D-brane inflation,
versus the mass mσ of the adiabatic fluctuation (figure adapted from [255]). The
exact tilt, nexact

s , is the result of a six-field numerical calculation making no slow-roll
approximation, while the naive tilt, nnaive

s , follows from simply evaluating (2.44)
at horizon exit.

the radial direction. As a result, multi-field effects are generically
significant during the first 5 – 10 e-folds of inflation, but are subse-
quently exponentially suppressed. See Appendix C for background on
multi-field effects from bending trajectories.

. Decay of entropic perturbations.—Although all six open string scalars
have masses that are very roughly O(H), the precise distribution of
masses is important. By directly evaluating the Hessian matrix, or us-
ing the matrix model given in §5.1.2, one can show that in nearly all
realizations the lightest field is tachyonic, the second-lightest field has
m2 ∼ H2, and the four remaining fields have m2 > 9

4H
2. Thus, there

is at most one instability, and only two fields fluctuate. Moreover,
the five entropic perturbations decay exponentially after exiting the
horizon [255]: i.e. an ‘adiabatic limit’ [683] is reached. This is impor-
tant, for if one or more entropic perturbations were to persist until the
time of reheating, predicting the scalar power spectrum would become
extremely difficult [683]. A detailed treatment of related multi-field
effects at the end of D-brane inflation appears in [673].

. Scalar power spectrum.—In models producing Ne . 60 – 70 e-folds
in total, multi-field effects dictate the observable anisotropies, while
in models yielding Ne � 70 e-folds, a single-field approximation is
valid and the analytic treatment given above applies without modi-
fication. In light of (5.77), models with multi-field effects are much
more common than approximately single-field models, within the class
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of all realizations yielding Ne ≥ 60 e-folds. However — see fig. 5.6 and
the related discussion — the scalar power spectrum computed in the
single-field approximation is unacceptably blue in models producing
Ne . 120 e-folds. Multi-field effects quite generally shift the spectrum

toward the red, i.e. nexact
s −nnaive

s < 0, but the magnitude of the effect
is only occasionally large enough to produce models consistent with
observations, which fall in the gray band in fig. 5.8.

Fig. 5.8. The spectral index in realizations of warped D-brane inflation with sig-
nificant multi-field effects (figure adapted from [255]). The gray band shows the
region allowed at 2σ by WMAP7; the Planck constraints are slightly more stringent.

. Tensor amplitude.—The inflationary inflection points arising in the
ensemble are extremely small in Planck units: for the parameters
explored, r . 10−12, which is far below the upper limit allowed by the
Lyth bound (2.105) combined with the geometric bound (5.28).

. Non-Gaussianity.—Although conversion of entropic perturbations to
curvature perturbations is commonplace in models yielding Ne . 60 –
70 e-folds, this does not automatically lead to large non-Gaussianity,
because the cubic couplings in the D3-brane potential can be quite
small [255]. More importantly, in the subset of models allowed by
constraints on the tilt, multi-field effects, including non-Gaussianity,
are extremely rare.19

19
Sharp features in the radial profile of the warp factor were argued in [684] to produce
observable signatures in the power spectrum and bispectrum.
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Cosmic Strings

Cosmic superstrings are one of the most striking signatures of D-brane in-
flation. Following [570], we recall the conditions for cosmic strings to be
cosmologically relevant: the strings must be produced after inflation, re-
main stable over cosmological times, and be observable without already
being excluded. Finally, one may also hope that the strings have distinctive
signatures revealing their origin in string theory. All four conditions can be
met in warped D-brane inflation, as we now explain.

Condensation of the D3-brane/anti-D3-brane tachyon at the end of infla-
tion automatically produces a population of cosmic F-strings and D-strings,
as well as the more general (p, q) string bound states. Whether these strings
are stable depends on whether there are D-branes in the warped throat
where inflation occurs — see [601] for a detailed treatment. First of all,
(p, q) strings (including the (1, 0) F-string and (0, 1) D-string) are not BPS
in this setting: the two-forms Bµν and Cµν whose charges the strings carry
are projected out by the orientifold action [601]. Correspondingly, a string
can break apart by coming into contact with its orientifold image. How-
ever, in the generic situation in which there are no orientifold fixed planes
within the throat itself, a string has to fluctuate out of the throat to meet
its image in the image throat. This is an exponentially slow process, as the
potential due to the warp factor confines the strings to the bottom of their
respective throats, and for practical purposes breakage via the orientifold
image can be ignored [601]. A more significant risk comes from D3-branes or
anti-D3-branes in the inflationary throat, which could serve as the substrate
for the Standard Model [685] or as a source of supersymmetry-breaking en-
ergy [425]. If any D3-branes or anti-D3-branes are present, cosmic strings
fragment immediately and are cosmologically irrelevant. If D7-branes are
present but D3-branes and anti-D3-branes are not, the D-string remains
stable [601].

The spectrum of tensions of (p, q) strings in a warped throat was obtained
in [686]:

T(p,q) ≈
e2AIR

2πα′

√
q2

g2
s

+

(
bM

π

)2

sin2

(
π(p− qC0)

M

)
, (5.78)

where eAIR is the warp factor at the tip of the throat, M is the flux on
the A-cycle, and b ≈ 0.93 is a constant arising in the Klebanov-Strassler
solution. This result is primarily governed by the warp factor, which can
be exponentially small. Hence, if the warp factor were a free parameter,
it would be easy to ensure that the cosmic string tension is low enough to
satisfy any conceivable observational bound. However, the warp factor in
the inflationary throat determines the scale of the inflaton potential, and is
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therefore constrained by the normalization of the scalar fluctuations. Re-
calling from (2.42) that the amplitude of the scalar power spectrum involves
both V and ε, we conclude that once ε is known, the warp factor and hence
the cosmic string tension are predicted. The distribution of values of ε in
a simple model for the potential was studied in [607]. Tensions that sat-
isfy present constraints but can be detected in the coming generation of
observations are achievable, but the associated fine-tuning has not yet been
quantified completely.

5.2 Inflating with Unwarped Branes

We have just seen, in §5.1, that D3-branes in warped throat regions of type
IIB flux compactifications lead to a class of highly computable inflationary
models with rich phenomenology. At the same time, D-branes in more gen-
eral geometries — in which warping may be present but is not a dominant
effect — provide an array of interesting models with some theoretical ad-
vantages. In this section, we will discuss a few examples of inflation driven
by branes in unwarped regions.

5.2.1 D3/D7 Inflation

An interesting and uniquely explicit scenario for D-brane inflation in an
unwarped compactification is the D3/D7 model [609–613,687]. This model
has close parallels to the warped brane inflation scenario detailed in the
previous section, so we will be brief, emphasizing the distinctive features of
the D3/D7 construction.

The background geometry is a compactification of type IIB string theory
on the orientifold K3 × T 2/Z2. At each of the four fixed points there are
four D7-branes atop an O7-plane, all of which wrap the K3 manifold. This
configuration corresponds to M-theory on K3 × T 4/Z2, with the T 4/Z2

being the orbifold limit of K3. Displacing the D7-branes from the orientifold
planes leads to a geometry that lifts to M-theory on K3×K3 (see [688] for
an analysis of moduli stabilization in this regime).

Now we add a spacetime-filling D3-brane, which sits at a point in the
internal space, and in particular on T 2/Z2 (see fig. 5.9). The position of the

D3-brane on T 2/Z2, relative to the stack of D7-branes, was proposed to be
the inflaton [609]. The inflaton sector therefore consists of two real fields
describing the D3-brane location on the torus.

A spacetime-filling D3-brane in the K3× T 2/Z2 orientifold actually pre-
serves N = 2 supersymmetry in four dimensions, so there is no potential for
D3-brane motion, and the would-be inflaton is perfectly massless. However,
introducing two-form flux F2 in the D7-brane worldvolume modifies the sit-
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%"+,#&'02mobile D3-brane volume-stabilizing 
D7-branes

SUSY-breaking
D7-brane

Fig. 5.9. Schematic of D3/D7 inflation (figure adapted from [613]).

uation: when the flux is not self-dual in the worldvolume (i.e. ?4F2 6= F2,
with ?4 the Hodge star in the four compact directions of the D7-brane
worldvolume), then supersymmetry is broken, and the D3-brane feels a
force. As explained in [609], the worldvolume flux corresponds to a field-

dependent Fayet-Iliopoulos term20 ξ, so the D3/D7 model described so far

is a model of D-term inflation.21 Specifically, D-term supersymmetry break-
ing by D7-brane fluxes introduces mass splittings in the supermultiplets of
strings stretched between the D3-brane and the D7-brane, and integrating
out these fields leads to the Coleman-Weinberg potential (cf. [613] for an
updated discussion)

VD(φ) =
g2ξ2

2

(
1 +

g2

16π2U(x)
)
, (5.79)

where we have defined x ≡ φ/
√
ξ, and

U(x) ≡ (x2 +1)2 ln(x2 +1)+(x2−1)2 ln(x2−1)−4x4 ln(x)−4 ln(2) , (5.80)

20
See [689–691] for analyses of consistency conditions for Fayet-Iliopoulos terms in super-
gravity, and [692] for the implications for cosmic strings.

21
An important alternative means of breaking supersymmetry is the addition of an anti-
D3-brane in a warped region — see [687] for a comprehensive discussion of the D3/D7
model with antibrane supersymmetry breaking.
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with g the coupling of the U(1) gauge field.

At this stage we have specified the geometric data of a non-supersymmetric
compactification, but without further ingredients this configuration will be
unstable to decompactification: the N = 2 supersymmetric compactifica-
tion has unfixed moduli, and supersymmetry-breaking positive energy from
the D3-brane potential creates an instability. Fixing all the Kähler moduli
of the supersymmetric compactification may be achievable [688], but we will
first focus on a scenario in which a single overall volume modulus is stabi-
lized by gaugino condensation in the gauge theory living on the D7-branes.

As explained in detail in §5.1.2, mixing of D3-brane position moduli with
Kähler moduli, via the DeWolfe-Giddings Kähler potential (3.99), implies
that stabilization of the volume generically leads to stabilization of the D3-
brane position.22 We will now examine this crucial point more closely and
determine whether there are non-generic exceptions.

The Kähler potential takes the form

K(ZI , Z̄I) = −3 ln
[
T + T̄ − γk(zα, z̄α)

]
, (5.81)

with k(zα, z̄α) the Kähler potential for the metric on the internal space. Let
us restrict attention to a single complex field z1 ≡ x + iy, corresponding
to the D3-brane position on T 2/Z2. Suppose for the moment that the
superpotential W is independent of z1, so that the only dependence of the
potential energy on x and y comes through the appearance of these fields in
K. If k(x, y) depends non-trivially on both x and y, then both real fields will
have non-trivial masses in the stabilized vacuum, rather than corresponding
to flat directions.

An influential proposal is to invoke a shift symmetry in the Kähler poten-
tial [520], so that k — and hence K — is independent of one of the fields.
For example, if

k =
1

2
(z1 + z̄1)2 = x2 , (5.82)

then y corresponds to a flat direction of the F-term potential for the moduli.
(The dependence of the D-term potential (5.79) on z1 is mild enough to be
suitable for inflation.) Although this approach appears reasonable in super-
gravity, in a string construction one is not free to write down an effective
action with a desired form: the action follows from dimensional reduction
of a specified configuration. Moreover, some shift symmetries do not admit
ultraviolet completions. It is therefore essential to determine whether the
D3/D7 model actually enjoys a shift symmetry that allows Kähler modulus
stabilization to coexist with a flat direction for D3-brane motion.

It was shown in [610, 612] that the tree-level Kähler potential is indeed
shift-symmetric, so that before accounting for additional terms in the effec-

22
A very different perspective on this fact was recently given in [693].
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tive action, the D3-brane potential takes the form of a nearly flat trough
oriented along the symmetry direction. However, the nonperturbative su-
perpotential, which is critical in the stabilization of the volume, necessarily
depends on the D3-brane position, contrary to our assumption above. The
one-loop correction to the gauge kinetic function for the D7-brane gauge
theory was computed explicitly in [336], and was found to depend on the
D3-brane position, so that the gaugino condensate superpotential likewise
depends on the D3-brane location. For D7-branes with gauge group SU(Nc)

at position zD7 = µ in T 2/Z2, one finds [336]

W = W0 +
[
ϑ1

(√
2π(z1 +µ), ζ

)
ϑ1

(√
2π(z1−µ), ζ

)]−1/Nc
e−2πT/Nc , (5.83)

where ϑ1 is a Jacobi theta function, and ζ is the complex structure of the
T 2 [336]. It was then shown in [519, 694] that the appearance of the D3-
brane position in the nonperturbative superpotential (5.83) spoils the shift
symmetry and prevents inflation from occurring naturally.

The gauge theory description of this effect is simple and instructive:
strings stretching from the D3-brane to the D7-branes (‘3-7 strings’) cor-
respond to flavors in the condensing theory, and their masses depend on
the D3-brane’s separation from the D7-branes. The dependence of the low-
energy condensate on the mass of the flavors implies that the superpotential
depends on the D3-brane position. As a simple example, consider N = 1
supersymmetric Yang-Mills theory with gauge group SU(Nc) (for Nc > 2)
and a single flavor Q with mass parameter m. The gaugino condensate su-
perpotential below the scale m, which results from integrating out Q, takes
the form

W = Λ3−1/Ncm1/Nc , (5.84)

where Λ is the dynamical scale of the high-energy theory. In a string theory
realization of this gauge theory, m = m37 is the mass of the stretched strings,
which depends on the D3-brane position φ: for sufficiently small separations,

m ∝ φ. Thus, W ∝ φ1/Nc , and the gaugino condensate superpotential
depends on the D3-brane position.

It is worthwhile to recognize that one of the virtues attributed to models of
D-term inflation is the absence of inflaton mass terms from Kähler potential
couplings. The D3/D7 model is arguably the best-studied model of D-
term inflation in string theory, and an important lesson from this model is
that moduli stabilization by superpotential terms introduces F-term energy,
which itself may depend on the inflaton, even if the ‘intended’ inflaton
potential comes from a D-term. In other words, a model of D-term inflation
in a compactification stabilized by superpotential terms for the moduli is
not purely a D-term scenario, and the moduli sector introduces masses in
the inflaton sector.
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Although the global form of the moduli potential is readily computed
from (5.83), in practice one can expand in φ: the leading contribution to
the inflaton potential from moduli stabilization is an inflaton mass term.
The total potential V = VF + VD then takes the form

V (φ) = VD(φ)− m2

2
φ2 +

λ

4
φ4 , (5.85)

where VD(φ) is given in (5.79). The resulting phenomenology is discussed
in §5.2.4.

5.2.2 Fluxbrane Inflation

An influential idea for achieving inflation with D-branes is to consider a pair
of branes that are separated in the compact space, and are almost parallel,
but misaligned by a small relative angle θ [695–697].23 The small angle
leads to controllably small breaking of supersymmetry, resulting in a force
that draws the branes together, at which point they merge and reheat the
universe. Brane-antibrane inflation [515,626] can be viewed as a special case
in which the branes are precisely antiparallel.

Just as in the cases of brane-antibrane inflation and the D3/D7 model,
the approach taken in the literature was to begin by analyzing the interac-
tion potential Vint of the misaligned D-brane pair, assuming that the closed
string moduli were stabilized by some mechanism, and then later attempt
to incorporate (or minimize) the effects of the moduli potential VF , which
we may take to be an F-term potential. This approach was a pragmatic
one, because methods for computing the interaction potential were devel-
oped long before techniques for computing the moduli potential. However,
from the present perspective we must emphasize that the division into in-
teraction potential and moduli potential is somewhat arbitrary, and is often
very misleading: the essence of the eta problem described in §4.2 is that
the moduli potential is not subleading as a contribution to the inflationary
dynamics. Bearing this in mind, we will nevertheless briefly describe the
properties of the interaction potential Vint.

The interaction potential for a brane-antibrane pair in an unwarped com-
pact space is generally too steep for successful inflation [515], except pos-
sibly for certain antipodal configurations (see e.g. [595]). The proposal of
[695] was that weak supersymmetry breaking by a small angle θ � 1 would
diminish the Coulomb force to the extent that Vint could drive slow-roll in-
flation. Compactness of the internal space introduces a crucial difficulty:
the potential between branes with θ � 1 is indeed small (compared to the

23
A T-dual configuration, in which the inflationary coordinate is a Wilson line, has been
investigated in [698] (see also [699]).
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vacuum energy) if the computation is performed with the internal direc-
tions taken to be noncompact, but the result is quite different for compact
internal dimensions [41]. As explained in §4.2, the effect of compactification
is to make the interaction potential for the branes be of the same order as
the vacuum energy, ruining the favorable hierarchy obtained by taking the
branes to be noncompact.

More recently, the relative position of two D7-branes has been proposed
as an inflationary direction [614,615]. Consider type IIB string theory com-
pactified on an O3/O7 orientifold of a Calabi-Yau three-fold X6. Suppose
that there is a continuous family Σ4 of four-cycles in X6, on any represen-
tative of which a D7-brane can be wrapped. Wrap two D7-branes a, b on
distinct representatives in Σ4: the D7-branes can then be separated to some
extent, although they generally intersect along a two-cycle. If gauge flux F
is introduced on the shared two-cycle, the D7-branes feel a force that tends
to make them coincide.24 Because a key part of the inflaton potential arises
from worldvolume flux, this scenario is called fluxbrane inflation.

Fig. 5.10. In fluxbrane inflation [614,615], the inflaton coordinate is the effective
separation of a pair of intersecting D7-branes (figure adapted from [614]).

The potential for the canonically-normalized D7-brane coordinate takes
the form

V (φ) = VD(φ) + VF (φ) , (5.86)

where25

VD(φ) = V0

(
1 + α ln(φ/φ0)

)
, (5.87)

24
This setup is T-dual to a configuration of branes at angles: to see this, take the com-
pactification to be a torus and T-dualize along a circle in the two-cycle threaded by the
flux F .

25
In an alternative parameter regime for fluxbrane inflation, the dominant non-constant
term in the potential is sinusoidal [251], instead of logarithmic as in (5.87).
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and V0, α, φ0 are constants. The D-term potential VD(φ) is a consequence
of the supersymmetry-breaking flux, and can be thought of as a Coulomb
potential, while the F-term potential VF (φ) results from moduli stabilization
and has not been computed in detail.

Although the similarities to D3/D7 inflation are apparent, several dis-
tinctive features of fluxbrane inflation were identified in [614]. First of all,
the D7/D7 interaction potential due to flux can be made flat enough for
inflation, evading the well-known difficulty [515] of achieving a sufficiently
flat Coulomb interaction within an unwarped compact space. Of course, as
in warped D-brane inflation [41], the Coulomb potential is only a small part
of the final story: one must compute the moduli-stabilizing potential VF (φ)
— which generically contributes ∆η & 1 — and determine whether it spoils
inflation. Moduli stabilization in the type IIB orientifold (and F-theory)
context is comparatively well understood, so detailed study of the moduli
potential is possible. Careful investigations of this issue appear in [614,615],
but the issue is not yet settled.

The second notable feature of fluxbrane inflation is that the range of
the canonically-normalized inflaton corresponding to a wrapped D7-brane
can be much larger than in D3-brane inflation, as first recognized in [676,
677]. Moreover, the D-term potential is readily adjusted to avoid cosmic
string constraints, by arranging for a hierarchy in the stabilized values of
the Kähler moduli [614].

A fundamental challenge in fluxbrane inflation is to determine whether
there might be an approximate shift symmetry protecting the potential for
D7-brane motion. At first sight this appears implausible, because generic
choices of three-form flux lift the D7-brane moduli, giving large supersym-
metric masses to the D7-brane scalars.26 On the other hand, Appendix E of
[614] gives a plausibility argument for the existence of fluxes that stabilize
all closed string moduli while leaving D7-brane flat directions, at least at the
level of the classical flux superpotential. It then remains to be shown that
perturbative (gs and α′) corrections to K, and nonperturbative contribu-
tions to W , respect this approximate symmetry. This is an open question:
Euclidean D3-branes carrying worldvolume flux may introduce a D7-brane
potential [615] (cf. [700]), and there are intricate interactions with the sta-
bilization of other moduli, including the dilaton and the Kähler moduli.
Determining the moduli potential in detail will be a crucial step toward
obtaining the phenomenological signatures of the model.

26
D3-branes, in contrast, do enjoy a moduli space in the leading order no-scale com-
pactifications of [295], but at this same order the Kähler moduli are unstabilized. The
challenge described in §5.1 is that the nonperturbative effects that lift the Kähler moduli
inevitably spoil the flatness of the D3-brane potential.
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5.2.3 M5-brane Inflation

Although until now we have discussed D3-branes in type IIB string theory,
closely-related proposals exist in the context of M-theory compactifications
on S1/Z2×X6, with X6 a Calabi-Yau threefold. In this case, it was proposed
that the inflaton could correspond to the position of one or more M5-branes
along the interval, with inflation ending as the M5-branes collide with and
dissolve into the ‘end-of-the-world’ brane. The single-M5-brane scenario
was proposed in [616], while a multiple-brane model appeared in [617].27

A fundamental difficulty in realizing inflation along these lines is the ab-
sence of parametrically controlled constructions of de Sitter vacua in het-
erotic string theory, at weak or at strong coupling. Extensive efforts building
on sophisticated studies of heterotic compactifications have led to scenarios
for stabilization of the geometric28 moduli in anti-de Sitter vacua — see
for example [702]. Even so, de Sitter constructions remain challenging (but
see the recent work [703]). A general obstacle to parametric control, in
both supersymmetric and non-supersymmetric vacua, is that the quantized
three-form flux H3 in heterotic string theory is real, and hence cannot be
adjusted in the same manner as the complex flux G3 of type IIB string
theory.29

Furthermore, the eta problem appears in a predictable manner in models
with moving M5-branes. The Kähler potential for the volume modulus S
of the Calabi-Yau, the length modulus T of the interval, and the position
Y of a single M5-brane includes the term [617]

K ⊃ − ln

(
S + S̄ − (Y + Ȳ )2

T + T̄

)
. (5.88)

This is evidently analogous to the DeWolfe-Giddings Kähler potential for
a D3-brane, and leads to a mass term for the M5-brane position in the
presence of effects stabilizing S. More generally, it is difficult to arrange for
an M5-brane to have a potential suitable for inflation while simultaneously
stabilizing the geometric moduli. It was suggested in [617] that the M5-
brane potential would be satisfactory if the effects of gaugino condensation
and H3 flux could be neglected during inflation, becoming relevant only
later in cosmic history, but it is not clear that such a scenario, if realizable,
can avoid destabilization of the geometric moduli.

27
It was argued in [701] that the tensor-to-scalar ratio r can be large in multi-M5-brane
inflation.

28
Vector bundle moduli are not necessarily stabilized, but are sometimes assumed to be
absent.

29
The difficulties inherent in constructing parametrically controlled heterotic vacua with
H3 were appreciated many years ago [331,332], and have been only partially overcome:
see [703,704].
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5.2.4 Phenomenology

Once moduli stabilization is properly incorporated, inflation in the D3/D7
model remains possible, but necessarily involves fine-tuning. Equipped with
the global form of the nonperturbative superpotential thanks to the world-
sheet calculation of [336], the authors of [613, 687] systematically analyzed
the potential in search of inflationary regions. Two qualitatively different
scenarios were found:

. Saddle-point inflation.—If the condensate responsible for Kähler mod-
uli stabilization is assumed to arise exclusively on a stack of D7-branes
near a single fixed point of T 2/Z2, then after fine-tuning of the pa-
rameters, the potential for a D3-brane at an approximately antipo-
dal location in the torus can develop an unstable saddle point. (For
this scenario, it is essential that the primary source of supersymmetry
breaking is an anti-D3-brane in a warped region.) The resulting model
has r � 1 and ns . 0.95. The characteristic redness of the spectrum
in saddle-point models of this form is discussed in [705].

