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Abstract

I give a general review of inflationary cosmology and of its present status, in view of
the 2013 data release by the Planck satellite. A specific emphasis is given to the new
broad class of theories, the cosmological attractors, which have nearly model-independent
predictions converging at the sweet spot of the Planck data in the (ns, r) plane. I also
discuss the problem of initial conditions for the theories favored by the Planck data.
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1 Introduction

We were waiting for the recent Planck data release for many years. There were persistent
rumors that this data are going to confirm the existence of relatively large non-Gaussian per-
turbations, which would rule out the simplest single-field inflationary models, but would open
the door towards complicated multi-field models of inflation, which would provide lots of work
for many generations of cosmologists. For several years, many scientists were preparing them-
selves to this grave eventuality. But instead of that, Planck 2013 found that the non-Gaussian
perturbations of the most dangerous type are practically absent [1], and therefore one could
return to investigation of the simplest and nicest inflationary models. Some of us, me included,
were ecstatic to hear the news, but for many others it was a disappointment. It could seem that
now we have nothing new to say about inflation since everything related to its simplest versions
was already known, classified, forgotten, and rediscovered over and over again during the last
30 years. However, as I will argue in these lectures, the new results obtained by Planck pushed
us in an unexpected direction, which stimulated development of new concepts and new broad
classes of inflationary models with most interesting properties. In addition to that, the split
between the inflationary cosmology and its alternatives became even more apparent after the
Planck 2013. Whereas the Planck team emphasized that their results confirm basic principles of
inflation and rule out many alternative theories [1], some of the proponents of these alternatives
arrived at an absolutely opposite conclusion. Thus life after Planck 2013 became quite exciting.
Hopefully these lectures may help to understand the essence of the recent developments and
debates. But in order to do it, we must start from the very beginning. For the first chapters,
I will borrow some materials from my lectures written several years ago [2], and then we will
fast forward to the very recent developments. Finally, I should note that some issues closely
related to the subjects covered in my lectures have been discussed by other speakers at the Les
Houches school. In particular, the approach to cosmology based on supergravity and supercon-
formal theory was described by Renata Kallosh [3], and string theory approach to inflation was
presented by Eva Silverstein [4].

2 Brief history of inflation

Several ingredients of inflationary cosmology were discovered in the beginning of the 70’s.
The first realization was that the energy density of a scalar field plays the role of the vacuum
energy/cosmological constant [5], which was changing during the cosmological phase transitions
[6]. In certain cases these changes occur discontinuously, due to first order phase transitions
from a supercooled vacuum state (false vacuum) [7].

In 1978, Gennady Chibisov and I tried to use these facts to construct a cosmological model
involving exponential expansion of the universe in a supercooled vacuum as a source of the
entropy of the universe, but we immediately realized that the universe becomes very inhomo-
geneous after the bubble wall collisions. I mentioned our work in my review article [8], but did
not pursue this idea any further.

The first semi-realistic model of inflationary type was proposed by Alexei Starobinsky in
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1980 [9]. It was based on investigation of conformal anomalies in quantum gravity. His model
was rather complicated, and its goals were in a certain sense opposite to the goals of inflationary
cosmology. Instead of attempting to solve the homogeneity and isotropy problems, Starobinsky
considered the model of the universe which was homogeneous and isotropic from the very
beginning, and emphasized that his scenario was “the extreme opposite of Misner’s initial
chaos” [9].

On the other hand, Starobinsky’s model did not suffer from the graceful exit problem,
and it was the first model predicting gravitational waves with a flat spectrum [9]. The first
mechanism of production of adiabatic perturbations of the metric with a nearly flat spectrum,
which are responsible for galaxy production, and which were found by the observations of the
CMB anisotropy, was proposed by Mukhanov and Chibisov [10] in the context of this model.
They also pointed out that the spectrum should not be exactly flat, the fact that was confirmed
by Planck 2013 at the 5σ level.

A much simpler inflationary model with a very clear physical motivation was proposed
by Alan Guth in 1981 [11]. His model, which is now called “old inflation,” was based on
the theory of supercooling during the cosmological phase transitions [7]. Even though this
scenario did not work in its original form, it played a profound role in the development of
inflationary cosmology since it contained a very clear explanation how inflation may solve the
major cosmological problems.

According to this scenario, inflation is as exponential expansion of the universe in a super-
cooled false vacuum state. False vacuum is a metastable state without any fields or particles
but with large energy density. Imagine a universe filled with such “heavy nothing.” When
the universe expands, empty space remains empty, so its energy density does not change. The
universe with a constant energy density expands exponentially, thus we have inflation in the
false vacuum. This expansion makes the universe very big and very flat. Then the false vacuum
decays, the bubbles of the new phase collide, and our universe becomes hot.

Unfortunately, this simple and intuitive picture of inflation in the false vacuum state is
somewhat misleading. If the probability of the bubble formation is large, bubbles of the new
phase are formed near each other, inflation is too short to solve any problems, and the bubble
wall collisions make the universe extremely inhomogeneous. If they are formed far away from
each other, which is the case if the probability of their formation is small and inflation is long,
each of these bubbles represents a separate open universe with a vanishingly small Ω. Both
options are unacceptable, which has lead to the conclusion that this scenario does not work
and cannot be improved (graceful exit problem) [11, 12, 13].

A solution of this problem was found in 1981 with the invention of the new inflationary
theory [14]. (Three months later, the same solution was also proposed in [15], with a reference
to my earlier work [14].) In this theory, inflation may begin either in the false vacuum, or in an
unstable state at the top of the effective potential. Then the inflaton field φ slowly rolls down to
the minimum of its effective potential. The motion of the field away from the false vacuum is of
crucial importance: density perturbations produced during the slow-roll inflation are inversely
proportional to φ̇ [10, 16, 17]. Thus the key difference between the new inflationary scenario
and the old one is that the useful part of inflation in the new scenario, which is responsible for
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the homogeneity of our universe, does not occur in the false vacuum state, where φ̇ = 0.

Soon after the invention of the new inflationary scenario it became very popular. Unfor-
tunately, this scenario was plagued by its own problems. In most versions of this scenario the
inflaton field must have an extremely small coupling constant, so it could not be in thermal
equilibrium with other matter fields, as required in [11, 14]. The theory of cosmological phase
transitions, which was the basis for old and new inflation, did not work in this case. Moreover,
thermal equilibrium requires many particles interacting with each other. This means that new
inflation could explain why our universe was so large only if it was very large and contained
many particles from the very beginning [18].

Old and new inflation represented a substantial but incomplete modification of the big
bang theory. It was still assumed that the universe was in a state of thermal equilibrium from
the very beginning, that it was relatively homogeneous and large enough to survive until the
beginning of inflation, and that the stage of inflation was just an intermediate stage of the
evolution of the universe. In the beginning of the 80’s these assumptions seemed most natural
and practically unavoidable. On the basis of all available observations (CMB, abundance of
light elements) everybody believed that the universe was created in a hot big bang. That is
why it was so difficult to overcome a certain psychological barrier and abandon all of these
assumptions. This was done in 1983 with the invention of the chaotic inflation scenario [19].
This scenario resolved all problems of old and new inflation. According to this scenario, inflation
may begin even if there was no thermal equilibrium in the early universe, and it may occur
even in the theories with simplest potentials such as V (φ) ∼ φ2. But it is not limited to the
theories with polynomial potentials: chaotic inflation occurs in any theory where the potential
has a sufficiently flat region, which allows the existence of the slow-roll regime [19].

This change of perspective happened 30 years ago, and since that time cosmologists almost
never returned to the original idea of inflation due to high temperature phase transitions in
grand unified theories. This idea was abandoned by all experts actively working in this area
of physics, but unfortunately it is still present in virtually all textbooks on astrophysics, which
incorrectly describe inflation as an exponential expansion in a supercooled false vacuum state
during the cosmological phase transitions in grand unified theories. Apparently the front lines
of the development of this branch of science moved forward too fast, so let us remember what
exactly happened with the development of chaotic inflation.

3 Chaotic Inflation: the simplest models

Consider the simplest model of a scalar field φ with a mass m and with the potential energy
density V (φ) = m2

2
φ2. Since this function has a minimum at φ = 0, one may expect that the

scalar field φ should oscillate near this minimum. This is indeed the case if the universe does
not expand, in which case equation of motion for the scalar field coincides with equation for
harmonic oscillator, φ̈ = −m2φ.

However, because of the expansion of the universe with Hubble constant H = ȧ/a, an
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  Inflation as a theory of a harmonic oscillatorInflation as a theory of a harmonic oscillator

Eternal  Inflation

Figure 1: Motion of the scalar field in the theory with V (φ) = m2

2 φ
2. Several different regimes are possible,

depending on the value of the field φ. If the potential energy density of the field is greater than the Planck
density M4

p = 1, φ & m−1, quantum fluctuations of space-time are so strong that one cannot describe it in usual

terms. At a somewhat smaller energy density (for m . V (φ) . 1, m−1/2 . φ . m−1) quantum fluctuations of
space-time are small, but quantum fluctuations of the scalar field φ may be large. Jumps of the scalar field due
to these quantum fluctuations lead to a process of eternal self-reproduction of inflationary universe which we
are going to discuss later. At even smaller values of V (φ) (for m2 . V (φ) . m, 1 . φ . m−1/2) fluctuations
of the field φ are small; it slowly moves down as a ball in a viscous liquid. Inflation occurs for 1 . φ . m−1.
Finally, near the minimum of V (φ) (for φ . 1) the scalar field rapidly oscillates, creates elementary particles,
and the universe becomes hot.

additional term 3Hφ̇ appears in the harmonic oscillator equation:

φ̈+ 3Hφ̇ = −m2φ . (3.1)

The term 3Hφ̇ can be interpreted as a friction term. The Einstein equation for a homogeneous
universe containing scalar field φ looks as follows:

H2 +
k

a2
=

1

6

(
φ̇2 +m2φ2)

)
. (3.2)

Here k = −1, 0, 1 for an open, flat or closed universe respectively. We work in units M−2
p =

8πG = 1.

If the scalar field φ initially was large, the Hubble parameter H was large too, according
to the second equation. This means that the friction term 3Hφ̇ was very large, and therefore
the scalar field was moving very slowly, as a ball in a viscous liquid. Therefore at this stage
the energy density of the scalar field, unlike the density of ordinary matter, remained almost
constant, and expansion of the universe continued with a much greater speed than in the old
cosmological theory. Due to the rapid growth of the scale of the universe and a slow motion of
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the field φ, soon after the beginning of this regime one has φ̈ � 3Hφ̇, H2 � k
a2

, φ̇2 � m2φ2,
so the system of equations can be simplified:

H =
ȧ

a
=
mφ√

6
, φ̇ = −m

√
2

3
. (3.3)

The first equation shows that if the field φ changes slowly, the size of the universe in this regime
grows approximately as eHt, where H = mφ√

6
. This is the stage of inflation, which ends when

the field φ becomes much smaller than Mp = 1. Solution of these equations shows that after a
long stage of inflation the universe initially filled with the field φ� 1 grows exponentially [18],

a = a0 e
φ2/4 . (3.4)

Thus, inflation does not require initial state of thermal equilibrium, supercooling and tun-
neling from the false vacuum. It appears in the theories that can be as simple as a theory of a
harmonic oscillator [19]. Only when it was realized, it became clear that inflation is not just a
trick necessary to fix problems of the old big bang theory, but a generic cosmological regime.

The first models of chaotic inflation were based on the theories with polynomial potentials,
such as φn or ±m2

2
φ2 + λ

4
φ4. But, as emphasized in [19], the main idea of this scenario is quite

generic. One may consider any potential V (φ), polynomial or not, with or without spontaneous
symmetry breaking, and study all possible initial conditions without assuming that the universe
was in a state of thermal equilibrium, and that the field φ was in the minimum of its effective
potential from the very beginning.

This scenario strongly deviated from the standard lore of the hot big bang theory and
was psychologically difficult to accept. Therefore during the first few years after invention of
chaotic inflation many authors claimed that the idea of chaotic initial conditions is unnatural,
and made attempts to realize the new inflation scenario based on the theory of high-temperature
phase transitions, despite numerous problems associated with it. Some authors believed that
the theory must satisfy so-called ‘thermal constraints’ which were necessary to ensure that
the minimum of the effective potential at large T should be at φ = 0 [20], even though the
scalar field in the models they considered was not in a state of thermal equilibrium with other
particles.

The issue of thermal initial conditions played the central role in the long debate about
new inflation versus chaotic inflation in the 80’s. This debate continued for many years, and
a significant part of my book written in 1990 was dedicated to it [18]. By now the debate is
over: no realistic versions of new inflation based on the theory of thermal phase transitions and
supercooling have been proposed so far. Gradually it became clear that the idea of chaotic initial
conditions is most general, and it is much easier to construct a consistent cosmological theory
without making unnecessary assumptions about thermal equilibrium and high temperature
phase transitions in the early universe.

As a result, the corresponding terminology changed. Chaotic inflation, as defined in [19],
describes inflation in all models with sufficiently flat potentials, including the potentials with a
flat maximum, originally used in new inflation [14]. Now the versions of inflationary scenario

7



with such potentials for simplicity are often called ‘new inflation’, even though inflation begins
there not as in the original new inflation scenario, but as in the chaotic inflation scenario. To
avoid this terminological misunderstanding, some authors call the version of chaotic inflation
scenario, where inflation occurs near the top of the scalar potential, a ‘hilltop inflation’.

4 Initial conditions in the simplest models of chaotic in-

flation

To check whether this regime is indeed generic, let us consider a closed universe of a smallest
initial size l ∼ 1 (in Planck units), which emerges from the space-time foam, or from singularity,
or from ‘nothing’ in a state with the Planck density ρ ∼ 1. Only starting from this moment,
i.e. at ρ . 1, can we describe this domain as a classical universe. Thus, at this initial moment
the sum of the kinetic energy density, gradient energy density, and the potential energy density
is of the order unity: 1

2
φ̇2 + 1

2
(∂iφ)2 + V (φ) ∼ 1.

There are no a priori constraints on the initial value of the scalar field in this domain,
except for the constraint 1

2
φ̇2 + 1

2
(∂iφ)2 + V (φ) ∼ 1. Let us consider for a moment a theory

with V (φ) = const. This theory is invariant under the shift symmetry φ→ φ+ c. Therefore, in
such a theory all initial values of the homogeneous component of the scalar field φ are equally
probable.

The only constraint on the amplitude of the field appears if the effective potential is not
constant, but grows and becomes greater than the Planck density at φ > φp, where V (φp) = 1.
This constraint implies that φ . φp, but there is no reason to expect that initially φ must be
much smaller than φp. This suggests that the typical initial value of the field φ in such a theory
is φ ∼ φp.

Thus, we expect that typical initial conditions correspond to 1
2
φ̇2 ∼ 1

2
(∂iφ)2 ∼ V (φ) = O(1).

If 1
2
φ̇2 + 1

2
(∂iφ)2 . V (φ) in the domain under consideration, then inflation begins, and then

within the Planck time the terms 1
2
φ̇2 and 1

2
(∂iφ)2 become much smaller than V (φ), which

ensures continuation of inflation. It seems therefore that chaotic inflation occurs under rather
natural initial conditions, if it can begin at V (φ) ∼ 1 [21, 18].

One can get a different perspective on this issue by studying the probability of quantum
creation of the universe from “nothing.” The basic idea is that quantum fluctuations can
create a small universe from nothing if it can be done quickly, in agreement with the quantum
uncertainty relation ∆E · ∆t . 1. The total energy of scalar field in a closed inflationary
universe is proportional to its minimal volume H−3 ∼ V −3/2 multiplied by the energy density
V (φ): E ∼ V −1/2. Therefore such a universe can appear quantum mechanically within the
time ∆t & 1 if V (φ) is not too much smaller than the Planck density O(1).

This qualitative conclusion agrees with the result of the investigation in the context of
quantum cosmology. Indeed, according to [22, 23], the probability of quantum creation of a
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closed universe is proportional to

P ∼ exp

(
−24π2

V

)
, (4.1)

which means that the universe can be created if V is not too much smaller than the Planck
density. The Euclidean approach to the quantum creation of the universe is based on the
analytical continuation of the Euclidean de Sitter solution to the real time. This continuation
is possible if φ̇ = 0 at the moment of quantum creation of the universe. Thus in the simplest
chaotic inflation model with V (φ) = m2

2
φ2 the universe is created in a state with V (φ) ∼ 1,

φ ∼ m−1 � 1 and φ̇ = 0, which is a perfect initial condition for inflation in this model [22, 18].

One should note that there are many other attempts to evaluate the probability of initial con-
ditions for inflation. For example, if one interprets the square of the Hartle-Hawking wave func-

tion [24] as a probability of initial condition, one obtains a paradoxical answer P ∼ exp
(

24π2

V

)
,

which could seem to imply that it is easier to create the universe with V → 0 and with an
infinitely large total energy E ∼ V −1/2 →∞. There were many attempts to improve this anti-
intuitive answer, but from my perspective these attempts were misplaced: The Hartle-Hawking
wave function was derived in [24] as a wave function for the ground state of the universe, and
therefore it describes the most probable final state of the universe, instead of the probability of
initial conditions; see a discussion of this issue in [25, 18, 26].

Another attempt to study this problem was made few years ago by Gibbons and Turok
[27]. They studied classical solutions describing a combined evolution of a scalar field and the
scale factor of a homogeneous universe, ignoring gradients of the scalar field. An advantage
of inflationary regime is that kinetic energy of a scalar field in an expanding universe rapidly
decreases, and the general solution of equations of motion for the scalar field rapidly approaches
the inflationary slow-roll attractor solutions, which practically does not depend on initial ve-
locity of the inflaton field. However, the authors of [27] imposed “initial conditions” not at the
beginning of inflation but at its end. Since one can always reverse the direction of time in the
solutions, one can always relate the conditions at the end of inflation to the conditions at its
beginning. If one assumes that certain conditions at the end of inflation are equally probable,
then one may conclude that the probability of initial conditions suitable for inflation is very
small [27].

