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Abstract

We point out that the ability of some models of inflation, such as Higgs inflation and the universal
attractor models, in reproducing the available data is due to their relation to the Starobinsky model
of inflation. For large field values, where the inflationary phase takes place, all these classes of models
are indeed identical to the Starobinsky model. Nevertheless, the inflaton is just an auxiliary field in
the Jordan frame of the Starobinsky model and this leads to two important consequences: first, the
inflationary predictions of the Starobinsky model and its descendants are slightly different (albeit not
measurably); secondly the theories have different small-field behaviour, leading to different ultra-violet
cut-off scales. In particular, one interesting descendant of the Starobinsky model is the non-minimally-
coupled quadratic chaotic inflation. Although the standard quadratic chaotic inflation is ruled out by
the recent Planck data, its non-minimally coupled version is in agreement with observational data and
valid up to Planckian scales.
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1 Introduction

The recent Planck results [1] have indicated that the cosmological perturbations in the Cosmic Microwave

Background (CMB) radiation are nearly gaussian and of the adiabatic type. If one insists in assuming

that these perturbations are to be ascribed to single-field models of inflation [2], the data put severes

restriction on the inflationary parameters. In particular, the Planck results have strengthened the upper

limits on the tensor-to-scalar ratio, r <∼ 0.12 at 95% C.L., disfavouring many inflationary models [1].

For instance, the chaotic models with potential φn with n ≥ 2 are not in good shape; in particular, the

simplest quadratic chaotic model m2φ2 has been excluded at about 95% CL.

Among the inflationary models discussed by the Planck collaboration is the Starobinsky (R + R2)

theory proposed in Ref. [3], whose predictions for the perturbations were originally discussed in Ref. [4].

Although this model looks quite ad hoc at the theoretical level, its perfect agreement with the Planck data

is basically due to an additional 1/N suppression (N being the number of e-folds till the end of inflation)

of r with respect to the prediction for the scalar spectral index ns. As expected, this has renewed interest

in this model. Particular recent efforts have been in the direction of the the supersymmetric version of

it [5–11], along the lines originated in Refs. [12, 13].

Of course there are also other models which are in agreement with the Planck data. For example,

the so-called Higgs inflation [14–16] and the so-called universal attractor models [17,18] give exactly the

same inflationary predictions to leading order as the Starobinsky theory. In this paper we stress that

there is a simple reason why this apparent coincidence takes place: all these models are the Starobinsky

model during inflation. While this might be known to some (see for instance Ref. [19] for the Higgs

model of inflation), it seems to be mysterious to others [20]. In the Planck paper [1], for instance, the

Starobinsky and the Higgs inflation models are treated as different. There reason why these models may

be considered descendants of the Starobinsky model is that during inflation the kinetic terms are sub-

leading with respect to the potential terms and therefore they can be neglected in first approximation. If

so, the scalar field present in the Higgs model and in the universal attractor models is just an auxiliary

field which can be integrated out, giving rise to the Starobinsky model. During the inflationary phase,

where kinetic energies are negligible, apparent unrelated models are described effectively by the same

dynamics.

The next natural question is therefore if one can distinguish these descendants from the Starobinsky

model. An obvious way is to compare the inflationary parameters in these models beyond the leading

order. As we will show, the slow-roll parameters are the same up to ∼ 10−5 corrections, which are quite

small to be measured in the upcoming measurements. Another difference relies on the different way

reheating after inflation proceeds in the different models [19], but again differences are of the order of

10−3 in the spectral index, hardly detectable by Planck (the often quoted Planck result ns = 0.960±0.007

is based on assumptions on the reionization, the primordial Helium abundance and the effective number

of neutrino).