. Inflection point inflation.—If the dominant force on the D3-brane
comes from interactions with supersymmetry-breaking fluxes on a D7-
brane, as in [609], then the potential can be fine-tuned to have an
inflationary inflection point, with phenomenology broadly similar to
that described in §5.1.6. The potential takes the form (5.85), incor-
porating a Coleman-Weinberg term, as well as quadratic and quartic
terms from moduli stabilization. When the quartic terms are signifi-
cant, the fine-tuning for inflation is extreme, and was argued in [687]

to be at the level of one part in 106. On the other hand, [613] exhibit
parameter ranges in which the moduli contribution is approximately
quadratic and the fine-tuning is milder.

The kinematical field range ∆φ of the canonically-normalized inflaton in
D3/D7 inflation can be super-Planckian, ∆φ > Mpl, if the T 2/Z2 is highly
anisotropic [613]. For a rectangular torus with side lengths L1 and L2, we
have

Mpl ∝
√

Vol(K3)L1L2 , (5.89)

while the field range along the side of length L1 has the parametric depen-
dence

∆φ1 ∝
√
L1/L2 . (5.90)

In [613], it was argued that one can take L1/L2 to be large enough so
that ∆φ1 > Mpl, without compromising computability. This fact is con-
sistent with the general arguments made in §4.3, where anisotropy of the
compactification was the only plausible route to a parametrically controlled
super-Planckian field range for a D-brane. Even so, this observation has not
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led to a full-fledged inflationary scenario with large tensor-to-scalar ratio r,
because of the difficulty of arranging that the potential remains flat over a
distance ∆φ > Mpl.

Cosmic strings in models of D-term inflation have been a subject of much
discussion — see [611, 613] for summaries with original references. In early
versions of the D3/D7 model, long-lived cosmic strings were thought to be
present in problematic numbers, in conflict with upper limits from mea-
surements of the CMB temperature power spectrum. This problem has
been avoided in two ways: first, in extensions of the scenario with addi-
tional charged fields [611, 706], the vacuum manifold is simply connected
and the resulting cosmic strings are ‘semilocal’, i.e. non-topological, leading
to weaker constraints. Second, it was recognized in [613] that contributions
to the inflaton potential from moduli stabilization introduce an additional
parameter, allowing separation of the amplitude of inflationary density per-
turbations from the density perturbations due to cosmic strings.

The signatures of fluxbrane inflation are broadly similar to those of D3/D7
inflation, although as noted above the observational constraints from cosmic
strings are readily satisfied through hierarchical stabilization of the Kähler
moduli. Detailed statements, for example about the spectral index, will
have to await a complete computation of the moduli potential.

The phenomenology of M5-brane inflation is more difficult to characterize,
because it depends on presently-unknown properties of the moduli potential,
as well as on the intricacies of the M5-brane collision with the end-of-the-
world brane. We will leave the signatures of this scenario as a question for
the future.

5.3 Inflating with Relativistic Branes

As we have learned in the previous two sections, inflation in systems driven
by slowly moving D-branes suffers from the eta problem. In [38], Silverstein
and Tong observed in that this problem may be alleviated if the D-branes
move relativistically. The model relies on the non-trivial structure of the
DBI action for the D-branes and is called DBI inflation. In this section, we
will explore this idea.30 In §5.3.1, we present the DBI mechanism, followed,
in §5.3.2 and §5.3.3, by explanations of the symmetries that control quantum
corrections. Microphysical constraints arising in the embedding in string
theory are presented in §5.3.4, and the observational signatures of DBI
inflation are summarized in §5.3.5.

30
This section is based mostly on [38,40].
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5.3.1 Dirac-Born-Infeld Inflation

We begin with the same system as in §5.1: a spacetime-filling D3-brane
probing AdS5 × S

5,

ds2 =
( r
L

)2
ηµνdxµdxν +

(L
r

)2(
dr2 + r2dΩ2

S
5

)
, (5.91)

where L4 = 4πgsN(α′)2, with N the total D3-brane charge of the back-
ground. To arrive at a simple model with four-dimensional gravity, we cut
off the AdS space in the infrared and ultraviolet, taking rIR < r < rUV (as
in Randall-Sundrum scenarios [707]). The D3-brane Lagrangian takes the
form

L = −φ
4

λ

(√
1 +

λ

φ4 (∂φ)2 − 1

)
− V (φ) , (5.92)

where φ ≡
√
T3 r and31

λ ≡ T3L
4 =

1

2π2N . (5.93)

The potential V (φ) in (5.92) requires some explanation. In AdS5 × S
5 a

probe D3-brane feels no force, but physical effects associated with the in-
frared and ultraviolet deformations of the spacetime typically generate a
potential for D3-brane motion. Indeed, as we have seen in §5.1, the cutoff
AdS geometry is most naturally viewed as an approximation to a region of
a finite Klebanov-Strassler throat32 that is attached to a flux compactifi-
cation — the IR cutoff at rIR corresponds to the tip of the throat, while
the UV cutoff at rUV corresponds to the remainder of the compactification.
Supersymmetry breaking in the infrared (e.g. by an anti-D3-brane), as well
as supersymmetry breaking and moduli stabilization in the ultraviolet then
lead to a potential for the D3-brane position, as explained in detail in §5.1.2.
Any such effect can be captured by a suitable change to the supergravity
background, cf. eq. (5.29).

The action (5.92) is adapted straightforwardly to more general warped
backgrounds

L = −T (φ)

√1 +
(∂φ)2

T (φ)
− 1

− V (φ) , (5.94)

31
The constant λ is proportional, but not equal, to the standard ’t Hooft coupling in
AdS5 × S

5
, λt ≡ g

2
YMN = 4πgsN .

32
Such a region actually corresponds to a section of AdS5 × T

1,1
, up to logarithmic

corrections, but the angular manifold is immaterial at present.
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where we introduced the warped tension of the brane, T (φ) ≡ T3e
4A(φ). The

precise functional forms of the warp factor e4A(φ) and the potential V (φ)
determine the details of the phenomenology of DBI inflation (see [668,708]).
As a generalization of the AdS background (5.91), we will use Calabi-Yau
cones that approximate finite warped throat regions attached to type IIB
flux compactifications. Although the KS throat provides a rare example of
a warped throat that is smooth in the infrared, here we will also consider
more general warped Calabi-Yau cones, with ten-dimensional line element

ds2 = e2A(r)ηµνdxµdxν + e−2A(r)
(

dr2 + r2dΩ2
X5

)
, (5.95)

where X5 is an arbitrary Einstein manifold. Just as the KS solution can be
approximated by AdS5 × T

1,1 for rIR � r � rUV, up to logarithmic correc-
tions, many solutions of the form (5.95) can be approximated by AdS5×X5:

the warp factor is then33

e−4A(r) ≈ L4

r4 with L4 ≡ 4π4gs

Vol(X5)
N(α′)2 , (5.96)

where Vol(X5) denotes the volume of X5 (in string units). For a throat of
the form (5.95), the range of the canonically-normalized D3-brane position
is given, as in (5.28), by [243]

∆φ

Mpl
≤ 2√

N
, (5.97)

and in particular is independent of X5. We will see in §5.3.5 that if one
manages to achieve a DBI phase, (5.97) provides a stringent upper bound
on the tensor-to-scalar ratio.

The UV model.—We will refer to the UV model as the situation in which
a D3-brane moves into the warped region, i.e. toward small φ, from the
ultraviolet [38,40].

The IR model.—An interesting alternative is the IR model, in which in-
flation occurs as the D3-brane leaves the tip region and moves toward the
ultraviolet end of the throat [711–713]. The initial conditions for the IR
model are very appealing [711]. Suppose that p anti-D3-branes are intro-
duced into a KS throat region. If p . 0.08M , with M the flux quantum
number defined in (5.20), the anti-D3-branes form a metastable configura-
tion at the tip [425]. Over an exponentially long timescale, this state can
decay: the anti-D3-branes annihilate against flux, liberating (M − p) D3-
branes. The observation of [711] is that the D3-brane potential arising from

33
For a generalization of DBI inflation to arbitrary warp factor, assuming an appropriate
potential, see [709,710].
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moduli stabilization may drive some or all of these D3-branes to move out
of the throat region, and during this process a phase of DBI inflation can
occur. A simple model of the radial potential is

V (φ) = V0 −
1

2
βH2φ2 , (5.98)

where V0 is a constant, and in generic configurations,34 −1 . β . 1. The IR
model corresponds to β > 0. For a discussion of obstacles to a computable
realization of the IR model in string theory, see §5.3.4.

Relativistic dynamics.—For a spatially-homogeneous D3-brane, i.e. for φ =
φ(t), it is natural to define a ‘Lorentz factor’, by analogy to relativistic
particle dynamics:

γ ≡

(
1− φ̇2

T (φ)

)−1/2

. (5.99)

The requirement that γ be real enforces a speed limit on the motion of the
probe D3-brane:

φ̇2 < T (φ) . (5.100)

Notice that the bound is independent of the properties of the potential and

becomes stronger in regions of strong warping, where e4A(φ) � 1 and hence
φ̇2 � T3.

In §5.1, we studied non-relativistic D3-brane motion, corresponding to
γ ≈ 1: expanding the square root in (5.6) then led to the two-derivative
action (5.7). DBI inflation operates in the regime of relativistic brane dy-
namics, with γ � 1, where higher-derivative terms in (5.92) cannot be
neglected. Varying (5.92) with respect to the four-dimensional metric gives
the stress-energy tensor sourced by the D3-brane. This corresponds to the
stress-energy of a perfect fluid, with energy density and pressure given by

ρ =
(
γ − 1

)
T + V , (5.101)

P =
(
γ − 1

) T
γ
− V . (5.102)

Coupling to gravity gives the Friedmann equation

3M2
plH

2 =
(
γ − 1

)
T + V (φ) , (5.103)

and the continuity equation

φ̇ = −
2M2

plH
′

γ
, (5.104)

34
Potentials that tend to expel a D3-brane from the infrared are quite common in the
ensemble obtained in [42], but are far more complicated than (5.98), involving all five
angular directions and an array of competing terms (see [240]).
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where H ′ ≡ dH/dφ. Using (5.104) in (5.99), we find

γ =

√
1 +

(2M2
plH

′)2

T
. (5.105)

The Hubble slow-roll parameters are [38]

ε = − Ḣ

H2 =
2M2

pl

γ

(
H ′

H

)2

, (5.106)

η̃ =
ε̇

Hε
=

2M2
pl

γ

[
2

(
H ′

H

)2

− 2
H ′′

H
+
H ′

H

γ′

γ

]
. (5.107)

Notice the factors of γ−1 in both ε and η̃. For large γ, the slow-roll pa-
rameters are therefore suppressed relative to the expectation derived from
the non-relativistic limit. This leads to the intriguing possibility of achiev-
ing inflation even for potentials that naively seem to be too steep to drive
prolonged inflation.

Accelerated expansion occurs if the potential energy dominates over the
kinetic energy. Demanding that V (φ) is the leading term on the right-hand
side of (5.101) gives the condition

V

γT
� 1 . (5.108)

Thus, DBI inflation can occur near the location φ only if the potential is
large in local string units. Next, a defining requirement for a DBI phase is
that the D3-brane is relativistic.35 Using (5.108) in (5.103) and (5.105), we
find

γ2 =
2

3
ε
V

T
� 1 , (5.109)

where ε ≡ 1
2M

2
pl(V

′/V )2. We observe that although (5.109) involves ε and
can plausibly be satisfied by making the potential very steep, the condition
(5.108) is independent of the functional form of the potential. We will see
below that (5.108) presents a serious obstacle in the search for a consistent
embedding in string theory.

Analytical [38, 40] and numerical [668, 708] studies have shown that for
suitable potentials V (φ), the DBI Lagrangian (5.92) can indeed support
an inflationary phase in which the non-trivial kinetic term plays a crucial
role. However, before describing the phenomenology of DBI inflation, one
should first ask whether the DBI Lagrangian (5.92) gives an accurate and
consistent representation of the physics of a relativistic D3-brane. There are

35
In the remainder of this section, we will work to leading order in γ

−1 � 1.
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several important questions: first, do quantum corrections, either in EFT
or from Planck-scale physics, lead to significant changes to the very special
kinetic terms in (5.92)? Second, do potentials V (φ) satisfying the necessary
conditions (5.109) and (5.108) arise naturally, in the same setting where the
kinetic terms take the necessary form? Finally, does backreaction of the
D3-brane energy, which is large when (5.108) holds, modify the background
or the dynamics? We will discuss these issues in turn.

5.3.2 DBI as an EFT

The action in (5.92) may be viewed as an effective theory with cutoff Λ4(φ) ≡
φ4/λ. The relativistic limit corresponds to the limit (∂φ)2 → Λ4. Naively,
this suggests a breakdown of the effective theory and a loss of predictivity.
In particular, one might worry that the form of the DBI action in the ultra-
relativistic limit is unstable to quantum corrections. Moreover, one may ask
whether it is consistent to work to arbitrary order in single derivatives ∂µφ
and yet neglect all terms involving higher derivatives, such as �φ. In this
section, we address both of these concerns.

Quantum corrections.—We will first explain why the action in (5.92) does
not receive large quantum corrections in the ultra-relativistic limit. In par-
ticular, we will show that the DBI action in anti-de Sitter space is uniquely
fixed by the nonlinearly realized conformal symmetries inherited from the
isometries of the background spacetime.36

The isometry group of five-dimensional anti-de Sitter space, SO(2, 4),
contains Poincaré transformations, spacetime dilatations and special con-
formal transformations (SCTs). The D3-brane action is invariant under the
four-dimensional Poincaré subgroup ISO(1, 3) ⊂ SO(2, 4), but some of the
five-dimensional symmetries are only nonlinearly realized. In particular, the
D3-brane position modulus φ transforms nonlinearly under the conformal
symmetries of the AdS spacetime [504]:

dilatation : xµ 7→ x̃µ ≡ (1 + c)xµ ,

φ(x) 7→ φ(x̃) + c , (5.110)

SCTs : xµ 7→ x̃µ ≡ xµ + (b · x)xµ − 1

2

(
x2 +

λ

φ2

)
bµ ,

φ(x) 7→ φ(x̃)
(
1− (b · x)

)
, (5.111)

where c and bµ are infinitesimal transformation parameters. We see that
dilatations and SCTs shift the field value and its gradient, respectively. Af-
ter gauge fixing, these transformations of φ become global symmetries [715],

36
This argument was first made in [504] and further elaborated in [714,715].
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which constrain the form of the action. First, we note that the unbroken
four-dimensional Lorentz symmetry and the nonlinearly realized dilatation
symmetry (5.110) imply

S =

∫
d4x φ4f

(
(∂φ)2/φ4

)
+ · · · , (5.112)

where f is an arbitrary function and the ellipses denote corrections involving
at least two derivatives acting on φ. In order for this action to be invariant
under the SCTs (5.111), the function f must take the form [504]

f(z) = α
[√

1 + λ z − β
]
, (5.113)

where z is shorthand for (∂φ)2/φ4. The coefficients α and β can be fixed

using supersymmetry:37 first, recall that in the absence of a supersymmetry-
breaking potential, a D3-brane feels no force in an AdS background (it is

BPS). This implies that β = 1. Second, the kinetic term (∂φ)2 is not
renormalized in the supersymmetric limit. This fixes the normalization,
α = −λ−1. Purely on the basis of symmetries, we have therefore arrived
at the DBI action in the form (5.92), implying that the action is protected
by symmetry. Moreover, the argument is nonperturbative and so applies to
all orders in the quantum theory. This is the famous non-renormalization
theorem of the DBI action: quantum corrections can only arise at higher
order in derivatives. Similar non-renormalization arguments apply to the
generalized backgrounds (5.94).

Higher-derivative corrections.—But what about the higher-derivative terms?
In the limit (∂φ)2 → Λ4, the full square-root structure of the kinetic term
is important and the dynamics cannot be described by the first few or-
ders in an expansion in (∂φ)2/Λ4. This is somewhat unconventional from
a low-energy effective field theory point of view, so it deserves a bit more
discussion. For example, is it really consistent to go to all orders in (∂φ)2,
but ignore all operators with higher derivatives such as those involving �φ?
Notice that we do the same when we study a point particle in the ultra-
relativistic limit, ẋ2 → 1. In that case, we also trust the full square-root

action, L = −m2
√

1− ẋ2, but neglect higher time derivatives such as terms
involving the acceleration ẍ. The justification is that the equations of mo-
tion enforce all higher derivatives to vanish in the ultra-relativistic limit,
i.e. as ẋ2 → 1. In the absence of warping, an identical argument holds for
the DBI action, i.e. the DBI action is valid for arbitrarily high velocities
φ̇, as long as the proper acceleration is smaller than the string scale. One

37
Here, we assume that supersymmetry is only broken spontaneously during inflation, so
it still constrains the form of the action.
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expects the same conclusion to hold in a warped background, provided that
the warp factor changes sufficiently slowly. As shown in [38], this is indeed
the case in the AdS background as long as λ � 1, which is precisely the
limit in which the supergravity description is a good approximation.

5.3.3 DBI as a CFT

The AdS/CFT correspondence [504, 716, 717] (for a review, see [290]) pro-
vides an alternative viewpoint on the inflaton action. To describe this, we
will briefly sketch the essential elements of the correspondence in its sim-
plest incarnation, which is the duality between N = 4 super-Yang-Mills
(SYM) theory with gauge group U(N), in flat four-dimensional spacetime,

and type IIB string theory in AdS5 × S
5 [504].

The essential idea of the correspondence is that there are two equiva-
lent descriptions of the region near to a stack of N D3-branes in flat ten-
dimensional spacetime: the gauge theory description involving open strings
on the D-branes, and the gravitational description involving the curved
spacetime sourced by the branes. Near a stack of N D3-branes, the back-
ground takes the AdS5 × S

5 form (5.91). The asymptotic symmetry group
of this spacetime (at the boundary, r → ∞) is SO(4, 2) × SO(6). We rec-
ognize SO(4, 2) as the conformal group in four spacetime dimensions. Re-
calling that N = 4 super-Yang-Mills theory is a conformal theory and has
an R-symmetry group SO(6) ' SU(4), one finds a perfect match between
the global symmetries of the gauge theory and the asymptotic symmetries
of the gravitational solution.

For the present purpose, the relevant application of the duality is to the
Coulomb branch38 of N = 4 SYM. This is the moduli space corresponding
to the positions of D3-branes along the radial coordinate r of AdS5, and in
the five angles on S5. The D3-brane positions are parameterized by scalars
that transform in the adjoint of SU(N). Let us give a vev to one eigenvalue
φ of the adjoint scalar. This induces the symmetry breaking U(N) →
U(N − 1) × U(1). (In the bulk this corresponds to separating one of the
branes from the stack.) Modes Ψ that are charged under the U(1) symmetry
obtain masses proportional to φ. (In the bulk picture these correspond to the
masses of strings stretching from the mobile brane to the stack.) Integrating
out the fields Ψ generates higher-dimension operators suppressed by powers

38
The terminology is arguably more appropriate to N = 2 theories, where the Coulomb
branch is distinguished from the Higgs branch because the former is parameterized by
scalars in vector multiplets and the latter is parameterized by scalars in hypermultiplets.
The important point is just that motion on the Coulomb branch does not change the
rank of the gauge group, but can change the rank of the non-Abelian part of the gauge
group, i.e. U(N)→ U(N − 1)×U(1), while motion on the Higgs branch can change the
total rank.
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of φ itself. The vev of φ can be extremely small compared to the string
scale and, thus, higher-dimension contributions are more important in the
DBI model than one might naively expect. The first correction is protected
by supersymmetry and takes the form λ/φ4(∂φ)4. The CFT is strongly
coupled, so all higher-order terms are important and need to be resummed.
This is difficult to do in the field theory, but the AdS/CFT correspondence
tells us that the answer will be the DBI action (5.92).

5.3.4 Microphysical Constraints

In §5.3.2, we have seen that DBI inflation is natural in the bottom-up sense,
in that loop corrections in the EFT are under control. We now turn to a
discussion of top-down naturalness, including the question of whether DBI
inflation arises in a consistent string compactification. For concretness, we
will focus our discussion on relativistic branes in warped Calabi-Yau cones,
cf. eq. (5.95).39

. Achieving a steep potential.—Slow-roll inflation requires a potential
that is flat in Planck units, with η � 1, whereas DBI inflation requires
a potential that is steep enough to drive the moving D-brane to have
large kinetic energy, i.e. to obey (5.109). These two options are not
exhaustive: a potential can easily be too steep for slow-roll inflation
and yet too gentle for DBI inflation.

To understand whether (5.109) is readily satisfied for D3-branes in
Calabi-Yau cones, we can make use of the potential derived in [42],
which describes the forces on a D3-brane in a KS throat attached
to a KKLT compactification (see §5.1). This potential incorporates
the Coulomb interaction with an anti-D3-brane, as well as the full
spectrum of contributions from moduli stabilization. In a Monte Carlo
study [240] based on [42], DBI inflation did not occur by chance: in

the full set of more than 107 trials, γ − 1 never exceeded 10−8. The
reason for this finding is that the D3-brane potential from moduli
stabilization is small in local string units, V (φ) � T (φ), and is not
parametrically steep, so that ε . 1. It follows from (5.109) that γ −
1 � 1. While it is plausible that somewhat larger Lorentz factors
could arise very near the tip of the throat, which was not directly
studied in [240], the problem of backreaction becomes severe in this
regime, as discussed below. The earlier analysis [708] worked with a
simpler model of the potential, but arrived at compatible conclusions:

39
Identifying an alternative setting for DBI inflation in a string compactification would
be very interesting, and would undoubtedly lead to modified microphysical constraints,
but we are not aware of any complete example.
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in realizations consistent with the field range bound (5.97) of [243], and
with observational constraints on ns, the Lorentz factor was bounded
by γ − 1 < 10−7.

A remark about the Coulomb potential is relevant here. The poten-
tial VC(φ) given in (5.30) applies to a KS throat (in the AdS5 × T

1,1

approximation). For a cone over X5, one finds instead

VC(φ) = D0

(
1− π

4Vol(X5)

D0

φ4

)
. (5.114)

For small Vol(X5) — for example, if X5 = S5/Zp with p � 1 — the
Coulomb force is increased in strength: heuristically, the field lines
are collimated along a narrow throat. In extreme cases, this increased
force can compel the D3-brane to be relativistic: [708] found that a

DBI phase arose for Vol(X5) . 10−17. However, it is highly implau-
sible that such a throat can be embedded in a consistent compacti-
fication, and moreover, even if this issue is overlooked, the examples
of [708] are incompatible either with observations or with the micro-
physical bound of [243].