From our perspective [2, 28], we have here the same paradox which is encountered in the
discussion of the growth of entropy. If one take any thermodynamical system, its entropy will
always grow. However, if we make a movie of this process, and play it back starting from the
end of the process, then the final conditions for the original system become the initial conditions
for the time-reversed system, and we will see the entropy decreasing. That is why replacing
initial conditions by final conditions can be very misleading. If one replaces initial conditions
for inflation by final conditions after inflation and then runs the same process back in time, the
inflationary attractor trajectory will look as a repulser. This is the main reason of the negative
conclusion of Ref. [27]. One can easily show that if one uses the same methods and the same
probability measure as [27], but imposes the initial conditions prior to the beginning of inflation
(as one should do), rather than at its end (as it was done in [27]), one finds that inflation is
most probable, in agreement with the arguments given in the first part of this section.
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But the main problem with [27] is not in the replacing initial conditions by the final ones.
The methods developed there are valid only for the classical evolution of the universe. But we
are talking about initial conditions for the classical evolution. By definition, initial conditions
for the classical evolution are determined by processes prior to the stage of classical evolution,
at the quantum epoch near the singularity. Thus the initial conditions have been formed at
the quantum cosmology stage where the methods of [27] are inapplicable. If one uses quantum
cosmology to determine the most probable initial conditions, then, independently of the choice
of the tunneling wave function or the Hartle-Hawking wave function, one finds that initially
φ̇ = 0. This contradicts the claims of [27] that initially φ̇2 � V (φ) [2].

Let us summarize our conclusions so far: Initial conditions for inflation are quite natural if
we consider inflationary models where inflation can occur for V ∼ 1. This condition is satisfied
in the simplest versions of chaotic inflation, such as the models with V ∼ φn. But what if
inflation can occur only at V � 1? We will discuss this issue in section 10 in application
to models of a single scalar field, and we will continue this discussion latter in the context of
models with many scalars.

5 Solving the cosmological problems

As we will see shortly, the realistic value of the mass m is about 6 × 10−6, in Planck units.
Therefore, according to Eq. (3.4), the total amount of inflation achieved starting from V (φ) ∼ 1
is of the order 101010 . The total duration of inflation in this model is about 10−30 seconds.
When inflation ends, the scalar field φ begins to oscillate near the minimum of V (φ). As any
rapidly oscillating classical field, it looses its energy by creating pairs of elementary particles.
These particles interact with each other and come to a state of thermal equilibrium with some
temperature Tr [29]-[36]. From this time on, the universe can be described by the usual big
bang theory.

The main difference between inflationary theory and the old cosmology becomes clear when
one calculates the size of a typical inflationary domain at the end of inflation. Investigation
of this question shows that even if the initial size of inflationary universe was as small as the
Planck size lP ∼ 10−33 cm, after 10−30 seconds of inflation the universe acquires a huge size
of l ∼ 101010 cm! This number is model-dependent, but in all realistic models the size of the
universe after inflation appears to be many orders of magnitude greater than the size of the
part of the universe which we can see now, l ∼ 1028 cm. This immediately solves most of the
problems of the old cosmological theory [19, 18].

Our universe is almost exactly homogeneous on large scale because all inhomogeneities were
exponentially stretched during inflation. The density of primordial monopoles and other unde-
sirable “defects” becomes exponentially diluted by inflation. The universe becomes enormously
large. Even if it was a closed universe of a size ∼ 10−33 cm, after inflation the distance between
its “South” and “North” poles becomes many orders of magnitude greater than 1028 cm. We
see only a tiny part of the huge cosmic balloon. That is why nobody has ever seen how parallel
lines cross. That is why the universe looks so flat.
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If our universe initially consisted of many domains with chaotically distributed scalar field φ
(or if one considers different universes with different values of the field), then domains in which
the scalar field was too small never inflated. The main contribution to the total volume of the
universe will be given by those domains which originally contained large scalar field φ. Inflation
of such domains creates huge homogeneous islands out of initial chaos. (That is why I called
this scenario “chaotic inflation.”) Each homogeneous domain in this scenario after inflation
becomes much greater than the size of the observable part of the universe.

It is instructive to compare this scenario with the standard hot big bang model. In that
model, the universe was born at the cosmological singularity, but it becomes possible to describe
it in terms of classical space-time only when time becomes greater than the Planck time tp ∼
M−1

p ∼ 1. At that time, the temperature of matter was given by the Planck temperature
Tp ∼ 1, and the density of the universe was given by the Planck density ρp ∼ T 4

p ∼ 1. The
size of the causally connected part of the universe at the Planck time was ctp ∼ 1. Each such
part contained a single particle with the Planck temperature. The evolution of the universe
was supposed to be nearly adiabatic, so the total number of particles in the universe was nearly
conserved. We do not know how many particles are in the whole universe, but their number
must be greater than the total number of particles in the observable part of the universe, which
is approximately 1090. The adiabaticity condition implies that at the Planck time the universe
also contained about 1090 particles, and therefore it consisted of 1090 causally disconnected
parts. The probability that all of these independent parts emerged from singularity at the
same time with the same energy density and pressure is smaller than exp

(
−1090

)
, and the

probability that our universe from the very beginning was uniform with an accuracy better
than 10−4 is even much smaller.

This should be contrasted with the simplest versions of the chaotic inflation scenario. As
discussed in the previous section, the main condition required there was the existence of a single
domain of size O(1) where the kinetic and gradient energy of the scalar field is few times smaller
than its potential energy V (φ) ∼ 1. For sufficiently flat potentials, it leads to inflation, and
then the whole universe appears as a result of expansion of a single Planck size domain. As we
argued in the previous section, the probability of this process is not exponentially suppressed.

6 Creation of matter after inflation: reheating and pre-

heating

The theory of reheating of the universe after inflation is the most important application of
the quantum theory of particle creation, since almost all matter constituting the universe was
created during this process.

At the stage of inflation all energy is concentrated in a classical slowly moving inflaton field
φ. Soon after the end of inflation this field begins to oscillate near the minimum of its effective
potential. Eventually it produces many elementary particles, they interact with each other and
come to a state of thermal equilibrium with some temperature Tr.

Early discussions of reheating of the universe after inflation [29] were based on the idea

11



that the homogeneous inflaton field can be represented as a collection of the particles of the
field φ. Each of these particles decayed independently. This process can be studied by the
usual perturbative approach to particle decay. Typically, it takes thousands of oscillations
of the inflaton field until it decays into usual elementary particles by this mechanism. More
recently, however, it was discovered that coherent field effects such as parametric resonance
can lead to the decay of the homogeneous field much faster than would have been predicted by
perturbative methods, within few dozen oscillations [30]. These coherent effects produce high
energy, non-thermal fluctuations that could have significance for understanding developments
in the early universe, such as baryogenesis. This early stage of rapid nonperturbative decay
was called ‘preheating.’ In [31] it was found that another effect known as tachyonic preheating
can lead to even faster decay than parametric resonance. This effect occurs whenever the
homogeneous field rolls down a tachyonic (V ′′ < 0) region of its potential. When this happens,
a tachyonic instability leads to exponentially rapid growth of all long wavelength modes with
k2 < |V ′′|. This growth can often drain all of the energy from the homogeneous field within a
single oscillation.

We are now in a position to classify the dominant mechanisms by which the homogeneous
inflaton field decays in different classes of inflationary models. Even though all of these models,
strictly speaking, belong to the general class of chaotic inflation (none of them is based on the
theory of thermal initial conditions), one can break them into three classes: small field, or new
inflation models [14], large field, or chaotic inflation models of the type of the model m2φ2/2
[19], and multi-field, or hybrid models [32]. This classification is imprecise, but still rather
helpful.

In the simplest versions of chaotic inflation, the stage of preheating is generally dominated
by parametric resonance, although there are parameter ranges where this can not occur [30]. In
[31] it was shown that tachyonic preheating dominates the preheating phase in hybrid models
of inflation. New inflation in this respect occupies an intermediate position between chaotic
inflation and hybrid inflation: If spontaneous symmetry breaking in this scenario is very large,
reheating occurs due to parametric resonance and perturbative decay. However, for the models
with spontaneous symmetry breaking at or below the GUT scale, φ � 10−2Mp, preheating
occurs due to a combination of tachyonic preheating and parametric resonance. The resulting
effect is very strong, so that the homogeneous mode of the inflaton field typically decays within
few oscillations [33].

A detailed investigation of preheating usually requires lattice simulations, which can be
achieved following [34, 35]. Note that preheating is not the last stage of reheating; it is followed
by a period of turbulence [36], by a much slower perturbative decay described by the methods
developed in [29], and by eventual thermalization.
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7 Quantum fluctuations and density perturbations

The average amplitude of inflationary perturbations generated during a typical time interval
H−1 is given by [37, 38]

|δφ(x)| ≈ H

2π
. (7.1)

These fluctuations lead to density perturbations that later produce galaxies. The theory of
this effect is very complicated [10, 16], and it was fully understood only in the second part of
the 80’s [17]. The main idea can be described as follows:

Fluctuations of the field φ lead to a local delay of the time of the end of inflation, δt =
δφ

φ̇
∼ H

2πφ̇
. Once the usual post-inflationary stage begins, the density of the universe starts to

decrease as ρ = 3H2, where H ∼ t−1. Therefore a local delay of expansion leads to a local
density increase δH such that δH ∼ δρ/ρ ∼ δt/t. Combining these estimates together yields the
famous result [10, 16, 17]

δH ∼
δρ

ρ
∼ H2

2πφ̇
=

V 3/2

2
√

3πVφ
. (7.2)

where Vφ = dV
dφ

. The field φ during inflation changes very slowly, so the quantity H2

2πφ̇
remains

almost constant over exponentially large range of wavelengths. This means that the spectrum
of perturbations of metric is almost exactly flat.

When the fluctuations of the scalar field φ are first produced (frozen), their wavelength is
given by H(φ)−1. At the end of inflation in the simplest model m2

2
φ2, the wavelength grows

by the factor of eφ
2/4, see Eq. (3.4). In other words, the logarithm of the wavelength l of

the perturbations of the metric is proportional to the value of φ2 at the moment when these
perturbations were produced. As a result, according to (7.2), the amplitude of perturbations
of the metric in this model depends on the wavelength logarithmically: δH ∼ m ln l. A similar
logarithmic dependence (with different powers of the logarithm) appears in other versions of
chaotic inflation with V ∼ φn.

At the first glance, this logarithmic deviation from scale invariance, which was first discov-
ered in [10], could seem inconsequential. However, in a certain sense it is similar to the famous
logarithmic dependence of the coupling constants in QCD, where it leads to asymptotic freedom
at high energies, instead of simple scaling invariance [39, 40]. In QCD, the slow growth of the
coupling constants at small momenta/large distances is responsible for nonperturbative effects
resulting in quark confinement. In inflationary theory, the slow growth of the amplitude of
perturbations of the metric at large distances is equally important. It leads to the existence of
the regime of eternal inflation and to the fractal structure of the universe on super-large scales,
see Section 9.

Observations provide us with information about a rather limited range of l. Therefore it is
often possible to parametrize the scale dependence of density perturbations by a simple power
law, δH ∼ l(1−ns)/2 ∼ k(ns−2)/2, where k is the corresponding momentum. An exactly flat
spectrum, called Harrison-Zeldovich spectrum, would correspond to ns = 1.
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To make it easier to compare inflationary predictions with the observational results obtained
by Planck, we will list here the definitions and relations used in the Planck data release of 2013
[1]. The square of the amplitude of scalar perturbations δH produced at the time when the
inflaton field was equal to some value φ is given by

As =
V 3(φ)

12π2V 2
φ (φ)

. (7.3)

For tensors, one has

At =
2V (φ)

3π2
. (7.4)

By relating φ and k, one can write, approximately,

As(k) = As(k∗)

(
k

k∗

)ns−1

, (7.5)

At(k) = At(k∗)

(
k

k∗

)nt
, (7.6)

where As(k∗) is a normalization constant, and k∗ is a normalization point, which is often taken
to be k∗ ∼ 0.05/Mpc. Here we ignored running of the indexes ns and nt since there is no
observational evidence that it is significant.

One can also introduce the tensor/scalar ratio r, the relative amplitude of the tensor to
scalar modes,

r ≡ At(k∗)

As(k∗)
. (7.7)

There are two most important slow-roll parameters [41]

ε =
1

2

(
Vφ
V

)2

, η =
Vφφ
V
, (7.8)

where prime denotes derivatives with respect to the field φ. All parameters must be smaller
than one for the slow-roll approximation to be valid.

A standard slow roll analysis gives observable quantities in terms of the slow roll parameters
to first order as

As =
V

24π2ε
, (7.9)

ns = 1− 6ε+ 2η = 1− 3

(
V ′

V

)2

+ 2
V ′′

V
, (7.10)

r = 16ε, (7.11)

nt = −2ε = −r
8
. (7.12)

The equation nt = −r/8 is known as the consistency relation for single-field inflation models;
it becomes an inequality for multi-field inflation models. If V during inflation is sufficiently
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large, as in the simplest models of chaotic inflation, one may have a chance to find the tensor
contribution to the CMB anisotropy. The most important information which can be obtained
from the cosmological observations at present is related to Eqs. (7.9), (7.10) and and (7.11).

According to [1],
As(k∗) ≈ 2.2× 10−9 , (7.13)

which corresponds to

V 3/2

V ′
' 5.1× 10−4 . (7.14)

Here V (φ) should be evaluated for the value of the field φ which is determined by the condition
that the perturbations produced at the moment when the field was equal φ evolve into the
present time perturbations with momentum k∗ ∼ 0.05/Mpc. The results of the calculations
corresponding to the perturbations on the present scale of the horizon slightly differ from these
results because the spectrum is not exactly flat, but the difference is rather small, so one can use
the results given above as a good first approximation for the amplitude of the perturbations
on the scale of the horizon. In many inflationary models, these perturbations are produced
at N ≈ 60 e-foldings before the end of inflation. However, the number N can be somewhat
different, depending on details of the post-inflationary evolution. That is why when comparing
expected results for various models with observations, cosmologists often make calculations for
N = 60 and also for N = 50.

The number of e-foldings can be calculated in the slow roll approximation using the relation

N '
∫ φ

φend

V

V ′
dφ . (7.15)

Equation (7.14) leads to the relation between r, V and H, in Planck units:

r ≈ 3× 107 V ≈ 108 H2 . (7.16)

The latest Planck results, in combination with the results of WMAP and the results based on
investigation of baryon acoustic oscillations (BAO), imply that

r . 0.11 (7.17)

and
ns = 0.9607± 0.0063 . (7.18)

These relations are very useful for comparing inflationary models with observations. A more
detailed discussion of observational constraints can be found in Section 11.

Up to now, we discussed perturbations produced by the simplest, standard mechanism
described in [10, 16, 17]. However, in models involving additional light scalars fields σ, other
mechanisms of generation of perturbations are possible.

Let us assume, for example, that the products of the inflaton decay after inflation are
ultra-relativistic and rapidly rapidly loose energy in an expanding universe, whereas the field
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σ is heavy decay with a significant delay. In that case, the field σ may dominate the energy
density of the universe and perturbations of this field suddenly become important. When
the field σ decays, its perturbations under certain conditions can be converted into the usual
adiabatic perturbations of the metric. If this conversion is incomplete, one obtains a mixture
of isocurvature and adiabatic perturbations [42, 43], which should be very small in accordance
with recent observational data [1]. On the other hand, if the conversion is complete, one
obtains a novel mechanism of generation of purely adiabatic density perturbations, which is
called the curvaton mechanism [44, 45, 46, 47]. Note that in many of the original versions of
the curvaton scenario, it was assumed that at the epoch of the curvaton decay the universe was
dominated by the classical curvaton field. In this case the curvaton decay produced significant
amount of isocurvature perturbations, which strongly constrain such models [1]. However, if one
makes a natural assumption that a large number of curvaton particles are produced during the
inflaton decay, this problem disappears [48, 49]. There are other closely related but different
mechanisms of generation of adiabatic perturbations during inflation [50]. All of these non-
standard mechanisms are more complicated than the original one, but one should keep them
in mind since they sometimes may work in the situations where the standard one does not.
Therefore they can give us an additional freedom in finding realistic models of inflationary
cosmology.

8 Universe or Multiverse?

For most of the 20th century, scientific thought was dominated by the idea of uniformity of the
universe and the uniqueness of laws of physics. Indeed, the cosmological observations indicated
that the universe on the largest possible scales is almost exactly uniform, with the accuracy
better than 1 in 10000. Uniformity of the universe was somewhat of a mystery, and instead
of explaining it, scientists invoked the “cosmological principle,” which states that the universe
must be uniform, because... well, because of the cosmological principle.

A similar situation occurs with respect to the uniqueness of laws of physics. We knew,
for example, that the electron mass is the same everywhere in the observable part of the
universe, so the obvious assumption was that it must take the same value everywhere, it is just
a physical constant. Therefore, for a long time, one of the great goals of physics was to find
a single fundamental theory, which would unify all fundamental interactions and provide an
unambiguous explanation for all known parameters of particle physics.

The strongest proponent of this idea was Einstein, who said “I would like to state a theorem
which at present can not be based upon anything more than a faith in the simplicity, i.e.
intelligibility, of nature: There are no arbitrary constants that is to say, nature is so constituted
that it is possible logically to lay down such strongly determined laws that within these laws only
rationally completely determined constants occur (not constants, therefore, whose numerical
value could be changed without destroying the theory).”

The intellectual honesty of Einstein shines through this statement of faith: “a theorem
which at present can not be based upon anything more than a faith of simplicity.” However,
we know that our world is anything but simple. Even the simplest theories have billions of
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Figure 2: Inflation of a tiny universe consisting of many different parts with different properties makes each
of these parts exponentially large and uniform, while preserving distinct features of each of these parts. The
universe becomes a multiverse consisting of exponentially large parts with different properties.

different solutions. Simple laws of electromagnetism describe an infinite variety of colors in the
spectrum. Biological laws allow an incredible variety of species. Even such simple substances as
water can be either liquid, solid, or vapor. The same chemical composition - and yet a profound
difference: fish can only live in liquid water. And our universe is not simple either: it contains
many important deviations from its uniformity, such as galaxies, stars and planets. Thus the
cosmological principle, which insists that the universe must be uniform, is not entirely correct,
and if it is not entirely correct, it cannot be a general fundamental principle of science.

The best explanation of the observed uniformity of the universe is provided by inflation.
However, as soon as this mechanism was proposed, it was realized that inflation, while explaining
why our part of the world is so uniform, does not predict that this uniformity must extend for
the whole universe. To give an analogy, suppose the universe is a surface of a big soccer ball
consisting of multicolored hexagons, see Fig. 2. During inflation, the size of each hexagon
becomes exponentially large. If inflation is powerful enough, those who live in a black part will
never see parts of the universe of any different color, they will believe that the whole universe is
black, and they will try to find a scientific explanation why the whole universe must be black.
Those who live in a red universe will never see the black parts and therefore they will think
that there is no other universe than the red universe, and everybody who says otherwise are
heretics.