The fact that the Starobinsky model and its descendants differ by the kinetic term is also interesting

from another point of view. While the kinetic terms play a sub-leading role during inflation, they play

a fundamental role in determining the Ultra-Violet (UV) behavior of the theories and its cut-off Λ. In
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particular, there is an ongoing discussion about the validity of the Higgs inflation as it seems that the

cut-off of this theory is lower that the inflationary scale [21–23] (see Ref. [24] for a criticism to these

results). On the other side, the cut-off of the Starobinsky theory is the Planck scale Mp [23] so that

inflation can be trusted in this framework. The difference relies exactly in the role played by the kinetic

energy. We will extend the discussion of the cut-off for the universal attractor models. We will find

that when the potential in Jordan frame is of the power-law type ∼ φ2n, the cut-off is always above the

inflationary scale only for n > 7/2. Therefore, for any value of n < 7/2 (like for example the Higgs

inflation case for which n = 2), the cut-off satisfies the relation Λ < V 1/4, where V is the vacuum energy

driving inflation, thus making the inflationary predictions questionable. The case n = 1 is particular as it

corresponds to a non-minimally coupled simple quadratic chaotic inflation. We find in this case that the

cut-off of this theory is at the Planck scale as in Starobinsky theory. Therefore, inflation can be trusted

for the non-minimally coupled version of the simple quadratic chaotic inflation.

The structure of this work is as follows. In section 2 we briefly describe the Starobinsky model

and show why the Higgs inflation model, the universal attractor models as well as a higher-dimensional

Starobinsky-like model, which is related to the T -model of Ref. [20], may be considered descendants of

the Starobinsky model during inflation. In section 3 we discuss the differences between these models

in their predictions for inflationary parameters, deferring the discussion of their cut-offs, if viewed as

effective field theories, until section 4. Finally, we conclude in section 5.

2 The Starobinsky model and its descendants

The Starobinsky model [3] is described by the Lagrangian

SS =
1

2

∫

d4x
√
−g

(

M2
pR+

1

6M2
R2

)

. (2.1)

This theory propagates a spin-2 state (graviton) and a scalar degree of freedom. The latter is manifest

in the so-called linear representation where one can rewrites the Lagrangian (2.1) as [26]

SS =

∫

d4x
√
−g

(

M2
p

2
R+

1

M
Rψ − 3ψ2

)

. (2.2)

It is easy to see that upon integrating out ψ, one gets back the original theory (2.1). After writing the

expression (2.2) in the Einstein frame by means of the conformal transformation

gµν → e−
√

2/3φ/Mpgµν =

(

1 +
2ψ

MM2
p

)−1

gµν , (2.3)

we get the equivalent scalar field version of the Starobinsky model

SS =

∫

d4x
√
−g
[

M2
p

2
R− 1

2
∂µφ∂

µφ− 3

4
M4

pM
2

(

1− e
−
√

2
3
φ/Mp

)2
]

. (2.4)
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We see that during inflation (large values of φ), the dynamics is dominate by the vacuum energy

VS =
3

4
M4

pM
2. (2.5)

Eq. (2.4) is the linear representation of the Starobinsky model where the extra scalar degree of freedom

is manifest. The theory (2.4) leads to inflation with scalar tilt and tensor-to-scalar ratio

ns − 1 ≈ − 2

N
, r ≈ 12

N2
(2.6)

Note that r has an addition 1/N suppression with respect to the scalar tilt and thus predicting a tiny

amount of gravitational waves. It is therefore consistent with the Planck constraints. The normalization

of the CMB anisotropies fixes M ≈ 10−5.

2.1 Higgs Inflation as a descendant of the Starobinsky model

Let us now consider Higgs inflation model which is described by an action of the form [16]

SHI =

∫

d4x
√
−g
[

M2
p

2
R+ ξH†HR− ∂µH

†∂µH − λ(H†H − v2)2

]

, (2.7)

where H is the SM Higgs doublet and v its vacuum expectation value. In the unitary gauge H = h/
√
2

and for h2 ≫ v2 the theory is described by

SHI =

∫

d4x
√
−g
(

M2
p

2
R+

1

2
ξh2R− 1

2
∂µh∂

µh− λ

4
h4

)

. (2.8)

In this case, successful inflation exists for ξ2/λ ≈ 1010. During inflation, the kinetic term is, by definition,

smaller than any potential term and thus (2.8) is effectively described by the action

SHI =

∫

d4x
√
−g
(

M2
p

2
R+

1

2
ξh2R− λ

4
h4

)

. (2.9)

The Higgs field during inflation has been turned into an auxiliary field which can be integrated out. We

find that

ξhR− λh3 = 0, (2.10)

which leads to

h2 =
ξR

λ
. (2.11)
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Plugging back this value into the action, we find that the theory during inflation can equally well be

described by

SHI =

∫

d4x
√
−g
(

M2
p

2
R+

ξ2

4λ
R2

)