. Backreaction.—The requirement (5.108) for accelerated expansion,
V (φ) � γT (φ), implies that the D3-brane potential energy must
substantially exceed the local string scale. This carries the risk that
whatever physics generates the potential will simultaneously distort
the background supergravity solution (i.e. the AdS geometry (5.91) or
a related warped throat geometry). We will offer two related perspec-
tives on this problem:

First, we present an observation due to Maldacena (also described in
[23]). Suppose that the D3-brane potential arises from coupling the
warped throat sector to a hidden sector that breaks supersymmetry,
and take the potential to be quadratic, V (φ) = 1

2m
2φ2, so that

V (φ)

γT (φ)
=

λ

2γ

m2

φ2 . (5.115)

Consider the effect of hidden sector supersymmetry breaking on the
Kaluza-Klein spectrum of the throat. Barring an efficient sequestering
mechanism, the Kaluza-Klein modes will acquire masses MKK ∼ m.
Since the lightest Kaluza-Klein modes in an undistorted throat have

MKK ∼
1

L
eAIR ∼ rIR

L2 , (5.116)

supersymmetry breaking will typically cut off the throat at

rIR ∼ mL
2 . (5.117)



232 5 Examples of String Inflation

Thus, the canonical field φ parameterizing D3-brane motion obeys

φ2 & φ2
IR ∼ T3(mL2)2 = λm2 . (5.118)

Combining (5.115) and (5.118), we find that

V (φ)

γT (φ)
.

1

2γ
� 1 . (5.119)

We conclude that unless the source of supersymmetry breaking couples
much more strongly to the D3-brane than to the Kaluza-Klein modes
of the background, the throat is truncated in the infrared, excluding
the region where DBI inflation could occur.

One can argue for the cutoff (5.117) in a slightly different way, begin-
ning with the potential for a D3-brane probe of a general supergravity
background. From (5.29), we have V (φ) = T3Φ−, where the scalar Φ−,
defined in (5.52), involves the warp factor and the four-form potential.
Thus,

V (φ)

γT (φ)
=

1

γ

e4A − α
e4A

. (5.120)

DBI inflation therefore requires

|α| � γe4A . (5.121)

In the noncompact, supersymmetric Klebanov-Strassler background,
e4A = α, i.e. Φ− = 0, but in a finite warped throat, supersymmetry
breaking and moduli stabilization in the bulk source perturbations
of Φ− and of G− [42, 317] — see (5.52). In turn, these perturbations
source corrections to the metric. The condition (5.121) requires strong
deviations from the ISD background, which lead to correspondingly
large corrections to the metric that eventually terminate the throat in
the infrared. One can then show [534, 718] that V (φ) . T (φ) in the
accessible region, in agreement with (5.119).

. Super-Planckian fields.—Another important microphysical difficulty
is that in many simple examples (e.g. for a quadratic potential) a field
range ∆φ of order Mpl is necessary [40]. In view of (5.97), this is at
best marginally possible, but only if N . 4: at large N , ∆φ � Mpl.
On the other hand, the requirement of a nearly-Planckian range in DBI
inflation is a common finding, not a theorem, and it may be possible
to find a compactification in which the potential satisfies (5.109) and
(5.108) without violating the immutable bound (5.97).

. Bremsstrahlung.—A further consistency requirement is that the speed
limit felt by the D3-brane is dictated by the non-trivial kinetic term,
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not by other modes of dissipation.40 Because the D3-brane is nec-
essarily relativistic, and is accelerated by the potential, it will emit
gravitational and scalar synchrotron radiation into the compact di-
mensions. This process was analyzed in [719], where it was shown
that losses due to bremsstrahlung dominate the dynamics in a signifi-
cant fraction of parameter space — including the regime of weak string
coupling and large volume — but can be neglected in the remainder.

. Excitation of massive strings.—A very significant obstacle to predic-
tivity in the IR model is that in the initial stage of expansion, the
Hubble scale exceeds the local string tension, and massive open strings
can be excited [711–713] (see the summary in [720]). One can try
to estimate the corresponding perturbations [712, 713], but a reliable
computation is inaccessible with current tools. This problem cannot
be relegated to unobservably large angular scales: the maximum num-
ber of e-folds NEFT

e that can be produced after the EFT computation
of the perturbations becomes valid is [712]

NEFT

e ≈ N1/8

√
β

, (5.122)

where as usual N is the D3-brane charge of the throat and β was
defined in (5.98). Unless NEFT

e � 60, the observed CMB perturba-
tions will be dictated by uncomputable fluctuations of massive strings.
While this is a fascinating possibility that escapes the confines of the
effective field theory of a finite number of fields, no meaningful pre-
dictions are possible at present. For generic potentials with β ∼ 1,
solving the horizon problem without encountering uncomputable per-
turbations requires N & 1014; moreover, because βNe � 1 (with Ne

the number of e-folds) is required for a consistent DBI phase [720], we

must have N & 107 regardless of the value of β. D3-brane charges of
this magnitude are difficult to realize in compact spaces.

5.3.5 Phenomenology

Despite the many apparent obstacles to realizing DBI inflation in a consis-
tent string compactification, the DBI scenario is a leading example of a field-
theoretic inflationary mechanism that is underpinned by the symmetries of
an ultraviolet theory. Many authors have deferred the question of explicit
ultraviolet completion, and directly investigated the rich phenomenology

40
While alternative means of shedding energy could give rise to interesting cosmologi-
cal scenarios, the dynamics would not be governed by (5.92) alone, and much further
analysis would be required. See §5.6 for several examples of dissipative models.
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that follows from (5.94) — or a generalization, e.g. with additional fields —
in the regime where γ � 1. We will briefly sketch the signatures of DBI
inflation that emerge from this approach.

DBI inflation is a special case of so-called P (X) theories (see §2.2.3) whose
action is given by

S =

∫
d4x
√
−g

[
M2

pl

2
R+ P (X,φ)

]
, (5.123)

where P (X,φ) is an arbitrary function of X ≡ −1
2(∂φ)2 and φ. DBI inflation

is recovered for

P (X,φ) = −T (φ)

(√
1− 2X

T (φ)
− 1

)
− V (φ) . (5.124)

The phenomenology of P (X) theories has been explored in [121].

. Scalar modes.—The theory for the fluctuations in P (X) theories maps
to the effective Goldstone action of §1.2.1 with sound speed given by

c2
s =

P,X
P,X + 2XP,XX

=
1

γ2(φ)
. (5.125)

The scalar power spectrum therefore follows from (1.28). Substituting
(5.124) into (5.125), we get

c2
s = 1− 2X

T (φ)
. (5.126)

We see that a non-trivial warp factor can lead to a field dependence
of the sound speed, cs(φ). On CMB scales, the scale-invariance of
the spectrum constrains the variation of the sound speed. On smaller
scales, a significant evolution of the spectrum and hence of the sound
speed is still allowed. Large-scale structure constraints on the running
of the spectrum were analyzed in [721].

. Tensor modes.—The tensor-to-scalar ratio in P (X) theories is given
by

r = 16csε , (5.127)

and a generalized Lyth bound can be derived [243]:

∆φ

Mpl
=

∫ N?

0

√
r(N)

8

1

csP,X
dN . (5.128)
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We notice a non-trivial generalization of the slow-roll result (2.101)
through the factor csP,X . However, the Lagrangian of DBI inflation
(5.124) is algebraically special, satisfying

csP,X = 1 . (5.129)

The correspondence between ∆φ and r is therefore the same as for
slow-roll inflation. The geometric field range bound (5.28) therefore

also forbids large tensors in DBI inflation [243].41

. Equilateral non-Gaussianity.—The cubic Goldstone action takes the
form of (1.71), with

A = c2
s

(
−1− 2

3

XP,XXX
P,XX

)
. (5.130)

Substituting (5.124) into (5.130), we get42

A = −1 . (5.131)

Mapped onto the equilateral and orthogonal templates (see §1.4.2),
the size of the bispectrum for P (X) theories is

f equil
NL =

(
− 0.27 + 0.08A

) 1− c2
s

c2
s

, (5.132)

fortho
NL =

(
+ 0.02 + 0.02A

) 1− c2
s

c2
s

. (5.133)

For the DBI Lagrangian, the orthogonal component is small and the
amplitude of equilateral non-Gaussianity becomes

f equil
NL = − 35

108

(
1

c2
s

− 1

)
≈ − 35

108
γ2 , (5.134)

where in the second equality we have assumed the relativistic limit.

The Planck constraint, −117 < f equil
NL < 33 (68% C.L.) [10], implies

γ . 24 (95% C.L.) (5.135)

41
The bound r < 10

−7
/Vol(X5) can be derived by combining (5.28) with the assumption

that f
equil
NL & 1. In other words, DBI inflation in a Calabi-Yau cone cannot have both

detectable non-Gaussianity and detectable tensors [722].
42

This result is independent of the potential and the warp factor, unlike other observables
such as ns.
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. Joint constraints for a quadratic potential.—In the important special
case where V (φ) = 1

2m
2φ2, the above results can be combined to

place strong limits on the model parameters [243] (see also [722]). For
a quadratic potential, one has [38]

2

(
Mpl

φ

)2

= εγ =
1

16
rγ2 , (5.136)

where in the final equality we used (5.125) and (5.127). From (5.134),
one then finds [243]

2

(
Mpl

φ

)2

=
27

140
r
∣∣f equil

NL

∣∣ . (5.137)

Incorporating the geometric bound (5.97), we find the upper limit

N <
27

70
r
∣∣f equil

NL

∣∣ . 9 (95% C.L.) . (5.138)

This small value of N is in tension with the required amplitude of the
scalar perturbations: using (5.137) in (1.28) leads to [243]

∆2
R(k?) =

(
32

3π

)2 3

r4(f equil
NL )2

Vol(X5)

N
& 15

Vol(X5)

N
, (5.139)

where the inequality uses the Planck upper limits on r and f equil
NL .

Because ∆2
R(k?) = 2.2× 10−9, we conclude that

N & 7× 109 Vol(X5) . (5.140)

Quadratic DBI inflation in a Calabi-Yau cone is therefore virtually
excluded. One would need an extremely small angular manifold X5,
e.g. by orbifolding by a large discrete group, while also keeping N . 9,
which almost certainly renders the supergravity approximation in-
valid.

. Multi-field effects.—So far, our discussion of DBI inflation has been re-
stricted to purely radial evolution of the D3-brane, but in general the
potential will depend on the angular coordinates. Including these ef-
fects leads to multi-field models of DBI inflation,43 whose phenomenol-
ogy has been studied comprehensively in [724–730]. When one or
more of the angular fields are light during inflation, their quantum
fluctuations lead to entropy perturbations, which propagate with the
same speed of sound cs as the adiabatic mode. In the limit cs � 1,

43
For an analysis of DBI inflation with N D3-branes, see [723].
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the amplitude of the entropy perturbations is boosted relative to the
adiabatic fluctuations. The amplitude of the bispectrum can be sup-
pressed,

f equil
NL ≈ − 35

108
γ2 cos2 Θ , (5.141)

where the angle Θ parameterizes how much of the final curvature
perturbation arises from entropy perturbations,44 with Θ = 0 if there
is no transfer of entropy modes and Θ = π/2 if the final curvature
perturbation is mostly of entropic origin. This can relax the constraint
(5.135) on γ.

5.4 Inflating with Axions

String axions are promising inflaton candidates. Equipped with a continu-
ous shift symmetry to all orders in perturbation theory, the axion potential
is stable against radiative corrections. Weakly breaking the symmetry—
either spontaneously by nonperturbative effects, or explicitly through the
presence of branes—can lead to inflationary theories that are natural in
the bottom-up sense of §2.1.2. In natural inflation [35, 733], the role of the
inflaton is played by a single axion φ with the Lagrangian (3.77),

L(φ) = −1

2
(∂φ)2 − Λ4

[
1− cos

(
φ

f

)]
+ · · · , (5.142)

where f is the axion decay constant, and Λ is a dynamically-generated
scale. To facilitate comparison with the literature we have redefined the
decay constant by a factor of 2π compared to §3.2.3, with fhere = 2πfthere.

For sufficiently large values of f/Mpl, the model (5.142) gives rise to pro-
longed inflation, and for f & 10Mpl, the spectral index ns is compatible

with the constraints from the Planck mission.45 However, as we have re-
viewed in §3.2.3, super-Planckian decay constants have not been obtained
to date in a controlled string compactification. Natural inflation is therefore
an interesting example of the importance of explicit ultraviolet completion.
Although inflation with a single axion and super-Planckian decay constant
is natural from the bottom-up perspective, it does not seem to be natural
from the top down, unless additional structures are present. In the rest of
this section, we will discuss a few of the leading proposals for what these
extra structures might be.

44
The transfer from entropy perturbations to curvature perturbations can depend on
the physics of reheating. Investigations of the distinctive features of reheating in DBI
inflation include [559,731,732].

45
The constraint on the decay constant depends on the choice of prior. The result we
have cited here is for a uniform prior on log(f) [9].
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5.4.1 Inflation with Multiple Axions

One strategy is to extend (5.142) by introducing one or more additional
axions [530, 734], each with a sub-Planckian decay constant, and arrange
that a combination of these fields effectively enjoys a super-Planckian decay
constant. We will describe two mechanisms: ‘alignment’ of two axions [734],
and assisted inflation [531] with N � 1 axions [530].

Two axions

Consider two axion fields φ1 and φ2 with decay constants f1 and f2, re-
spectively. Suppose that these axions couple to linear combinations of two
confining non-Abelian gauge groups a and b, with the following Lagrangian
density [734]

L ⊃
2∑
i=1

φi
fi

(
cia

32π2 Tr
[
F (a) ∧ F (a)

]
+

cib

32π2 Tr
[
F (b) ∧ F (b)

])
, (5.143)

where the coefficients cia = {c1a, c2a} and cib = {c1b, c2b} are dimensionless.
In terms of the dynamical scales Λa and Λb of the two gauge groups, the
potential for the axions is

V = Λ4
a

[
1− cos

(
c1a

φ1

f1
+ c2a

φ2

f2

)]
+ Λ4

b

[
1− cos

(
c1b

φ1

f1
+ c2b

φ2

f2

)]
.

(5.144)
The central observation of [734] is that if

c1a

c2a
=
c1b

c2b
, (5.145)

then one linear combination ξ of the axions is unlifted, and effectively has
infinite range.46 When (5.145) is approximately satisfied, ξ has a decay
constant fξ that can be much larger than f1 and f2. In particular, for
sufficiently precise alignment, one can have fξ > Mpl with f1, f2 � Mpl.

For the simple case where c1a = c1b = 1 and Λ4
a � Λ4

b , one finds

fξ =

(
c2

2af
2
1 + f2

2

)1/2∣∣c2b − c2a

∣∣ , with ξ =
φ2f2 − c2aφ1f1

c2
2af

2
1 + f2

2

. (5.146)

The relation (5.145) is plausibly radiatively stable. However, one should
bear in mind that it only ensures a flat direction if we assume that the par-
ticular linear combination of axions ξ is unlifted by the leading instanton

46
A related mechanism is used in racetrack constructions—see §5.5.1.
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effects in the gauge groups given in (5.143). Whether other effects lift the
flat direction is an important question: in particular, it would be valuable
to construct an explicit example in a stabilized string compactification and
ascertain whether any nonperturbative effects associated with moduli stabi-
lization, which might be unrelated to the confining gauge groups in (5.143),
spoil the flatness of the inflaton direction. (For a closely related idea, see
[254], as discussed in §5.4.2 below.)

Many axions: N-flation

A different idea for axion inflation takes advantage of the fact that string
compactifications often come with large numbers of axion fields: perhaps
the collective excitations of hundreds of axions, each with a sub-Planckian
decay constant, can yield an effective decay constant of super-Planckian
size.47 This idea is called N-flation [530] and is based on an earlier proposal

of assisted inflation [531].48

Consider N axions whose Lagrangian is simply N copies of (5.142),

L =
N∑
i=1

[
−1

2
(∂φi)

2 − Vi(φi)
]
, (5.147)

where Vi(φi) ≡ Λ4
i

[
1−cos(φi/fi)

]
. We have assumed that cross-couplings in

the axion potential are negligible, as discussed below. Each individual axion
therefore experiences a force only from its own potential Vi, but Hubble
friction from the sum of all potentials

∑
i Vi,

φ̈i + 3Hφ̇i = −∂iVi , where 3M2
plH

2 ≈
N∑
i=1

Vi . (5.148)

Compared to the single axion case, each individual axion feels enhanced
Hubble friction, suggesting that one might be able to achieve a friction-
dominated situation even without any axion being at a super-Planckian
distance from the minimum.

Let us begin by considering the simple case in which all the axions have
equal masses mi = Λ2

i /fi ≡ m. Moreover, let us consider small displace-

ments from the minimum, φi � fi. The collective excitation Φ2 ≡
∑

i φ
2
i

then has the potential

V (Φ) =
1

2
m2Φ2 . (5.149)

47
This section is based on [483,530,735].

48
A different approach to assisted inflation in string theory is M-flation [736,737].
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Successful inflation requires Φ > Mpl, but this does not mean that the
individual axion vevs φi have to be large: for sufficiently large N , the indi-
vidual displacements can be sub-Planckian, φi ≈ Φ/

√
N < Mpl. In typical

examples the required number of axions is N & O(103) [530].
One might object that quantum gravity constraints should restrict the

range of Φ to be sub-Planckian, just like the ranges of the φi, because
in moving from individual displacements φi to the collective field Φ, one
has merely changed from Cartesian to spherical polar coordinates, which
should be immaterial unless some physical effect is sensitive to the change
of coordinates. This concern is unfounded: the N discrete axionic shift
symmetries φi 7→ φi + 2πfi that persist at the nonperturbative level do in
fact define a preferred coordinate system, the Cartesian one. (After the
periodic identifications, the axion field space is an N -torus, with individual
radii fi < Mpl.) In string theory constructions (see below), only the fi are
directly constrained.

A much graver concern is that loops of the N light axion fields renormalize
the Planck mass: on general grounds one expects [530]49

δM2
pl ∼

N

16π2 Λ2
UV , (5.150)

where ΛUV is the ultraviolet cutoff. Because the collective field displace-
ment scales as Φ ∝

√
Nφ, with φ the mean of the individual displace-

ments, while the correction to the Planck mass in (5.150) also scales as√
N , we conclude that one cannot obtain a parametrically super-Planckian

displacement purely by working at large N . Instead, one must grapple with
the ultraviolet-sensitive details, e.g. by refining the field-theoretic estimate
(5.150) through a computation in string theory. To learn more, we now turn
to a string theory realization of N-flation [483,530,735].

N-flation in type IIB string theory.—As an explicit realization of N-flation in
string theory, we consider a KKLT compactification in which h1,1

+ ≡ N � 1
complexified Kähler moduli Ti are stabilized by nonperturbative effects. As
explained in §3.2, the associated axions ϑi, i = 1, . . . , N , correspond to the
integrals of C4 over orientifold-even four-cycles, cf. eq. (3.69). For simplicity

of presentation, we take h1,1
− = 0, so that by (3.67), Ti = τi + iϑi, with τi a

real four-cycle volume.50

49
A counterpoint to this finding appears in [738], where it is argued that the portion of
the eta problem arising from loops of light fields is actually suppressed at large N .

50
Another interesting and rather explicit construction with similar qualitative features
works with h

1,1
− ≡ N � 1, taking the inflationary axions to arise from the dimensional

reduction of the R-R two-form potential, cf. eq. (3.62) [735]. One advantage of the
model of [735] is that it is comparatively straightforward to arrange that the Kähler
moduli masses are larger than the inflaton mass.
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The superpotential takes the form (3.113),

W = W0 +
N∑
i=1

Aie
−aiTi , (5.151)

where ai = 2π (for Euclidean D3-branes) or ai = 2π/Ni (for gaugino con-
densation in a gauge group with dual Coxeter number Ni). Note that the
axions ϑi appear in the phase of each nonperturbative term. In view of
(3.93), the Kähler potential has a complicated dependence on the Kähler
moduli Ti:

K = −2 ln
[
V(Ti, T̄i)

]
, (5.152)

where V is the volume of the compact Calabi-Yau manifold. The N = 1
supergravity theory defined by (5.151) and (5.152) has N light chiral super-

fields,51 and generically admits supersymmetric AdS4 solutions. Introduc-
ing an anti-D3-brane following [356], one can find a solution with a small
positive cosmological constant. The anti-D3-brane potential energy has neg-
ligible dependence on the axions ϑi, and will be treated as a constant for
the purpose of axion inflation.

We now expand around the minimum, in small fluctuations of the (di-
mensionless) axions ϑi:

L = −1

2
M2

plKij∂µϑ
i∂µϑj − 1

2
Mijϑ

iϑj + · · · . (5.153)

The mass matrix Mij is determined by the superpotential (5.151), the
Kähler potential (5.152) and their derivatives—see [483] for the explicit
expression—and depends on the vevs of the (real) Kähler moduli τi. In a
generic basis, the axions will be cross-coupled both in their kinetic terms
and in the potential: neither Kij nor Mij will be diagonal. Because of the

axion shift symmetry, the Kähler metric Kij is independent of the ϑi, up
to nonperturbatively small corrections. One can always perform a change
of coordinates to set Kij 7→ δij , which rotates and rescales the axion fields.
Denoting the new, canonically-normalized axion fields by φi and performing
a further orthogonal rotation to diagonalize the mass matrix, we arrive at

L =

N∑
i=1

[
−1

2
(∂φi)

2 − 1

2
m2
i φ

2
i

]
. (5.154)

The masses mi of the decoupled fields φi have a rather complicated depen-
dence on W0,Ai, τi. Fortunately, at large N , random matrix theory yields

51
At the energy scales of interest, the dilaton and the complex structure moduli are
already stabilized, and W0 and Ai are constants.
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a simple expression for the axion mass spectrum [483]. The mass matrix
belongs to the Wishart ensemble described in §3.5.3, and the mass spectrum
is given by the Marčenko-Pastur law (3.153),

ρ(m2) =
1

2πNσ2m2

√
(η+ −m

2)(m2 − η−) . (5.155)

Here, η± ≡ Nσ
2(1±

√
P/N )2, where, as above, N = h1,1

+ , while P = h2,1
− is

the number of complex structure moduli, and σ controls the typical scale of
terms in the moduli potential—see [483] for a detailed explanation.52 The
eigenvalue spectrum (5.155) is shown in fig. 5.11.

21 3 40

Fig. 5.11. The eigenvalue spectrum of a Wishart matrix, given by the Marčenko-
Pastur law (5.155) (figure adapted from [48]). The spectrum of axion masses around
a KKLT minimum is well-described by this law when N ≡ h1,1

+ � 1. The curve
is the analytic result, while the histogram is the result of simulations, both for
N = P = 200.

Because the axion decay constants fi are proportional to the eigenvalues
of the Kähler metric Kij , the distribution of decay constants in a class of
string compactifications could be determined in much the same way that
the distribution of masses mi was obtained above.

Microscopic challenges.—Two significant issues make it difficult to realize
N-flation in a stabilized string compactification.

52
One further assumption implicit in obtaining (5.155) in a KKLT compactification is
that the gravitino mass m3/2 is small compared to the scale of supersymmetric masses:
see [48,476] for discussions of how this could be achieved.
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. Light Kähler moduli.—One obstacle faced by any realization of N-
flation in a string compactification with spontaneously broken super-
symmetry is that the axions are partnered with real scalar fields, by
N = 1 supersymmetry: in the KKLT example given above, these are
the four-cycle volumes τi. Arranging that the real moduli have masses
above the Hubble scale, m & H, and hence are (barely) frozen during
inflation, is challenging [739]. Highly contrived configurations, e.g. in-
volving many racetrack terms in the superpotential, could in principle
give large masses to these fields (see the discussion in [48]), but no ex-
amples have been constructed. If supersymmetry is not spontaneously
broken during inflation, but is instead broken at a higher scale, then
the real partners of the axions can be decoupled, but control of the
potential becomes more difficult [740].