But what if the whole universe started in the red state? In the next section we will show how
quantum fluctuations can lead to transitions between different colors and simultaneously make
inflation eternal. This means that almost independently of the initial state of the universe,
eventually it becomes a multicolored eternally growing fractal.

17



9 Eternal inflation

One of the most unusual features of inflationary cosmology is the process of self-reproduction of
inflationary universe. This process was known to exist in old inflationary theory [11], but there
it was considered a problem rather than an advantage. Then a similar process was found to exist
in the new inflation scenario [51, 52, 53]. One of the most important features of this scenario was
that the universe during this process was divided into many different exponentially large parts
with different properties, which provided the first scientific justification of the cosmological
anthropic principle in this context [52, 54].

However, the significance of the self-reproduction of the universe was fully recognized only
after the discovery of the regime of self-reproduction of inflationary universe in the chaotic
inflation scenario, which was called “eternal inflation” [55, 56]. It appears that in many infla-
tionary models large quantum fluctuations produced during inflation may significantly increase
the value of the energy density in some parts of the universe. These regions expand at a
greater rate than their parent domains, and quantum fluctuations inside them lead to produc-
tion of new inflationary domains which expand even faster. This leads to an eternal process
of self-reproduction of the universe. Most importantly, this process may divide the universe
into exponentially many exponentially large parts with different laws of low-energy physics
operating in each of them. The universe becomes an inflationary multiverse [55, 56] (see also
[52, 54]).

To understand the mechanism of self-reproduction one should remember that the processes
separated by distances l greater than H−1 proceed independently of one another. This is so
because during exponential expansion the distance between any two objects separated by more
than H−1 is growing with a speed exceeding the speed of light. As a result, an observer in
the inflationary universe can see only the processes occurring inside the horizon of the radius
H−1. An important consequence of this general result is that the process of inflation in any
spatial domain of radius H−1 occurs independently of any events outside it. In this sense
any inflationary domain of initial radius exceeding H−1 can be considered as a separate mini-
universe.

To investigate the behavior of such a mini-universe, with an account taken of quantum fluc-
tuations, let us follow [55] and consider an inflationary domain of initial radius H−1 containing
sufficiently homogeneous field with initial value φ � Mp. Equation (3.3) implies that during
a typical time interval ∆t = H−1 the field inside this domain will be reduced by ∆φ = 2

φ
.

By comparison this expression with |δφ(x)| ≈ H
2π

= mφ

2π
√

6
one can easily see that if φ is much

less than φ∗ ∼ 5√
m

, then the decrease of the field φ due to its classical motion is much greater
than the average amplitude of the quantum fluctuations δφ generated during the same time.
But for φ � φ∗ one has δφ(x) � ∆φ. Because the typical wavelength of the fluctuations
δφ(x) generated during the time is H−1, the whole domain after ∆t = H−1 effectively be-
comes divided into e3 ∼ 20 separate domains (mini-universes) of radius H−1, each containing
almost homogeneous field φ−∆φ+ δφ. In almost a half of these domains the field φ grows by
|δφ(x)|−∆φ ≈ |δφ(x)| = H/2π, rather than decreases. This means that the total volume of the
universe containing growing field φ increases 10 times. During the next time interval ∆t = H−1
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this process repeats. Thus, after the two time intervals H−1 the total volume of the universe
containing the growing scalar field increases 100 times, etc. The universe enters eternal process
of self-reproduction.

The existence of this process implies that the universe will never disappear as a whole. Some
of its parts may collapse, the life in our part of the universe may perish, but there always will
be some other parts of the universe where life will appear again and again, in all of its possible
forms.

One should be careful, however, with the interpretation of these results. There is still an
ongoing debate of whether eternal inflation is eternal only in the future or also in the past. In
order to understand what is going on, let us consider any particular time-like geodesic line at
the stage of inflation. One can show that for any given observer following this geodesic, the
duration ti of the stage of inflation on this geodesic will be finite. One the other hand, eternal
inflation implies that if one takes all such geodesics and calculate the time ti for each of them,
then there will be no upper bound for ti, i.e. for each time T there will be such geodesic which
experience inflation for the time ti > T . Even though the relative number of long geodesics
can be very small, exponential expansion of space surrounding them will lead to an eternal
exponential growth of the total volume of inflationary parts of the universe.

Similarly, if one concentrates on any particular geodesic in the past time direction, one can
prove that it has finite length [57], i.e. inflation in any particular point of the universe should
have a beginning at some time τi. However, there is no reason to expect that there is an upper
bound for all τi on all geodesics. If this upper bound does not exist, then eternal inflation is
eternal not only in the future but also in the past.

In other words, there was a beginning for each part of the universe, and there will be an end
for inflation at any particular point. But there will be no end for the evolution of the universe
as a whole in the eternal inflation scenario, and at present we do not have any reason to believe
that there was a single beginning of the evolution of the whole universe at some moment t = 0,
which was traditionally associated with the Big Bang.

To illustrate the process of eternal inflation, we present here the results of computer simu-
lations of evolution of a system of two scalar fields during inflation. The field φ is the inflaton
field driving inflation; it is shown by the height of the distribution of the field φ(x, y) in a
two-dimensional slice of the universe. The second field, Φ, determines the type of spontaneous
symmetry breaking which may occur in the theory. We paint the surface red, green or blue
corresponding to three different minima of the potential of the field Φ. Different colors corre-
spond to different types of spontaneous symmetry breaking, and therefore to different sets of
laws of low-energy physics in different exponentially large parts of the universe.

In the beginning of the process the whole inflationary domain is red, and the distribution
of both fields is very homogeneous. Then the domain became exponentially large (but it has
the same size in comoving coordinates, as shown in Fig. 3). Each peak of the mountains
corresponds to nearly Planckian density and can be interpreted as a beginning of a new “Big
Bang.” The laws of physics are rapidly changing there, as indicated by changing colors, but
they become fixed in the parts of the universe where the field φ becomes small. These parts
correspond to valleys in Fig. 3. Thus quantum fluctuations of the scalar fields divide the
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Figure 3: Evolution of scalar fields φ and Φ during the process of self-reproduction of the universe. The height
of the distribution shows the value of the field φ which drives inflation. The surface is painted red, green or
blue corresponding to three different minima of the potential of the field Φ. Laws of low-energy physics are
different in the regions of different color. The peaks of the “mountains” correspond to places where quantum
fluctuations bring the scalar fields back to the Planck density. Each of such places in a certain sense can be
considered as a beginning of a new Big Bang. At the end of inflation, each such part becomes exponentially
large. The universe becomes a multiverse, a huge eternally growing fractal consisting of different exponentially
large locally homogeneous parts with different laws of low-energy physics operating in each of them.

universe into exponentially large domains with different laws of low-energy physics, and with
different values of energy density. This makes our universe look as a multiverse, a collection of
different exponentially large inflationary universes [55, 56].

Eternal inflation scenario was extensively studied during the last 30 years. I should mention,
in particular, the discovery of the topological eternal inflation [58] and the calculation of the
fractal dimension of the universe [59, 56]. But the most interesting recent developments of
the theory of eternal inflation are related to the theory of inflationary multiverse and string
theory landscape [55, 60, 61, 62, 63, 64, 65]. These developments can be traced back to the very
first paper on eternal inflation in the chaotic inflation scenario [55]. It contained the following
statements, which later became the manifesto of the string landscape scenario:

“As a result, our universe at present should contain an exponentially large number of mini-
universes with all possible types of compactification and in all possible (metastable) vacuum
states consistent with the existence of the earlier stage of inflation. If our universe would consist
of one domain only (as it was believed several years ago), it would be necessary to understand
why Nature has chosen just this one type of compactification, just this type of symmetry
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breaking, etc. At present it seems absolutely improbable that all domains contained in our
exponentially large universe are of the same type. On the contrary, all types of mini-universes
in which inflation is possible should be produced during the expansion of the universe, and it
is unreasonable to expect that our domain is the only possible one or the best one.

From this point of view, an enormously large number of possible types of compactification
which exist e.g. in the theories of superstrings should be considered not as a difficulty but as a
virtue of these theories, since it increases the probability of the existence of mini-universes in
which life of our type may appear. The old question why our universe is the only possible one
is now replaced by the question in which theories the existence of mini-universes of our type
is possible. This question is still very difficult, but it is much easier than the previous one. In
our opinion, the modification of the point of view on the global structure of the universe and
on our place in the world is one of the most important consequences of the development of the
inflationary universe scenario.’’

At that time, the anthropic considerations have been extremely unpopular, and string theory
seemed to suffer from the excessive abundance of possible types of compactification [60, 61].
Fortunately, in the eternal inflation scenario one could make sense out of this complicated and
controversial picture, and use it constructively. However, at that time it was not quite clear
whether any of the string vacua are actually stable. It seemed especially difficult to propose a
string theory realization of dS vacua. A possible solution of this problem was proposed only
much later; the most popular possibility is associated with the KKLT scenario [63]. Subsequent
investigations found [64], in agreement with the earlier expectations [60, 61], that the total
number of different stable compactifications of the string theory in the KKLT construction
can be as large as 10500, or maybe even greater. In the context of the inflationary cosmology,
this corresponds to the universe divided into exponentially many exponentially large parts
with 10500 different laws of the low-energy physics operating in each of them [65], just as it
was anticipated in [55]. We will return to a more detailed discussion of the new cosmological
paradigm in Section 16.

10 Initial conditions for low-scale inflation

10.1 Low-scale inflation and topology of the universe

One of the advantages of the simplest versions of the chaotic inflation scenario is that inflation
may begin in the universe immediately after its creation at the largest possible energy density
O(1), of a smallest possible size (Planck length), with the smallest possible mass M = O(1)
and with the smallest possible entropy S = O(1). This provides a true solution to the flatness,
horizon, homogeneity, mass and entropy problems [18].

However, one may wonder whether it possible to solve the problem of initial conditions for
the low scale inflation, if it occurs only for V � 1? The answer to this question is positive
though perhaps somewhat unexpected: The simplest way to solve the problem of initial condi-
tions for the low scale inflation is to consider a compact flat or open universe with nontrivial
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topology (usual flat or open universes are infinite). The universe may initially look like a nearly
homogeneous torus of a Planckian size containing just one or two photons or gravitons. It can
be shown that such a universe continues expanding and remains homogeneous until the onset
of inflation, even if inflation occurs only on a very low energy scale [66, 67, 68, 69, 70].

Consider, e.g. a flat compact universe having the topology of a torus, S3
1 ,

ds2 = dt2 − a2
i (t) dx

2
i (10.1)

with identification xi + 1 = xi for each of the three dimensions. Suppose for simplicity that
a1 = a2 = a3 = a(t). In this case the curvature of the universe and the Einstein equations
written in terms of a(t) will be the same as in the infinite flat Friedmann universe with metric
ds2 = dt2 − a2(t) dx2. In our notation, the scale factor a(t) is equal to the size of the universe
in Planck units M−1

p = 1.

Let us assume, that at the Planck time tp ∼M−1
p = 1 the universe was radiation dominated,

V � T 4 = O(1). Let us also assume that at the Planck time the total size of the box
was Planckian, a(tp) = O(1). In such case the whole universe initially contained only O(1)
relativistic particles such as photons or gravitons, so that the total entropy of the whole universe
was O(1).

The size of the universe dominated by relativistic particles was growing as a(t) ∼
√
t,

whereas the mean free path of the gravitons was growing as H−1 ∼ t. If the initial size of
the universe was O(1), then at the time t � 1 each particle (or a gravitational perturbation
of metric) within one cosmological time would run all over the torus many times, appearing
in all of its parts with nearly equal probability. This effect, called “chaotic mixing,” should
lead to a rapid homogenization of the universe [67, 68]. Note, that to achieve a modest degree
of homogeneity required for inflation to start when the density of ordinary matter drops down
below V (φ), we do not even need chaotic mixing. Indeed, density perturbations do not grow in a
universe dominated by ultra-relativistic particles if the size of the universe is smaller than H−1.
This is exactly what happens in our model. Therefore the universe should remain relatively
homogeneous until the thermal energy density drops below V and inflation begins. And once it
happens, the universe rapidly becomes exponentially large and homogeneous due to inflation.

Thus we see that in this scenario, just as in the simplest chaotic inflation scenario, inflation
begins if we had a sufficiently homogeneous domain of a smallest possible size (Planck scale),
with the smallest possible mass (Planck mass), and with the total entropy O(1). The only
additional requirement is that this domain should have identified sides, in order to make a flat
or open universe compact. We see no reason to expect that the probability of formation of such
domains is strongly suppressed.

One can come to a similar conclusion from a completely different point of view. Investigation
of the quantum creation of a closed or an infinite open inflationary universe with V � 1 shows
that this process is forbidden at the classical level, and therefore it occurs only due to tunneling.
The main reason for this result is that a closed de Sitter space always has size greater than
H−1 ∼ 1/

√
V , and the total energy is greater than H−3V ∼ 1/

√
V . Than is why the universe

with V � 1 is large, heavy and difficult to create. As a result, the probability of this process is
exponentially suppressed [22, 23, 25]. Meanwhile, creation of the flat or open universe is possible
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without any need for the tunneling, and therefore there is no exponential suppression for the
probability of quantum creation of a topologically nontrivial compact flat or open inflationary
universe [66, 69, 70].

These results suggest that the problem of initial conditions for low energy scale inflation
can be easily solved if one considers topologically nontrivial compact universes. If inflation can
occur only much below the Planck density, then the compact topologically nontrivial flat or
open universes should be much more probable than the standard Friedmann universes described
in every textbook on cosmology. This possibility is quite natural in the context of string theory,
where all internal dimensions are supposed to be compact. Note, however, that if the stage of
inflation is sufficiently long, it should make the observable part of the universe so large that its
topology does not affect observational data.

10.2 Initial conditions in models with several non-interacting scalars

In the context of more complicated inflationary model containing more than one scalar field,
the problem of initial conditions for inflation can be solved in many other ways. To give some
examples, let us start with a simple theory describing two non-interacting scar fields, φ and σ:

U(φ, σ) = V (φ) +W (χ) (10.2)

We will assume that the potential W (χ) contains a local minimum χ0 with very high energy
density, and W vanishes after the tunneling to the true vacuum. (More exactly, W +V become
vanishingly small, about 10−120, after the tunneling and the end of inflation, to account for the
present tiny cosmological constant.) This is a standard feature of the string theory landscape
scenario, which describes a huge number of such metastable states at all energy densities, many
of which approach the Planck energy density [63, 64, 65]. According to our arguments in Section
4, inflation in such metastable vacua is quite probable. Of course, this will be inflation of the
old inflation type, so it does not solve any cosmological problems by itself. That is where the
inflaton field with the slow roll potential V (φ) comes handy, even if V (φ) by itself can support
slow roll inflation only for V (φ)� 1.

Indeed, if the Hubble constant squared H during the first stage of inflation supported by
the potential W (χ0) is greater than V ′′, fluctuations of the field φ are generated during this
time, and after a while the universe becomes divided into exponentially large regions where the
field φ takes all of its possible values. According to [71, 72, 18, 56, 26], the probability to find
a given value of the field φ at any given point in this regime is described by the probability
distribution

P (φ) ∼ exp

(
− 24π2

W (σ0)
+

24π2

W (χ0) + V (φ)

)
≈ exp

(
−24π2V (φ)

W 2(χ0)

)
(10.3)

Therefore (10.3) implies that at the moment prior to the decay of the metastable vacuum state
in this model all values of the field φ such that V (φ) � 10−3W 2(χ0) will be equally probable.
Note that in accordance with the Planck constraints on r (7.16), the value of the inflationary
potential V (φ) during the last 60 e-foldings of inflation was smaller than 3 × 10−9. Therefore
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(10.3) implies that initial conditions for the last 60 e-foldings of inflation in all theories V (φ)
consistent with observations are quite probable for W 2(χ0) & 10−3. Since the natural energy
scale for the metastable vacua in the landscape can be almost as large as O(1) in Planck units,
one concludes that the initial conditions for the slow roll inflation in this scenario can naturally
emerge after the stage of the false vacuum inflation in the landscape [73].

One should add that the same scenario works even without any assumptions about the false
vacuum inflation and landscape if one takes into account the possibility of the slow-roll eternal
inflation in a theory of superheavy scalars χ and the light inflaton field φ, see [74].

10.3 Initial conditions in models with several interacting scalars

Consider now a theory with an effective potential

V (φ, χ) = V (φ) +W (χ) +
g2

2
φ2χ2 (10.4)

Here we assume that V (φ),W (χ) . 10−9 are some potentials which cannot reach the Planckian
values, which is the essence of the problem that we are trying to address. However, their
interaction term g2

2
φ2χ2 can become O(1), which would correspond to the Planck boundary. In

that case the Planck boundary is defined by the condition

g2

2
φ2χ2 ∼ 1 , (10.5)

which is represented by the set of four hyperbolas

g|φ||χ| ∼ 1 . (10.6)

At larger values of φ and χ the density is greater than the Planck density, so the standard
classical description of space-time is impossible there. In addition, the effective masses of the
fields should be smaller than 1, and consequently the curvature of the effective potential cannot
be greater than 1. This leads to two additional conditions:

|φ| . g−1, |χ| . g−1. (10.7)

We assume that g � 1. On the main part of the hyperbola (10.6) one either has |φ| ∼ g−1 �
|χ� 1, or |χ| ∼ g−1 � |φ� 1. Consider for definiteness the first possibility. In this case, the
effective mass of the field χ, which is proportional to gφ, is much greater than the effective mass
of the field φ, which is proportional to gχ. Therefore in the beginning the field φ will move
extremely slowly, whereas the field χ will move towards its small values much faster. Since its
initial value on the Planck boundary is greater than 1, the universe will experience a short stage
of chaotic inflation determined by the potential g2

2
φ2χ2 with a nearly constant field φ. After

that, the first stage of inflation will be over, the field χ will oscillate, and within few oscillations
it will give its energy away in the process of preheating [30]. As a result, the classical field χ

rapidly becomes equal to zero, the term g2

2
φ2χ2 disappears, and the potential energy reduces

to V (φ). Soon after that, the second stage of inflation begins driven by the scalar field. As
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we already mentioned, it initial value can be |φ| ∼ g−1 � |χ � 1. Thus the first stage of
oscillations of the field φ provides good initial conditions for chaotic inflation driven by the
scalar field φ [75]. Note that this effect is very general; it may occur for potentials V (φ) and
W (χ) of any shape, either convex or concave, as long as they are small and at least one of them
can support inflation.