. (2.12)

Therefore, during inflation, Higgs inflation is the Starobinsky model (2.1), one simple has to identify

M2 =
λ

3ξ2
. (2.13)

Since we know that M ≈ 10−5, we get that ξ2 ≈ 1010λ, which is, not surprisingly, the value needed in

Higgs Inflation. In addition, the vacuum energy which drives inflation is then

VHI =
3

4
M2M4

p =
λ

4ξ2
M4

p . (2.14)

2.2 Universal attractor models as a descendant of the Starobinsky

model

The equivalence of the Starobinsky and Higgs inflation models is not merely an accident. In fact, the

Starobinsky model is also equivalent during inflation to the general form of non-minimal coupling proposed

in Ref. [17]

Satt =

∫

d4x
√
−g
[

1

2
Ω(φ)R− 1

2
∂µφ∂

µφ− VJ(φ)

]

, (2.15)

with

Ω(φ) =M2
p + ξf(φ), VJ = f(φ)2. (2.16)

Is should be noted that this kind of models has been discussed first in Ref. [22] where it was pointed out

that they are not technically “natural” as s there is no obvious way, a symmetry for example, to preserve

the relation between the non-minimal coupling and the scalar potential.

As in the Higgs inflation case, during inflation, the dynamics is completely dominated by the potential

so that we may ignore the scalar kinetic term. Therefore, the theory turns out to be written as

Satt =

∫

d4x
√
−g
[

M2
p

2
R+

1

2
ξf(φ)R− f(φ)2

]

. (2.17)

We may integrate out the scalar through its equation of motion which is

1

2
ξRf ′ − 2f ′f = 0, f ′ = ∂f/∂φ. (2.18)

The scalar field equation admits two solutions

f ′ = 0 (2.19)
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and

f =
1

4
ξR. (2.20)

Eq. (2.19) is solved by a constant configuration φ = φ∗. Therefore, it corresponds to Einstein gravity

with Planck mass M2
p + ξf(φ∗) and cosmological constant λ2f(φ∗)

2. However, the second solution (2.20)

gives

Satt =

∫

d4x
√
−g
[

M2
p

2
R+

ξ2

16
R2

]

(2.21)

i.e. the Starobinsky model (2.1) again with the identification

M2 =
4

3ξ2
. (2.22)

The vacuum energy that drives inflation turns out to be for in this case

Vatt =
3

4
M2M4

p =
M4

p

ξ2
. (2.23)

2.3 Higher-Dimensional Starobinsky model descendants

Let us now discuss the higher-dimensional generalization of the Starobinsky model with the action of the

form

S =

∫

ddx
√
−g
(

Md−2
∗
2

R+ aRb

)

, (2.24)

where R is the (4 + d)-dimensional Ricci scalar, M∗ is the corresponding Planck mass and a and b are

dimensionless parameters. This higher-dimensional theory can be linearized in the scalar curvature as

usual by introducing an auxiliary field φ

S =

∫

ddx
√
−g
(

Md−2
∗
2

R+ wφ2 R− φ
2b
b−1

)

, (2.25)

where

w =
b

b− 1

(

(b− 1)a
) 1
b
. (2.26)

By making the conformal transformation to the metric gµν → Ω2gµν , where

Ωd−2 =

(

1 +
2wφ2

Md−2
∗

)−1

, (2.27)

we may write the action (2.25) as
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S =

∫

ddx
√
−g
(

Md−2
∗
2

R− 1

2
(d− 1)(d − 2)Md−2

∗ (∂µ log Ω)
2−

−V0
{

(Ω2−d − 1)Ω
(b−1)d
b

}
b
b−1

)

, (2.28)

where

V0 =
M

b(d−2)
b−1

∗

(2w)
b

(b−1)

. (2.29)

Clearly, in order to get a Starobinsky-like model, we need

d− 2 =
b− 1

b
d or b =

d

2
. (2.30)

Then the action (2.28) turns out to be

S =

∫

ddx
√
−g
[

Md−2
∗
2

R− 1

2
(d− 1)(d − 2)Md−2

∗ (∂µ log Ω)
2 − V0

(

1− Ωd−2
)

d
d−2

]

. (2.31)