. Renormalization of the Planck mass.—The problem of the renormal-
ization of the Planck mass (5.150) is not automatically alleviated in
string theory, but it takes a more precise form, as we now explain in the
example of a KKLT realization of N-flation. The leading correction to
the four-dimensional Planck mass that scales with the number of ax-
ions is (2.30), the four-loop σ-model correction to the ten-dimensional
action. Upon dimensional reduction, one finds the Einstein-Hilbert
term [530]

L =
M2

pl

2

(
1 +

ζ(3)χ(X6)

(2π)3

(α′)3

V
+ · · ·

)
R4 , (5.156)

where χ(X6) is the Euler characteristic of the compactification mani-
fold X6,

χ(X6) = 2h1,1 − 2h2,1 , (5.157)

and the omitted terms are higher order in α′ and/or in gs. The
renormalization of the Planck mass encoded in (5.156) indeed has

the same scaling with N as the field theory result53 (5.150), unless

h1,1 − 2h2,1 � h1,1. Thus, for suitable Hodge numbers, the cor-
rection to the Planck mass from (5.156) can be neglected. How-
ever, there are higher-order corrections in α′, and in gs, whose form
is not known: if these are also proportional to χ(X6), then renor-
malization of the Planck mass is harmless in compactifications with

53
A potential confusion is that the leading correction in (5.156) arises as a loop effect on
the worldsheet, not from loops of light moduli in spacetime, but nevertheless involves
the number of moduli. As such, it corresponds to a non-renormalizable term in the
effective theory, as in §2.3.2, rather than a radiative correction as in (5.150), cf. §2.3.1.
However, corrections at higher order in gs may be expected to involve actual loops of
the light fields, in closer analogy to (5.150).
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h1,1 − 2h2,1 � h1,1, but otherwise the problem plausibly reappears.54

More detailed understanding of ultraviolet-sensitive quantum correc-
tions would be needed to resolve this issue.

Phenomenology.—A number of authors have studied the signatures of the
phenomenological model (5.147), anticipating a microphysical realization:
see e.g. [483,741–750]. If a quadratic approximation is applicable, then the
tensor-to-scalar ratio is given by r ≈ 0.13 (for 60 e-folds of inflation).

5.4.2 Axion Monodromy Inflation

Another idea to extend the effective axion range uses the phenomenon of
monodromy.55 We speak of monodromy when a system reaches a new con-
figuration after being transported around a closed loop in the (naive) con-
figuration space. The classic example is a spiral staircase, where the naive
configuration space is a circle, but the system changes upon transport by 2π:
after each circuit we reach a higher level on the staircase. Something very
similar occurs in the scalar potential for axions in certain string compacti-
fications: the potential energy continues to increase as the axion traverses
multiple circuits of its fundamental domain. The basic idea of monodromy
inflation [751] is that inflation can persist through many cycles around the
configuration space. The effective field range is then much larger than the
fundamental period, but the axion shift symmetry protects the structure of
the potential over each individual cycle [34,751].

Monodromies are widespread in string compactifications, but construct-
ing an explicit model of axion monodromy inflation is delicate, as we now
explain.

Axion potentials.—We will begin with a simple example: a D5-brane in type
IIB string theory [34].56 The brane fills the four-dimensional spacetime and
wraps a two-cycle Σ2 in the compact space. The axion b ≡ 1

α
′
∫

Σ2
B2 will

exhibit monodromy in the potential energy, i.e. the potential energy of the
wrapped brane is not a periodic function of the axion. To see this, consider
the DBI action (3.26) for the D5-brane,

SD5 =
1

(2π)5gs(α
′)3

∫
M4×Σ2

d6σ
√
−det(Gab +Bab) . (5.158)

54
One cannot work at arbitrarily weak coupling and large volume, because in this limit
the individual decay constants fi are parametrically small compared to Mpl: see §3.2.3.

55
This section is based on [34,751].

56
The first example of monodromy inflation constructed in string theory involves a D4-
brane in a nilmanifold compactification of type IIA string theory [751], and relies on a
scenario for moduli stabilization that is rather different from that presented in §3.3.3.
We will discuss the scenario of [751] in §5.6.1.
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Performing the integral over the two-cycle, we obtain the potential for the
axion in the four-dimensional effective theory:

V (b) =
%

(2π)6gs(α
′)2

√
(2π)2`4 + b2 , (5.159)

where ` is the size of Σ2 in string units, and the dimensionless number %
encodes a possible dependence on the warp factor. The presence of the
brane has broken the axion shift symmetry, b 7→ b+ (2π)2. We say that the
brane has generated a monodromy for the axion. For large values of the
axion vev, b� `2, the potential is linear, V (b) ∝ b.

A similar effect occurs if the D5-brane is replaced by an NS5-brane. The
wrapped NS5-brane now produces a monodromy for the axion c ≡ 1

α
′
∫

Σ2
C2.

Dimensional reduction of the action for the NS5-brane introduces the fol-
lowing potential for the c axion

V (c) =
%

(2π)6g2
s (α′)2

√
(2π)2`4 + g2

s c
2 . (5.160)

Axion monodromy inflation.—In both cases, inflation can occur if the ax-
ion (b or c) has a large initial vev. The Lagrangian for the canonically-
normalized field is

L = −1

2
(∂φ)2 − µ3φ , with µ3 ≡ 1

f

%

(2π)6gs(α
′)2 , (5.161)

where f is the decay constant of the corresponding axion, as defined in
§3.2.3. During inflation the worldvolume flux on the wrapped fivebrane de-
creases, and the axion vev drops. For large initial vev, the axion moves a
large effective distance in field space. Provided that the axion shift symme-
try continues to protect the potential across super-Planckian displacements,
the result is a natural model of chaotic inflation in string theory. (We criti-
cally discuss the stability of the potential in the remainder of this section.)
Inflation ends at a small axion vev, at which point the inflaton starts to os-
cillate around the minimum of the potential. Couplings between the axion
and other fields will drain energy from the inflaton sector. If this energy
transfer happens predominantly to the visible-sector degrees of freedom,
then the system successfully reheats and the hot Big Bang is initiated (see
§5.4.2).

Although axion monodromy from an NS5-brane source yields the asymp-
totically linear potential (5.161), many other variants of chaotic inflation
can arise via monodromy. One can parameterize the resulting theories in
terms of an exponent p as

L = −1

2
(∂φ)2 − µ4−pφp . (5.162)
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The nilmanifold monodromy scenario of [751] yields p = 2/3, while versions
of axion monodromy inflation with p = 2 can arise from an appropriate
coupling of an axion to a four-form field strength [752],57 or on a pair of
sevenbranes [755].

A general mechanism known as flattening [532] can affect the asymptotic
form of the scalar potential for a light field φ in the presence of additional
heavy fields Ψ. Given appropriate couplings of φ to Ψ, integrating out
Ψ flattens V (φ) at large φ, in the sense of reducing the exponent p. It
was argued in [532] that the linear potential of (5.161) is an example of
flattening: the type IIB action includes terms proportional to

S ⊃
∫

d10X |C2 ∧H3|
2 , (5.163)

which naively give rise to an energy that is quadratic in φ ∝
∫
C2, but the

actual potential (5.161) is linear. The claim of [532] is that backreaction of
localized D3-brane charge, which shifts the moduli vevs, is responsible for
the flattening from p = 2 to p = 1.

Compactification and Tadpole Cancellation

The attentive reader will appreciate by now that it is essential to check that
a proposed inflationary mechanism in string theory—and any symmetries
that underlie it—survives compactification and moduli stabilization. We
turn to a critical discussion of these issues.

A fundamental consistency requirement in a compact model is cancel-
lation of all tadpoles. Changing the axion vev, b, in the presence of a
D5-brane alters the D3-brane charge induced on the D5-brane, because of
the Chern-Simons coupling (3.29):

SCS ⊃ iµ5

∫
M4×Σ2

C4 ∧ F2 . (5.164)

That is, because a D3-brane has the Chern-Simons coupling

S
(D3)
CS = iµ3

∫
M4

C4 , (5.165)

a D5-brane wrapping Σ2, with ∫
Σ2

F2 6= 0 , (5.166)

57
For related field-theoretic constructions, see [753,754].
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carries non-vanishing D3-brane charge. Without a mechanism for absorb-
ing or canceling this induced charge, Gauss’s law would fix b to one definite
value. However, there is a natural configuration in which the induced charge
is canceled automatically: instead of a single D5-brane on a two-cycle Σ2,
consider a D5-brane and an anti-D5-brane, each wrapping Σ2, but at dif-
ferent locations in the compact space,58 as in the constructions of [756]. A
similar construction applies for an NS5-brane pair (see fig. 5.12), which, as
we will see, yields a more promising inflationary model.

Symmetry Breaking from Nonperturbative Effects

To analyze the impact of moduli stabilization on axion monodromy inflation,
it is necessary to specify a scenario for stabilization. Here, we will discuss
axion monodromy inflation on fivebranes in type IIB compactifications with
nonperturbatively-stabilized Kähler moduli.

Eta problem for the b axion.—To assess axion monodromy inflation with b
as the inflaton, we consider a KKLT compactification with h1,1

+ = h1,1
− = 1,

and correspondingly a single Kähler modulus T and a single complex ‘two-
form scalar’ G = c − τb. The N = 1 supergravity data obtained from
dimensional reduction takes the form

W = W0 +Ae−2πT , (5.167)

K = −3 ln
(
T + T̄ + γb2

)
, (5.168)

where γ = e−Φc+−−, with c+−− the triple intersection number of the even
and odd cycles.

Stabilization of T via the nonperturbative superpotential (5.167) breaks
the shift symmetry for b, because of the way that b and T mix in the
Kähler potential (5.168). One way to understand this effect is by considering
the distinction between ‘physical volumes’ and ‘holomorphic volumes’. The
proper Kähler coordinates on the moduli space are the complex scalar G
and the holomorphic four-cycle volume T given in (3.64), but the physical

volume of the compactification is V ∝ (T + T̄ + γb2)3/2, which involves a
non-trivial mixture of T with the inflaton b. If T is unstabilized, then the
potential has a flat direction along which T and b shift, but T + T̄ + γb2 is
invariant. Along this direction, the physical volume of the compactification
is unchanged, but the holomorphic volume T is altered.

Kähler modulus stabilization through superpotential interactions involves
the introduction of a potential for the holomorphic coordinate T . On the

58
That is, the D5-brane and anti-D5-brane wrap distinct, well-separated representatives
of the same homology class.
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NS5-brane

anti-NS5-brane

Fig. 5.12. The integral of the two-form C2 over a two-cycle Σ2 defines the c axion.
In the presence of a wrapped NS5-brane this develops a monodromy. An anti-NS5-
brane is required by Gauss’s law on the compact space. The entire configuration
should be situated in a warped region, and have a distant orientifold image (not
shown). In the lower figure, the two-cycles are represented by circles.

other hand, the presence of sources of positive or negative energy (such as
fluxes and D-branes) leads to terms in the scalar potential that depend on

physical volumes, and are proportional to powers of eK ∝ V−2. Because
the potential energy therefore depends on both T + T̄ + γb2 and T , the
flat direction along which b shifts is lifted. One finds that the canonically-
normalized field obtained from b has η ∼ 1, so that inflation does not
generically occur.
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Notice that with the identification b→ φ, γb2 → −γk(φ, φ̄) the discussion
above is exactly analogous to the eta problem in D3-brane inflation (see
§5.1.2). The basic point is that a coordinate that appears in the Kähler
potential almost certainly receives a potential on moduli stabilization.

Perturbative shift symmetry for the c axion.—The NS-NS two-form B2 is re-
lated to the R-R two-form C2 by the S-duality subgroup of the full SL(2,Z)
duality, which also exchanges D5-branes and NS5-branes. This immediately
suggests an S-dual of the above scenario, in which an NS5-brane is wrapped
on a two-cycle Σ2, and the inflaton is proportional to c ≡ 1

α
′
∫

Σ2
C2. The

background flux compactification breaks SL(2,Z), so the difficulties of the
b axion model do not necessarily have to arise in the c axion model. The
natural motivation for considering a c axion model is that c does not ap-
pear in the tree-level Kähler potential, so that the eta problem observed for
b is absent. This is a direct consequence of the PQ symmetry for c, which
is unbroken at the perturbative level, and constitutes one of the simplest
realizations in string theory of the shift symmetry proposal of [520].

Nonperturbative symmetry breaking for the c axion.—Let us now discuss the
leading effects that break the shift symmetry of c. We begin at the level
of the N = 1 data, i.e. we first consider spontaneous breaking of the shift
symmetry in the supersymmetric theory, before incorporating the explicit
breaking due to the NS5-brane. In view of our general discussion in §3.2.3
of the breaking of axionic symmetries in string theory, the only possibilities
involve nonperturbative effects:

. Euclidean strings.—For a two-form symmetry, the first place to look
is a two-dimensional worldvolume, corresponding to some form of Eu-
clidean string. Although ordinary worldsheet instantons (Euclidean
F-strings) do break the shift symmetry of b, fundamental strings do
not carry charges under Ramond fields, so even worldsheet instantons
will not break the shift symmetry of c. On the other hand, Euclidean
D1-branes—or more generally, Euclidean (p, q) strings—do couple to
C2, and can break the symmetry. However, no such effect can be
present in the superpotential, because of holomorphy: the real part of
the action of any Euclidean string involves the volume of a two-cycle,
which is not the real part of a holomorphic coordinate and therefore
cannot appear in the superpotential [337]. (The corresponding super-
fields are linear superfields, not chiral superfields.) We conclude that
symmetry-breaking terms from Euclidean D1-branes are confined to
the Kähler potential. These contributions can easily be made neg-
ligible: they are nonperturbatively small, and—unlike Euclidean D3-
brane terms in the superpotential—are unrelated to, and can be much
smaller than, the terms appearing in the moduli potential. Indeed,
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recall that in a KKLT vacuum, perturbative corrections to K can be
consistently neglected, and nonperturbative corrections to K are even
smaller. See [36] for a more detailed discussion.

. Euclidean D3-branes.—Because Euclidean D3-branes can make im-
portant contributions to the moduli potential, it is important to ask
whether they also affect the potential for c. The action for a Euclidean
D3-brane wrapping a four-cycle Σ4 contains a term

S ⊃
∫

Σ4

C2 ∧ F2 , (5.169)

where F2 is the worldvolume flux. The path integral includes a sum
over ‘magnetizations’, i.e. over topologically distinct choices of F2, and
if there exists a choice of magnetic flux such that (5.169) is nonvan-
ishing, this will generally give rise to an eta problem for c. In short,
un-magnetized Euclidean D3-branes do not affect c, but magnetized
Euclidean D3-branes that intersect the NS5-brane can break the shift
symmetry and lead to an eta problem.

. Gaugino condensation on D7-branes.—Perhaps surprisingly, breaking
of the shift symmetry of c by gaugino condensation on D7-branes is
negligibly small. To see this, recall that the nonperturbative superpo-
tential (3.109) from Nc D7-branes can be written in the form

Wλλ = Ae−f/Nc , (5.170)

where the Wilsonian gauge kinetic function f—not to be confused with
the axion decay constant—is a holomorphic function of the moduli,
with Re(f) = 8π2/g2. The gauge kinetic function is renormalized only
at one loop and nonperturbatively:

f = f0 + f1 + fnp , (5.171)

with f0 = 2πT . The one-loop correction f1 is independent of c, be-
cause perturbative strings do not carry R-R charge, soWλλ can depend

on c only through fnp. However, on general grounds fnp . e
−S , where

S denotes the Euclidean action (for some appropriate extended ob-
ject that couples to c, for example a magnetized Euclidean D3-brane)
evaluated at a dominant saddle point. Thus,

Wλλ = Ae−(f0+f1)/Nc
[
1 +O(e−S) g(c)

]
, (5.172)

where g(c) is some function of c. We conclude that the dependence
of the gaugino condensate superpotential on c is exponentially weaker
than its dependence on T , so one can arrange for stabilization of T
without inducing a large potential for c.
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Let us summarize the nonperturbative effects that spontaneously break
the shift symmetry of c. Euclidean (p, q) strings make innocuous periodic
contributions to the Kähler potential, and do not introduce dangerously
large masses for c. Gaugino condensation yields negligibly small depen-
dence on c. Magnetized Euclidean D3-branes are problematic, and as a
model-building criterion, one must ensure that any four-cycles stabilized by
Euclidean D3-branes do not intersect the NS5-brane.59

Symmetry Breaking from Backreaction

The arguments above establish that given appropriate topology of the four-
cycles involved in Kähler moduli stabilization, and taking the NS5-brane
to be a probe of a fixed background compactification, the axion c has an
all-orders shift symmetry for which the leading spontaneous breaking comes
from Euclidean D1-brane contributions to the Kähler potential, and is easily
made negligibly small. The leading explicit breaking originates in the NS5-
brane DBI action (5.160): this is the candidate inflaton potential.

However, assuming that the NS5-brane is purely a probe of the compact-
ification is not consistent, as originally noted in [34]:

. Backreaction from D3-brane charge.—In the configuration with c� 1,
a large D3-brane charge is induced on the NS5-brane. Upon solving
the supergravity equations of motion with this charge as a source, one
finds significant corrections to the warp factor60 of the background
that depend on c.61 The critical question is whether a c-dependent
warp factor leads to additional c-dependence in the potential energy,
beyond that captured by the DBI action of the NS5-brane. We recall
that the Kähler moduli Ti are assumed to be stabilized by a com-
bination of Euclidean D3-branes and gaugino condensation on D7-
branes, and the Euclidean D3-brane action (or D7-brane gauge cou-
pling) depends on the warped volume of the corresponding four-cycle:
cf. eq. (3.107). Thus, a c-dependent modification of the warp factor
entails a c-dependent correction to the exponentials appearing in the
moduli potential. Schematically, one has

V (c) = µ3fc+ V̂ [Ti(c)] , (5.173)

59
The precise condition on the triple intersection form is ciϕϕ = 0 ∀ i, where ϕ denotes
the orientifold-odd two-form corresponding to the inflaton, i.e. c = G

ϕ
ωϕ (no sum), and

i indexes all four-cycles stabilized by Euclidean D3-branes.
60

This is easily understood if one recalls that the backreaction of D3-branes in flat space
leads to the AdS5 × S

5
geometry.

61
The corresponding calculation for a D3-brane was performed in [335] — see also the
discussion following eq. (4.10).
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where the first term comes from the DBI action and V̂ stands for the
moduli potential. The Kähler moduli Ti depend on c via the warp
factor,

Re(Ti) =

∫
Σ
i
4

d4y
√
g e−4A(y;c) . (5.174)

In generic configurations, the resulting c-dependence of the moduli
potential is large enough to invalidate the derivation made in the probe
approximation.

Fortunately, there is a mechanism that provides parametric suppres-
sion of this problematic backreaction effect. In order to satisfy Gauss’s
law, it was necessary to introduce an anti-NS5-brane, in addition to
the NS5-brane: the induced charges on the brane and antibrane are
equal and opposite. Thus, if the NS5-brane and anti-NS5-brane are
relatively near to each other compared to their distance from the rel-
evant four-cycles, the net flux of F5 past the four-cycle will be sup-
pressed, and the correction to the warp factor will be correspondingly
small. Instead of seeing a monopole D3-brane charge, the four-cycles
see only a dipole. A concrete realization of this protective mechanism
involves placing an NS5-brane and an anti-NS5-brane in a common
warped throat, as discussed in detail in [36].62

To recap, backreaction of the induced D3-brane charge that is ulti-
mately responsible for the inflationary energy leads to a correction
to the warp factor that affects the scalar potential by modifying the
Euclidean D3-brane action. This is consistent with the general argu-
ments, in that the breaking of the axionic shift symmetry by back-
reaction effects is, strictly speaking, ‘nonperturbatively small’, being
proportional to exp(−Tp Vol(Σp)). However, it is essential to under-
stand that the moduli potential, and the inflationary vacuum energy,
are necessarily nonperturbatively small in the same sense. For the
backreaction to be a small correction, the geometry must be arranged
to respect an additional approximate symmetry, e.g. by situating the
fivebrane pair at the bottom of a warped throat, as noted above. The
original axion shift symmetry, on its own, does not suffice to guarantee
a flat potential.

. Backreaction from the NS5-branes.—There is another backreaction
effect that presents a possible concern [757]. The NS5-brane/anti-
NS5-brane pair explicitly breaks supersymmetry, and moreover either
member of the pair, in isolation, sources a fivebrane tadpole that is

62
A precise computation of the axion decay constant in such a setting is an open problem.
If the decay constant is significantly reduced by warping, the requisite induced charge
increases, intensifying the problem of backreaction.
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canceled by its counterpart. A toroidal orbifold computation pre-
sented in [757] shows that—in that unwarped setting—the backre-
action of the five-branes themselves, not including the induced D3-
brane charge described above, grows logarithmically with their sepa-
ration. The scale of the potential from backreaction is set by the mass
of strings stretched between the branes. The conclusion of [757] is
that for an NS5-brane/anti-NS5-brane pair that occupy well-separated
throats, the potential from fivebrane backreaction is of order the un-
warped bulk scale. It would be worthwhile to understand whether
the findings of [757], especially the claim that the backreaction of
a homologous fivebrane pair has real codimension two, are applica-
ble in general warped backgrounds. One should bear in mind that
the geometric configuration required to address the problem of D3-
brane backreaction—namely, situating the fivebrane pair in a common
warped region—also ameliorates the fivebrane backreaction described
in [757].

The difficulties described above are substantially alleviated in the two-
field generalization of axion monodromy known as Dante’s Inferno [254],
in which the inflaton trajectory is a gradual spiral in the two-dimensional
axion field space. A hierarchy between the two axion decay constants —
which is plausibly radiatively stable — provides the large number that serves
to enlarge the effective axion field range, and correspondingly to suppress
backreaction. One striking feature of this scenario is that the length of the
inflationary trajectory can be parametrically larger than the diameter of
the region in field space traversed during inflation. This makes it possi-
ble to produce a large primordial tensor signal without a super-Planckian
displacement.

Reheating

Reheating in a string theory model with a shift-symmetric inflaton poses
particular difficulties, as explored in [557, 560, 562, 564]. The general issue
is that the shift symmetry that protects the inflaton simultaneously limits
the couplings of the inflaton to the visible sector. In a naive model contain-
ing only the inflaton, the visible sector, and general relativity — with no
additional sectors associated with the ultraviolet completion of gravity —
the primary consequence would be slow reheating, which is not necessarily
fatal. However, if the inflaton couples at least as strongly to hidden sector
fields as it does to the visible sector, which is frequently the case in models
of closed string inflation, then problematic reheating of the hidden sectors
is difficult to avoid.

At present, no concrete results concerning reheating are available for the
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specific scenario of axion monodromy inflation with a c axion coupled to
an NS5-brane pair, but we find it reasonable to expect that reheating of
hidden sectors, including fields associated with the NS5-brane pair and the
enveloping warped geometry, will present a challenge for the model.

5.4.3 Phenomenology

The phenomenology of axion inflation can be extremely rich.63 Besides the
model-independent gravitational wave signal, a host of additional model-
dependent signatures have been explored, including oscillations in the power
spectrum [36], deviations from scale-invariance [759], non-Gaussianity [37,
760], chiral gravitational waves [260,759], and primordial black holes [761].
Since all of these effects are tied to the underlying axion shift symmetry, one
has the hope of finding correlated signatures across different observational
channels.