In conclusion, in this section we have shown that initial conditions for the slow-roll inflation
may occur very naturally in a broad class of models, including the models where inflation is
possible only for V (φ) � 1. In Section 16 we will discuss some new ideas related to initial
conditions for inflation in the context of the string theory landscape.

11 Inflation and observations

Inflation is not just an interesting theory that can resolve many difficult problems of the stan-
dard Big Bang cosmology. This theory made several predictions which can be tested by cos-
mological observations. Here are the most important predictions:

1) The universe must be flat. In most models Ωtotal = 1± 10−4.

2) Perturbations of the metric produced during inflation are adiabatic.

3) These perturbations are gaussian. In non-inflationary models, the parameter f local
NL de-

scribing the level of the so-called local non-Gaussianity can be as large as O(104), but it is
predicted to be O(1) in all single-field inflationary models. Prior to the Planck data release,
there were rumors that f local

NL ∼ 30, which would rule out all or nearly all single field inflationary
models.

4) Inflationary perturbations generated during a slow-roll regime with ε, η � 1 have a nearly
flat spectrum with ns close to 1.

5) On the other hand, the spectrum of inflationary perturbations usually is slightly non-flat.
A small deviation of ns from 1 is one of the distinguishing features of inflation. It is as significant
for inflationary theory as the asymptotic freedom for the theory of strong interactions.

6) perturbations of the metric could be scalar, vector or tensor. Inflation mostly produces
scalar perturbations, but it also produces tensor perturbations with nearly flat spectrum, and
it does not produce vector perturbations. There are certain relations between the properties of
scalar and tensor perturbations produced by inflation.

7) Inflationary perturbations produce specific peaks in the spectrum of CMB radiation. (For
a simple pedagogical interpretation of this effect see e.g. [76]; a detailed theoretical description
can be found in [77].)

It is possible to violate each of these predictions if one makes inflationary theory sufficiently
complicated. For example, it is possible to produce vector perturbations of the metric in the
models where cosmic strings are produced at the end of inflation, which is the case in some
versions of hybrid inflation. It is possible to have an open or closed inflationary universe, it is
possible to have models with nongaussian isocurvature fluctuations with a non-flat spectrum.
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Figure 4: CMB data (Planck 2013) versus the predictions of one of the simplest inflationary models with
Ω = 1 (green line).

However, it is difficult to do so, and most of the inflationary models obey the simple rules given
above.

It is possible to test many of these predictions. The major breakthrough in this direction
was achieved due to the recent measurements of the CMB anisotropy. The latest Planck results
show that this anisotropy can be described by the angular distribution shown in the Figure
5. For small l, comparison of the theory and experiment is complicated because of the cosmic
variance, for large multipoles l, where the effects of cosmic variance are very small, an agreement
between the observational data and the predictions of the simplest inflationary models is quite
spectacular.

The results of Planck 2013, in combination with the results of WMAP, high l perturbations
measurement by other observations and the results based on investigation of baryon acoustic
oscillations (BAO), imply that

Ω = 1.0005± 0.0066 (95% confidence), (11.1)

and
ns = 0.96± 0.007 (68% confidence). (11.2)

These results are very significant. Before the discovery of dark energy, many astronomers
believed that Ω ∼ 0.3. At that time, experts in inflationary theory made many attempts to
save inflation by inventing inflationary models compatible with this value of Ω, and none of
these models worked except one of two models which were extremely artificial. Now one of the
main predictions of inflationary cosmology is confirmed with accuracy better than 1%. Many
years ago, critics of inflation argued that the prediction ns = 1 is trivial because it was made
by Harrison and Zeldovich (albeit without any real physical motivation) long before inflation.
Now the Harrison-Zeldovich spectrum is ruled out at the 5σ level, and inflationary expectations
are confirmed.
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Figure 5: Constraints on ns and r according to Planck 2013.

One of the most important new results is the constraint on f local
NL [1],

f local
NL = 2.7± 5.8 . (11.3)

This is a confirmation of one of the main predictions of the simplest versions of inflationary
cosmology at the level O(10−4). This result implies that even if the error bars in the mea-
surement of f local

NL will become two times smaller (which is very difficult to achieve in practice),
the result will remain compatible with the predictions of the simplest single-field inflationary
models at the 1σ level. In practical terms this means that we may return to investigation of
the simplest inflationary models, instead of concentrating on exceedingly complicated models
which may produce local non-Gaussianity.

There are still some question marks to be examined, such as a rather controversial issue of
the low multipoles anomalies, see e.g. [78, 79]. The observational status and interpretation of
these effects is still uncertain, hopefully some of these issues will be clarified in the next Planck
data release, but if one takes these effects seriously one may try to look for some theoretical
explanations. For example, there are several ways to suppress the large angle anisotropy, see
e.g. [80]. The situation with correlations between low multipoles requires more work, see e.g.
[44, 81, 82]. One way or another, it is quite significant that all proposed explanations of these
anomalies are based on inflationary cosmology.

One of the interesting issues to be probed by the future observations is the possible existence
of tensor perturbations, gravitational waves produced during inflation. Planck results did not
reveal the existence of these perturbations, but considerably strengthened the upper bound on
the tensor to scalar ratio: r < 0.11 at the 2σ level. These result is strong enough to disfavor
(though not rule out) many previously popular inflationary models, including the simplest
version of chaotic inflation with the quadratic potential.

To understand this statement, let us look at one of the most famous figures from the Planck
data release, Fig. 5. It shows predictions of the simplest versions of chaotic inflation with
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V ∼ φn for n = 3 , 2, 1, and 2/3 (green, black, yellow and red circles), as well as the predictions
of the Starobinsky model and the Higgs inflation model, which we will describe shortly (orange
circles). As we can see, the simplest versions of chaotic inflation are somewhat disfavored,
whereas the Starobinsky model and the Higgs inflation model occupy the sweet spot at the
center of the part of the ns−r plain preferred by the Planck data. A long list of various models
satisfying all Planck data can be found in [1, 83, 84].

While we are waiting for the next data release by Planck, a recent alternative interpretation
of their results [85] suggests that some of their conclusions may require further attention and
justification. In particular, the authors of [85], using a different foreground cleaning procedure
for the Planck data, find slightly different constraints on ns and r, see Fig. 6.

The predictions of inflationary models with V (φ) ∼ φ of φ2/3 are consistent with the results
of [85] as shown in Fig. 6, and even the simplest quadratic model is marginally consistent with
the results shown in Figs. 5, 6. Hopefully we will know much more about it soon, but in the
meantime it is interesting to concentrate on the gradually diminishing area in the ns - r plane,
with r . 0.1 and 0.95 < ns < 0.98.

Is it possible to find simple models of inflation with predictions belonging to this area? Can
we derive such models in the context of supergravity? Is there anything special in the models
which fit the data? We will try to answer these questions in the next sections.

12 Chaotic inflation in supergravity

From a purely mathematical point of view, finding a realization of the chaotic inflation in the
theory of a single scalar field φ is a nearly trivial exercise. One simply finds a function V (φ)
which is sufficiently flat in some interval of the values of the inflaton field [19]. The simplest
example of such potential is m2φ2/2, or one can take any other function which approaches λnφ

n
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for φ > 1 where Mp = 1. If one wants to have inflation at φ < 1, one can consider a function
with a sufficiently flat maximum or an inflection point.

For many years, finding a proper inflaton potential in supergravity was much more difficult.
The scalar potential in supergravity is a complicated function of the superpotential W and the
Kähler potential. Usually the potential depends on several complex scalar fields. Therefore one
has to investigate dynamical evolution in a multidimensional moduli space and verify stability
of the inflationary trajectory. The main problem is related to the Kähler potential K. The
simplest Kähler potential contains terms proportional to ΦΦ̄. The F-term part of the potential
is proportional to eK ∼ e|Φ|

2
and is therefore much too steep for chaotic inflation at Φ � 1.

Moreover, the presence of the terms like e|Φ|
2

implies that the typical scalar masses are O(H),
too large to support inflation even at Φ < 1.

From the point of view of an inflationary model builder, there is also an additional problem.
One can always find V (φ) from W and K, but until the calculations are finished, one does not
know exactly what kind of potential we are going to get. As a result, it is very difficult to solve
the inverse problem: to find W and K which would produce a desirable inflationary potential
V (φ), which would fit the observational data.

A significant step in this direction was made back in 2000 in [86]. The basic idea is that
instead of considering a minimal Kähler potential containing ΦΦ̄, one may consider the potential
(Φ + Φ̄)2/2. This potential has shift symmetry: It does not depend on the field combination
Φ − Φ̄. Therefore the dangerous term eK , which often makes the potential too steep, is also
independent of Φ− Φ̄. This makes the potential flat and suitable for chaotic inflation, with the
field Φ− Φ̄ playing the role of the inflaton. The flatness of the potential is broken only by the
superpotential mSΦ, where S is an additional scalar field, which vanishes along the inflationary
trajectory. As a result, the potential in the direction Φ−Φ̄ becomes quadratic, as in the simplest
version of chaotic inflation. Similarly, one can use the Kähler potential (Φ − Φ̄)2/2, with the
field Φ + Φ̄ playing the role of the inflaton.

This scenario was substantially generalized in [87, 88]. The generalized scenario describes
two scalar fields, S and Φ, with the superpotential

W = Sf(Φ) , (12.1)

where f(Φ) is a real holomorphic function such that f̄(Φ̄) = f(Φ). Any function which can be
represented by Taylor series with real coefficients has this property. The Kähler potential can
be chosen to have functional form

K = K((Φ− Φ̄)2, SS̄). (12.2)

In this case, the Kähler potential does not depend on φ =
√

2 Re Φ. Under certain conditions
on the Kähler potential, inflation occurs along the direction S = Im Φ = 0, and the field φ
plays the role of the inflaton field with the potential

V (φ) = |f(φ/
√

2)|2. (12.3)

All scalar fields have canonical kinetic terms along the inflationary trajectory S = Im Φ = 0.
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An alternative formulation of this class of models has the Kähler potential

K = K((Φ + Φ̄)2, SS̄). (12.4)

In this class of models, the Kähler potential does not depend on χ =
√

2 Im Φ, which plays the
role of the inflaton field with the potential

V (χ) = |f(χ/
√

2)|2. (12.5)

The description of inflation in the models (12.2) and (12.4) coincides with each other, up to a
trivial replacement φ→ χ. For definiteness, in what follows we will concentrate on the theory
(12.2).

The generality of the functional form of the inflationary potential V (φ) allows one to de-
scribe any combination of the parameters ns and r. Indeed, the potential depends only on the
function f(Φ). One can always Taylor expand it, with real coefficients, in a vicinity of the point
corresponding to N ∼ 60 of e-folds, so that the square of this function will fit any desirable
function V (φ) with an arbitrary accuracy. In fact, one can show that there are many different
choices of f(Φ) which lead to the same values of ns and r. Thus, this rather simple class of
models may describe any set of observational data which can be expressed in terms of these
two parameters by an appropriate choice of the function f(Φ) in the superpotential.

However, this does not mean that absolutely any potential V (φ) can be obtained in this
simple context, or that one has a full freedom of choice of the functions f(Φ). It is important
to understand the significance of the restrictions on the form of the Kähler potential and
superpotential described above. According to [88], the symmetry of the Kähler potential Φ→
±Φ̄, as well as the condition that f(Φ) is a real holomorphic function are required to ensure that
the inflationary trajectory, along which the Kähler potential vanishes is an extremum of the
potential in the direction orthogonal to the inflationary trajectory S = ImΦ = 0. After that,
the proper choice of the Kähler potential can make it not only an extremum, but a minimum,
thus stabilizing the inflationary regime [87, 88, 89].

The requirement that f(Φ) is a real holomorphic function does not affect much the flexibility
of choice of the inflaton potential: One can take any positively defined potential V (φ), take
a square root of it, make its Taylor series expansion and thus construct a real holomorphic
function which approximate V (φ) with great accuracy. However, one should be careful to obey
the rules of the game as formulated above.

For example, suppose one wants to obtain a fourth degree polynomial potential of the type of
V (φ) = m2φ2

2
(1+aφ+bφ2) in supergravity. One may try to do it by taking f(Φ) = mΦ(1+ceiθΦ)

[90]. However, this violates our reality condition for f(Φ). In that case, the potential will be
a fourth degree polynomial for Im Φ = 0 (or at Re Φ = 0, depending on the choice of the
Kähler potential) [90]. However, the flat direction of the potential V (Φ) (and, correspondingly,
the inflationary trajectory) will deviate from Im Φ = 0 (or from Re Φ = 0). In addition to
the minimum at Φ = 0, the potential will develop an extra minimum at Φ = c−1e−iθ. As a
result, the potential along the inflationary trajectory will not be polynomial, contrary to the
expectations of [90], and in order to study inflation in this scenario one would need to study a
multifield evolution in supergravity using numerical methods.
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for a = 0.1 and b = 0.36 (upper curve), 0.35 (middle)

and 0.34 (lower curve). The potential is shown in units of m, with φ in Planckian units. For each of these
potentials, there is a range of values of the parameter a such that the observational predictions of the model
are in the region of ns and r preferred by Planck 2013. For b = 0.34, the value of the field φ at the moment
corresponding to 60 e-foldings from the end of inflation is φ ≈ 8.2. Change of the parameter a stretches the
potentials horizontally without changing their shape.

However, one can still obtain a polynomial potential V (φ) using the methods of [87, 88], if the
polynomial can be represented as a square of a polynomial function f(φ) with real coefficients.
As a simplest example, one may consider f(Φ) = mΦ

(
1 − cΦ + dΦ2

)
. The resulting potential

of the inflaton field can be represented as

V (φ) =
m2φ2

2

(
1− aφ+ a2b φ2)

)2
. (12.6)

Here a = c/
√

2 and a2b = d/2. We use the parametrization in terms of a and b because it allows
us to see what happens with the potential if one changes a: If one decreases a, the overall shape
of the potential does not change, but it becomes stretched. The same potential can be also
obtained in supergravity with vector or tensor multiplets [91].

Inflation in this theory may begin under the same initial conditions as in the simplest large
field chaotic inflation models φn. The difference is that in the small a limit, the last 60 e-foldings
of inflation are described by the theory φ2. Meanwhile for large a one has the same regime as in
the theory φ6, but at some intermediate values of a the last 60 e-foldings of inflation occurs near
the point where the potential bends and becomes concave, see Fig. 7. As a result, for b = 0.34
and 0.03 . a . 0.13 the observational predictions of this model are in perfect agreement with
the Planck data, see Fig. 8. Agreement with the Planck data can be achieved, for a certain
range of a, for each of the potentials shown in Fig. 7.

As we see, a slight modification of the simplest chaotic inflation model with a quadratic
potential leads to a model consistent with the results of Planck 2013. These results provide us
with 3 main data points: The amplitude of the perturbations As, the slope of the spectrum ns
and the ratio of tensor to scalar perturbations r. (Tensor perturbations have not been found
yet, so we are talking about the upper bound r . 0.1.) The potential of the model (12.6) also
depends on 3 parameters which are required to fit the data. Thus we are not talking about
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Figure 8: Predictions for ns and r in the model with V (φ) = m2φ2

2

(
1− aφ+ a2b φ2)

)2
for b = 0.34. The stars,

from the top down, correspond to a = 0, 0.03, 0.05, 0.1, 0.13. For a = 0 one recovers the predictions for the
simplest chaotic inflation model with a quadratic potential, for a = 0.13 the predictions almost exactly coincide
with the predictions of the Starobinsky model and the Higgs inflation model.

fine-tuning where a special combination of many parameters is required to account for a small
number of data points; we are trying to fit 3 data points, As, ns and r by a proper choice of
3 parameters, m, a and b. The values of ns and r do not depend on the overall scale of V ;
they are fully controlled by the parameters a and b. One can show that by fixing a proper
combination of a and b with a few percent accuracy, one can cover the main part of the area in
the ns− r plane allowed by observations. After fixing these two parameters, one can determine
the value of m ∼ 10−5 which is required to fit the observed value of As ∼ 2.2× 10−9.

This is very similar to what happens in the standard model of electroweak interactions,
which requires about 20 parameters, which differ from each other substantially. For example,
the Higgs coupling to the electron is about 2× 10−6. This smallness is required to account for
the anomalously small mass of the electron. Meanwhile the Higgs coupling to W and Z bosons
and to the top quark are O(1). The cosmological models discussed above are much simpler
than the theory of elementary particles. Nevertheless, it would be very nice to identify some
possible reasons why the data by WMAP and Planck gradually zoom to some particular area
of ns and r.

In particular, it is quite intriguing that the Starobinsky model and the Higgs inflation
model, which are quite different from each other, lead to nearly identical predictions for ns and
r favored by the Planck data. In what follows we will present some very recent results which
may help us to understand what is going on there.
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13 Cosmological attractors

13.1 Starobinsky model

The original version of the Starobinsky model [9] was based on the investigation of quantum
effects in GR. These effects could become sufficiently large only if produced by enormously
large number of elementary particles. The corresponding effective action consisted of several
terms of different nature. Few years later, a streamlined version of this model was proposed
[92], with the Lagrangian which contained the term ∼ R2 already at the classical level,

L =
√−g

(
1

2
R +

R2

12M2

)
, (13.1)

where M � Mp is some mass scale; we keep Mp = 1 in our paper. Shortly after that, Whitt
pointed out that at the classical level this theory is conformally equivalent to canonical gravity
plus a scalar field φ [93]. Indeed, by making the transformation (1 +φ/3M2)gµν → gµν and the

field redefinition ϕ =
√

3
2

ln
(
1 + φ

3M2

)
, one can find the equivalent Lagrangian

L =
√−g

[
1

2
R− 1

2
∂µϕ∂

µϕ− 3

4
M2

(
1− e−

√
2/3ϕ

)2
]
. (13.2)

In the recent literature, this model is often called the Starobinsky model, even though it may
not be fully equivalent to the original Starobinsky model at the quantum level. Its potential is
shown in Fig. 9. The predictions of this model for ns and r can be represented as a function of

2 4 6 8 10 12 Φ

0.5

1.0

1.5

V

Figure 9: The Starobinsky-Whitt potential in units M = 1.

the number of e-foldings N . In the limit of large N , one finds

ns = 1− 2/N , r = 12/N2 . (13.3)

For N ∼ 60, these predictions ns ∼ 0.967, r ∼ 0.003 (ns ∼ 0.964, r ∼ 0.004 for N ∼ 55) are in
the sweet spot of the WMAP9 and Planck2013 data.
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In discussion of various supersymmetric generalizations of the Starobinsky model one should
distinguish between supergravity extensions of the R + R2 model (13.1) and the supergravity
extensions of its dual version developed by Whitt (13.2), where the termR2 is absent and a scalar
coupling is present. Supersymmetric generalization of the R+R2 Starobinsky model (13.1) was
performed in old minimal supergravity in [94]. Its supersymmetric dual version without higher
derivative R2 term involves 2 chiral multiplets, see [94] and a more recent discussion in [95].
It has therefore 4 scalars. The corresponding consistent supersymmetric cosmological model
requiring stabilization of 3 extra moduli, which appear in the theory in addition to the inflaton,
was presented in [96]. In new minimal supergravity, R+R2 models and their dual were given in
[97, 98, 91, 99]. These dual supergravity models with vector or tensor multiplets have only one
scalar and do not require extra moduli stabilization. Other supersymmetric extensions of the
Starobinsky-Whitt model (13.2) have been developed in [96, 100]. Supergravity models with
potentials closely approximating (13.2) have been proposed in [101, 102].