After parametrizing Ω as

log Ω = − 1
√

(d− 1)(d − 2)

ψ

M∗
(d−2)/2

, (2.32)

we get that

S =

∫

ddx
√
−g
[

Md−2
∗
2

R− 1

2
∂µψ∂

µψ − V0

(

1− e
−
√

d−2
d−1

ψ

M∗

d−2
2

) d
d−2

]

. (2.33)

After a dimensional reduction in a d−4 torus T d−4, we get the four-dimensional action

S =

∫

d4x
√
−g
[

M2
p

2
R− 1

2
∂µχ∂

µχ− V0

(

1− e
−
√

d−2
d−1

χ

Mp

) d
d−2

]

(2.34)

after identifying

χ = V
1/2
d−4ψ, Vd−4M

d−2
∗ =M2

p , (2.35)

where Vd−4 is the volume of T d−4. We assume of course that the torus moduli or at least its volume

modulus are stabilized. The potential of this generalized Starobinsky model is of the general form

V = V0

(

1− e
α φ

Mp

)β
, (2.36)
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which is a kind of T -model [20]. For such a potential, it is straightforward to calculate the inflationary

predictions. We find that

ns ≈ 1− 2

N
,

r ≈ 8

α2N2
, (2.37)

where 1/N0 = α
√
2 and we have taken the limit N ≫ N0. In this limit, this is same with the T -model

predictions [20,27] as during inflation, β can be absorbed, to leading order, by appropriate shift of φ .

We conclude this section with a comment on the conformally invariant SO(1,1) two-field model of

Ref. [20] described by the Lagrangian

L =
√
−g
[

1

2
∂µχ∂

µχ+
χ2

12
R− 1

2
∂µφ∂

µφ+
φ2

12
R− λ

4
(φ2 − χ2)2

]

. (2.38)

The field χ has a wrong kinetic term and it was called conformon in Ref. [20]. Clearly the Lagrangian

(2.38) is invariant under SO(1,1), rotations of (φ, χ). Therefore, one may fix this symmetry either by

going to the Einstein frame χ2 − φ2 = 6M2
p or to the Jordan frame χ =

√
6Mp. Both gauge fixings lead

to

L =
√
−g
(

M2
p

2
R− 1

2
∂µφ∂

µφ− 9λM4
p

)

. (2.39)

Here, we will ignore as we did above the kinetic terms assuming that they are small compared to the

potential term. In this case, φ and χ are auxiliaries which can be integrated out to give

L =
√
−g 1

144λ
R2. (2.40)

This is nothing else than Starobinsky model in the Mp → ∞ limit. Therefore, again the conformally

invariant SO(1,1) symmetric two-field model is a particular limit of the Starobinsky theory, at least in

the region where scalar kinetic terms can be ignored. Note that (2.40) propagates a graviton and a scalar

as can be seen in the linear representation

L =
√
−g
(

ϕR− 36λϕ2
)

. (2.41)

By integrating out ϕ we get the R2 theory in (2.40). By going to the Einstein frame by means of the

conformal transformation

gµν →
M2

p

2ϕ
gµν (2.42)

we get

L =
√
−g
(

M2
p

2
R− 3

2ϕ2
∂µϕ∂

µϕ− 9λM4
p

)

(2.43)

which is (2.39) after the transformation ϕ = eφ/
√
3.
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3 Distinguishing Starobinsky model from its descendants

From the discussion in the previous section, one can conclude that the Starobinsky model and its de-

scendants differ only in their kinetic terms. Therefore a reasonable question to ask is to which level this

difference may be appreciated in the observables. Since the first slow-roll parameter ǫ = −Ḣ/H2 (where

H is the Hubble rate during inflation) parametrizes the kinetic energy [2], it is expected that differences

between the Starobinsky model and its descendants appear at the level of differences in the slow-roll

parameter ǫ. For the Starobinsky model the slow-roll parameters are given by

ǫS ≈ − 3

4N2
, (3.1)

ηS ≈ − 1

N
. (3.2)