Signatures of nonperturbative effects.—At leading order in the instanton
expansion, the Lagrangian for axion monodromy inflation takes the form

L = −1

2
(∂φ)2 − V0(φ)− Λ4 cos

(
φ

f

)
. (5.175)

where V0(φ) ≡ µ4−pφp. Since the scale Λ is generated nonperturbatively,
the modulations can quite naturally be exponentially small, but it is also
possible that the modulations could be large enough to spoil the mono-
tonicity of the inflaton potential. Here, we assume that Λ happens to be
large enough to be phenomenologically interesting, but not large enough to
dominate the evolution. The monotonicity constraint is

b? ≡
Λ4

V ′0(φ?)f
< 1 . (5.176)

This parameter depends on the inflaton vev, unless the potential is linear.
Here, we have evaluated it at φ = φ?, the value of the inflaton when the
pivot scale k = k? exits the horizon.

Before proceeding, we point out that f/Mpl is bounded from below, for

two reasons. First, requiring that the α′ expansion is under good control
(in the NS5-brane construction [34] with p = 1) implies [36]

f2

M2
pl

>

√
gs

(2π)3V
. (5.177)

Another bound on f arises from requiring that the effective theory of the
fluctuations is weakly coupled for the parameter values of interest [762].

63
See [758] for a recent review.
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Control over the observational predictions requires that the oscillation fre-

quency ω = (−2M2
plḢ)1/2/f is much smaller than the unitarity bound 4πf .

This implies

f � (2∆R)−1/2 H

2π
. (5.178)

Using (1.37), we get

f

Mpl
�
√

r

16
∆

1/2
R ≈ 4.5× 10−4

( r

0.07

)1/2
. (5.179)

The predictions for cosmological observables depend on the parameters b?
and f , as well as the parameters of the potential V0 (e.g. V0(φ?), ε? and η?).

Striking signatures of axion monodromy inflation arises from the periodic
modulation in (5.175). In a general inflationary model, the solutions for the
primordial perturbations inside the horizon are oscillatory. The periodic
potential in (5.175) introduces a periodic driving force, which can resonate
with the freely-oscillating perturbations, modulating their amplitude as a
function of wavenumber k [36,763]. This resonance leads to modulations of
the power spectrum, as well as to a specific type of non-Gaussianity:

. Modulated power spectrum.—For b? � 1, the oscillatory term in the
potential can be treated as a perturbation. At first order in b?, the
power spectrum is [36]

∆2
R(k) = ∆2

R(k?)

(
k

k?

)ns−1 [
1 +A cos

(
φk
f

)]
, (5.180)

where φk ' φ?−
√

2ε? ln(k/k?) is the field value at horizon exit of the
mode k. We have defined ns = 1 + 2η? − 6ε? and

A ≡ 3b?

(
2πf√

2ε?

)1/2

, (5.181)

in units where Mpl ≡ 1, and have worked to leading order in f/
√

2ε?.
For the special case p = 1, i.e. the linear potential that arises from
NS5-branes, we have 1/

√
2ε? = φ?, and ∆2

R(k) is known for arbitrary
fφ?:

Ap=1 =
6b?√

1 + (3fφ?)
2

√
π

2
coth

(
π

2fφ?

)
fφ? . (5.182)

These oscillations in the power spectrum have recently been searched
for in the WMAP data [764] and the Planck data [765]. So far, no
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signal has been detected.64

. Resonant non-Gaussianity.—At first order in b?, the bispectrum is [37]

BR(k1, k2, k3) = f res
NL ×

(2π∆R)4

k2
1k

2
2k

2
3

[
sin

(√
2ε?
f

ln
K

k?

)

+
f√
2ε?

∑
i 6=j

cos

(√
2ε?
f

ln
K

k?

)
+ · · ·

]
, (5.183)

where K ≡ k1 + k2 + k3 and

f res
NL ≡

3
√

2π

8
b?

(√
2ε?
f

)3/2

. (5.184)

The ellipses in (5.183) stand for terms that are suppressed by higher
powers of the slow-roll parameters or by positive powers of f/

√
2ε?.

Observable non-Gaussianity requires f/
√

2ε? � 1. In this case, the
second term in (5.183) is suppressed relative to the first term, except
in the squeezed limit (where it ensures that Maldacena’s consistency
relation (1.70) holds). The unitarity bound (5.179) implies an upper
bound on f res

NL ,

f res
NL �

3
√
π

2
(2∆R)−3/4 ≈ 3× 103 . (5.185)

Because the bispectrum is oscillating, it is nearly orthogonal to the
standard bispectrum templates. It is therefore barely constrained by
the present bispectrum results (1.72)–(1.74), and a dedicated analysis
is required to put meaningful constraints on the parameter f res

NL .

Signatures of gauge field production.—In order to reheat, the axion has to
be coupled to extra fields, and one can ask whether these couplings affect
the perturbations during inflation. Particularly interesting is the following
dimension-five operator that couples the inflaton to a gauge field:65

L ⊃ −α
4

φ

f
F F̃ , (5.186)

64
Using WMAP9, it was found that a modulation with log10(f/Mpl) = −3.38 improves the

fit by ∆χ
2

= 19 [764], but the frequency of this signal coincides with the unitarity bound
(5.179). Moreover, the signal does not seem to be present in the Planck data [765,766].

65
We will assume α ≤ 1. The case α � 1 is discussed in [767], while estimates for α in
type IIB string theory appear in [759]. Both bottom-up and top-down naturalness of
the regime α� 1 remain to be established.
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where F is the gauge field strength. This coupling respects the shift sym-
metry of the inflaton, as for constant φ the operator is a total derivative.
When the inflaton has a time-dependent vev, φ(t), the conformal invariance
of the gauge field is broken. This leads to production of gauge field quanta
during inflation. To see this, consider the equation of motion for the two
polarization modes of the gauge field (in Coulomb gauge):(

∂2

∂τ2 + k2 ∓ 2aHkξ

)
A±(τ, k) = 0 , where ξ ≡ αφ̇

2fH
. (5.187)

We see that one of the helicities of the gauge field experiences tachyonic
growth for k/(aH) < 2ξ. For ξ > 0, the unstable mode is A+. Most of the

power in the produced gauge field is in modes with (8ξ)−1 < k/(aH) < 2ξ.
In this regime, the solution can be written as [767]

A+(τ, k) ' 1√
2k

(
k

2ξaH

)1/4

eπξ−2
√

2ξk/(aH) . (5.188)

The coupling of this solution to the inflaton, via (5.186), leads to a number
of observational signatures:

. Equilateral non-Gaussianity.—The gauge field non-linearities in the
operator (5.186) source non-Gaussian inflaton fluctuation (this may
be thought of as an inverse decay, δA+ δA→ δφ). The bispectrum is
of equilateral type and has the amplitude [760]

f equil
NL '

∆6
R,0

∆4
R
f3(ξ)e6πξ , (5.189)

where ∆R,0 stands for ∆R|ξ=0 = H2/(2πφ̇). The function f3(ξ) is
determined numerically, but has the following limits:

f3(ξ) = 2.8× 10−7 ξ−9 for ξ � 1 , (5.190)

f3(ξ) ≈ 7.4× 10−8ξ−8.1 for 2 < ξ < 3 . (5.191)

We see that f equil
NL is exponentially sensitive to the model parameter

ξ. Let us denote by ξ? the value of ξ at the pivot scale k? = 0.002
Mpc−1. Using the seven-year WMAP data, ref. [768] found ξ? < 2.45
(95% CL). In terms of the axion decay constant, this corresponds to

f >
α

10π

H

∆R
. (5.192)

Using (1.37), this can be written as

f

Mpl
>

α

10

√
r

2
≈ 2× 10−2

(α
1

)( r

0.07

)1/2
. (5.193)
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For α ∼ O(1), this provides a strong constraint on the axion decay
constant. This bound is similar in spirit to the bound in (2.117).

. Non-scale-invariance.—The power spectrum of curvature perturba-
tion receives contributions both from the vacuum fluctuations of the
inflaton and the fluctuations sourced by the gauge field,

∆2
R(k) = ∆2

R,0(k)
[
1 + ∆2

R,0(k) f2(ξ)e4πξ
]
, (5.194)

where

f2(ξ) = 7.5× 10−5 ξ−6 for ξ � 1 , (5.195)

f2(ξ) ≈ 3.0× 10−5ξ−5.4 for 2 < ξ < 3 . (5.196)

For large ξ, the sourced fluctuations can dominate over the vacuum
fluctuations. Notice that ξ ∝

√
ε grows during inflation. Although ξ

grows slowly, it appears in the exponent in (5.194), and can therefore
lead to significant scale-dependence of the power spectrum. Although
this effect is constrained mainly by small-scale CMB and LSS data,
it remains convenient to express the constraint as a bound on the
parameter ξ? (evaluated at k? = 0.002 Mpc−1). Assuming a quadratic
inflaton potential and using WMAP and ACT data, ref. [768] found
ξ? < 2.41 (95% CL).

. Primordial black holes.—The growth of ξ can lead to the formation
of primordial black holes. This can disturb the standard cosmology.
Estimating the effects of strong backreaction at the end of inflation,
ref. [761] find ξ? < 1.5. Although this is the strongest constraint
on the parameter ξ?, it is plausibly subject to the largest theoretical
uncertainties.

. Chiral gravitational waves.—The stress tensor associated with the pro-
duced gauge fields sources gravitational waves. An interesting prop-
erty of the resulting tensor signal is that it is chiral [769], essentially
because only one chirality of the gauge field is unstable. This parity vi-
olation could, in principle, be tested using the TB and EB correlators
of the CMB. However, to achieve a sufficiently large tensor amplitude
requires values of ξ? that are already ruled out by the bound on non-
Gaussianity. On the other hand, the tensor modes become large on
small scales, just like the scalars. It is therefore conceivable for the
signal to be small on CMB scale, but detectable on scales accessible
to terrestrial interferometers. In [770] it was estimated that ξ? > 2.2
could be probed with Advanced LIGO.
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5.5 Inflating with Kähler Moduli

A very early idea for inflation in string theory was that a modulus could
be the inflaton [771, 772]. In particular, the compactification volume is
invariably present in the four-dimensional effective theories of string com-
pactifications, and it is natural to ask if the volume modulus could be the
field driving slow-roll inflation. In this section, we will describe scenarios in
which the inflaton is a Kähler modulus, or an axion paired with a Kähler
modulus.66

5.5.1 Racetrack Inflation

Modular inflation in the context of flux compactifications was first real-
ized in the racetrack inflation scenario [618]. As a concrete example, we
consider a KKLT compactification with a single Kähler modulus T , and a
superpotential of the ‘racetrack’ form [618]

W = W0 +A e−aT + B e−bT , (5.197)

where W0 is the constant flux superpotential, A and B are prefactors that
depend on the vevs of the stabilized complex structure moduli, and a, b
are constants. A superpotential of this form can be generated by gaugino
condensation in a product gauge group: for gauge group SU(N)× SU(M)
one has a = 2π/N and b = 2π/M . The classical Kähler potential takes the
form

K = −3 ln(T + T̄ ) , (5.198)

up to α′ corrections that will be discussed momentarily. To complete the
specification of the effective theory, we incorporate supersymmetry breaking
by an anti-D3-brane in a warped throat region, which leads to a term in the
potential of the form

δV =
%

(T + T̄ )2 , (5.199)

with % a constant that depends on the warp factor at the location of the
anti-D3-brane.67

The authors of [618] showed that for suitable values of the parameters

W0,A,B, a, b, %, the potential for T develops a saddle point68 that is suitable
for inflation. The evolution is primarily in the direction of the axion Im(T ),
but Re(T ), corresponding to the compactification volume, does also evolve.

66
This section is based mostly on [43,357,620]. For a recent review see [30].

67
For an explanation of the exponent 2 in (5.199), which differs from the result given in
[356], see [41].

68
Racetrack-type superpotentials for Kähler moduli have also been argued to yield inflec-
tion point inflation [773].
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In a related construction, ref. [774] followed the Kallosh-Linde scenario [644]
for Kähler moduli stabilization via a racetrack, and showed that for special
values of the parameters, the axion Im(T ) is stabilized, but a single-field
inflection point appears in the Re(T ) direction. The volume modulus then
serves as the inflaton.

The parameter values that can lead to racetrack inflation in type IIB
string theory are quite contrived.69 This is not a fatal objection: because
W0, A, B are determined by the vevs of complex structure moduli, which
are in turn dictated by quantized fluxes, it is possible in principle to adjust
their values rather precisely (as originally noted for the cosmological con-
stant problem in [193]). On the other hand, large values of M,N require
stacks of many D7-branes, which can be difficult to construct in explicit
compactifications.

It is important to recognize that fine-tuning the leading-order classical ef-
fective action does not necessarily lead to a self-consistent model. Quantum
effects, as well as curvature corrections from the α′ expansion, inevitably
contribute to the action, and it is not consistent to study solutions of the
leading-order theory that require precision comparable to the size of these
corrections. Indeed, it was shown in [775] that the higher-curvature term
of (2.30) generically destabilizes Re(T ), and also renders the potential more
steep in the Im(T ) direction, spoiling inflation. Although it is conceivable
that new parameter values could be found for which the corrected action
yields inflation, the complete set of contributing terms has not yet been
determined, so that it is difficult to make the model more explicit and pre-
dictive.

A related idea is that the volume modulus T can serve as the inflaton if
finely-tuned combinations of corrections to the Kähler potential, cf. §3.3.2,
lead to the appearance of an inflection point in the potential [776]. The
scenario of [776] alleviates the tension between low-energy supersymmetry
and high-scale inflation identified in [644] — see also [777–781].

5.5.2 Large Volume Compactifications

The most concrete models of Kähler moduli inflation have been constructed
in the Large Volume Scenario (LVS) [319].70 We reviewed LVS compacti-
fications in §3.3.3. For convenience, we will quickly summarize the aspects

69
The example given in [618] has N = 90 and M = 100, as well as fine-tuned values for
W0,A,B, %. In the more explicit construction of [619] (building on moduli stabilization
results of [358]), successful inflation was found for N = 40 and M = 258, again with
fine-tuning of the remaining parameters, while the scenario of [774] used N = 58 and
M = 60, with B specified to 11 decimal places.

70
We thank Michele Cicoli, Joe Conlon, and Fernando Quevedo for helpful discussions of
the material in this section.
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of that discussion that will be relevant for inflationary model-building.

The tree-level Kähler potential in the presence of the leading sigma model
corrections, at order (α′)3 [321] is

K = K0 + δK(α
′
) = −2 ln(V)− ξ̂

V
. (5.200)

The contribution δK(α
′
) breaks the no-scale structure, but only lifts the

volume modulus V, leaving (h1,1
+ − 1) complexified Kähler moduli massless

(at this level of approximation). These are natural inflaton candidates. To
assess whether such scenarios are viable, it is important to consider string
loop corrections to the Kähler potential,

K = K0 + δK(α
′
) + δK(gs)

, (5.201)

but these corrections are difficult to compute. The only explicit results
available are those obtained by Berg, Haack, and Körs for N = 1 compact-
ifications on the toroidal orientifold T 6/(Z2×Z2) [322,323], cf. eqs. (3.102)
and (3.103). Some progress has been made on extending these results to
general Calabi-Yau manifolds [324, 782], and a specific functional form of
the string loop corrections has been conjectured by Berg, Haack, and Pajer
in [324] (see also [325] for a general discussion). Recall from §3.3.3 that
these corrections can be separated into two types: those associated with the
exchange of closed strings with Kaluza-Klein momentum, and those associ-
ated with the exchange of strings that wind non-contractible cycles.71 The
correction δKKK

(gs)
is conjectured to be

δKKK
(gs)
∼ gs

h
1,1∑
i=1

CKK
i (ζ, ζ̄)M−2

KK

V
∼ gs

h
1,1∑
i=1

CKK
i (ζ, ζ̄)(aijt

j)

V
, (5.202)

where aijt
j is some linear combination of the two-cycle size moduli tj . The

conjectured result for δKW
(gs)

is

δKW
(gs)
∼
∑
i

CW
i (ζ, ζ̄)M−2

W

V
∼
∑
i

CW
i (ζ, ζ̄)

(bijt
j)V

, (5.203)

where the two-cycle bijt
j corresponds to the curve of intersection of two D7-

branes (see [324] for details). The unknown complex structure dependence

has been absorbed into the functions CKK
i (ζ, ζ̄) and CW

i (ζ, ζ̄). Since we

71
The cycles in question are one-cycles within the curve of intersection of two D7-branes:
the parent Calabi-Yau manifold does not have any non-contractible (non-torsion) one-
cycles.
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assume that the complex structure moduli are stabilized at higher energies,
we will treat them as constants, focusing on the dependence on the Kähler
moduli.

The supergravity approximation holds when ti � 1, in which case

δKKK
(gs)
∼
∑
i

ti
V
> δK(α

′
) ∼

1

V
. (5.204)

One might then worry that at large volume the gs corrections (5.202) and
(5.203) overwhelm the α′ corrections δK(α

′
) and drastically change the vac-

uum structure, to say nothing of the inflationary phenomenology. However,
what happens is a bit more subtle [324, 782]. Although the gs corrections
dominate over the α′ corrections in the Kähler potential, they cancel to a
certain degree in the scalar potential, so that the dominant contribution to
the scalar potential actually comes from the α′ corrections. This important
phenomenon is called extended no-scale structure [782]. It arises because

δKKK
(gs)

is a homogeneous function, of degree −2, in the two-cycle volumes ti
[782].

To illustrate extended no-scale structure, we consider an example with a
single modulus τ [30]. Schematically, we can write the Kähler potential as

K = −2 ln(V)− ξ̂

V
+

√
τ

V
. (5.205)

Taking the superpotential to be a constant, W = W0, we find

V =
W 2

0

V3

[
0 + ξ̂ + 0 ·

√
τ +

1√
τ

+
1

τ3/2

]
. (5.206)

The first zero in (5.206) corresponds to the famous no-scale structure, while
the second vanishing contribution (namely, 0 ·

√
τ) is the consequence of

what we just referred to as extended no-scale structure. We see that the
leading gs contribution to the scalar potential scales as 1/

√
τ , and is smaller

than the leading α′ contribution proportional to ξ̂. The gs contribution to
the scalar potential is therefore smaller than naively expected. Even so, we
will find that gs corrections can still make dangerously large contributions
to the inflaton potential.

Extended no-scale structure can be understood from an alternative point
of view [782]. In the low-energy effective field theory, we can interpret the
gs contribution as the one-loop Coleman-Weinberg potential

δVCW ' 0 · Λ4 + Λ2STr(M2) + STr

[
M4 ln

(
M2

Λ2

)]
, (5.207)
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where

Λ = MKK '
Mpl

V2/3
, STr(M2) '

M2
pl

V2 , (5.208)

and STr denotes the supertrace.72 The first term in (5.207) vanishes by
supersymmetry. Substituting (5.208) into (5.207), we get

δVCW ' 0 · 1

V8/3
+

1

V10/3
+

1

V4 , (5.209)

which, upon using τ ∼ V2/3, can be written as

δVCW '
1

V3

[
0 ·
√
τ +

1√
τ

+
1

τ3/2

]
. (5.210)

This precisely matches the scaling in (5.206). We have therefore related the
extended no-scale feature of the potential to supersymmetry [782].

In the rest of this section, we will use these results to construct inflationary
solutions in LVS. We will describe three ways in which the inflaton poten-
tial is generated: i) via nonperturbative effects [620] (§5.5.3), ii) via string
loops [43] (§5.5.4), and iii) via poly-instanton effects [621,783] (§5.5.5).

5.5.3 Blow-up Inflation

The first models of Kähler moduli inflation [620] were constructed in Swiss-
cheese compactifications of the Large Volume Scenario (see §3.3.3.) In order
for one of the blow-up cycles to play the role of the inflaton, while keeping
the overall volume fixed, at least three Kähler moduli are required (see
fig. 5.13). The compactification volume is then

V = α
(
τ

3/2
b − λφτ

3/2
φ − λsτ

3/2
s

)
. (5.211)

We will look at the part of the moduli space satisfying the hierarchies τb �
τφ � τs. The field τb then determines the overall volume, while τφ and τs
are blow-up cycles.

Inflaton potential.—We first assume that string loop corrections can be ig-
nored, so that the Kähler potential is given by (5.200). For the superpoten-
tial, we take

W = W0 +Aφe
−aφTφ +Ase

−asTs . (5.212)

72
The supertrace is defined by STr(M

2
) ≡

∑
s(2s+ 1)(−1)

2s
Tr(M

2
s ), where s is the spin

and M
2
s is the matrix of masses squared for particles of spin s. Note that bosonic and

fermionic contributions enter with opposite sign.
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inflationary 
blow-up cycle

stabilized 
blow-up cycle

stabilized 
volume cycle

Fig. 5.13. Blow-up inflation in a three-modulus Swiss-cheese compactification.
An evolving blow-up cycle τφ(t) drives inflation, while a second blow-up cycle τs

stabilizes the overall volume V ∼ ατ3/2
b .

This structure stabilizes the moduli73 τb and τs, with V ∼ ατ3/2
b ∼ easτs and

τs � 1. Integrating out τb and τs leads to the potential [620]74

V = W 2
0

(
a

√
τφ e

−2aφτφ

V
− b

τφ e
−aφτφ

V2 + c
ξ̂

V3

)
, (5.213)

where a, b and c are order-one coefficients [620]. While V is fixed75 during
inflation, τφ will evolve, playing the role of the inflaton. For large τφ, the
last two terms in (5.213) dominate and determine the inflaton potential

V (φ) ' V0

(
1− c1V

5/3φ4/3 exp
[
−c2V

2/3φ4/3
])

, (5.214)

where we have defined the canonically-normalized inflaton,

φ ≡
√

4λφ/(3V) τ
3/4
φ , (5.215)

as well as the parameters V0 ≡ O(1) × W 2
0 ξ̂V

−3, c1 ≡ O(1) × ξ̂−1 and
c2 ≡ O(1) × aφ. It is instructive to expand (5.214) around the vev of φ in

73
The axionic partner ϑφ of the inflaton τφ is not necessarily stabilized, and allowing ϑφ
to have a nonvanishing initial velocity leads to the rich dynamics known as roulette
inflation [784].

74
This corrects a misprint in the corresponding formula (41) in [30].

75
See [785] for numerical evidence supporting the validity of the single-field approximation.
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the minimum of (5.213), where

aφ〈τφ〉 ≈ O(1)× ln(V) ⇔ 〈φ〉 ≈ O(1)× ln(V)3/4

V1/2
. (5.216)

Writing φ = 〈φ〉+ φ̂ and using V � 1, we find

V (φ̂) ' V0

(
1− κ1e

−κ2φ̂
)
, (5.217)

where76

κ1 ≡ c1V
5/3 〈φ〉4/3 ≈ O(V ln(V)) , (5.218)

κ2 ≡
4

3
c2V

2/3〈φ〉1/3 = O(V1/2 ln(V)1/4) . (5.219)

Eta problem from string loops.—The region of interest for inflation is given
by

V2/3φ4/3 � 1 and φ� 1 , (5.220)

where the first condition renders the potential (5.214) exponentially flat,
while the second ensures that τφ � τb, i.e. that the inflationary blow-up

cycle makes a negligible contribution to the overall volume V ≈ ατ
3/2
b .