13.2 Chaotic inflation in the theories with non-minimal coupling to
gravity

An amazing fact that we are going to see over and over again in the emergence of the potentials
very similar to the potential shown in Fig. 9 in the context of a broad class of completely
different theories, all of which share the same prediction (13.3), or at least zooming towards it
in a certain limit. We will call such theories “cosmological attractors.” We will discuss some of
such models in this section.

The simple chaotic inflation model with potential λφ4 in the Einstein frame [19] is conclu-
sively ruled out by the data due to the high level of the tensor-to-scalar ratio r which it predicts.
Meanwhile the same model λφ4, which includes the non-minimal gravitational coupling ξ

2
φ2R/2

in the Jordan frame, makes a dramatic comeback and is in perfect agreement with the Planck
2013 data for ξ

2
& 10−3 [103, 104], see Fig. 10. Effects of non-minimal coupling to gravity on

inflation has received a lot of attention over the years [105, 106, 107, 108]. The recent revival
of interest to these models was related to the possibility that the Higgs field of the standard
model may play the role of the inflaton [106, 108], which would require λ = O(1) and ξ � 1. A
supersymmetric generalization of the Higgs inflation was found in [109, 110, 111, 112, 113, 114].
However, the inflaton does not have to be a Higgs field, its quartic coupling λ is not constrained
by the standard model phenomenology. Therefore λ can be small, which means in turn that the
non-minimal coupling ξ does not have to be large. It is amazing that adding to the Lagrangian
the term ξφ2R/2 with a minuscule coefficient ξ/2 > 10−3 is sufficient to make the simple chaotic
inflation model λφ4 viable. Thus one may wonder whether there is something special about the
model λφ4 with nonminimal coupling to gravity, and would it be possible to find other models
of chaotic where a similar effect is possible.

The answer to this question was found only recently [115]. Here we will describe the main
results of [115], which allow to find a very large class of models which have a very similar
property.

34



0.94 0.96 0.98 1.00
Primordial Tilt (ns)

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

T
en

so
r-

to
-S

ca
la

r
R
at

io
(r

0
.0

0
2
)

ConvexConcave

Planck+WP

Planck+WP+highL

Planck+WP+BAO

Natural Inflation

Power law inflation

Low Scale SSB SUSY

R2 Inflation

V / �2/3

V / �

V / �2

V / �3

N⇤=50

N⇤=60

0.
30

0.
35

N"="50" N"="60"

⇠ = 0

⇠ = 0.002

⇠ = 0.01

�

4
�4 � ⇠

2
�2R

⇠ = 0.1
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The starting point of the inflationary models to be discussed now is a Lagrangian

LJ =
√−g[1

2
Ω(φ)R− 1

2
(∂φ)2 − VJ(φ)] , (13.4)

with

Ω(φ) = 1 + ξf(φ) , VJ(φ) = λ2f 2(φ) . (13.5)

Here we represented a positive inflationary potential as λ2f 2(φ), where f(φ) is the same function
as in the expression for Ω. Later we will show how one may relax this requirement. Due to
the non-minimal coupling to gravity Ω(φ)R, we will refer to this form of the theory as Jordan
frame. In order to transform to the canonical Einstein frame, one needs to redefine the metric
gµν → Ω(φ)−1gµν . This brings the Lagrangian to the Einstein-frame form:

LE =
√−g[1

2
R− 1

2

(
Ω(φ)−1 + 3

2
(log Ω(φ))′2

)
(∂φ)2 − VE(φ)] (13.6)

where

with VE(φ) =
VJ(φ)

Ω(φ)2
. (13.7)

Note that in the absence of non-minimal coupling, ξ = 0, the distinction between Einstein
and Jordan frame vanishes. In this case the inflationary dynamics is fully determined by the
properties of the scalar potential VJ(φ) = VE(φ). In the presence of a non-minimal coupling,
however, one has to analyze the interplay between the different contributions to the inflationary
dynamics due to VJ(φ) and ξ.
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Let us first concentrate on the large ξ limit. In this limit, the two contributions to the kinetic
terms in (13.6) scale differently under ξ. Retaining only the leading term, the Lagrangian
becomes

LE =
√−g

[
1
2
R− 3

4
(∂ log(Ω(φ)))2 − λ2 f(φ)2

Ω(φ)2

]
. (13.8)

The canonically normalized field ϕ involves the function Ω(φ),

ϕ = ±
√

3/2 log(Ω(φ)) . (13.9)

Therefore, in terms of ϕ, the theory has lost all reference to the original scalar potential, it has
the universal form. In case of odd f(φ) we choose the same sign in (13.9) for both signs of ϕ
and find

LE =
√−g

[
1
2
R− 1

2
(∂ϕ)2 − λ2

ξ2
(1− e−

√
2
3
ϕ)2

]
, (13.10)

which is the scalar formulation of the Starobinsky-Whitt model [9], with the potential shown
in Fig. 9. If the function f(φ) is even in φ, we choose opposite signs and find the following
attractor action

LE =
√−g

[
1
2
R− 1

2
(∂ϕ)2 − λ2

ξ2

(
1− e−

√
2
3
ϕ2
)2
]
. (13.11)

In this case, the potential in the large ξ limit coincides with the Starobinsky-Whitt potential
for ϕ > 0, but, unlike that potential, it is symmetric under ϕ → −ϕ. In both cases, these
models in the large ξ limit lead to the same observational predictions (13.3), for any choice of
the potential V (φ).

One can generalize this class of models even further. Indeed, in this class of models one can
show that the last N e-foldings of inflation occur when the field satisfies the condition

N = 3
4
ξf(φN) . (13.12)

For example, if f(φN) = φ, the last N e-foldings of inflation occur for φ < 4
3
ξ−1. This means

that for large ξ the description of the last N e-foldings of inflation discussed above works for
all theories where the structure of the theory is the same as in (13.4) in a small vicinity of the
minimum of the potential where f(φN) . N/ξ.

Let us use this fact to our advantage. In the previous investigation, we assumed that
Ω(φ) = 1 + ξf(φ), and VJ(φ) = λ2f 2(φ), but one may also consider a more general class of
theories, where

Ω(φ) = 1 + ξg(φ) , VJ(φ) = λ2f 2(φ) . (13.13)

Here we introduce an additional functional freedom in the definition of Ω(φ), disconnecting it
from VJ(φ). As we will see now, many of the results obtained above will work in this case as
well.

Note that when the field rolls to the minimum of its potential, f(φ) is supposed to vanish, or
at least to become incredibly small to account for the incredible smallness of the cosmological
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constant ∼ 10−120. As in the previous analysis, we will assume that the same is true for the
function g(φ), simply because its constant part is already absorbed into the definition of the
Planck mass. Therefore we will expand both functions in a Taylor series in φ, assuming that
they vanish at some point (which can be taken as φ = 0 by a field redefinition) and that they
are differentiable at this point:

f(φ) =
∞∑
n=1

fnφ
n , g(φ) =

∞∑
n=1

gnφ
n . (13.14)

By rescaling λ and ξ, one can always redefine f1 = g1 = 1 without loss of generality.

Let us first ignore all higher order corrections, i.e. take f(φ) = g(φ) = φ. In this case our
investigation is reduced to the one performed earlier, and equation (13.12) yields φN = 4N

3ξ
.

This result implies that for ξ � N one has φN � 1.

If one now adds all higher order terms and makes an assumption that the coefficients fn and
gn are O(1), one finds that in the large coupling limit ξ � N , these corrections are suppressed
by the powers of 4N

3ξ
, so one can indeed ignore these terms. Note that the assumption that fn

and gn do not blow up is just that, an assumption, but for a broad class of function for which
this assumption is valid we have an important result: In the large ξ limit, the potential V (ϕ)
in terms of the canonically normalized inflaton field ϕ coincides with the potential (13.10), and
all observational predictions of this new broad class of theories coincide with (13.3).

In this analysis we assumed that the Taylor series begins with the linear term. However, if
the theory is symmetric with respect to the change φ→ −φ, as is the case e.g. in the φ4 theory,
then the expansion for f(φ) and g(φ) begins with the quadratic terms. The rest follows just as
in the case discussed above: For ξ � N , higher order corrections do not affect the description
of the observable part of the universe, we have the same observational predictions (13.3) as
before, but now the relevant part of the potential is even with respect to the field ϕ, and its
large ξ limit is given by (13.11).

To conclude, instead of the two apparently unrelated models, the Starobinsky model and
the Higgs inflation model, we now have a huge variety of different models which lead to identical
observational predictions in the large ξ limit.

But what if we do not take this limit and follow the evolution of the predictions while ξ
grows from 0? This issue was studied in Ref. [115], Fig. 13.2 illustrates the main results of
this investigation. As we see, predictions of all chaotic inflation models with potentials ∼ φn

continuously flow towards the attractor point (13.3) when the value of the nonminimal coupling
ξ increases. For n ≥ 4, the convergence at the attractor point (13.3) occurs almost instantly,
i.e. well before ξ becomes O(1).

From the point of view of fundamental physics it may be important that all of these theories
can be incorporated into the superconformal theory and supergravity. The way it can be done
is explained in [115]. In the next section we will describe another broad class of superconformal
attractors, which is considerably different from the one discussed above, and yet it leads to the
same observational consequences.
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Figure 11: The ξ-dependence of (ns, r) for different chaotic inflation models φn with n = (2/3, 1, 2, 3, 4, 6, 8),
from right to left, for 60 e-foldings.

13.3 Superconformal attractors

The standard approach to cosmological evolution is based on the Einstein theory of gravity.
The gravitational constant in this theory is indeed a constant, G = (8πMp)

−2. Since it is a
constant, it is customary to simply take Mp = 1 in all equations. In the standard approach
to supergravity, one can also take Mp = 1. However, in the superconformal formulation of
supergravity, which is one of the most powerful tools used since the very early days of this
theory [116, 117, 118, 119], the theory possesses an additional set of fields and symmetries.
Planck mass becomes a constant only after gauge fixing of these extra symmetries. Just like
in the theory of spontaneous symmetry breaking in the Higgs model, the original symmetry
does not disappear after the symmetry breaking and/or gauge fixing: One can either use the
unitary gauge, where the physical contents of the theory are manifest, or other gauges where
the calculations can be easier; all physical results do not depend on this choice. Similarly, the
original symmetries of the superconformal theory are still present in the standard formulation
of supergravity with Mp = 1, but they are well hidden and therefore often forgotten and rarely
used. We believe that this is going to change, as the superconformal approach becomes very
useful in the cosmological context [120, 121].

Since these lectures are cosmology-oriented, we will mostly discuss non-supersymmetric
models based on a local conformal symmetry, instead of the superconformal one. Generalization
to superconformal theory and supergravity is presented in the original papers to which we will
refer, and also in the lecture by Renata Kallosh at this school [3].

13.3.1 The simplest conformally invariant models of dS/AdS space

As a first step towards the development of the new class of inflationary models based on
spontaneously broken conformal symmetry, consider a simple conformally invariant model of
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gravity of a scalar field χ with the following Lagrangian

L =
√−g

[
1

2
∂µχ∂νχ g

µν +
χ2

12
R(g)− λ

4
χ4

]
. (13.15)

This theory is locally conformal invariant under the following transformations:

g̃µν = e−2σ(x)gµν , χ̃ = eσ(x)χ . (13.16)

The field χ(x) is referred to as a conformal compensator, which we will call ‘conformon.’ It has
negative sign kinetic term, but this is not a problem because it can be removed from the theory
by fixing the gauge symmetry (13.20), for example by taking a gauge χ =

√
6. This gauge

fixing can be interpreted as a spontaneous breaking of conformal invariance due to existence of
a classical field χ =

√
6.

After fixing χ =
√

6 the interaction term −λ
4
χ4 becomes a cosmological constant Λ = 9λ

L =
√−g

[
R(g)

2
− 9λ

]
. (13.17)

For λ > 0, this theory has a simple de Sitter solution

a(t) = eHt = e
√

Λ/3 t = e
√

3λ t. (13.18)

Meanwhile for λ < 0 it becomes the AdS universe with a negative cosmological constant.

As a next step, consider the model of two real scalar fields, φ and χ, which has also an
SO(1, 1) symmetry:

Ltoy =
√−g

[
1

2
∂µχ∂

µχ+
χ2

12
R(g)− 1

2
∂µφ∂

µφ− φ2

12
R(g)− λ

4
(φ2 − χ2)2

]
. (13.19)

This theory is locally conformal invariant under the following transformations:

g̃µν = e−2σ(x)gµν , χ̃ = eσ(x)χ , φ̃ = eσ(x)φ . (13.20)

The global SO(1, 1) symmetry is a boost between these two fields. Because of this symmetry,
it is very convenient to choose an SO(1, 1) invariant conformal gauge,

χ2 − φ2 = 6 , (13.21)

which reflects the SO(1, 1) invariance of our model. This gauge condition (we will refer to
it as a ‘rapidity’ gauge) represents a hyperbola which can be parametrized by a canonically
normalized field ϕ

χ =
√

6 cosh
ϕ√
6
, φ =

√
6 sinh

ϕ√
6
. (13.22)

This allows us to modify the kinetic term into a canonical one for the independent field ϕ

1

2
∂µχ∂

µχ− 1

2
∂µφ∂

µφ ⇒ 1

2
∂µϕ∂

µϕ (13.23)
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and the non-minimal curvature coupling into a minimal one

χ2

12
R(g)− φ2

12
R(g) ⇒ 1

2
R(g) . (13.24)

In this gauge the Higgs-type potential λ
4
(φ2 − χ2)2 turns out to be a cosmological constant

9λ, and our action (13.19) becomes

L =
√−g

[
1

2
R− 1

2
∂µϕ∂

µϕ− 9λ

]
. (13.25)

This theory has the constant potential V = 9λ. Therefore this model can describe de Sitter
expansion with the Hubble constant H2 = 3λ, for positive λ. For negative λ in (13.19) the
model can describe an AdS space. But unlike the one-field model, this model also describes a
massless scalar field ϕ, which may have its kinetic and gradient energy. If one takes this energy
into account, the universe approaches dS regime as soon as expansion of the universe makes
the kinetic and gradient energy of the field ϕ sufficiently small.

13.3.2 Chaotic inflation from conformal theory: T-Model

Now we will consider a conformally invariant class of models

L =
√−g

[
1

2
∂µχ∂

µχ+
χ2

12
R(g)− 1

2
∂µφ∂

µφ− φ2

12
R(g)− 1

36
F (φ/χ) (φ2 − χ2)2

]
. (13.26)

where F is an arbitrary function in term of the homogeneous variable z = φ/χ, which is the
natural variable for this class of theories. When this function is present, it breaks the SO(1, 1)
symmetry of the de Sitter model (13.19). Note that this is the only possibility to keep local
conformal symmetry and to deform the SO(1, 1) symmetry: an arbitrary function F (z) has to
deviate from the critical value F (z) = const, where SO(1, 1) symmetry is restored.

This theory has the same conformal invariance as the theories considered earlier. As before,
we may use the gauge χ2 − φ2 = 6 and resolve this constraint in terms of the fields χ =√

6 cosh ϕ√
6
, φ =

√
6 sinh ϕ√

6
and the canonically normalized field ϕ: φ

χ
= tanh ϕ√

6
. Our action

(13.26) becomes

L =
√−g

[
1

2
R− 1

2
∂µϕ∂

µϕ− F (tanh
ϕ√
6

)

]
. (13.27)

Note that asymptotically tanhϕ→ ±1 and therefore F (tanh ϕ√
6
)→ const, the system in large ϕ

limit evolves asymptotically towards its critical point where the SO(1, 1) symmetry is restored.

Since F (z) is an arbitrary function, by a proper choice of this function one can reproduce
an arbitrary chaotic inflation potential V (ϕ) in terms of a conformal theory with spontaneously
broken conformal invariance. But this would look rather artificial. For example, to find a theory
which has potential m2ϕ2/2 in terms of the canonically normalized field ϕ, one would need to
use F (z) ∼ (tanh−1 z)2, which is a possible but rather peculiar choice.
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Alternatively, one may think about the function F (φ/χ) as describing a deviation of in-
flationary theory from the pure cosmological constant potential which emerges in the theory
(13.19) with the coupling (φ2 − χ2)2. Therefore it is interesting to study what will happen if
one takes the simplest set of functions F (φ/χ) = λ (φ/χ)2n as we did in the standard approach
to chaotic inflation. In this case one finds

V (ϕ) = λ tanh2n(ϕ/
√

6). (13.28)

This is a basic representative of the universality class of models depending on tanh(ϕ/
√

6).
We will call it a T-Model, because it originates from different powers of tanh(ϕ/

√
6), and also

because its basic representative λ tanh2(ϕ/
√

6) is the simplest version of the class of conformal
chaotic inflation models considered in this paper. Moreover, as we will see, observational
predictions of a very broad class of models of this type, including their significantly modified
and deformed cousins, have nearly identical observational consequences, thus belonging to the
same universality class.
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Figure 12: Potentials for the T-Model inflation tanh2n(ϕ/
√

6) for n = 1, 2, 3, 4 (blue, red, brown and green,
corresponding to increasingly wider potentials). We took λ = 1 for each of the potentials for convenience of
comparison. All of these models predict the same values ns = 1−2/N , r = 12/N2, in the leading approximation
in 1/N , where N ∼ 60 is the number of e-foldings. The points where each of these potentials cross the red
dashed line V = 1 − 3/2N = 0.975 correspond to the points where the perturbations are produced in these
models on scale corresponding to N = 60. Asymptotic height of the potential is the same for all models of this
class, see (13.33).