Now let us consider the Higgs inflation model and re-write it in the Einstein frame. Redefining the

metric as

gµν →
(

1 + ξ
h2

M2
p

)−1

gµν , (3.3)

the action turns out to be

SHI =

∫

d4x
√
−g











M2
p

2
R− 1

2







1

1 + ξ h
2

M2
p

+ 6ξ2
h2

M2
p

1
(

1 + ξ h
2

M2
p

)2






∂µh∂

µh− λ

4

h4

(1 + ξh2

M2
p
)2











. (3.4)

Let us now compare this theory with Starobinsky theory in the representation (2.9) which in the Einstein

frame is written similarly as

SS =

∫

d4x
√
−g







M2
p

2
R− 6

2
ξ2
h2

M2
p

1
(

1 + ξ h
2

M2
p

)2∂µh∂
µh− λ

4

h4

(1 + ξh2

M2
p
)2






. (3.5)

The difference between the two theories is evident. They differ by a factor

∆L = −1

2

1

1 + ξ h
2

M2
p

∂µh∂
µh, (3.6)

which is precisely the Higgs kinetic term we neglected to arrive at the Starobinsky theory in the Ein-

stein frame. Here we should stress that the fundamental difference between the Higgs inflation and the

Starobinsky model resides in the scalar kinetic term in the Jordan frame. For the Starobinsky model,

there is no kinetic term for the auxiliary field φ in the linear representation of the model. This has the

effect of making the parameter ξ irrelevant as it can be completely absorbed in the scalar field and it is

redundant. In the case of Higgs inflation there is a kinetic term for the Higgs field to start with, as it is

a real field in Jordan frame and not an auxiliary. In this case therefore, ξ cannot anymore be absorbed,
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it is not redundant and, as we shall see, it lowers the cut-off by a factor ξ−1 as compared to Starobinsky

model.

The slow-roll parameters for Higgs inflation and the Starobinsky theory are given by

ǫHI,S =
M2

p

2

(

1

V

∂V

∂χ

)2

=
M2

p

2

(

1

V

∂V

∂h

)2(∂h

∂χ

)2

, (3.7)

where χ is the canonically normalized scalar, different for Higgs and Starobinsky models, and V is the

common potential

V =
λ

4

h4
(

1 + ξh2

M2
p

)2 . (3.8)

Then, since

∂h

∂χ
=







1

1 + ξ h
2

M2
p

+ 6ξ2
h2

M2
p

1
(

1 + ξ h
2

M2
p

)2







−1/2

(3.9)

for Higgs inflation and

∂h

∂χ
=






6ξ2

h2

M2
p

1
(

1 + ξ h
2

M2
p

)2







−1/2

(3.10)

for the Starobinsky model, we find that

ǫHI =
M2

p

2

(

1

V

∂V

∂h

)2







1

1 + ξ h
2

M2
p

+ 6ξ2
h2

M2
p

1
(

1 + ξ h
2

M2
p

)2







−1

, (3.11)

ǫS =
M2

p

2

(

1

V

∂V

∂h

)2






6ξ2

h2

M2
p

1
(

1 + ξ h
2

M2
p

)2







−1

. (3.12)

(3.13)

Since, the number of e-folds till the end of inflation is related to h as N ≈ (6ξh2/8M2
p ), we get that

ǫHI

ǫS
=

8Nξ

1 + 4
3N + 8Nξ

= 1− 1

6ξ
≃ 1− 10−5

6λ
. (3.14)

Even though the slow-roll parameter enters with a factor of 6ǫ in the spectral index ns , the difference is too

small to be detectable. Another difference between the Starobinsky and the Higgs inflation model is their

corresponding reheating temperatures [19]: TRH ≃ 3 ·109 GeV and TRH ≃ 6 ·1013 GeV, respectively. This
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leads to a difference in the predicted value of spectral index at the level of 10−3 [19]. As we mentioned

in the introduction, this difference is larger than the typical Planck error only if strong assumptions

are made about the reionization history, the primordial Helium abundance and the effective number of

neutrino.