However, at this point one should remember that we have not yet included
string loop corrections. Using (5.205), we can estimate the string loop
correction to the inflaton potential,

δV(gs)
∼ 1
√
τφ V

3 ∼
1

φ2/3V10/3
. (5.221)

The associated correction to the η parameter is

δη ∼
δV ′′(gs)

V0
∼ 1

φ8/3V1/3
∼ V
τ2
φ

, (5.222)

where we are still using units with Mpl ≡ 1. Using τφ ≈ 〈τφ〉 and inserting
(5.216) in (5.222), we find that

δη ≈ a2
φ
V

ln(V)2 � 1 . (5.223)

Thus, the leading string loop corrections to the Kähler potential — even
after incorporating the cancellation of extended no-scale structure — lead
to parametrically large values of η.

76
Our volume scalings of κ1 and κ2 differ from [31].
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In conclusion, Kähler moduli inflation from a blow-up cycle suffers from
a severe eta problem induced by string loop corrections associated with D7-
branes wrapping the inflationary cycle. Note that nonperturbative effects on
this cycle are required in order to generate the exponential in (5.214), which
is central to the mechanism. One suggestion for evading the eta problem
[43] is to arrange that only Euclidean D3-branes, not D7-branes, wrap the
inflationary cycle: the desired superpotential is then generated, while the
associated quantum corrections to the Kähler potential are not obviously
determined by known and conjectured results [322–325,782]. However, Eu-
clidean D3-branes and gaugino condensation involve closely related physics.
Indeed, there are examples where a quantum correction that was first com-
puted as an open string loop effect in the D7-brane case, and appeared
inaccessible in the corresponding Euclidean D3-brane case, was shown (by
a closed string computation) to take precisely the same form for Euclidean
D3-branes [335]. Whether the substitution of Euclidean D3-branes will ad-
dress the eta problem of blow-up inflation remains an open question that
could be resolved by direct computation.

5.5.4 Fibre Inflation

A fundamental feature of the Large Volume Scenario is that the leading
α′ correction depends only on the overall volume, leaving the remaining
Kähler moduli as flat directions. As we explained above, in blow-up in-
flation [620] nonperturbative effects generate an exponentially flat term in
the potential; but it has proven difficult to prevent perturbative quantum
corrections to the Kähler potential from introducing a parametrically larger
— and unacceptably steep — contribution. Faced with this situation, it is
natural to ask whether there exist compactifications in which the pertur-
bative contributions, which are almost invariably significant, actually drive
inflation.

The first proposal of this sort is fibre inflation [43]. The setting is a

Calabi-Yau manifold that is a K3 fibration over a P1 base. In the simplest
explicit example,77 the volume can be written as

V =
1

2

√
τ1τ2 , (5.224)

where we have chosen a convenient basis in which τ1 is the volume of the
K3 fiber [43]. As in blow-up inflation, a third blow-up cycle (whose volume
we again denote by τs) turns out to be necessary. The volume is therefore
assumed to take the form [43]

V = α
(√

τ1τ2 − λsτ
3/2
s

)
, (5.225)

77
The simplest example is a Calabi-Yau hypersurface in P(1,1,2,2,6)

4 — see [786] for details.
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where α and λs are model-dependent constants.

Inflaton potential.—Before including string loop corrections, the Kähler po-
tential is given by (5.200). If τ1, τ2 � 1, nonperturbative effects involving
τ1 and τ2 can be neglected, and the superpotential takes the form

W = W0 +Ase
−asTs . (5.226)

The scalar potential is then

V = a2
sA

2
s

√
τs
V
e−2asτs − asAsW0

τs
V
e−asτs + ξ̂W 2

0
1

V3 . (5.227)

The potential (5.227) depends only on τs and V, which are stabilized at

τs ∼ g−1
s and V ∼ W0

√
τse

asτs . This leaves a flat direction in the (τ1, τ2)
plane — namely, the direction along which V remains constant. This flat
direction is plausibly lifted by string loop corrections to the Kähler poten-
tial. The main idea of fibre inflation is that these quantum corrections will
provide the leading (non-constant) terms in the inflaton potential. Before
proceeding, we must emphasize that the string loop corrections in question,
eqs. (5.202) and (5.203), are those conjectured in [324] (see also [325, 782])
as generalizations of the explicit computations of [322,323] for the toroidal

orientifold T 6/(Z2 × Z2). The viability of fibre inflation rests on the spe-
cific form assumed in [324], and it would be valuable to obtain more direct
and detailed understanding of quantum corrections to the Kähler potential.
Without further apologies, the potential from the conjectured string loop
corrections is

δV(gs)
=
W 2

0

V2

(
a
g2

s

τ2
1

− b
1

√
τ1 V

+ c
g2

s τ1

V2

)
, (5.228)

where a, b and c are unknown order-one constants. This fixes the fiber mod-

ulus τ1 at τ1 ∼ g4/3
s V

2/3. An inflationary phase can arise if τ1 is displaced
far from this minimum, i.e. if the K3 fiber is initially large compared to the
base, and then relaxes to smaller values.

As a simple first step, we suppose that τs and V remain fixed at their
minima while τ1 evolves, and can be integrated out. The resulting single-
field potential takes the form

V (φ) = V0

(
1− 4

3
e−φ/

√
3 +

1

3
e−4φ/

√
3 +

C

3
e2φ/

√
3

)
, (5.229)

where V0 ≡ O(1)× V−10/3, C ≡ 16ac/b2 ∼ g4
s � 1 and

φ ≡
√

3

2
ln τ1 . (5.230)
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The potential is plotted in fig. 5.14. Successful inflation occurs in region
II,78 where the potential can be approximated as

V (φ) ' V0

(
1− 4

3
e−φ/

√
3

)
. (5.231)

Interestingly, this form of the potential is similar to that obtained in the
Starobinsky model and in Higgs inflation (see §2.2.2).

The single-field treatment presented above is not a priori justified, be-
cause the compactification volume V is light enough to evolve during infla-
tion. Even so, ref. [43] presents extensive numerical and analytical evidence
showing that the single-field potential (5.229) gives an accurate picture of
the two-field evolution. The motion of V is slow until the end of infla-
tion, and moreover upon incorporating its evolution, i.e. setting V = V(φ),
one finds negligible corrections to the slow-roll parameters of the effective
single-field model. It would be interesting to know whether fluctuations of
V contribute to the primordial perturbations in fibre inflation, along the
lines of [563].
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Fig. 5.14. Sketch of the potential for fibre inflation (figure adapted from [30]).
The phenomenologically viable inflationary regime is the gray shaded region II. The
slow-roll conditions are also satisfied in region III, but the spectrum of fluctuations
is blue.

Naturalness and higher corrections.—The structure of the potential (5.229)
is ultimately dictated by the leading α′ correction (5.200), which depends

78
The slow-roll conditions are also satisfied in region III, but constraints on the spectral
index are violated there; see §5.5.6.
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only on V, and by the string loop corrections (5.202) and (5.203), which
enter in (5.228) and lift all flat directions. Corrections from higher string
loops, and at higher order in α′, have not been computed, but are suppressed
by additional (possibly fractional) powers of gs and V−1.

To understand whether all such corrections can be neglected, we recall
that the remarkable resilience of LVS rests in large part on the fact that
at exponentially large V, any unknown or unwanted corrections that are
suppressed by any reasonable power (including a fractional power) of V are
effectively negligible. As an example, a possible higher-derivative correction
to the ten-dimensional action at order (α′)4 would on dimensional grounds

be suppressed compared to the leading term (3.100) by a factor V−1/3. In

‘traditional’ LVS constructions, V−1/3 is a very small number, justifying the
omission of higher-derivative terms in ten dimensions.79

In fibre inflation, however, reproducing the normalization of the scalar
power spectrum compels the volume to be modest in size. This follows be-
cause the potential (5.231) has only one free parameter: the scale is set by

V0 ∝ V
−10/3 and the slow-roll parameter ε is not parametrically adjustable.

For the benchmark parameters given in [43], the scalar power spectrum has
the right amplitude for V ≈ 1700. Neglecting terms suppressed by integer

powers of V is clearly safe, but suppressions by V−1/3 are marginal, partic-
ularly in cases where the dimensionless prefactor is entirely unknown.80

Higher-loop corrections are a potentially important issue in a model driven
by one-loop corrections. To understand higher-loop corrections in fibre in-
flation, we consider the limit τ1 →∞ at constant V, corresponding to a K3
fiber that is large compared to the base P1, which becomes singular in the
limit. The geometric singularity is reflected in a (power law) divergence in
the one-loop corrections involving τ2, which vanishes in the large fiber limit
[43]. An obvious concern is that higher-loop corrections to the Kähler po-
tential will become important in this regime. However, it was shown in [43]
that slow-roll inflation also breaks down at small base volume, at a value
of the base volume that is large enough so that higher-loop corrections are
still small. As a result, higher-loop corrections are argued to be negligible
during the inflationary phase.

Finally, the authors of [43] have argued that fibre inflation is robust be-
cause of a hidden symmetry that emerges in the limit of infinite volume.
In four-dimensional terms, the problematic corrections to the inflaton po-
tential are suppressed by powers of V, and vanish in the decompactification
limit V → ∞. This limit enjoys additional symmetries, most notably ten-

79
See [366] for the details of the α

′
expansion in LVS.

80
However, because the leading α

′
correction (3.100) does not depend on the inflaton, one

might conjecture that subleading α
′

corrections are likewise inflaton-independent, and
hence unimportant. We thank Michele Cicoli for discussions of this point.
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dimensional general covariance, that could be related to cancellations in
the four-dimensional action. Further analysis of this interesting possibility
would be worthwhile.

In conclusion, fibre inflation is a promising inflationary scenario in LVS
compactifications. If one grants the conjectured string loop corrections
(5.202) and (5.203), which are the key to the inflaton potential, and also
omits higher-order corrections, the dynamics is quite robust. We have ar-
gued above that at the comparatively small values of V relevant for fibre
inflation, the validity of the approximations made to arrive at the inflation-
ary potential merits further scrutiny. To be clear, the possible corrections
are not parametrically large (as they are in blow-up inflation), but they
could be important, and it would be interesting to have a sharper picture.

5.5.5 Poly-Instanton Inflation

In an effort to evade the eta problem of blow-up inflation, ref. [621] (see also
[783]) constructed a model in which poly-instanton terms in the superpoten-

tial make a critical contribution to the scalar potential. A poly-instanton81

effect arises when the Euclidean action Sa of an instanton a receives cor-
rections from a second instanton b [787] (see also the earlier work [788]), so
that

W = Aa exp
(
−Sa +Abe

−Sb
)
, (5.232)

where the moduli-dependent prefactors Aa and Ab are one-loop determi-
nants.82

Setup.—The compactification geometry assumed in [621] is the same as in
§5.5.4; in particular, the compactification volume is given by (5.225),

V = α
(√

τ1τ2 − λsτ
3/2
s

)
. (5.233)

Building on explicit poly-instanton constructions in [789], ref. [783] consid-
ered a slightly different model with

V = τ
3/2
b − τ3/2

s − (τs + τw)3/2 . (5.234)

We will focus on (5.233), as realized in the explicit constructions of [790],
but the issues and most of the phenomenology are very similar with the
choice (5.234) [783].

81
Poly-instantons should not be confused with multi-instantons, which are well-known in
field theory and correspond in string theory to multiple Euclidean branes wrapping the
same cycle.

82
Precisely this structure arises in axion monodromy inflation through instanton correc-
tions to the holomorphic gauge coupling function f , cf. eq. (5.171).
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We consider a stack of D7-branes wrapping the four-cycle associated with
the modulus τs. We assume that the field theory on the D7-branes can be
broken into two sectors that separately undergo gaugino condensation. The
superpotential is then of the racetrack83 form (5.197),

W = W0 +A exp[−aTs]− B exp[−bTs] , (5.235)

where the sign of the final term is a convenient phase choice. In addition,
a Euclidean D3-brane is taken to wrap the fiber associated with τ1. This
leads to nonperturbative corrections to the gauge kinetic functions of the
two condensing gauge groups. The poly-instanton corrected superpotential
then takes the form

W = W0 +A exp
[
−a
(
Ts + c1e

−2πT1

)]
− B exp

[
−b
(
Ts + c2e

−2πT1

)]
,

(5.236)
where c1 and c2 are constants.

Inflaton potential.—In the absence of the poly-instanton corrections, i.e. for
c1 = c2 = 0, the fields V and τs are stabilized as before. Again, one is left
with a flat direction in the (τ1, τ2) plane. This time, the flat direction is
lifted by the poly-instanton contributions in (5.236). As before, one can
consistently integrate out V and τs, as well as the axion partners of all
Kähler moduli (see [621] for details). The scalar potential for the distance
from the minimum in the τ1 direction, i.e. τ̂1 ≡ τ1 − 〈τ1〉, is found to be

V =
Fpoly

V3+p

(
1− (1 + 2πτ̂1)e−2πτ̂1

)
, (5.237)

where Fpoly ≡ O(1)×W0 and p = O(1). The order-one factors in the param-
eters Fpoly and p depend in a complicated way on the microscopic parame-
ters of the theory, and the precise expressions can be found in [621]. Using
(5.230), we can write the potential in terms of the canonically-normalized
inflaton field,

V (φ̂) ' V0

(
1− κ2 φ̂e

−κ2φ̂
)
, φ̂ ≈

√
3

2

τ̂1

〈τ1〉
, (5.238)

where V0 ≡ FpolyV
−(3+p) and κ2 ' O(1)× ln(V).

Corrections.—Because the setting (5.233) for poly-instanton inflation in
[621] is precisely that of fibre inflation, while the geometry (5.234) in [783]
is similar to that in blow-up inflation, one should ask about the string loop

83
The racetrack is unrelated to the existence of poly-instanton effects: it is a further
model-building requirement. By introducing another adjustable parameter, the race-
track superpotential allows one to evade constraints that arise in a single-condensate
model [621,783].
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corrections to the Kähler potential that were crucial in §5.5.3 and §5.5.4. In
[621], it is argued that because D7-branes only wrap τs, not τ1 or τ2, with
only Euclidean D3-branes wrapping τ1, one does not expect open string
loop corrections that depend on the inflaton τ1. However, as we remarked
in §5.5.3, it has not actually been shown that dangerous open string loop
corrections are absent in this setting. Instead, a fair summary is that the
calculation of [322, 323] that led to the conjecture [324] is not immediately
applicable, and no first-principles computation of the quantum corrections
has been presented. The absence of (a certain sort of) quantum corrections
to an unprotected quantity such as the Kähler potential would be quite
striking, and further investigation of this point is warranted.

In addition to corrections from loops of open strings ending on D7-branes,
the Kähler potential can also be corrected by loops of closed strings. This
quantum correction was estimated in [621], where it was found that closed
string loops can significantly affect the shape of the inflaton potential. The
size of the effect depends on an undetermined amplitude Cloop that depends
on the complex structure moduli, and may be assumed to be of order unity
in generic situations. In [621], it was assumed that for appropriate choices of
flux one has Cloop . 0.1, in which case the loop corrections can be neglected.

5.5.6 Phenomenology

In the truncation to a single-field description, the models of inflation in
LVS described in this section can all be written in terms of the approximate
potential

V (φ) ≈ V0

(
1− κ1e

−κ2φ
)
. (5.239)

In blow-up inflation, κ1 = O(V lnV) and κ2 = O(V1/2(lnV)1/4), while in
fibre inflation κ1 ∼ κ2 = O(1), and in poly-instanton inflation κ1 ∼ κ2 =
O(ln(V)). The slow-roll parameters derived from (5.239) are

η ' −κ1κ
2
2 e
−κ2φ and ε ' 1

2

η2

κ2
2

. (5.240)

This class of models therefore satisfies ε� η and hence (2.44) becomes

ns ' 1 + 2η . (5.241)

Given ns, one predicts the tensor-to-scalar ratio:

r ' 2

κ2
2

(ns − 1)2 ns=0.96−−−−−−→ 3× 10−3

κ2
2

. (5.242)

This prediction for r depends on the parameter κ2, which differs for the
different classes of Kähler moduli inflation scenarios:
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. Blow-up inflation.—Because of the parametrically large string loop
correction (5.222) to η in blow-up inflation, it is not necessarily well-
motivated to derive predictions from the uncorrected model of the
form (5.239).84 Here, we will only point out that in blow-up inflation

without string loop corrections, κ2 = O(V(lnV)1/4) � 1, cf. (5.217).
Thus, by (5.242), the tensor-to scalar ratio r is extremely small. How-
ever, this feature relies on exponential flatness of the potential, which
as explained above is very vulnerable to corrections.

. Fibre inflation.—Eq. (5.231) is of the form (5.239), with κ2 = 1/
√

3.
This leads to a direct correlation between the scalar spectral index
and the tensor-to-scalar ratio,

r ' 6(ns − 1)2 ns=0.96−−−−−−→ 0.01 . (5.243)

A word about predictions for ns in fibre inflation is necessary. From
(5.229) one readily sees that slow-roll inflation can occur in both re-
gions II and III depicted in fig. 5.14. In region III η > 0, so that
ns > 1: the spectrum has a blue tilt, which is strongly disfavored
by observations. The approach of [43] is to consider only inflationary
dynamics in region II, but in fact the full model (5.229) can produce
a blue or a red spectrum, depending on where on the potential the
large-angle CMB exits the horizon: see also [791, 792]. The situa-
tion is similar to that in inflection point inflation (cf. §5.1.6), which is
unsurprising given the shape of the potential in fig. 5.14.

. Poly-instanton inflation.—In (5.238), we found κ2 = O(ln(V)). A

typical model [621] has κ2 = ln(103) ∼ 10 and hence

r ∼ 10−5 . (5.244)

Such a low tensor amplitude is unobservable.

It seems quite generic that the inflaton field in Kähler moduli inflation
couples to additional light degrees of freedom. This can modify the above re-
sults, which were based on a truncation to single-field inflation, and may lead
to additional signatures. For example, variations of blow-up inflation have
been proposed [563] that allow for large local non-Gaussianity via the curva-

ton mechanism [131,132,173,543]: f loc
NL ∼ O(few)×10. Similarly, extensions

84
For the same reason, in §5.1 we did not analyze the phenomenology that would arise
in warped D3-brane inflation driven by a Coulomb potential with no corrections from
moduli stabilization: although these predictions are widely quoted in the literature,
they have little meaning.
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of the simplest fibre inflation models have been constructed [566] that pro-
duce relatively large local non-Gaussianity from modulated reheating [170–

172,256]: f loc
NL ∼ O(few). Both possibilities are strongly constrained by the

Planck bound (1.72).

5.6 Inflating with Dissipation

In systems where the potential energy function is too steep to support slow-
roll inflation, dissipation can provide an alternative source of accelerated
expansion. Microscopically, dissipative effects arise if the inflaton is coupled
to, and excites, additional degrees of freedom during inflation. To model
this we add a direct coupling between the inflaton and the extra fields,
collectively denoted ψ:

S =

∫
d4x
√
−g

[
M2

pl

2
R− 1

2
(∂φ)2 − V (φ) +O(φ, ψ)

]
. (5.245)

Suitable couplings can lead to the production of ψ-particles, which drains
energy from the inflaton sector and leads to an enhanced effective friction
that slows the evolution of the inflaton field. However, since the density of
particles is diluted exponentially during inflation, it is difficult to maintain
friction-dominated evolution. In this section, we present a few ideas for how
this might nevertheless be achieved.85

In §5.6.1, we describe trapped inflation [622], in which dissipative dynam-
ics arises from repeated production of particles or strings. We explain how
trapped inflation could plausibly arise in the class of string compactifications
discussed in the context of axion monodromy inflation in §5.4.2, albeit in a
slightly different parameter regime. Then, in §5.6.2 and §5.6.3, we present
two very recent ideas: inflation via flux cascades [623] and via magnetic
drift [797]. Both are imaginative additions to the string inflation literature,
so we include them here even though, at the time of writing, the models
still lack explicit embeddings into fully specified string compactifications in-
cluding moduli stabilization. We hope our discussion will inspire the reader
to determine whether these ideas can be realized in concrete compactifica-
tions. Finally, we close, in §5.6.4, with a summary of the phenomenology of
trapped inflation.

5.6.1 Trapped Inflation

A good place to learn about quantum-mechanical particle production during
inflation is the pioneering work of Kofman, Linde and Starobinsky [798].

85
An effective field theory of dissipative inflation was constructed in [793]. Related work
on warm inflation [794] is reviewed in [795] (see also [767,796]).
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Here, we describe the basic elements of that analysis and then apply them
to trapped inflation.86

Particle Production

We start by computing the particle production for a simple field theory
model [664, 798, 799]. The result of this computation will feed into the
dynamics of the inflationary model. Consider a scalar field ψ coupled to the
inflaton φ via the interaction

Lint = −1

2
g2(φ− φ0)2ψ2 . (5.246)

Notice that the field ψ becomes massless at a specific point in field space,
φ = φ0. This is where the ψ particles are produced. Near this point, we
can approximate the homogeneous inflaton evolution as

φ(t) ≈ φ0 + φ̇0(t− t0) , (5.247)

which implies a time-dependent effective mass for the ψ particles,

m2
ψ(t) ≡ g2(φ− φ0)2 ≈ k4

?(t− t0)2 , (5.248)

where k2
? ≡ g|φ̇0|. The evolution equation for a Fourier mode of the ψ field

is then

ψ̈k + 3Hψ̇k +

(
k2

a2 + k4
?(t− t0)2

)
︸ ︷︷ ︸

≡ω2
k(t)

ψk = 0 . (5.249)

Particles are produced when the evolution becomes non-adiabatic,

|ω̇k| > ω2
k . (5.250)

This occurs in the time interval |t − t0| < k−1
? and for momenta k < k?.

Solving (5.249) gives the occupation number of the ψ particles [664,798]87

nk = e−πk
2
/k

2
? . (5.251)

Shortly after t = t0, the number density of ψ particles is

nψ(t0) =

∫
d3k

(2π)3 nk ≈
k3
?

(2π)3 . (5.252)

86
This section is based mostly on [622,664].

87
This result assumes k? > H.
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This depends on a combination of the coupling constant g and the inflaton
speed |φ̇0|. We assume that the ψ particles become sufficiently massive after
the production event so that they can be treated as non-relativistic matter.
The density of ψ particles then dilutes as a−3,

nψ(t) =
k3
?

(2π)3

a3(t0)

a3(t)
Θ(t− t0) , (5.253)

where Θ is the Heaviside function. The energy density of the ψ particles is
ρψ(t) = mψnψ(t).

0 0.1 0.2 0.3 0.4

0.1626

0.1624

0.1622

Fig. 5.15. Decay of the inflaton velocity due to particle production (figure adapted
from [799]). The time t = 0 corresponds to the production event, the coupling is
g2 = 0.1, and m2 ≡ V ′′.

Next, we determine how the density of ψ particles affects the evolution
of the inflaton field φ. The effect can be estimated by using the following
mean-field equation [664,798]

φ̈+ 3Hφ̇+ V ′ = −g2(φ− φ0)〈ψ2〉 , (5.254)

where88

〈ψ2〉 ≈
nψ(t)

g|φ− φ0|
. (5.255)

Fig. 5.15 shows a numerical solution of eq. (5.254). We see that the inflaton
velocity φ̇ decays after the production event, but then returns almost to its
initial value as the effect of the particles gets diluted away. The cosmological
evolution is affected only temporarily by the particle production.89 In other
words, a single particle production event does not lead to many e-folds

88
For a derivation of (5.255) see [664,798] .

89
Particle production can be continuous if the inflaton is coupled to a gauge field (see
§5.6.3).
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of dissipative dynamics. Achieving inflation from dissipation requires that
the density of particles is kept high by repeated particle production. The
resulting inflationary model is called trapped inflation.90 We first describe
an effective field theory construction of trapped inflation and then present
a string theory realization.