Functions tanh2n(ϕ/
√

6) are symmetric with respect to ϕ → −ϕ. To study inflationary
regime in this model at ϕ� 1, it is convenient to represent them as follows:

V (ϕ) = λ

(
1− e−

√
2/3ϕ

1 + e−
√

2/3ϕ

)2n

= λ
(

1− 4n e−
√

2/3ϕ +O
(
n2 e−2

√
2/3ϕ

))
. (13.29)

One can easily check that in all models with potentials of this type, independently on n, one
has the same “attractor” result (13.3):

1− ns = 2/N , r = 12/N2 , (13.30)

in the leading approximation in 1/N .
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Interestingly, Starobinsky-Whitt potential (13.2) also appears the class of chaotic conformal

inflation models discussed above, with F (φ/χ) ∼ φ2

(φ+χ)2
, which leads to

V (ϕ) ∼
[ tanh(ϕ/

√
6))

1 + tanh(ϕ/
√

6))

]2

∼
(

1− e−
√

2/3ϕ
)2

. (13.31)

13.3.3 Universality of conformal inflation

In this section we will describe the roots of the universality of predictions of conformal inflation
in a more general way. But first of all, we will consider some instructive examples, which will
help to explain the main idea of our approach.
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Figure 13: Flattening of the sinusoidal potential V (φ) near the boundary of the moduli space φ =
√

6 by
boost in the moduli space, V (φ)→ V (

√
6 tanh ϕ√

6
). Inflationary plateau of the function V (φ) appears because

of the exponential stretching of the last growing part of the sinusoidal function V (φ).

Consider a sinusoidal function F (φ/χ) ∼ sin(a+ bφ) and check what will happen to it after
the boost V (φ) → V (

√
6 tanh ϕ√

6
). As we see from the Fig. 13, the main part of the stretch

of the potential occurs very close to the boundary of moduli space, near φ =
√

6. The rising
segment of the sinusoidal function bends and forms a plateau, which has an ideal form for the
slow-roll inflation.

Now let us study a more general and complicated potential on the full interval −
√

6 < φ <√
6, as shown in Fig. 14. It shows the same effect as the one discussed above: The part of the

landscape at |φ| �
√

6 does not experience any stretching. The inflationary plateau appears
because of the exponential stretching of the growing branch of V (φ) near φ =

√
6.

In this scenario, inflationary regime emerges each time when V (φ) grows at the boundary
of the moduli space, which is a rather generic possibility, requiring no exponential fine-tuning.2

By expanding the potential in powers of the distance from the boundary of the moduli

2As usual, there is an unavoidable fine-tuning of the cosmological constant, which is the value of the potential
at the local minimum corresponding to our part of the universe. This issue can be taken care off by the usual
considerations involving inflationary multiverse and string theory landscape.
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Figure 14: Basic mechanism which leads to inflation in the theories with generic functions F (z). The potential
V in the Einstein frame can have an arbitrary shape in terms of the original conformal variable z, which becomes
φ/
√

6 in the gauge χ =
√

6; see e.g. the potential V (φ/
√

6) in the upper panel. If this potential is non-singular
at the boundary of the moduli space |z| = 1 (φ =

√
6), it looks exponentially stretched and flat at large values

of the canonically normalized field ϕ. This stretching makes inflation very natural, and leads to universal
observational predictions for a very broad class of such models [100]. In essence, what we see is ‘inflation of the
inflationary landscape’ at the boundary of the moduli space, which solves the flatness problem of the inflationary
potential required for inflation in the landscape.

space, one can show that it is given by

V (ϕ) = V∗

(
1− c e−

√
2/3ϕ

)
, (13.32)

up to exponentially suppressed higher order corrections. Just as in different versions of the
T-model, the resulting inflationary predictions in the large N limit are given by (13.3).

From these results, one can derive an additional universal parameter, the energy scale of
inflation, V ≈ V∗, which takes the same value for all models described above, in the leading
order in 1/N

V (ϕN) ≈ 4× 10−7N−2 ∼ 10−10 (13.33)

in Planck units, for all models in this universality class [100].

13.3.4 Multifield conformal attractors

This mechanism can be easily generalized to the theory describing many fields φi [122]. Here
we will only show the chaotic potential of the uniform variables zi, Fig. 15, which generalizes
the potential shown in the top panel of Fig. 14.

The potential looks very steep and disorderly, it does not contain any nicely looking flat
regions, so naively one would not expect it to lead to a slow-roll inflation. Indeed, upon
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Figure 15: Random function F (zi) in terms of the conformal variables zi = φi
χ . The black line shows the

boundary of the moduli space |zi|2 = 1. This boundary moves to infinity upon switching to the canonically
normalized radial variable ϕ in the Einstein frame. This is the main reason of the stretching of the potential in
the radial direction, as shown in Figures 14 and 16.

switching to the canonically normalized field ϕ in the Einstein frame, the central part of this
distribution stretches by the factor of

√
6, but it remains chaotic and mostly unsuitable for

inflation. However, just as in the one-field case, the boundary of the moduli space experiences
an infinitely large stretching, forming infinitely long and straight ridges and valleys. What
looked like sharp Minkowski or dS minima near the boundary become the final destinations for
inflationary evolution of the field rolling towards smaller values of ϕ along de Sitter valleys, see
Figure 16. Meanwhile the blue valleys correspond to negative cosmological constant; we do not
want to go there because the corresponding parts of the universe rapidly collapse.

What we have is a partially traversable landscape, divided into semi-infinite inflationary
areas with positive potential energy, separated by the deep valleys with negative potential
energy, corresponding to collapsing parts of the multiverse. The structure of the inflationary
valleys is determined by the properties of the function F (zi) in the close vicinity of the boundary
of the moduli space. The sharper are the minima of the function F (zi), the more of these
minima fit near the boundary, the greater is the variety of inflationary valleys we are going to
obtain. If a typical size of such sharp minima is equal to ∆z, the number of different inflationary
valleys slowly bending towards different Minkowski or dS minima should be proportional to
(∆z)n−1, where n is the total number of the different moduli. For ∆z � 1 and n � 1, one
can get an exponentially large variety of different possibilities, reminiscent of the string theory
landscape.

It is instructive to compare this scenario with the more conventional multi-field scenario.
If one assumes that from the very beginning we deal with a random Einstein frame potential
without any symmetries protecting its flat directions, one may conclude that such flat directions
are rather unlikely, see e.g. [123]. On the other hand, the more chaotic is the function F in
terms of the original conformal variables zi, and the greater number such fields we have, the
greater is the variety of inflationary valleys which naturally and nearly unavoidably emerge in
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Figure 16: The Einstein frame potential corresponding to the random function F (zi) shown in Figure 15.
Yellow and light green valleys are inflationary directions with V > 0, deep blue valleys correspond to V < 0.

the scenario outlined in our paper.

According to [122], most of the inflationary trajectories in this landscape correspond to the
inflationary regime with the universal observational predictions 1− ns = 2/N , r = 12/N2, just
as for the single-field attractors studied in [100].

13.3.5 α-attractors

During investigation of supersymmetric generalizations of the Starobinsky model in [91] we
found a model with the potential

V = V0

(
1− e−

√
2
3α
ϕ
)2
, (13.34)

which coincides with the Starobinsky-Whitt potential (13.2) for α = 1. On the other hand, for
ϕ� √α this potential is quadratic. The number of e-foldings in the purely quadratic potential
is N = ϕ2/4, see Eq. (3.4). Thus, for N � α/4, the last N e-foldings of inflation in this
theory are described by the simplest chaotic inflation model with a quadratic potential. In
other words, for α & 103 all observational predictions of this model for N . 60 are expected
to be the same as in the simplest chaotic inflation with a quadratic potential. Meanwhile for
α < 1, one has [91]

ns = 1− 2

N
, r = α

12

N2
. (13.35)

The full set of predictions for this model is shown in Fig. 17 [124].
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Figure 17: The cosmological observables ns and r for the theory with a potential V0
(
1 − e−

√
2
3αϕ
)2

for
N = 60. As shown by the thick blue line, ns and r for this model depend on α and continuously interpolate
between the prediction of the chaotic inflation with V ∼ ϕ2 for α→∞, the prediction of the Starobinsky model
for α = 1 (the lowest red circle), and the prediction ns = 1 − 2

N , r = 0 for α → 0. The red dots on the thick
blue line correspond to α = 103, 102, 10, 1, from the top down.

Another class of models found in [124] generalizes superconformal attractors discussed in
Section (13.3.2). In particular, generalized T-models have the potential

V = tanh2n(ϕ/
√

6α) . (13.36)

Cosmological predictions in this class of theories continuously interpolate between the predic-
tions of the simplest chaotic inflation models ϕn and the prediction

ns = 1− 2

N
, r = 0 (13.37)

for α→ 0, see Fig. 18, which resembles Fir 13.2. In all of these cases, as well as in some other
models discussed in [125], we observe attractor behavior, with an attractor point (13.3), or its
close neighbor (13.37).
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Figure 18: The cosmological observables (ns, r) for different scalar potentials tanh2n( ϕ√
6α

) with 2n =

(2/3, 1, 2, 3, 4) for N = 60. These continuously interpolate between the predictions of the simplest inflationary
models with the monomial potentials ϕ2n for α →∞, and the attractor point ns = 1− 2/N , r = 0 for α → 0,
shown by the red star. The different trajectories form a fan-like structure for α � n2. The set of dark red
dots at the upper parts of the interpolating straight lines corresponds to α = 100. The set of dark blue dots
corresponds to α = 10. The lines gradually merge for α = O(1).

14 Inflation as a conformon instability

As we already mentioned in section 13.3, in theories with spontaneously broken superconformal
invariance, such as the standard supergravity models, one can directly go to the Einstein gauss
where the Planck mass is fixed, but one may also use other gauges, and convert the results to the
Einstein gauge only at the end of the calculations. The results should be gauge-independent,
but some of the gauges may be more convenient for investigation. This new perspective was
extremely helpful for the development of the models of superconformal attractors. But there
is something else about it: Friedmann universe is conformally flat. So if we use superconfor-
mal symmetry as long as possible, it may simplify investigation of physical processes in the
Friedmann universe by relating them to the processes in a static Minkowski space. A detailed
discussion of related issues can be found in [121]; here I will only present some results using a
toy model (13.15) as a simple example.

This model describes gravity interacting with the conformon field χ with the Lagrangian
(13.15):

L =
√−g

[
1

2
∂µχ∂νχ g

µν +
χ2

12
R(g)− λ

4
χ4

]
. (14.1)

This theory is locally conformal invariant under the transformations (13.16): g̃µν = e−2σ(x)gµν ,
χ̃ = eσ(x)χ. We already discussed this model in section 13.3, but here we would like to look at
it from a different perspective, and compare its description in different conformal gauges.
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14.1 χ =
√

6 conformal gauge

In the gauge χ =
√

6, the kinetic term of the scalar field disappears, the term χ2

12
R(g) becomes

the standard Einstein action, and the term λ
4
χ4 becomes a cosmological constant Λ = 9λ, so

the Lagrangian becomes L =
√−g

[
R(g)

2
− 9λ

]
, see (13.17) This theory has a simple de Sitter

solution with metric
ds2 = −dt2 + a2(t)d~x2 , (14.2)

where
a(t) = eHt = e

√
Λ/3 t = e

√
3λ t , (14.3)

and
H =

√
Λ/3 =

√
3λ . (14.4)

One can also make a change of variables dη = dt/a(t) and write the metric (14.2) in a confor-
mally flat form,

ds2 = a2(η)[−dη2 + d~x2] . (14.5)

For de Sitter space with a(t) = eHt this yields

η = −H−1e−Ht = − 1√
3λ
e−
√

3λ t , (14.6)

and therefore

ds2 =
1

H2η2
(−dη2 + d~x2) =

1

3λη2
(−dη2 + d~x2) . (14.7)

Here we made a normalization η = −H−1 for t = 0. Note that η runs from −∞ to 0 when t
runs from −∞ to +∞.

14.2 a = 1 conformal gauge

Instead of the gauge ξ =
√

6, one may also use the gauge a = 1. In this gauge, the metric is
flat in conformal time,

ds2 = −dη2 + d~x2 , (14.8)

and the theory describes the scalar field ξ in flat Minkowski space. The action becomes

L =
1

2
∂µχ∂νχ η

µν − λ

4
χ4 . (14.9)

Equation of motion for the field χ in Minkowski space is

χ′′ = λχ3 . (14.10)

Here χ′′ = d2χ
dη2

. Note that because of the “wrong” sign of the kinetic term of the curvaton

field, its equation of motion is the same as of the normal field with a negative potential −λ
4
χ4.

Therefore the conformon field experiences an instability, falling down in its potential unbounded
from below. This equation has a general solution (up to a time redefinition η → η − η0), such
that χ→ +∞ for η growing from −∞ to 0:

χ = −
√

2√
λη

. (14.11)
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14.3 Relation between gauges

To compare our result (14.11) to the results obtained in the gauge χ =
√

6, one can use the
conformal transformation (13.16) with eσ = −

√
3λη:

χ = −
√

2√
λη

, ⇒ χ =

√
2√
λη

√
3λη =

√
6 . (14.12)

The flat metric of the a = 1 gauge becomes e−2σ(x)ηµν ,

ds2 =
1

3λη2
(−dη2 + dx2) , (14.13)

which coincides with (14.7), as it should. Finally, form this metric one can recover the usual
Friedmann metric by requiring that η < 0, and therefore from a(η)dη = dt one finds that

η = −H−1e−Ht = − 1√
3λ
e−
√

3λ t , (14.14)

which brings back the dS solution (14.3), (14.6), which we earlier obtained by the standard
method.

14.4 Interpretation and consequences: Inflation as the conformon
instability

Let us say few words about interpretation of our result, which will turn out to be much more
general than the simple model discussed so far. In order to do it, let us express the value of
the conformon field χ in a non-expanding Minkowski space (14.12) in terms of time t in the
Friedmann universe:

χ = −
√

2√
λη

=
√

6 eH t =
√

6Mp e
H t . (14.15)

Note that since the theory is locally conformally invariant, one can always “freeze” the evolution
of the conformon field at any moment t, and allow the scale factor to evolve starting from this
moment, by making a proper conformal transformation, or choosing an appropriate gauge.
The corresponding wavelength, corresponding to the effective Planck length, decreases as e−H t.
Thus, Minkowski space does seem exponentially expanding if its size is measured in units of
the exponentially contracting Planck length. This is a general result, which is applicable to any
kind of uniform cosmological evolution, including inflation. In this context, exponential growth
of space during inflation (14.3) is directly related (equivalent) to the exponential growth of the
conformon field in Minkowski space (14.15).

In order to understand this general result, which is going to be valid for all models studied
in this paper, it is sufficient to look at the equation (13.16). In the standard investigation of
the cosmological evolution, one goes to what can be called the Einstein frame gauge, fixes the
conformon χ =

√
6 (or, more generally, the Planck mass), and investigates the evolution of the
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scale factor a, as measured in the Planck length units. However, one can equally well work in
the gauge where the scale factor is fixed. The transition from one gauge to another is achieved
by conformal transformation (13.16), which absorbs expansion of the universe in terms of its
scale factor a(t) and converts it into the exactly equal time-dependent factor describing the
growth of the conformon field.

In application to inflation, this means that one can equally well describe it as the exponen-
tially fast expansion of the scale factor, or as the equally fast growth of the conformon field,
obeying the same Einstein equations as the scale factor, up to a trivial rescaling. Alternatively,
one can work in the original conformally invariant setting, without fixing the gauge, and study
evolution of all fields while preserving the original conformal invariance and enjoying simpli-
fications provided by conformal flatness of the Friedmann universe. Then in the end of the
calculations one can re-formulate all results in terms of the Einstein frame gauge where the
Planck mass is fixed.

In this section, we discussed the simplest applications of the hidden (super)conformal in-
variance of the theory in the context of a rather trivial model. However, the results discussed
above are quite general, they are valid for all theories based on supergravity, which can be
most conveniently formulated using the superconformal approach. This suggests that the su-
perconformal invariance can be much more than just a useful tool for deriving the standard
supergravity. The concept of the hidden superconformal symmetry was crucially important for
finding the supersymmetric generalization of the scalar theories with nonminimal coupling to
gravity, for the development of the cosmological attractor models, and for the re-interpretation
of the cosmological evolution discussed in this section. For a more detailed discussion of the
superconformal approach to the cosmological evolution see [121, 3].

15 Towards Inflation in String Theory

In the previous sections we discussed models of inflation which can be implemented in su-
perconformal theory and supergravity. Implementation of the ideas discussed above in string
theory requires several additional steps. Related ideas have been discussed in the lectures of
Silverstein [4] and also in the recent review by Burgess, Cicoli and Quevedo [126]. Here we will
make some additional comments on this issue. They will be related to vacuum stabilization and
its phenomenological and cosmological implications, and also to the string landscape scenario.

15.1 de Sitter vacua in string theory

For a long time, it seemed rather difficult to obtain inflation in M/string theory. The main
problem was the stability of compactification of internal dimensions. For example, ignoring
non-perturbative effects to be discussed below, a typical effective potential of the effective 4d
theory obtained by compactification in string theory of type IIB can be represented in the
following form:

V (ϕ, ρ, φ) ∼ e
√

2ϕ−
√

6ρ Ṽ (φ) (15.1)
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Here ϕ and ρ are canonically normalized fields representing the dilaton field and the volume of
the compactified space; φ stays for all other fields, including the inflaton field.

If ϕ and ρ were constant, then the potential Ṽ (φ) could drive inflation. However, this does

not happen because of the steep exponent e
√

2ϕ−
√

6ρ, which rapidly pushes the dilaton field ϕ
to −∞, and the volume modulus ρ to +∞. As a result, the radius of compactification becomes
infinite; instead of inflating, 4d space decompactifies and becomes 10d.