Let us now turn to the universal attractor models. The general class of models (2.15) can be written

in the Einstein frame by the conformal transformation

gµν →
(

1 +
ξf(φ)

M2
p

)−2

gµν (3.15)

and it is explicitly written as

Satt =

∫

d4x
√
−g





M2
p

2
R− 3

4

ξ2f ′2

M2
p

∂µφ∂
µφ

(1 + ξf
M2

p
)2

− 1

2

∂µφ∂
µφ

1 + ξf
M2

p

− f2

(1 + ξf
M2

p
)2



 . (3.16)

Similarly, the Starobinksy model in the representation (2.17) can be be written as

SS =

∫

d4x
√
−g





M2
p

2
R− 3

4

ξ2

M2
p

f ′
2 ∂µφ∂

µφ

(1 + ξf
M2

p
)2

− f2

(1 + ξf
M2

p
)2



 . (3.17)

Clearly, the two models differ in their kinetic terms

∆L = −1

2

√
−g∂µφ∂

µφ

1 + ξf
M2

p

. (3.18)

The slow-roll parameters for the above general classes of inflation models and the Starobinsky theory are

given by

ǫatt,S =
M2

p

2

(

1

V

∂V

∂χ

)2

=
M2

p

2

(

1

V

∂V

∂φ

)2(∂φ

∂χ

)2

, (3.19)

where χ is the canonically normalized scalar, different for the two models and V is the common potential

V =
f2

(

1 + ξf
M2

p

)2 . (3.20)

Let us discuss the particular, but sufficiently generic case of f = φn/Mn−2
p , for which

V =
φ2n

M2n−4
p (1 + ξ φ

n

Mn
p
)
. (3.21)

Then, since

∂φ

∂χ
=







1

1 + ξ φ
n

Mn
p

+
3ξ2n2

2

φ2n−2

M2n−2
p

1
(

1 + ξ φ
n

Mn
p

)2







−1/2

(3.22)
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for general models of non-minimally coupled inflation and

∂φ

∂χ
=







3ξ2n2

2

φ2n−2

M2n−4
p

1
(

1 + ξ φ
n

Mn
p

)2







−1/2

(3.23)

for Starobinsky model, we find that

ǫatt =
M2

p

2

(

1

V

∂V

∂φ

)2







1

1 + ξ φ
n

Mn
p

+
3ξ2n2

2

φ2n−2

M2n−2
p

1
(

1 + ξ φ
n

Mn
p

)2







−1

(3.24)

ǫS =
M2

p

2

(

1

V

∂V

∂φ

)2







3ξ2n2

2

φ2n−2

M2n−2
p

1
(

1 + ξ φ
n

Mn
p

)2







−1

. (3.25)

(3.26)

Since, the number of e-folding is related to φ as

N ≈ 3ξφn

4Mn
p

(3.27)

we infer that

ǫatt
ǫS

≈ 1− N
2
n
−1

2n2ξ
2
n

(

4

3

)2/n

. (3.28)

This always deviates from unity by a quantity smaller that 10−3 and therefore the difference is not

observable.

4 Effective cut-off scales

One (somewhat controversial) issue is the natural cut-off of the theories we have discussed so far. As

there exists another mass M (or 1/ξ1/2), which enters besides the dimensionful Planck mass Mp, it is

natural to expect that the cut-off of the theory may not be Mp, but a ratio of it by appropriate power

of M (or ξ). If this power is high enough, it may happen that the cut-off is quit low, lower than the

inflationary scale. In such a case, the discussion of inflation cannot be trusted or it is questionable, to

say the least. Bellow we will find the cut-offs of the models discussed so far by considering the scalar field

in the Einstein frame as a one-dimensional σ-model. Then, as mentioned, the expansion of its kinetic

term for small values of the field reveals the cut-off of the theory and, above all, the differences among

the models.

The Starobinsky model (3.5) can be expanded as
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S =

∫

d4x
√
−g
[

M2
p

2
R− 1

2

(

ξh2

M2
p

+ 6
ξ2h2

M2
p

+ · · ·
)

∂µh∂
µh− λ

4
h4
(

1− 2
ξh2

M2
p

+ · · ·
)

]

. (4.1)

We should canonically normalize the leading kinetic term. Thus, after defining h2 =
Mpψ√

3ξ
, we get that

the action turns out to be

S =

∫

d4x
√
−g
[

M2
p

2
R− 1

2

(

1− ψ√
3Mp

+ · · ·
)

∂µψ∂
µψ − λ

12

M2
p

ξ2
ψ2

(

1− 2
ψ√
3Mp

+ · · ·
)]

. (4.2)

From the above form of the action we see that the cut-off ΛS of the Starobinsky theory is, as already

found in [23]