Trapped Inflation in Effective Field Theory

To get repeated particle production, we replicate the coupling (5.246) at N
points φi,

Lint = −1

2
g2

N∑
i=1

(φ− φi)
2ψ2

i , (5.256)

We take these points to be evenly spaced, with φi+1 − φi ≡ ∆, both to
simplify the presentation and because uniform spacing is natural in mi-
crophysical models involving monodromy (see below). Particles are now
produced periodically with densities given by (5.252),

nψi(ti) '
(
gφ̇(ti)

)3/2
(2π)3 ≡ ϕ̇3/2(ti)

(2π)3 . (5.257)

We have ignored the effects of any finite pre-existing particle density on
the particle production, and we have defined ϕ ≡ gφ for later convenience.
Replacing ψ2

i by its expectation value 〈ψ2
i 〉, we get an equation of motion

for the inflaton:

φ̈+ 3Hφ̇+ V ′ +
∑
i

gϕ̇3/2(ti)

(2π)3

a3(ti)

a3(t)
= 0 . (5.258)

If the production events are spaced densely enough91, then we can replace
the sum by an integral∑

i

gϕ̇3/2(ti)

(2π)3

a3(ti)

a3(t)
≈
∫ t dt′

∆

ϕ̇5/2(t′)

(2π)3

a3(t′)

a3(t)
≈ 1

3H∆

ϕ̇5/2(t)

(2π)3 , (5.259)

and (5.258) becomes

φ̈+ 3Hφ̇+ V ′ +
1

24π3

g5/2

H∆
φ̇5/2 = 0 . (5.260)

90
Trapped inflation was first proposed in [664, 800]. The inflationary mechanism, the
spectrum and bispectrum, and possible microphysical embeddings were systematically
analyzed in [622]. See also the related work [799].

91
The necessary condition is ∆� { φ̇/H , φ̇

2
/φ̈ } [622].
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Notice the extra friction term proportional to φ̇5/2 provided by the finite
density of ψ particles. Assuming slow-roll (|φ̈| � 3H|φ̇|), and taking the
damping to be dominated by particle production (3H|φ̇| � V ′), we find

ϕ̇ = gφ̇ ≈ −
(
24π3H∆V ′

)2/5
. (5.261)

Let us estimate the conditions for this solution to correspond to inflation.
We assume that the Hubble parameter is dominated by the potential energy
of the inflaton,

3M2
plH

2 = ρφ + ρψ ≈ V (φ) , (5.262)

while its evolution is sourced by the ψ particles,

2M2
plḢ ≈ −ρψ , (5.263)

where we have used ρ̇ψ ' −3Hρψ � ρ̇φ. The Hubble slow-roll parameter is
then

ε = − Ḣ

H2 ≈
3

2

ρψ
V

, (5.264)

where

ρψ(t) =
∑
i

g|φ− φi|nψi(t) ≈
∫ t dt′

∆
|φ(t)− φ(t′)| ϕ̇

5/2(t′)

(2π)3

a3(t′)

a3(t)
. (5.265)

Using |φ(t)− φ(t′)| ≈ φ̇(t− t′), we can approximate the integral in (5.265)
in the same way as in (5.259),

ρψ(t) ≈ 1

(3H)2

1

g∆

ϕ̇7/2(t)

(2π)3 . (5.266)

Using the solution (5.261) to replace ϕ̇, we can write (5.264) as

ε ∼ ε7/10

g

(
H

Mpl

∆2

M2
pl

)1/5

, (5.267)

where ε is the potential slow-roll parameter (2.39) and we have dropped some
unimportant numerical factors. We see that inflation can occur (ε < 1) even
for a steep potential (ε > 1). The parametric scaling of the answer in (5.267)
is as expected: particle production is more efficient for larger coupling g and
smaller spacing ∆; both of these effects correspond to smaller ε for fixed
ε. Consistency conditions and further constraints on g and ∆ were studied
in [622].
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Trapped Inflation in String Theory

The core requirement for trapped inflation is a closely-spaced series of
particle production events along the inflationary trajectory, as in the toy
Lagrangian (5.256). This structure appears contrived in four-dimensional
EFT, but readily arises in string theory as a consequence of monodromy
(cf. §5.4.2). We will describe two approaches to a string theory embedding
of trapped inflation [34,622,751].

Wrapped brane monodromy.—We first examine a D4-brane in a nilmanifold
compactification [751], where the replication responsible for serial particle
production is most easily visualized. Consider the three-dimensional nil-
manifold (or ‘twisted torus’) N3 defined by coordinates u1, u2, x identified
by

tx : (x, u1, u2) 7→ (x+ 1, u1, u2) (5.268)

tu1
: (x, u1, u2) 7→ (x−Mu2, u1 + 1, u2) (5.269)

tu2
: (x, u1, u2) 7→ (x, u1, u2 + 1) , (5.270)

with the line element

ds2

α′
= L2

u1
du2

1 + L2
u2

du2
2 + L2

x (dx+Mu1du2)2︸ ︷︷ ︸
T

2

, (5.271)

where Lu1
, Lu2

, and Lx are dimensionless constants. This geometry corre-

sponds to a T 2 fibration over a circle parameterized by u1, which we denote
by S1

u1
: for each value of u1 there is a T 2 in u2 and x,

ds2
T

2(u1)

α′
= L2

u2
du2

2 + L2
x (dx+Mu1du2)2 . (5.272)

The identification (5.269) shows that the fiber T 2 at u1 = 1 is twisted by
an SL(2,Z) transformation before being glued to the fiber at u1 = 0. More
precisely, the complex structure of the torus shift by M units, i.e. τ 7→ τ+M
as u1 7→ u1 + 1. These equivalent tori are identified by the projection tu1

.

At M special locations around S1
u1

, Mu1 = j ∈ Z, the tori are rectangular:

ds2
T

2
,⊥

α′
= L2

xdy2
1 + L2

u2
dy2

2 . (5.273)

We have defined coordinates y1 ≡ x + ju2 and y2 ≡ u2 obtained from an
SL(2,Z) transformation of x and u2.

The configuration of interest is type IIA string theory compactified on
an orientifold of the product space N3 × Ñ3, with Ñ3 a second nilmanifold.
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For the moment it suffices to consider a single N3. We consider a D4-
brane wrapped on the one-cycle defined by u2 = λ, or equivalently by
(y1, y2) = (jλ, λ). The role of the inflaton is played by the u1 coordinate of
the D4-brane. The key point is that if the D4-brane is transported in the u1

direction, the fiber torus returns to an equivalent torus, but the one-cycle
does not: e.g. at u1 = 0, the brane wraps (y1, y2) = (0, λ), while at u1 = 1,
the brane wraps (y1, y2) = (Mλ, λ). The D4-brane undergoes monodromy

D4

D4
0 1 2

Fig. 5.16. Monodromy of a wrapped D4-brane on a nilmanifold.

upon transport around S1
u1

[751].
To derive the dynamics of the wrapped D4-brane, we consult the DBI

action

SD4 = − 1

(2π)4gs(α
′)2

∫
d4x
√
−g
√
L2
u2

+ L2
xM

2u2
1

(
1− 1

2
α′L2

u1
u̇2

1

)
.

(5.274)
For LxMu1 � Lu2

, we get

SD4 =

∫
d4x
√
−g
(

1

2
φ̇2 − µ10/3φ2/3

)
, (5.275)

where

φ2

M2
pl

=
2

9
(2π)3gs

M

L3

Lu1

Lu2

u3
1 , (5.276)

µ

Mpl
=

Ms

Mpl

(
9

4

M2

(2π)8g2
s

(
Lx
L

)3 Lu2

Lu1

)1/10

. (5.277)

Here, we have defined L3 ≡ Lu1
Lu2

Lx. The field range can be super-
Planckian if Lu1

& Lu2
and

∆u3
1 �

L3

M
. (5.278)

This corresponds to moving around the S1 many times (see fig. 5.16).
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spectator branes

wrapped
D4-brane

Fig. 5.17. Trapped inflation on a nilmanifold.

Trapped inflation from wrapped branes.—A small modification of the sce-
nario of [751] allows for repeated particle production events, as in trapped
inflation (see fig. 5.17). In addition to the inflationary brane, we consider
N D4-branes wrapping the SL(2,Z) transforms of the one-cycle associated

with the inflaton brane. The jth brane has a potential (u1−j/M)2+· · · and
therefore minimizes its energy at u1 = j/M . As the inflaton brane unwinds,
it comes close to each of these spectator branes. The strings stretching be-
tween the mobile brane and the lattice of stationary branes play the role of
the extra fields ψj . Before accounting for moduli stabilization, the effective
potential is of the form given in (5.256).

A serious obstacle to realizing trapped inflation in a nilmanifold com-
pactification is that the presence of a large number of D4-branes tends to
destabilize the moduli [622]. For the moduli stabilization constructions de-
scribed in [292, 293], the D4-brane energy exceeds the scale of the moduli
potential barriers when ND4 & O(10), which does not allow enough particle
production events for trapped inflation.

Trapped inflation from axions.—A closely related scenario in which insta-
bilities are under better control [622] is the axion monodromy model [34]

described in §5.4.2. Let us denote by `2 the volume of the two-cycle Σ2

wrapped by the NS5-brane, cf. (5.160). A D3-brane wrapping Σ2, with
worldvolume flux ∫

Σ2

F2 = n ∈ Z , (5.279)

gives rise in four dimensions to a string with tension

TD3/Σ2
= T3

√
`2 + (cgs + n)2 , (5.280)

where c ≡
∫

Σ2
C2 measures induced D1-brane charge in the D3-brane. For
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cgs ∈ Z, this induced charge can be canceled by the quantized flux F2 in
(5.279), if n = −cgs. We now notice that if ` → 0, this configuration gives
rise to a tensionless string in four dimensions whenever integer values of cgs

are canceled by appropriate flux F2. These strings play the role of the ψ
particles in the EFT discussion of §5.6.1: as c diminishes from a large initial
vev, tensionless strings are produced at regularly-spaced intervals.

A necessary condition for trapped inflation in this setting is a field range
[622] ∆φ/Mpl &

√
60/10, which is a bit milder than the requirement for

chaotic inflation in §5.4.2. On the other hand, a systematic study of moduli
stabilization and backreaction would be necessary to determine sufficient
conditions for trapped inflation in the context of axion monodromy, and to
characterize corrections to the simple model of (5.256).

Weak coupling limit of DBI inflation.—Trapped inflation is closely related
to DBI inflation. Consider a D3-brane in the background of a stack of N−1
D3-branes, corresponding to a location on the Coulomb branch of N = 4
super-Yang-Mills theory (see §5.3.3). At large gsN , the D3-brane is a probe

of an AdS5 × S
5 geometry. Taking φ to be the canonical field representing

the radial position of the D3-brane, one easily sees that strings stretching
between the isolated D3-brane and the stack have masses proportional to
φ. By analogy to the Higgs mechanism, the fields with masses m ∝ φ
are sometimes called ‘W-bosons’ (though some of the relevant fields are
fermions).

Now suppose that the D3-brane moves toward the stack, breaking super-
symmetry by virtue of its kinetic energy. There are two important effects
that can change its trajectory: virtual W-bosons induce quantum correc-
tions to the action for φ, while pair production of on-shell W-bosons —
caused by the time-dependence of their mass — drains energy from the φ
sector. The former effect leads to the DBI action (5.92): indeed, it is the
fact that the W-bosons have m ∝ φ that causes the non-renormalizable
terms in (5.92) to be suppressed by φ, rather than by a fixed cutoff scale.
The latter effect is precisely the particle production process described in
§5.6.1. At large ’t Hooft coupling, so that the gauge theory is strongly cou-
pled but the supergravity background probed by the D3-brane is weakly
curved, the dominant effect on the D3-brane dynamics comes from virtual
W-bosons [38]: the evolution is governed by the DBI action, with negligible
particle production. If instead the gauge theory is weakly coupled, particle
production dominates. In the sense, trapped inflation is the weak-coupling
analogue of DBI inflation, even though — as usual with strong-weak du-
alities — one rarely has control of both sides in the same setting. Indeed,
we saw above that the most plausible string theory realizations of trapped
inflation do not involve taking the weak coupling limit of the configurations
studied in §5.3 (namely, D3-branes in Calabi-Yau cones): instead, compact-
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ifications involving monodromy are a more fruitful setting.

The phenomenology of trapped inflation will be discussed in §5.6.4.

5.6.2 Flux Cascades

The unwinding inflation scenario [623,624] combines bubble nucleation, dis-
sipation/trapping, monodromy, the DBI effect, oscillations in the potential,
and a hybrid exit through brane-antibrane annihilation. The basic setup is
the following: a (p+ 2)-form flux Fp+2 fills the noncompact spacetime and
threads a (p−2)-cycle in the compact space. Initially there are Q0 � 1 units
of Fp+2, but the flux can be discharged by the nucleation of a p-brane/anti-
p-brane pair, followed by O(Q0) ‘unwindings’, in which the brane and an-
tibrane move in opposite directions around the compact cycle, reducing the
flux and colliding with each other in every circuit.92 In this section, we
will give some of the details of unwinding inflation, and comment on the
prospect of realizing this idea in string theory.93

The unwinding mechanism is applicable in a broad class of higher-dimen-
sional gravity theories involving suitable fluxes, but, anticipating a UV com-
pletion in string theory, we will limit our discussion to string compactifica-
tions. Consider string theory in the ten-dimensional spacetime

M10 = dS4 ×X6 , (5.281)

for X6 a compact manifold, and take Q0 � 1 units of the R-R (p+ 2)-form
flux Fp+2 to fill the noncompact spacetime and thread a (p− 2)-cycle Σp−2

in X6, ∫
dS4×Σp−2

Fp+2 = Q0 � 1 . (5.282)

The flux induces an effective cosmological constant in four dimensions: this
will play the role of the inflationary energy density. A Dp-brane carries
electric charge under Fp+2, and nucleation of a bubble bounded by a Dp-
brane creates a region (the bubble interior) in which the flux is reduced by
one unit compared to the exterior, as in [805]: this is a higher-dimensional
analogue of the Schwinger process in QED. The background flux creates a
force on the bubble, driving it to expand in Σp−2.94

92
The first proposal to use self-collisions of a bubble in compact extra dimensions to
drive inflation appears in [801]. Cascades following nucleation events were discussed
in [802, 803]. A closely related scenario in which D-brane motion around the compact
cycle discharges a flux is [804].

93
This section is based on [623,624].

94
As a simple analogy [624], one can picture the flux as a rubber sheet that wraps re-
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Eventually the Dp-brane bubble becomes so large that it ‘unwraps’ Σp−2

and collides with itself, dissipating energy into open string degrees of free-
dom. Because the portions of the bubble that collide have opposite orienta-
tion, this is locally a Dp-brane/anti-Dp-brane collision. Provided that the
collision happens so rapidly that the brane-antibrane tachyon does not have
time to condense, and provided that the dissipation is not strong enough to
stall the unwinding process — see below for discussions of these important
points — the brane and the antibrane pass through each other and continue
to unwind (see fig. 5.18 for a five-dimensional example). Each subsequent
collision reduces the flux by a further unit. In the four-dimensional effective
theory, this appears as a slow reduction of the effective cosmological con-
stant, mimicking the evolution during slow-roll inflation.95 When the flux
has dropped sufficiently, the branes stop moving relativistically. Tachyon
condensation can then be efficient when the branes approach each other, and
brane-antibrane annihilation provides a natural hybrid exit from inflation.

A number of important questions arise at this stage. What sort of bub-
ble nucleation event leads to a flux discharge cascade? What is the four-
dimensional effective action for the unwinding branes? Is dissipation a small
correction to the background evolution, and to the scalar and tensor per-
turbations? What is the dynamics of the D-brane pair in the compact
directions perpendicular to the flux? Are the requirements of unwinding in-
flation compatible with compactification and moduli stabilization? We will
briefly address the first three points, following [623, 624], and then review
some of the difficulties involved in embedding these ideas in string theory.

To discuss the effective action, it will be instructive to examine the sim-
plified example of dS4×S

1 with five-form flux F5 [623]. In this case, bubble
nucleation leads to the situation depicted in fig. 5.18. The bubble is bounded
by D3-branes at +zb and −zb: because these branes have opposite charges,
one can think of them as a brane-antibrane pair. The role of the inflaton
is played by zb, the radius of the bubble in the extra dimension.96 To de-
termine the effective action for zb, ref. [623] examined bubble nucleation in

peatedly around Σp−2. The initial bubble nucleation corresponds to the appearance of
an approximately spherical hole in one layer of the wrapped sheet. The tension of the
rubber causes the hole to expand, unwinding layer after layer of the sheet.

95
This is similar in spirit to chain inflation [806–812], although the microscopic details
are quite different, and is also very similar to the unwinding of a wrapped D4-brane
in monodromy inflation in nilmanifold compactifications [751], and to the reduction of
induced D3-brane charge during axion monodromy inflation [34], cf. §5.4.2.

96
For Dp-branes in a compactification of critical string theory, there will be additional
scalars describing the remaining coordinates of the D-branes (at least if p < 8, which
includes all examples of interest). One should bear in mind that these fields could be
crucial for the background evolution and the perturbations, so this five-dimensional toy
model may not give a faithful representation of unwinding in a string compactification.
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Fig. 5.18. A cascade of five-form flux on dS4 × S1. The compact S1 and its
covering space are both shown.

the Euclidean spacetime with metric

ds2
E = H−2

(
dξ2 + sin2ξdΩ2

3

)
+ dz2 , (5.283)

where dΩ2
3 is the line element on S3 and z is the coordinate for an S1 of

circumference `. The bubbles of primary interest have initial size97 ∆z �
` and have the maximum possible symmetry (as this is characteristic of
dominant instantons). Solving the Euclidean equations of motion and then
continuing back to Lorentzian signature, ref. [623] obtained the action

S =

∫
dz

∫
dH3 dt

sinh3(Ht)

H3

(
−2σ δ(z − zb)

√
1− (∂zb)

2 − F 2
5

2 · 5!

)
,

(5.284)

where dH3 ≡ sinh2(ρ)dρdΩ2 is the integration measure on a three-hyper-

97
A bubble of size ∆z & ` would correspond to an ordinary bubble of reduced flux in dS4,
and would expand in dS4 without initiating a cascade.
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boloid, σ is the tension of the wall (a D3-brane), and

F 2
5

5!
= µ5Q2 = µ5

Q0 +

∞∑
j=−∞

[
Θ(z − zb + j`)−Θ(z + zb + j`)

]2

.

(5.285)

Here, Q0 stands for the initial flux before bubble nucleation, µ5/2 is the
charge of the brane, and the sum is over all the image branes (cf. fig. 5.18).
Eq. (5.285) is a consequence of Gauss’s law, which requires that the flux
changes by one unit of the brane charge across the bubble wall. Once the
radius of curvature of the bubble becomes much larger than the Hubble
radius, the four-dimensional spacetime inside the bubble can be approx-
imated by flat de Sitter space. Integrating over the fifth dimension, the
action (5.284) becomes

S =

∫
dtd3x a3(t)

(
−2σ

√
1− (∂zb)

2 − V (zb)

)
, (5.286)

where a(t) ≡ eHt.
Upon solving the equations of motion that follow from (5.286) — still

neglecting dissipation during collisions — one finds that the D3-brane ve-
locity żb is relativistic, and approximately constant. The branes collide with
image branes when zb = n`/2, for n ∈ Z. This leads to discrete jumps in the
vacuum energy V perceived by an observer in the four-dimensional space-
time. On timescales that are large relative to the Kaluza-Klein scale, this
reduction in the inflationary energy density appears continuous and can be
approximated as

V (zb) ∼ µ
5
(
Q0 −

zb
`

)2
. (5.287)

Tachyon condensation ends unwinding inflation, so it is crucial that the
brane and antibrane can collide O(Q0) times without slowing down so
much from the resulting dissipation that the tachyon condenses prematurely.
Tachyon condensation is suppressed when the brane-antibrane collision is
relativistic, and a priori one could construct a configuration in which the
electric force from the flux accelerates the brane to an arbitrarily large γ,
allowing a correspondingly large number of cycles. In a realistic cosmology,
however, γ is bounded from above: the DBI kinetic term of the moving
brane leads to equilateral non-Gaussianity, as described in §5.3, and the
Planck upper limit requires that γ . 24, cf. eq. (5.135). This limits the
degree to which tachyon condensation can be deferred.

Computing the production of open and closed strings in a relativistic
brane-antibrane collision — particularly in the most singular case of zero
impact parameter — is highly nontrivial. If the branes are taken to be
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homogeneous, some aspects of the calculation can be performed in the four-
dimensional EFT involving the lightest string modes, but there are subtleties
in this approach. The naive EFT obtained by dimensional reduction of a
compactification containing a stationary brane-antibrane pair does not cor-
rectly capture the spectrum of masses of stretched strings between a brane
and an antibrane in relativistic relative motion [813]. To obtain the correct
rate of open string production, one applies the optical theorem to the annu-
lus amplitude for the moving branes [814], which reveals that the effective
tension of the stretched string diminishes at large γ, increasing the pair
production rate [719,813]. Building on the results of [814], ref. [623] argued
that for the velocities allowed by (5.135), only the lowest few massive string
modes are produced during the collision. One limitation of this approach
is that the annulus amplitude provides information about pair production
in a constant-velocity scattering process, while in practice the dissipation
from a head-on collision may substantially (albeit temporarily) decelerate

the brane-antibrane pair.98 A direct calculation of the production of ex-
cited open strings in a series of relativistic scattering processes with varying
velocity (and perhaps with inhomogeneities) would be a major technical
challenge.

Even if the dissipation in each collision is a mild correction to the back-
ground evolution, dissipation could have a major impact on the perturba-
tions. One possibility is that the periodic modulations of the Hubble con-
stant will induce resonant contributions to the spectrum and bispectrum, as
described for axion monodromy inflation in §5.4.2. More dramatically, the
repeated production of open strings could source the dominant component
of the scalar power spectrum, as for trapped inflation in §5.6.1.

The evolution described above assumes that only a single coordinate (the
bubble radius) is relevant, and that production of particles and strings, as
well as the eventual tachyon condensation, are not strongly inhomogeneous.
These issues are linked: a fluctuation of the moving brane in a transverse
direction changes the impact parameter of the collision, and both particle
production and the tachyon mass depend sensitively on the impact parame-
ter. Although a number of related consistency checks were performed in the
toy models of [623], the geometries considered in [623] may be too simple
to capture the dynamics of unwinding in a realistic compactification, and
further investigation is warranted.

The essential mechanism of unwinding inflation is fairly simple, and ap-

98
This deceleration leads to bremsstrahlung, which is dramatically enhanced at large γ
[719]. The values of γ allowed by limits on non-Gaussianity are not large enough for the
results of [719], where an ultrarelativistic limit was assumed, to be directly applicable,
but the losses to closed string radiation during unwinding inflation may nevertheless be
significant, and deserve further study.
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pears to arise naturally in toy flux compactifications, with simple unwarped
geometries and with the moduli stabilized by fiat. Above we have high-
lighted some limitations of the calculations of [623], as well as some ways
in which the presence of extra compact dimensions — still stabilized by
hand — could complicate, or prematurely terminate, the unwinding process.
In closing, we will reemphasize the importance of complete and calculable
moduli stabilization. For a proper perspective, one should recognize that
all of the mechanisms for inflation in string theory that we have described
thus far appear to succeed naturally in unstabilized toy compactifications,
but (we would argue) none has been automatically successful after mod-
uli stabilization and careful implementation of microphysical constraints.
Because unwinding inflation tends to occur at a high scale [623], it faces
the very general problem of achieving adequate barriers to destabilization
and decompactification, which in various guises plagued the large-field ax-
ion models of §5.4. Addressing this issue by realizing unwinding inflation
in a fully stabilized string compactification is an interesting problem for the
future.