Thus in order to describe phenomenological consequences of string theory one should first
learn how to stabilize the dilaton, and the volume modulus. The dilaton stabilization was
achieved in [127]. The most difficult problem was to stabilize the volume. Here we will briefly
describe a possible solution of this problem found in [63] (the KKLT construction). It consists
of two steps.

First of all, due to a combination of effects related to warped geometry of the compacti-
fied space and nonperturbative effects calculated directly in 4d (instead of being obtained by
compactification), it was possible to obtain a supersymmetric AdS minimum of the effective
potential for ρ. In the original version of the KKLT scenario, it was done in the theory with
the Kähler potential

K = −3 log(ρ+ ρ̄), (15.2)

and with the nonperturbative superpotential of the form

W = W0 + Ae−aρ, (15.3)

with a = 2π/N . The corresponding effective potential for the complex field ρ = σ + iα had
a minimum at finite, moderately large values of the volume modulus field σ0, which fixed the
volume modulus in a state with a negative vacuum energy. Then an anti-D3 brane with the
positive energy ∼ σ−2 was added. This addition uplifted the minimum of the potential to the
state with a positive vacuum energy, see Fig. 19.
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Figure 19: KKLT potential as a function of σ = Re ρ. Thin green line corresponds to AdS stabilized potential
for W0 = −10−4, A = 1, a = 0.1. Dashed line shows the additional term, which appears either due to the
contribution of a D3 brane or of a D7 brane. Thick black line shows the resulting potential with a very small
but positive value of V in the minimum. The potential is shown multiplied by 1015.

Instead of adding an anti-D3 brane, which explicitly breaks supersymmetry, one can add a
D7 brane with fluxes. This results in the appearance of a D-term which has a similar dependence
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on ρ, but leads to spontaneous supersymmetry breaking [128]. In these lectures we will discuss
yet another way, related to F-term uplifting, following recent papers [89, 129, 130]. In either
case, one ends up with a metastable dS state which can decay by tunneling and formation of
bubbles of 10d space with vanishing vacuum energy density. The decay rate is extremely small
[63], so for all practical purposes, one obtains an exponentially expanding de Sitter space with
the stabilized volume of the internal space.

15.2 Inflation, vacuum stabilization and the scale of SUSY breaking
in string theory

As I already mentioned, a detailed discussion of various models of inflation in string theory can
be found in the lectures of Silverstein [4] and also in the recent review by Burgess, Cicoli and
Quevedo [126]. Here we will discuss a rather peculiar relation of the new class of models with
particle phenomenology and with the possibility to observe the tensor modes in the CMB. This
relation is rather unexpected and may impose strong constraints on particle phenomenology
and on inflationary models: in the simplest models based on the KKLT mechanism the Hubble
constant H and the inflaton mass mφ are smaller than the gravitino mass [131],

mφ � H . m3/2 . (15.4)

The reason for the constraint H . m3/2 is that the height of the barrier stabilizing the KKLT
minimum is O(m2

3/2). Adding a large vacuum energy density to the KKLT potential, which is
required for inflation, may destabilize it, see Fig. 20. The constraint mφ � H is a consequence
of the slow-roll conditions.
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Figure 20: The lowest curve with dS minimum is the one from the KKLT model. The height of the barrier
in this potential is of the order m2

3/2. The second line shows the σ-dependence of the inflaton potential. When
one adds it to the theory, it always appears divided by σn, where in the simplest cases n = 2 or 3. Therefore
an addition of the inflationary potential lifts up the potential at small σ. The top curve shows that when
the inflation potential becomes too large, the barrier disappears, and the internal space decompactifies. This
explains the origin of the constraint H . m3/2.

Therefore if one believes in the standard SUSY phenomenology with m3/2 . O(1) TeV,
one should find a realistic particle physics model where inflation occurs at a density at least
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30 orders of magnitude below the Planck energy density. Such models are possible, but their
parameters should be substantially different from the parameters used in all presently existing
models of string theory inflation.

An interesting observational consequence of this result is that the amplitude of the grav-
itational waves in all string inflation models of this type should be extremely small. Indeed,
according to Eq. (7.16), one has r ≈ 3× 107 V ≈ 108 H2, which implies that

r . 108 m2
3/2 , (15.5)

in Planck units. In particular, for m3/2 . 1 TeV ∼ 4 × 10−16 Mp, which is in the range most
often discussed by SUSY phenomenology, one has [132]

r . 10−24 . (15.6)

If CMB experiments find that r & 10−2, then this will imply, in the class of theories described
above, that

m3/2 & 10−5 Mp ∼ 2.4× 1013 GeV , (15.7)

which is 10 orders of magnitude greater than the standard gravitino mass range discussed by
particle phenomenologists.

These constraints appear in the original KKLT approach to the moduli stabilization, but
they appear in other approaches as well. For example, in the string inflation scenario based on
large volume stabilization [126], the constraints on the Hubble constant are even much stronger,

H . m
3/2
3/2 , (15.8)

see [133].

There are several different ways to address this problem. Here we will discuss the simplest
solution proposed in [131]. The basic idea is to use a slightly more complicated superpotential
for the volume modulus, the so-called racetrack potential

W = W0 + Ae−aρ +Be−bρ. (15.9)

For the particular choice of W0,

W0 = −A
(
aA

bB

) a
b−a

+B

(
aA

bB

) b
b−a

, (15.10)

the potential of the field σ has a supersymmetric minimum with WKL(σ0) = 0, DρWKL(σ0) = 0,
V (σ0) = 0, and m3/2 = 0, see Fig. 21. Then, by adding a small quantity ∆W to W0, such
that |∆W | � |W0|, one finds a very shallow AdS minimum without changing the overall shape
of the potential. This minimum can be uplifted back to Minkowski or dS vacuum with a tiny
cosmological constant by adding the standard Polonyi field to the model, as described in [130].
In this case, one finds m3/2 = |∆W |(2σ0)−3/2.

Thus by dialing |∆W | one can have an arbitrarily small gravitino mass without changing the
arbitrarily large height of the barrier. This stabilizes the vacuum and eliminates the constraint
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Figure 21: The potential in the theory (15.9) for A = 1, B = −5, a = 2π/100, b = 2π/50, W0 =
−0.05. A Minkowski minimum at V = 0 stabilizes the volume at σ0 ≈ 37. The height of the
barrier in this model is not correlated with the gravitino mass, which vanishes if the system is
trapped in Minkowski vacuum. Therefore in this model one can avoid the constraint H . m3/2

[131].

H . m3/2. This version of the KKLT construction is often called the KL model [131]. The
only fine-tuning required there is the tuning of |∆W |, which is necessary if one wants to make
the gravitino mass m3/2 small. In the original version of the KKLT model, the same kind of
fine-tuning was imposed on W0. The simpler Polonyi model of the supers symmetry breaking
required a similarly small parameter, for the same purpose of making the gravitino mass small.
Thus the degree of fine-tuning of parameters of the KL model is exactly the same as in the
original KKLT model and in many other phenomenological models requiring smallness of the
gravitino mass [89, 129, 130].

The use of the KL stabilization allows to construct string inflation models with sufficiently
large values of r, such as the monodromy inflation models developed in [134].

16 Inflationary multiverse, string theory landscape and

the anthropic principle

For many decades people have tried to explain strange correlations between the properties of
our universe, the masses of elementary particles, their coupling constants, and the fact of our
existence. We know that we could not live in a 5-dimensional universe, or in a universe where
the electromagnetic coupling constant, or the masses of electrons and protons would be just a
few times greater or smaller than their present values. These and other similar observations
have formed the basis for the anthropic principle. However, for a long time many scientists
believed that the universe was given to us as a single copy, and therefore speculations about
these magic coincidences could not have any scientific meaning. Moreover, it would require a
wild stretch of imagination and a certain degree of arrogance to assume that somebody was
creating one universe after another, changing their parameters and fine-tuning their design,
doing all of that for the sole purpose of making the universe suitable for our existence.
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The situation changed dramatically with the invention of inflationary cosmology. It was real-
ized that inflation may divide our universe into many exponentially large domains corresponding
to different metastable vacuum states, forming a huge inflationary multiverse [52, 54, 55]. The
total number of such vacuum states in string theory can be enormously large, in the range of
10100 or 101000; the often cited number is 10500 [60, 61, 63, 64]. A combination of these two
facts gave rise to what the experts in inflation call ‘the inflationary multiverse,’ [18, 56, 135]
and string theorists call ‘the string theory landscape’ [65].

This leads to an interesting twist in the theory of initial conditions. Suppose that we live
in one of the many metastable de Sitter minima, say, dSi. Eventually this dS state decays, and
each of the points belonging to this initial state jumps to another vacuum state, which may have
either a smaller vacuum energy, or a greater vacuum energy (transitions of the second type are
possible because of the gravitational effects). But if the decay probability is not too large, then
the total volume of the universe remaining in the state dSi continues growing exponentially [13].
This is eternal inflation of the old inflation type. If the bubbles of the new phase correspond to
another de Sitter space, dSj, then some parts of the space dSj may jump back to the state dSi.
On the other hand, if the tunneling goes to a Minkowski vacuum, such as the non-compactified
10d vacuum corresponding to the state with σ → ∞ in Fig. 19, the subsequent jumps to dS
states no longer occur. Similarly, if the tunneling goes to the state with a negative vacuum
energy, such as the AdS vacuum in Fig. 21, the interior of the bubble of the new vacuum
rapidly collapses. Minkowski and AdS vacua of such type are called terminal vacua, or sinks.

If initial conditions in a certain part of the universe are such that it goes directly go to
the sink, without an intermediate stage of inflation, then it will never return back, we will be
unable to live there, so for all practical purposes such initial conditions (or such parts of the
universe) can be discarded (ignoring for a moment the possibility of the resurrection of the
universe after the collapse, to be discussed in the Appendix). On the other hand, if some other
part of the universe goes to one of the dS states, the process of eternal inflation begins, which
eventually produces an inflationary multiverse consisting of all possible dS states. This suggests
that all initial conditions that allow life as we know it to exist, inevitably lead to formation of
an eternally inflating multiverse.

The string theory landscape describes an incredibly large number of discrete parameters,
which is often estimated by M ∼ 10500 [64]. These parameters correspond to different string
theory vacua. However, the theory of inflationary multiverse goes even further. Some of the
features of our world are determined not by the final values of the fields in the minima of their
potential in the landscape, but by the dynamical, time-dependent values, which these fields
were taking at different stages of the evolution of the inflationary universe. This introduces
a large set of continuous parameters, which may take different values in different parts of the
universe. For example, in the theory of dark energy, inflationary fluctuations may divide the
universe into exponentially large parts with the effective value of the cosmological constant
taking a continuous range of values [136]. In such models, the effective cosmological constant Λ
becomes a continuous parameter. Similarly, inflationary fluctuations of the axion field make the
density of dark matter a continuous parameter, which takes different values in different parts of
the universe [137, 138]. Another example of a continuous parameter is the baryon asymmetry
nb/nγ, which can take different values in different parts of the universe in the Affleck-Dine
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scenario of baryogenesis [139, 140, 141]. Yet another important example is the large-scale
structure of the universe, which emerges due to quantum fluctuations which lead to different
galaxy distributions in different parts of the world. As a result, the large-scale structure and
the matter content in each of the locally Friedmann parts of the cosmic fractal may be quite
different, which leads to an additional diversity of the observable outcomes for any particular
vacuum in the landscape. One may wonder how many different, observationally distinguishable
locally Friedmann universes one may encounter in any particular part of the landscape [142].

The meaning of these words can be explained as follows. Slow-roll inflation produces long-
wavelength perturbations of the metric, which become imprinted on the cosmological back-
ground and determine the matter content and the large scale structure of the universe. Even
though these perturbations are created from quantum fluctuations, they become essentially
classical due to inflation. These perturbations provide different classical initial conditions in
different parts of the universe. Since these classical initial conditions may change continu-
ously, one could expect that this can lead to infinite number of different outcomes, but if these
outcomes are too close to each other, one cannot distinguish between them due to quantum
mechanical uncertainty. the number of distinctly different classical geometries which may ap-
pear as a result of this effect. According to [142], the number of distinctly different classical
geometries which may appear as a result of inflationary perturbations is proportional to ee

3N
,

where N is the number of e-foldings of slow-roll inflation.

Not all of these variations can be locally observed. The main bound on various potentially
observable geometries follows from the fact that one can make any observations only inside the
dS horizon. The size of the horizon may take different values in different parts of the inflationary
multiverse, depending on the local value of the cosmological constant there. Combining all of
these considerations suggests that the total number of locally distinguishable configurations in
string theory landscape can be as large as eM

3/4
, whereM is the total number of vacua in string

theory [142]. In other words, the total number of locally distinguishable geometries is expected
to be exponentially greater than the total number of vacua in the landscape. In particular, using
the popular estimate M∼ 10500 [64], one finds the total number of the potentially observable
outcomes can be as large as 1010375 .

This means that the same physical theory may yield an incredibly large number of exponen-
tially large parts of the universe that have diverse properties. This generalizes and strengthens
the statement [52, 54] that inflation provides a scientific justification of the anthropic principle:
we find ourselves inside a part of the universe with our kind of physical laws, matter abundance
and the large-scale structure not because the parts with dramatically different properties are
impossible or improbable, but simply because we cannot live there.

This fact can help us understand many otherwise mysterious features of our world. The
simplest example is the dimensionality of our universe. String theorists usually assume that
the universe is ten dimensional, so why do we live in the universe where only 4 dimensions of
space-time are large? There were many attempts to address this question, but no convincing
answer was found. This question became even more urgent after the development of the KKLT
construction. Now we know that all de Sitter states, including the state in which we live now,
are either unstable or metastable. They tend to decay by producing bubbles of a collapsing
space, or of a 10-dimensional Minkowski space. So what is wrong about the 10-dimensional
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universe if it is so naturally appears in string theory?

The answer to this question was given in 1917 by Paul Ehrenfest [143]: In space-time with
dimensionality d > 4, gravitational forces between distant bodies fall off faster than r−2, and
in space-time with d < 4, the general theory of relativity tells us that such forces are absent
altogether. This rules out the existence of stable planetary systems for d 6= 4. A similar
conclusion is valid for atoms: stable atomic systems could not exist for d > 4. This means that
we do not need to prove that the 4d space-time is a necessary outcome of string cosmology (in
fact, it does not seem to be the case). Instead of that, we only need to make sure that the 4d
space-time is possible.

Anthropic considerations may help us to understand why the electron mass is 2000 times
smaller than the proton mass, and why the proton mass is almost exactly equal to the neutron
mass. They may even help us to understand why the amount of dark matter is approximately
5 times greater than the amount of normal matter [137, 138] and why the baryon asymmetry
is so small, nb/nγ ∼ 10−10 [140]. But perhaps the most famous example of this type is related
to the cosmological constant problem.

Naively, one could expect vacuum energy to be equal to the Planck density, ρΛ ∼ 1, whereas
the recent observational data show that ρΛ ∼ 10−120, in Planck units, which is approximately 3
times greater than the density of matter in the universe. Why is it so small but nonzero? Why
ρΛ is about 3 times greater than the density of matter in the universe now, even though at the
Planck time, the density of usual matter was 10120 times greater than ρΛ, and in the future
it will be much smaller. What is so special about ρΛ ∼ 10−120? What is so special about the
present time?

The first anthropic solution to the cosmological constant problem in the context of infla-
tionary cosmology was proposed in 1984 [144]. The basic assumption was that the vacuum
energy density is a sum of the scalar field potential V (φ) and the energy of fluxes V (F ). Ac-
cording to [22], quantum creation of the universe is not suppressed if the universe is created
at the Planck energy density, V (φ) + V (F ) = O(1), in Planck units. Eventually the field φ
rolls to its minimum at some value φ0, and the vacuum energy becomes Λ = V (φ0) + V (F ).
Since initially V (φ) and V (F ) could take any values with nearly equal probability, under the
condition V (φ) + V (F ) = O(1), we get a flat probability distribution to find a universe with
a given value of the cosmological constant after inflation, Λ = V (φ0) + V (F ), for Λ � 1. The
flatness of this probability distribution is crucial, because it allows us to study the probability
of emergence of life for different Λ. Finally, it was argued in [144] that life as we know it is
possible only for |Λ| . ρ0, where ρ0 ∼ 10−120 is the present energy density of the universe. This
fact, in combination with inflation, which makes such universes exponentially large, provided a
possible solution of the cosmological constant problem.

The second mechanism was proposed by Sakharov [145]. He mentioned, following [54], that
the universe may consist of many different parts with different types of compactification, and
then argued that the number of different types of compactifications may be exponentially large.
He emphasized that if this number is large enough, the typical energy gap between different
levels can be extremely small, which will allow to explain the smallness of the cosmological
constant by using anthropic considerations.
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The third mechanism was proposed in [136] (see also [146]). It was based on a combination
of eternal inflation driven by the inflaton field φ and a subsequent slow roll of what was later
called ‘quintessence’ field Φ. The role of eternal inflation was to generate perturbations of the
field Φ, which then give this field different values in different exponentially large parts of the
universe. As a result, the universe becomes divided into different parts with a flat probability
distribution for different values of the effective cosmological constant. Once again, this provided
a possibility to use anthropic considerations for solving the cosmological constant problem.

All of these proposals were based on the assumption that life as we know it is possible
only for −ρ0 . ρΛ . ρ0. This bound seemed almost self-evident to many of us at that time,
and therefore we concentrated on the development of the theoretical framework where the
anthropic arguments could be applied to the cosmological constant. However, it is important
to understand how strong are the anthropic bounds discussed in [144, 145, 136, 146].

The fact that ρΛ could not be much smaller than −ρ0 is indeed quite obvious, since such a
universe would rapidly collapse [147, 148, 144]. However, the origin of the constraint ρΛ . ρ0 is
less trivial. The first detailed derivation of this bound was made in 1987 in the famous paper
by Weinberg [149], but the constraint obtained there allowed the cosmological constant to be
three orders of magnitude greater than its present value.

Since that time, the anthropic approach to the cosmological constant problem developed
in two different directions. First of all, it became possible, under certain assumptions, to
significantly strengthen the constraint on the positive cosmological constant, see e.g. [150, 151,
152, 153]. The final result of these investigations, |Λ| . O(10) ρ0 ∼ 10−119, is very similar to
the bound used in [144].