ΛS =Mp . (4.3)

A simple inspection of Eq. (2.5) shows that

VS ≪ Λ4
S, (4.4)

indicating the internal consistency of the model [23]. The Higgs inflation action (3.4) on the other hand

can be expanded as

SHI =

∫

d4x
√
−g
[

M2
p

2
R− 1

2

(

1 +
ξh2

M2
p

+ 6
ξ2h2

M2
p

+ · · ·
)

∂µh∂
µh− λ

4
h4
(

1− 2
ξh2

M2
p

+ · · ·
)

]

. (4.5)

Here the leading kinetic term is canonically normalized and therefore, since ξ ≫ 1, we find that the

cut-off is [21–23]

ΛHI =
Mp

ξ
. (4.6)

This should be compared with the vacuum energy that drives inflation Eq. (2.14), from where we get

that

VHI ≫ Λ4
HI, (4.7)

making the consistency of the model questionable. This simple argument has been criticized in Ref. [24]

where it was observed that the cut-off should be field-dependent as the kinetic term is non-canonical. This

argument would give a cut-off that during inflation, when h≫Mp/ξ
1/2, is even larger then the Planckian

scale. However, we disagree with this approach. The presence of a cut-off ΛHI ∼ Mp/ξ at lower values

of the field cannot be avoided and it signals the breakdown of the model in that field range. The small

field region is “tested” by the dynamics during the reheating stage and one may not simply disregard

this point by invoking that the inflationary field range is the one of interest. It should also be mentioned

here a related problem, the naturalness of the model. The only way to solve this inconsistency is to add
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new degrees of freedom at energies ∼ Mp/ξ
1/2 in a way that does not spoil the flatness of the inflaton

potential, as for example in the model discussed in Ref. [25]. In such a case, however, predictability of

Higgs inflation is lost as there is now a strong dependence on the new physics assumed to appear at

∼Mp/ξ
1/2.

Similar considerations can be made for the attractor models. To find the cut-off Λatt, we expand the

action (3.16) as

Satt ≈
∫

d4x
√
−g
{

M2
p

2
R− 1

2

[

1− ξf

Mp
+
ξ2f2

M2
p

+ · · · 3ξ
2f ′2

M2
p

(

1− 2
ξf

M2
p

+
ξ2f ′2

M4
p

+ · · ·
)]

∂µφ∂
µφ

− f2 (1− 2ξf + · · · )
}

. (4.8)

For a polynomial form f(φ) = φn/Mn−2
p , with n 6= 1, we get that cut-off Λatt is determined by the ξ2f ′2

term in Eq. (4.8) and reads

Λatt =
Mp

ξ
1

n−1

. (4.9)

Moreover, the vacuum energy during inflation is given in Eq. (2.23), which in terms of the cut-off (4.9)

is written as

Vatt = ξ
6−2n
n−1 Λ4

att. (4.10)

Clearly, only for n > 7/3 the vacuum energy satisfies Vatt ≪ Λ4
att and the model makes sense.

The case n = 1 is special and we will consider it separately. The reason is that ξ2f ′2 dominates and

a constant rescaling of the scalar, similarly to the one in the Starobinsky model, is needed to canonically

normalize the leading kinetic term. It is known that the simplest chaotic inflation has severe problems

with the recent Planck data. Its inflationary dynamics is described by the action

Sm =

∫

d4x
√
−g
(

M2
p

2
R− 1

2
∂µφ∂

µφ− 1

2
m2φ2

)

, (4.11)

which predicts [2]

ns − 1 = − 2

N
, r =

8

N
, (4.12)

for the primordial tilt ns and the tensor-to-scalar ratio r, values which lie outside the joint 95% CL for

the Planck data. Let us now consider instead of the action (4.11), a non-minimally coupled chaotic model

S =

∫

d4x
√
−g
(

M2
p

2
R+ ξMpφR− 1

2
∂µφ∂

µφ− 1

2
m2φ2

)

, (4.13)

where ξ is a dimensionless parameter. Clearly, as discussed above, during inflation the inflaton kinetic

term is small compared to the potential and thus the model is described effectively by

S =

∫

d4x
√
−g
(

M2
p

2
R+ ξMpφR− 1

2
m2φ2

)