5.6.3 Magnetic Drift

Another class of scenarios for dissipative inflation invokes couplings between
the inflaton and one or more gauge fields. Suppose first [767] that the
inflaton is an axion φ that couples to N U(1) gauge fields Ai via the standard
axionic coupling

L ⊃ −
N∑
i=1

αi
φ

f
FiF̃i , (5.288)

where Fi = dAi is the gauge field strength of the ith gauge group, and
F̃i is its dual. A time-dependent axion vev, φ(t), breaks the conformal
invariance of the action for the gauge field, leading to the production of
quanta of the gauge field. It is natural to ask whether dissipation through
production of gauge fields can slow φ sufficiently to give inflation. In [767], it
was shown a successful inflationary period with phenomenologically viable
perturbations requires large couplings, αi ∼ O(100), to a large number of

gauge fields, N ∼ 105. The top-down naturalness of this mechanism remains
to be established, and in particular no complete string theory realization has
been constructed.99

Another recent proposal, which we will now describe in some detail, is that
inflation can be achieved by coupling an axion to non-Abelian gauge fields
with suitable vevs [625, 797] (see [815–817] and the review article [818] for

99
One way to achieve large α is to fine-tune two axion decay constants to be nearly
coincident [767].
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the related idea of gauge-flation). A large Chern-Simons coupling between
the axion and the gauge fields transfers energy from the inflaton sector to
the gauge fields — without dissipation — and allows slow-roll to occur even
in the presence of a steep potential. The basic dynamics is similar to that
of a charged particle in a magnetic field.100

As a concrete example, let us consider a stack of N D3-branes, with
SU(N) gauge theory on their worldvolume. The Chern-Simons coupling
(3.29) includes the term

SCS =
i

2π

∫
M4

C0 Tr [F2 ∧ F2] . (5.289)

This is a topological term, and will not appear in the stress tensor. Combin-
ing this with the standard kinetic terms for the axion and the gauge field,
and evaluating the action in a homogeneous FRW background, we find

Seff =

∫
d4x

{
a3

[
γCĊ

2
0 − V (C0) + γA

Tr(Ȧ2)

a2 + γA
Tr([A,A]2)

a4

]

+ κC0 Tr(Ȧ[A,A])

}
, (5.290)

where γA ≡ 1/((2π)2gs), γC ≡ g2
sM

2
pl, and κ = 1 (in D7-brane generaliza-

tions discussed below, we will have κ ∈ Z). We have left the axion potential,
V (C0), unspecified. We introduce the canonically-normalized inflaton

C0(t) ≡ φ(t)
√
γC

, (5.291)

and choose an initial gauge field configuration with a rotationally invariant
vacuum expectation value,

A0 ≡ 0 , Ai(t) ≡
a(t)ψ(t)
√
γAν

Ji , (5.292)

where Ji are the generators of SU(2) in the N -dimensional representa-

tion.101 Substituting (5.291) and (5.292) into (5.290), we find

Seff =

∫
d4x a3

[
1

2
φ̇2 − V (φ) +

3

2
(ψ̇ +Hψ)2 − 3

2
g2ψ4

− 3gλ

f
φ ψ2(ψ̇ +Hψ)

]
, (5.293)

100
This section is based mostly on [625,797]. We thank Peter Adshead and Emil Martinec
for helpful discussions.

101
Any SU(N) group has an SU(2) subgroup, and here we have identified the global part
of this SU(2) with the group SO(3) of spatial rotations.
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where f ≡ √γC , λ ≡ κ/γA, and g ≡ 1/
√
γAν. The same action arises in

phenomenological models of chromo-natural inflation [797].

0.2 2 10

Fig. 5.19. Evolution of a charged particle in two dimensions with quadratic ex-
ternal potential and a coupling to a homogeneous magnetic field. For large enough
coupling to the magnetic field, the particle experiences slow magnetic drift. (The
numerics for these figures was kindly provided by Peter Adshead.)

The equation of motion for the inflaton is

φ̈+ 3Hφ̇+ V,φ = −3
gλ

f
ψ2(ψ̇ +Hψ) . (5.294)

In addition to the force from the bare axion potential, the field experiences
the analogue of a magnetic drift force proportional to the coupling λ. For
large λ, the two forces balance each other and hence allow a slow evolution
of the inflaton. This is closely related to the magnetic drift phenomenon of
a charged particle coupled to a magnetic field; see fig. 5.19.

For sufficiently large λ, the effective action (5.293) leads to inflation. The
maximum number of e-folds that can be achieved while the axion rolls to
the minimum of its potential is found to be [797]

(Ne)max ≈
3

5
λ . (5.295)

Thus, successful chromo-natural inflation requires a large Chern-Simons
coupling, λ & O(100).

The crucial question is whether such a large coupling can be achieved
in a controlled string compactification. In fact, it is easy to see that this
cannot be achieved for a stack of D3-branes at weak coupling, as in that
case the Chern-Simons coupling is fixed by the string coupling, λ ∼ gs � 1.
A possible alternative is a stack of D7-branes wrapping a four-cycle Σ4,
with Euler number χ(Σ4) =

∫
Σ4
χ̂(R), and with worldvolume gauge field
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instanton number c2 = K. The Chern-Simons interaction is then

SCS =
i

(2π)3

∫
M4×Σ4

C0

24

(
Tr[F2 ∧ F2 ∧ F2 ∧ F2] +

1

2
Tr[F2 ∧ F2] χ̂(R)

)
,

(5.296)
where we have included the curvature coupling proportional to the Euler
density χ̂(R). The effective coupling in (5.293) is then found to be [625]

λ =

[
K +

χ(Σ4)

24

]
× gs ×

`4s
V4

. (5.297)

It appears difficult, but not impossible, to achieve λ & O(100) in this setting
while retaining control of the gs and α′ expansions. Further attempts to
obtain large magnetic couplings in string theory are discussed in [625].

5.6.4 Phenomenology

The study of the primordial perturbations arising in dissipative models is
comparatively new, and because realizations in string theory are also a
work in progress, a definitive characterization of the phenomenology is not
available at present. In this section, we will briefly describe some of the
more robust signatures.

Trapped inflation.—The perturbations in trapped inflation, while under-
stood in some detail [622, 793], are not easily described analytically. We
therefore present only the main results, referring the reader to the original
literature for derivations [622,793].

. Power spectra.—Particle production affects the spectrum of primor-
dial perturbations. The inflaton fluctuations satisfy

δ̈φ+

(
M2 +

k2

a2

)
δφ

+

∫ t

dt′M2

(
5

2
˙δφ(t′)− 3Hδφ(t′)

)
a3(t′)

a3(t)
= −g∆nψ(k, t) ,

(5.298)

where we have defined the time-dependent effective mass of inflaton
fluctuations,

M2 ≡ g5/2

(2π)3

φ̇3/2

∆
, (5.299)
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and the variance in the number of produced ψ particles, ∆nψ ≡
g
∑

i

(
ψ2
i − 〈ψ

2
i 〉
)

(φ− φi). Solving (5.298) leads to the power spec-

trum of curvature perturbations [622]

∆2
R ≈ g8/3 H

M

(
M

∆

)2/3

. (5.300)

Using (5.299), this can be written as

∆2
R ≈ g9/4

(
H

∆

)1/2
(
H2

φ̇

)1/4

, (5.301)

and the spectral tilt is

ns − 1 =
Ḣ

H2 −
1

4

φ̈

Hφ̇
. (5.302)

For the specific example studied in [622], the tilt was found to be
ns = 0.99, but in general the tilt depends on the details of the model,
such as the shape of the potential, the density of particle production
events, and the properties of the particles that are produced.

If the power spectrum of tensors is dominated by vacuum fluctuations,
cf. eq. (1.34), then the tensor-to-scalar ratio is

r = g−8/2 HM

M2
pl

(
∆

M

)2/3

. (5.303)

For the regime of parameters that is consistent with constraints on
the scalar fluctuations, ref. [622] finds r � 10−4.

. Equilateral non-Gaussianity.—The nonlinear couplings between the
inflaton φ and the extra fields ψi lead to non-Gaussianity in the pri-
mordial curvature perturbations. The bispectrum peaks in the equi-
lateral configuration and has amplitude

f equil
NL ' M2

H2 . (5.304)

The bispectrum for trapped inflation still satisfies the single-field con-
sistency condition [116,117], as proved in [819].

. Secondary gravitational waves.—The produced ψ particles can also be
a classical source of gravitational waves. Refs. [260–262] studied EFT
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variations of trapped inflation in which this source of tensor fluctua-
tions can sometimes be competitive with the quantum-mechanical re-
sult (1.34). Their examples go beyond the simplest models of trapped
inflation and have not yet been realized in string theory. Moreover, it
remains to be checked whether the regime that produces large tensors
is consistent with existing constraints on non-Gaussianity.

Unwinding inflation.—The phenomenology of unwinding inflation is just be-
ginning to be explored, and more detailed realizations in string theory will
be required to solidify the predictions of the model. The signatures depend
strongly on the D-brane dimension p: for p = 3, fluctuations in open string
production provide the dominant source of perturbations, but the compact-
ification must be highly anisotropic, while for p = 4 (p = 5) the scalar

perturbations receive a 10% (1%) contribution from open strings.102 Pos-

sible signatures include a modest level of tensor perturbations (r . 10−2),
equilateral non-Gaussianity, and (for p = 4) oscillations in the spectrum
from modulations of the open string pair production rate.

Chromo-natural inflation.—String theory realizations of chromo-natural in-
flation are not yet developed enough to make robust predictions for observ-
ables. Taken at face value, the original model (5.293) is in conflict with
the CMB data [820]: it either predicts a spectral tilt that is too red, over-
produces gravitational waves, or both. Nevertheless, it remains interesting
to explore whether large Chern-Simons couplings can arise in consistent
string compactifications and if models with viable phenomenology can be
constructed.

102
In the case of p = 6 the Lorentz factor exceeds the limit of eq. (5.135), while p = 7 and
p = 8 are clearly incompatible with metastable compactification [623].
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Our mistake is not that we take our theories too seriously, but that we do

not take them seriously enough. It is always hard to realize that these num-

bers and equations we play with at our desks have something to do with the

real world. Even worse, there often seems to be a general agreement that

certain phenomena are just not fit subjects for respectable theoretical and

observational effort.

Steven Weinberg, on the Big Bang model [821].

Consistent theories of quantum gravity do not grow on trees. After a
search spanning nearly a century, string theory is the only known example
of such a theory. Of course, it does not follow that string theory describes
our universe: mathematical consistency is a necessary requirement, but
it is far from sufficient. To connect string theory to particle physics and
cosmology, we must seek guidance from terrestrial experiments and from
observations of the cosmos. One should not be surprised that experimental
evidence is elusive, for quantum gravity is naturally relevant at scales many
orders of magnitude beyond those accessed on Earth. Running the theory
to low energies and extracting predictions that are sensitive to its high-
scale origin has proved challenging. However, the early universe provides
an arena where ideas about quantum gravity can be tested, and the initial
singularity of the Big Bang model is a prime example where a theory of
quantum gravity is compulsory. Quantum fluctuations of the metric during
inflation, imprinted in primordial B-mode perturbations of the CMB, are
the most vivid evidence conceivable for the reality of quantum gravity, and
for the significance of quantum gravity in the early history of our universe.

Inflation defers the singularity problem, allowing us to make predictions
for the initial conditions that emerge from the aftermath of the Big Bang.
However, as we have shown, the inflationary mechanism retains a subtle

294
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sensitivity to Planck-scale interactions. This is both a challenge for micro-
scopic theories of inflation, as well as an opportunity for using the early
universe as a window on Planck-scale physics. To fulfill this promise, infla-
tionary scenarios in string theory must be developed to an unprecedented
level of completeness and sophistication.

The last decade of research on inflation in string theory has witnessed a
number of significant advances. The development of methods of moduli sta-
bilization has led to vastly improved technical capabilities, and in turn to a
sharply improved understanding of metastable string compactifications and
of the associated inflationary models. In special cases it has been possible to
characterize the Planck-suppressed corrections to the inflaton action, lead-
ing to the first existence proofs of inflation in string theory. Furthermore,
the symmetry structures required for large-field inflation are now better
understood. In addition, techniques for studying the dynamics of theories
with many moduli have recently emerged. Moreover, string inflation has
expanded and refined our ideas for inflationary mechanisms in effective field
theory. Consistency conditions in string theory have suggested that certain
classes of models conceived as effective theories may not admit ultraviolet
completions, and at the same time, confronting these restrictions has led
to novel ideas for consistent low-energy field theories. Thus—as in many
problems outside cosmology—string theory has frequently yielded solutions
with unanticipated properties, and has served as a generating function for
ideas that were hard to perceive from a purely low-energy point of view.

On the other hand, many critical challenges still remain. Our understand-
ing of reheating and of the connection between the inflationary sector and
the Standard Model degrees of freedom is tenuous. Non-supersymmetric
solutions of string theory, particularly de Sitter solutions, remain much less
controlled than their supersymmetric counterparts. This continues to be
a zeroth-order challenge for deriving inflation from string theory, and has
stymied many attempts to develop inflationary scenarios outside of type IIB
string theory. Moreover, time-dependent solutions in string compactifica-
tions are barely understood beyond the adiabatic approximation. Further-
more, in most cases the Planck-suppressed corrections to the inflationary
action are only partially characterized. Finally, and most importantly, there
is not a single observation that gives direct evidence for a string-theoretic ori-
gin for inflation: although an unambiguous detection of gravitational waves
produced by quantum fluctuations of the metric during inflation would di-
rectly prove the quantization of the gravitational field, discerning the char-
acter of the quantum gravity theory requires more refined observations. At
present, we are led to inflation in string theory by a web of inference involv-
ing the success of inflation in effective field theory, the naturalness principle
in particle physics, and the unique status of string theory as an ultraviolet
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completion of gravity.

A striking feature of present observations is the extraordinary simplicity
of the primordial curvature fluctuations, which are approximately Gaussian,
adiabatic, and nearly scale-invariant. In contrast, the ultraviolet comple-
tions presented in this book are complex, involving many interacting fields
and a landscape of quantized parameters. Should the ‘simple’ observations
be read as evidence against ‘complicated’ models of inflation in string the-
ory? We do not believe so: although the simplicity of the data motivates
considering simple effective theories of inflation, it does not constrain the
ultraviolet completions in the same way. As an analogy, the Fermi theory
of beta decay is far simpler — in terms of a counting of parameters — than
the Standard Model, but is merely a low-energy effective description. In-
deed, the whole point in using effective theories is that they are simpler to
use than their ultraviolet completions. Even so, it remains important to
understand whether the simplicity of the data can emerge from the appar-
ent complexity of the ultraviolet completion: one should determine which
details of the short-distance physics decouple and which leave subtle traces
in the data.

We have largely avoided discussing deep issues involving the initial con-
ditions for inflation, including the global view of eternal inflation [822–825],
the associated measure problem [826–833], and the geodesic incompleteness
of inflation in the past [834]. String theory has inspired several compelling
approaches to these questions, but no complete solutions have been ad-
vanced. Many authors have noted that these unresolved problems threaten
the predictivity of the inflationary paradigm. Of course, once an inflation-
ary phase begins in a particular region of field space, clear and specific
predictions do emerge. On the other hand, it is an important open problem
to determine the relative probabilities of different inflationary models in a
broader setting. More generally, deriving specific predictions from the string
landscape as a whole, rather than from individual models, is a distant goal
that could require a new approach to the measure problem.

In closing, we would like to emphasize that the study of inflation in string
theory has advanced to a stage where a properly-constructed model can be
falsified: indeed, many models have already been falsified by recent observa-
tions, while others are under observational pressure. Proper construction of
models of string inflation, however, is a subtle art. We have railed against
incorrect predictions rooted in oversimplified effective theories, and have
catalogued the pitfalls in attempts to compute observational signatures.
Our hope is that the reader will use the ideas and techniques presented here
to derive predictions that illuminate the history of the universe and shed
light on the nature of quantum gravity.
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Symmetry in the EFT of Inflation,” arXiv:1304.4238 [hep-th].

[125] W. Hu and M. J. White, “Acoustic Signatures in the Cosmic Microwave
Background,” Astrophys.J. 471 (1996) 30–51, arXiv:astro-ph/9602019
[astro-ph].

[126] W. Hu, D. N. Spergel, and M. J. White, “Distinguishing Causal Seeds from
Inflation,” Phys.Rev. D55 (1997) 3288–3302, arXiv:astro-ph/9605193
[astro-ph].

[127] WMAP Collaboration, H. Peiris et al., “First-Year Wilkinson Microwave
Anisotropy Probe (WMAP) Observations: Implications for Inflation,”
Astrophys.J.Suppl. 148 (2003) 213, arXiv:astro-ph/0302225 [astro-ph].

[128] D. Seckel and M. S. Turner, “Isothermal Density Perturbations in an Axion
Dominated Inflationary Universe,” Phys.Rev. D32 (1985) 3178.

[129] A. Linde, “Axions in Inflationary Cosmology,” Physics Letters B 259
(Apr., 1991) 38–47.

[130] M. S. Turner and F. Wilczek, “Inflationary Axion Cosmology,”
Phys.Rev.Lett. 66 (1991) 5–8.

[131] D. H. Lyth and D. Wands, “Generating the Curvature Perturbation
without an Inflaton,” Phys.Lett. B524 (2002) 5–14,
arXiv:hep-ph/0110002 [hep-ph].

[132] T. Moroi and T. Takahashi, “Effects of Cosmological Moduli Fields on
Cosmic Microwave Background,” Phys.Lett. B522 (2001) 215–221,
arXiv:hep-ph/0110096 [hep-ph].

[133] S. Weinberg, “Must cosmological perturbations remain non-adiabatic after
multi-field inflation?,” Phys.Rev. D70 (2004) 083522,
arXiv:astro-ph/0405397 [astro-ph].

[134] BICEP2 Collaboration, P. Ade et al., “BICEP2 I: Detection of B-mode
Polarization at Degree Angular Scales,” arXiv:1403.3985 [astro-ph.CO].

[135] D. Baumann and M. Zaldarriaga, “Causality and Primordial Tensor
Modes,” JCAP 0906 (2009) 013, arXiv:0901.0958 [astro-ph.CO].

[136] H. Chiang, P. Ade, D. Barkats, J. Battle, E. Bierman, et al., “Measurement
of CMB Polarization Power Spectra from Two Years of BICEP Data,”
Astrophys.J. 711 (2010) 1123–1140, arXiv:0906.1181 [astro-ph.CO].

http://dx.doi.org/10.1088/1475-7516/2007/01/002
http://dx.doi.org/10.1088/1475-7516/2007/01/002
http://arxiv.org/abs/hep-th/0605045
http://dx.doi.org/10.1088/1475-7516/2005/06/003
http://arxiv.org/abs/astro-ph/0503692
http://dx.doi.org/10.1088/1475-7516/2004/08/009
http://arxiv.org/abs/astro-ph/0405356
http://arxiv.org/abs/astro-ph/0405356
http://arxiv.org/abs/1304.4238
http://dx.doi.org/10.1086/177951
http://arxiv.org/abs/astro-ph/9602019
http://arxiv.org/abs/astro-ph/9602019
http://dx.doi.org/10.1103/PhysRevD.55.3288
http://arxiv.org/abs/astro-ph/9605193
http://arxiv.org/abs/astro-ph/9605193
http://dx.doi.org/10.1086/377228
http://arxiv.org/abs/astro-ph/0302225
http://dx.doi.org/10.1103/PhysRevD.32.3178
http://dx.doi.org/10.1016/0370-2693(91)90130-I
http://dx.doi.org/10.1016/0370-2693(91)90130-I
http://dx.doi.org/10.1103/PhysRevLett.66.5
http://dx.doi.org/10.1016/S0370-2693(01)01366-1
http://arxiv.org/abs/hep-ph/0110002
http://dx.doi.org/10.1016/S0370-2693(01)01295-3
http://arxiv.org/abs/hep-ph/0110096
http://dx.doi.org/10.1103/PhysRevD.70.083522
http://arxiv.org/abs/astro-ph/0405397
http://arxiv.org/abs/1403.3985
http://dx.doi.org/10.1088/1475-7516/2009/06/013
http://arxiv.org/abs/0901.0958
http://dx.doi.org/10.1088/0004-637X/711/2/1123
http://arxiv.org/abs/0906.1181


306 References

[137] K. M. Smith et al., “On Quantifying and Resolving the BICEP2/Planck
Tension Over Gravitational Waves,” arXiv:1404.0373 [astro-ph.CO].

[138] C. Dvorkin, M. Wyman, D. H. Rudd, and W. Hu, “Neutrinos help reconcile
Planck measurements with both early and local universe,”
arXiv:1403.8049 [astro-ph.CO].

[139] BICEP2 Collaboration, P. Ade et al., “BICEP2 II: Experiment and
Three-Year Data Set,” arXiv:1403.4302 [astro-ph.CO].

[140] B. Reichborn-Kjennerud et al., “EBEX: A Balloon-Borne CMB
Polarization Experiment,” arXiv:1007.3672 [astro-ph.CO].

[141] A. Fraisse et al., “SPIDER: Probing the Early Universe with a Suborbital
Polarimeter,” JCAP 1304 (2013) 047, arXiv:1106.3087 [astro-ph.CO].

[142] T. Essinger-Hileman et al., “The Atacama B-Mode Search: CMB
Polarimetry with Transition-Edge-Sensor Bolometers,” arXiv:1008.3915

[astro-ph.IM].

[143] J. R. Eimer et al., “The Cosmology Large Angular Scale Surveyor
(CLASS): 40 GHz Optical Design,” Proc.SPIE Int.Soc.Opt.Eng. 8452
(2012) 845220, arXiv:1211.0041 [astro-ph.IM].

[144] Z. Kermish et al., “The POLARBEAR Experiment,” arXiv:1210.7768

[astro-ph.IM].

[145] J. Austermann et al., “SPTpol: An Instrument for CMB Polarization
Measurements with the South Pole Telescope,” Proc.SPIE Int.Soc.Opt.Eng.
8452 (2012) 84520E, arXiv:1210.4970 [astro-ph.IM].

[146] M. Niemack et al., “ACTPol: A Polarization-Sensitive Receiver for the
Atacama Cosmology Telescope,” Proc.SPIE Int.Soc.Opt.Eng. 7741 (2010)
77411S, arXiv:1006.5049 [astro-ph.IM].

[147] N. Katayama and E. Komatsu, “Simple Foreground Cleaning Algorithm for
Detecting Primordial B-mode Polarization of the Cosmic Microwave
Background,” Astrophys.J. 737 (2011) 78, arXiv:1101.5210
[astro-ph.CO].

[148] J. Caligiuri and A. Kosowsky, “Inflationary Tensor Perturbations After
BICEP,” arXiv:1403.5324 [astro-ph.CO].

[149] S. Dodelson, “How much can we learn about the physics of inflation?,”
arXiv:1403.6310 [astro-ph.CO].

[150] P. Creminelli, D. L. Nacir, M. Simonović, G. Trevisan, and M. Zaldarriaga,
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