Simultaneously, new models have been developed which may allow us to put the anthropic
approach to the cosmological constant problem on a firm ground. In particular, the existence of
a huge number of vacuum states in string theory implies that in different parts of our universe,
or in its different quantum states, the cosmological constant may take all of its possible values,
from −1 to +1, with an increment which may be as small as 10−500. If the prior probability to
be in each of these vacua does not depend strongly on Λ, one can justify the anthropic bound
on Λ using the methods of [150, 151, 152, 153].

One should note, that the issue of probabilities in the inflationary multiverse is very delicate,
so one should approach numerical calculations related to anthropic arguments with some care.
Let us explain the nature of the problem in a simple way, and simultaneously separate it from
the eternal inflation scenario. Consider the standard textbook cosmological theory of an infinite
open or flat Friedmann universe, or, alternatively, a cyclic universe which is supposed to pass
an infinite number of cycles of evolution, growing larger and larger with each new cycle (see a
critical discussion of this scenario in the Appendix). The total volume of space-time in each
of these cases is infinite. This means that in any of such universes every improbable event
must happen infinitely many times. For example, in the cyclic universe, if the scenario actually
works, there are infinitely many places where broken glass magically becomes unbroken. Does
it mean that in an infinite universe one cannot make a statement that a broken glass typically
remains broken?

This is called the measure problem. It was first recognized back in 1993 in [56], where
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we proposed two different ways of comparing probabilities in an eternally inflating universe.
One of these two probability measures leads to paradoxes, which are associated with the so-
called “youngness problem” [154, 155]. The source of the paradox was identified in [156]; the
improved version of this measure does not lead to the youngness problem [156, 157]. The second
of the two measures proposed in [56], the scale factor cutoff measure, also does not suffer from
this problem and remains quite popular [158]. During the last few years, many other, more
sophisticated probability measures have been introduced, for a recent discussion see e.g. [159].
We cannot say yet which one of these measures, if any, is the correct one, but none of the
measures considered now leads to the paradox discussed in [154, 155].

Different measures lead to slightly different constraints on the possible values of the cos-
mological constant, but these differences do not change the main qualitative conclusion: Many
parts of inflationary multiverse are expected to be in a state with an extremely small value
of the cosmological constant, compatible with our existence. Here the words “our” and “an-
thropic” are used in a very narrow sense. We are talking not about “life in general,” but about
the correlations between our own properties and the properties of the part of the multiverse
where we can live. For example, different types of living organisms populate the Earth, but
fish is typically surrounded by water and people typically live on dry land. Similarly, other
types of life might exist in parts of the universe with much greater values of the cosmological
constant, but these parts would be less hospitable for us. That is all that we can say with
reasonable certainty, and this is already quite sufficient to make the cosmological problem if
not completely and unambiguously solved then at least significantly ameliorated.

We do not know yet which of the recently developed approaches to the theory of the in-
flationary multiverse is going to be more fruitful, and how far we will be able to go in this
direction. One way or another, it would be very difficult to forget about what we just learned
and return to our search for the theory which unambiguously explains all parameters of our
world. Now we know that some features of our part of the universe may have an unambiguous
explanation, whereas some others can be purely environmental and closely correlated with our
own existence.

When inflationary theory was first proposed, its main goal was to address many problems
which at that time could seem rather metaphysical: Why is our universe so big? Why is it
so uniform? Why parallel lines do not intersect? It took some time before we got used to
the idea that the large size, flatness and uniformity of the universe should not be dismissed as
trivial facts of life. Instead of that, they should be considered as observational data requiring
an explanation, which was provided with the invention of inflation.

Similarly, the existence of an amazingly strong correlation between our own properties
and the values of many parameters of our world, such as the masses and charges of electron
and proton, the value of the gravitational constant, the amplitude of spontaneous symmetry
breaking in the electroweak theory, the value of the vacuum energy, and the dimensionality of
our world, is an experimental fact requiring an explanation. A combination of the theory of
inflationary multiverse and the string theory landscape provide us with a unique framework
where this explanation can be found.
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17 Conclusions

Three decades ago, inflationary theory looked like an exotic product of vivid scientific imagi-
nation. Some of us believed that it possesses such a great explanatory potential that it must
be correct; some others thought that it is too good to be true. Not many expected that it is
possible to verify any of its predictions in our lifetime. Thanks to the enthusiastic work of many
scientists, inflationary theory is gradually becoming a broadly accepted cosmological paradigm,
with many of its predictions being confirmed by observational data.

The new data release by Planck 2013 stimulating the development of new cosmological
theories, by changing the goal from finding various complicated models capable of describing
large local non-Gaussiantiy to the development of new elegant models of inflation capable of
explaining increasingly precise data in the (ns, r) plane. Just few months ago, we did not know
many good inflationary models which would naturally predict the data favored by Planck 2013.
Now the situation has changed. The existence of the universal attractor regime for a large set
of different inflationary models does not guarantee that we are on the right track, but it is
hard to ignore that all of these cosmological attractors point in the same direction, and their
predictions converge at the “sweet spot” in the (ns, r) plane preferred by WMAP9 and Planck
2013.

I am grateful to the organizers of the Les Houches School “Post-Planck Cosmology” in July-
August 2013 for their hospitality. I would like to thank my friends and collaborators who made
my work on inflation so enjoyable, especially Richard Bond, Sergio Ferrara, George Efstathiou,
Renata Kallosh, Slava Mukhanov, Diederik Roest and Eva Silverstein. This work was supported
by the NSF Grant PHY-1316699.

18 Appendix: Alternatives to inflation?

There were many attempts to propose an alternative to inflation in recent years. In general, this
could be a very healthy tendency. If one of these attempts succeeds, it will be of great impor-
tance. If none of them are successful, it will be an additional demonstration of the advantages of
inflationary cosmology. However, since the stakes are high, we are witnessing a growing number
of premature announcements of success in developing an alternative cosmological theory.

Perhaps the most famous example is the ekpyrotic/cyclic scenario. I would not return to the
rather uninspiring history of this scenario in this paper, but it will help us to understand the na-
ture of the recent comments about inflation made by some of the authors of the ekpyrotic/cyclic
scenario and their collaborators [162, 163, 164].

The ekpyrotic/cyclic scenario [165] claims that it can solve all cosmological problems without
using the stage of inflation. However, the original version of the ekpyrotic scenario [165] did
not work. The number of incorrect statements made in [165] was unusually high. Instead of
solving the homogeneity problem, this scenario required the universe to be exactly homogeneous
from the very beginning. Most of the experts agreed that the mechanism of generation of the
scalar perturbations of metric proposed in [165] did not produce the desirable perturbations,
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see e.g. [168]. After many years of debates, the authors of the ekpyrotic scenario conceded and
introduced another, much more complicated mechanism, which was borrowed from the curvaton
mechanism used in the inflationary theory. The authors claimed that their mechanism was based
on string theory, but they never made any attempt to implement it in the modern versions of
string theory with stabilized moduli. But the most significant problem was that instead of the
big bang predicted in [165], there was a big crunch [166, 167], which completely invalidated the
original scenario.

For that reason, the ekpyrotic scenario was replaced by the cyclic scenario, which postulated
the existence of an infinite number of periods of expansion and contraction of the universe [169].
The origin of the required scalar field potential in this model remains unclear, and the very
existence of the cycles postulated in [169] have never been demonstrated. When we analyzed
this scenario using the particular potential given in [169], and took into account the effect
of particle production in the early universe, we found a very different cosmological regime
[170, 171].

Cyclic scenario relied on the existence of an infinite number of very long stages of “su-
perluminal expansion”, i.e. inflation, in order to solve the major cosmological problems. In
particular, the recent version of this scenario discussed in [172] requires at least 60 e-foldings
of inflation of the universe (does this number look familiar?) in the dark energy state. In this
sense, cyclic scenario is not a true alternative to inflationary scenario, but its rather peculiar
version. The main difference between the usual inflation and the cyclic inflation is the energy
scale of inflation, and the mechanism of generation of density perturbations. However, since
the theory of density perturbations in cyclic inflation requires a solution of the cosmological
singularity problem, it is difficult to say anything definite about it.

Originally there was a hope that the problem of the cosmological singularity, which emerges
during the ekpyrotic/cyclic collapse, will be solved in the context of string theory, but despite
the attempts of the best experts in string theory, this problem remains unsolved [173, 174,
175]. Few years ago, there was an attempt to revive the original (non-cyclic) version of the
ekpyrotic scenario by involving a nonsingular bounce. This regime requires violation of the
null energy condition [167], which usually leads to a catastrophic vacuum instability and/or
causality violation. One may hope to avoid these problems in the ghost condensate theory;
see a series of papers on this subject [176, 177, 178]. However, investigation of these models
demonstrated that they contained ghosts resulting in a nearly instant vacuum decay in this
theory [179]. Since that time, there were many additional modifications of this scenario; it
became even more complicated than before, consisting of different parts describing Galileons,
ghost condensate, various higher order terms required for the cosmological bounce, additional
higher order terms required for stabilization of the theory, etc.

Another attempt to solve the singularity problem was made by Bars, Steinhardt and Turok
[180]. They suggested that one can alleviate this problem by passing through the antigravity
regime first. A possibility of a smooth transition from gravity to antigravity was proposed
in my own paper more than 30 years ago [181]. However, the subsequent investigation has
shown that during the transition from gravity to antigravity, the effective gravitational constant
blows up and the cosmological singularity develops [182]. Recently it was shown [183] that a
similar problem appears in the models studied by Bars, Steinhardt and Turok [180]: At the
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moment of the transitions from gravity to antigravity and back, the universe passes through
the singularities where the curvature invariants become infinitely large. In the vicinity of each
of these two singularities, the higher order corrections blow up, and the standard classical GR
methods employed in [180] become inapplicable.

This pattern did not remain unnoticed, and scientists voted with their feet. For example, in
a large review of modern cosmology associated with the planning of the CMBPol Mission, which
was written in 2009 by a team of 60 cosmologists, a critical discussion of alternatives to inflation
is delegated to the Appendix [184]. A large recent review of theoretical cosmology, CMB and
large scale structure, a part of the Snowmass 2013 [185], is completely dedicated to analysis
of observational consequences of inflationary theory. Alternative models are mentioned only in
3 lines in this large article written by more than 90 collaborators. Theoretical interpretation
of the Planck 2013 data release [1] is almost entirely concentrated on the inflationary theory,
which an important exception of the paper on non-Gaussianity, which says: “Ekpyrotic/cyclic
scenarios were shown to be under pressure from the Planck data.” The paper concludes that
“With these results, the paradigm of standard single-field slow-roll inflation has survived its
most stringent tests to-date.”

Indeed, according to the talk by Steinhardt [160] two weeks before the Planck 2013 data
release, if one does not allow accidental cancellations, the ekpyrotic/cyclic scenario predicts
f local

NL = 20−50, see Fig. 22. Meanwhile, according to the Planck data release, f local
NL = 2.7±5.8,

which confirms predictions of the simplest inflationary models with an accuracy O(10−4) and
rules out the models predicting f local

NL = 20− 50 [1].

Figure 22: From the talk given by Steinhardt at the Perimeter Institute, March 6, 2013,
http://pirsa.org/13030079.

However, three weeks after the Planck data release, Steinhardt and collaborators issued
two new papers, where they made opposite claims. In one of them it was announced that
Planck 2013 supports predictions of the cyclic scenario [186]. Another paper [163] was entitled
“Inflationary paradigm in trouble after Planck2013.”

In the absence of any convincing solution of the singularity problem in the cyclic sce-
nario, it is hard to make any bets on what it actually predicts and why the authors changed
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their predictions so quickly, so I will not discuss it here. However, the paper on inflation-
ary theory, contradicting the main conclusions of the Planck team, deserves a detailed anal-
ysis. The first response to [163] was given in my talk at the KITP conference in April 2013,
http://online.kitp.ucsb.edu/online/primocosmo-c13/linde/, and in my Les Houches lectures.
Recently these issues were also addressed in the paper by Guth, Kaiser and Nomura [159].
Their conclusion was that “cosmic inflation is on a stronger footing than ever before.” I fully
agree with it, and I would like to strengthen some of the points they made.

Let me briefly summarize the main arguments made in [163].

1) Planck data strongly disfavor convex potentials used in the simplest models of chaotic
inflation. Other models, such as new inflation, or complicated versions of chaotic inflation,
either suffer from the problem of initial conditions, or are “unlikely.”

2) The curse of the multiverse: After Planck, eternal inflation becomes unavoidable, which
is an unmitigated disaster.

3) LHC data suggest that the Higgs vacuum is metastable. Inflation would induce a catas-
trophic transition to the state with negative energy density.

I will comment in reverse order.

3) LHC data indeed suggest that in the simplest non-supersymmetric versions of the stan-
dard model the present vacuum state in metastable. However, the corresponding energy scale
is many orders of magnitude smaller than the energy scale during inflation. Therefore the
shape of the Higgs potential during inflation was completely different. The very existence of
inflationary fluctuations is sufficient to restore the symmetry in the standard model, and the
same can be achieved by the interaction of the inflaton field with the Higgs field, see e.g. [187].

The real threat appears only if the Higgs field itself plays the role of the inflaton field. In the
Higgs inflation scenario, the initial value of the Higgs field is supposed to be very large. When
inflation ends, it rolls down, but instead of rolling to our metastable vacuum state, it may fall
to the true vacuum with V < 0, in which case the universe collapses [188]. But this is not the
general problem of inflation, this is just a problem of a very specific and rather exotic model.
It may totally disappear once one considers a supersymmetric version of the Higgs inflation,
which requires a specific supergravity implementation of the NMSSM model [110, 112]. The
existence of a metastable minimum was not established in this scenario. Most importantly, this
problem does not appear at all in any of the models considered in the present lectures. So this
is not a real problem for inflation.

2) Some people do not like eternal inflation, multiverse and the anthropic principle. In
particular, according to Steinhardt, the emergence of the concept of the inflationary multiverse
“is the failure of two favorite theoretical ideas - inflationary cosmology and string theory” [161].
Many others disagree and believe that the idea of the inflationary multiverse is a cornerstone
of the new scientific paradigm which flourished during the last decade after its unification with
string theory into the concept of the string theory landscape. Among those who share this
view is Steven Weinberg. In his paper “Living in the multiverse” [189] he compared the recent
developments with the invention of special theory of relativity and said “Now we may be at a
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new turning point, a radical change in what we accept as a legitimate foundation for a physical
theory.”

My own opinion about eternal inflation and the theory of the multiverse is expressed in
Section 16, and I will not repeat it here. In [162, 163], the authors mostly concentrate on the
problems with one of the two probability measures proposed in 1993 [56]. However, they do
not mention that this particular problem was resolved long ago in [156, 157], and the second
of the two measures proposed in [56] does not suffer from this problem. For a recent discussion
of the probability measure in the multiverse, I refer the readers to the recent paper by Guth,
Kaiser and Nomura [159].

It is quite interesting that the proponents of the ekpyrotic/cyclic theory are talking now not
only about the problems of inflationary theory, but about “the failure of two favorite theoretical
ideas - inflationary cosmology and string theory” [161]. It is a rather unexpected turn of events,
since the original version of the ekpyrotic theory was supposed to be a part of string theory. But
in all known versions of string theory with stable or metastable vacua one expects enormous
number of dS vacua, which leads to the theory of the multiverse.

In order to propose a true alternative to the theory of inflationary multiverse one should
achieve several incredibly difficult goals: One should propose an alternative to inflation, and
also an alternative to the most developed versions of string theory, explain why only one vacuum
of string theory can actually exist and why all other 10500 vacua are forbidden. In addition,
one should find an alternative solution of the cosmological constant problem and many other
coincidence problems, which have been addressed so far only in the context of the theory of the
multiverse. I am unaware of any proposal how one could simultaneously achieve all of these
goals.

1) Finally let us return to the problem of initial conditions. Is it true that the Planck data
imply that the initial conditions required for inflation are improbable?

In the earlier discussion of this issue in [162], the probability measure introduced in [27] was
used to argue that initial conditions for inflation are improbable. However, in [2] and also in
section 4 of my lectures it was explained why this measure is flawed and cannot be applied for
investigation of initial conditions for inflation. Closely related arguments can be also found in
[190] and in other papers.

In [163] the authors used my own approach proposed in [21] and described in section 4
of these lectures, where I argued that the simplest versions of inflationary cosmology, the
ones where inflation can start at the Planck density, do not suffer from the problem of initial
conditions. The authors of [163] admitted that these arguments are almost universally accepted,
but then they claimed that the models of chaotic inflation where inflation can start at the Planck
density either contradict the Planck data, or are “unlikely.”

An answer to this statement can be found in section 12 of these lectures, where an example
of a chaotic inflation model is presented which has a simple polynomial potential (12.6) and
makes predictions perfectly consistent with the Planck data. Moreover, this simple model was
implemented in the context of supergravity. Inflation in this model begins at the Planck density,
so it satisfies the required conditions formulated in section 4. Is this model “unlikely”? Beauty
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is in the eye of the beholder, but I wonder who would consider a model consisting of a mixture
of Galileons, ghost condensate, higher order terms required for the cosmological bounce and
additional higher order terms required for stabilization of the theory [191] more “likely” than
a simple model with a polynomial potential.

What about other models, such as the Starobinsky model, the model λφ4/4 + ξφ2R/2, or
the cosmological attractor models described in my lectures? Inflation in these models begins
at V � 1. Does it mean that inflation in these models is impossible or unlikely? This question
was addressed in section 10, where three different mechanisms are discussed which can provide
natural initial conditions for inflation in the models of this type. These mechanisms are not
new, they have been discussed in the inflationary literature for years, so it is a bit surprising
that none of these mechanisms was even mentioned in [162, 163, 164]. Many other possibilities
appear in the context of the string theory landscape, see e.g. [159].

To conclude, at the moment it is hard to see any real alternative to inflationary cosmology,
despite an active search for such alternatives. All of the proposed alternatives are based on
various attempts to solve the singularity problem: One should either construct a bouncing
nonsingular cosmological solution, or learn what happens to the universe when it goes through
the singularity. This problem bothered cosmologists for nearly a century, so it would be great
to find its solution, quite independently of the possibility to find an alternative to inflation.
None of the proposed alternatives can be consistently formulated until this problem is solved.

In this respect, inflationary theory has a very important advantage: it works practically
independently of the solution of the singularity problem. It can work equally well after the
singularity, or after the bounce, or after the quantum creation of the universe. This fact is
especially clear in the eternal inflation scenario: Eternal inflation makes the processes which
occurred near the big bang practically irrelevant for the subsequent evolution of the universe.
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