. (4.14)
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The field φ can be integrated out leading again to Starobinsky model

S =

∫

d4x
√
−g
(

M2
p

2
R+ ξ2

M2
p

2m2
R2

)

. (4.15)

Therefore, the non-minimally coupled chaotic inflationary model (4.14) is equivalent during inflation to

the Starobinsky gravity (2.1) with M2
p/12M

2 =M2
pξ

2/2m2. As a result, since M ≈ 10−5, we get that

ξ ≈ 105m, (4.16)

whereas the primordial tilt and the tensor-to-scalar ratio are now (ns − 1) ≃ −2/N and r = 12/N2. Let

us now write the action (4.14) in the Einstein frame. For this, we need to make the following conformal

tranformation

gµν →
(

1 +
2ξφ

Mp

)−1

gµν (4.17)

and the action becomes

S =

∫

d4x
√
−g





M2
p

2
R− 3ξ2

∂µφ∂
µφ

(

1 + 2ξφ
Mp

)2 − 1

2

∂µφ∂
µφ

1 + 2ξφ
Mp

− 1

2
m2φ2

(

1 +
2ξφ

Mp

)−2


 . (4.18)

For large values of the scalar field φ (φ≫Mp/2ξ), we have

Snm ≈
∫

d4x
√
−g
{

M2
p

2
R− 1

2

(

3M2
p

2φ2
+
Mp

2ξφ

)

∂µφ∂
µφ− V0

(

1− Mp

ξφ
+ · · ·

)

}

(4.19)

where

V0 =
m2M2

p

8ξ2
(4.20)

is the vacuum energy driving inflation. Then, one may easily verify that this theory is Starobinksy theory

for

3M2
p

2φ2
≫ Mp

2ξφ
(4.21)

In other words, for φ in the range

Mp

2ξ
≪ φ≪ 3

2
ξMp (4.22)

the non-minimal chaotic inflation effectively coincides with Starobinsky model. Note that (4.22) implies

that ξ ≫ 1.
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The action (4.18) can be expanded also for small values of φ. However, in this case as there is no

canonically normalized leading order kinetic term for the scalar. Thus, after defining χ =
√
6ξφ, we have

S ≈
∫

d4x
√
−g
{

M2
p

2
R− 1

2

(

1− 4χ√
6Mp

− χ

3ξMp

)

∂µχ∂
µχ

− − 1

12

m2M2
p

ξ2
χ2

(

1− 4χ√
6Mp

)

+ · · ·
}

. (4.23)

From the form of the action, it follows that the cut-off Λ of the non-minimal chaotic inflation is indeed

the Planckian mass, Λ = Mp, with V0 ≪ Λ4. This is exactly what happens in the Starobinsky theory,

where the absence of the canonically normalized leading kinetic term pushes the cut-off to the Planck

scale.

5 Conclusions

In this paper we have discussed the relation of certain inflationary models to the Starobinsky theory. In

particular, we have pointed out that the agreement of these models with the recent Planck measurements

in due to the fact that during inflation, they are effectively described by the Starobinsky theory. In this

respect, the Starobinsky theory is a prototype of theories where the scalar potential has a plateau for

large values of the scalar field. The examples we discussed here in details are the Higgs inflation model

and the universal attractor models, the dynamics of which coincides to leading order in the slow-roll

parameter with that of the Starobinsky theory. However, they differ from the latter since the scalar in

the Starobinsky theory is auxiliary in the Jordan frame and turns out to be propagating only in the

Einstein frame.

Although these models are effectively equivalent to the Starobinsky theory for large values of the

fields, they are not equivalent for small values. In particular, one expects large differences in the small-

field regime. Therefore, one may correctly identify the range of the validity of the theory by determining

its cut-off scale, if it is considered as an effective field theory. We have discussed the cut-off by looking

in the scalar kinetic term, which is similar to kinetic term of an one-dimensional σ-model. We have

found that, although the cut-off of the Starobinsky theory is the Planck scale, for a polynomial function

f(φ) = φn/Mn−2
p in the general universal attractor model, the cut-off is lower than the inflationary scale

for n < 7/3 (this case includes also Higgs inflation for n = 2). However, the case n = 1 is particular and

we have discussed it in more details. In particular, beyond being in agreement with the data, it is valid

up to Planckian scales.
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