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Abstract. The cosmological constant (CC) term in Einstein’s equations, Λ, was first

associated to the idea of vacuum energy density. Notwithstanding, it is well-known

that there is a huge, in fact appalling, discrepancy between the theoretical prediction

and the observed value picked from the modern cosmological data. This is the famous,

and extremely difficult, “CC problem”. Paradoxically, the recent observation at the

CERN Large Hadron Collider of a Higgs-like particle, should actually be considered

ambivalent: on the one hand it appears as a likely great triumph of particle physics, but

on the other hand it wide opens Pandora’s box of the cosmological uproar, for it may

provide (alas!) the experimental certification of the existence of the electroweak (EW)

vacuum energy, and thus of the intriguing reality of the CC problem. Even if only

counting on this contribution to the inventory of vacuum energies in the universe, the

discrepancy with the cosmologically observed value is already of 55 orders of magnitude.

This is the (hitherto) “real” magnitude of the CC problem, rather than the (too often)

brandished 123 ones from the upper (but fully unexplored!) ultrahigh energy scales.

Such is the baffling situation after 96 years of introducing the Λ-term by Einstein.

In the following I will briefly (and hopefully pedagogically) fly over some of the old

and new ideas on the CC problem. Since, however, the Higgs boson just knocked our

door and recalled us that the vacuum energy may be a fully tangible concept in real

phenomenology, I will exclusively address the CC problem from the original notion of

vacuum energy, and its possible “running” with the expansion of the universe, rather

than venturing into the numberless attempts to replace the CC by the multifarious

concept of dark energy.

PACS numbers: 95.36.+x, 04.62.+v, 11.10.Hi
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1 Introduction

Undoubtedly the most prominent performance of modern cosmology has been to provide observa-

tional evidence for the accelerated expansion of the universe [1, 2, 3] and for the existence of (other)

large scale dynamical phenomena possibly caused by forms of matter beyond the usual baryonic

component. To “explain” the accelerated evolution the name “dark energy” (DE) was coined;

it refers to some mysterious form of diffuse (i.e. non-clustering) energy presumably permeating

all corners of the universe, possessing negative pressure and thus being capable of boosting the

expansion of the universe as a whole. Similarly, to “explain” the anomalous dynamics of galaxies

and of galaxy clusters, we have imagined that there is a large deficit of matter at different astro-

nomical scales in the form of unknown stable particles, which are neither electrons nor protons,

not even neutrinos, but some form of electrically neutral heavy stuff beyond the spectrum of the

Standard Model (SM) of the strong and electroweak interactions, and referred to as “dark matter”

(DM) particles. We do not yet know if any of these hypotheses is true at all, although new hints

(not realities, yet) might be around recently; the only thing we know for sure is the reality of the

observed physical phenomena that we are trying to explain. In the following I will not elaborate

on the whereabouts of the hypothetical DM particles, I will rather focus on a few aspects of the

DE problem, or more specifically the cosmological constant (CC) problem [4, 5], which is perhaps

the most intriguing of all cosmological puzzles – and is not obviously unrelated to the DM one.

It is often stated in the literature that the CC term, and its association with the notion of

vacuum energy, cannot be a valid theoretical explanation for the accelerated expansion of the

universe, and that we necessarily have to “go beyond Λ”. The adduced reasons are manyfold, but

perhaps the most brandished one is that the various contributions to the vacuum energy cannot

possibly be successfully fine tuned to the measured value by any known mechanism, and therefore

the idea of the vacuum energy and its connection with the CC is viewed as completely unnatural.

Barring the fact that this need not be true, since there are dynamical mechanisms within modified

gravity that could efficiently help here, starting from an arbitrarily large Λ [6], it is nevertheless a

curious “reason” to wield, as usually nothing more fundamental is offered as an alternative, except

a defense (tooth and nail) of some particular form of DE, say from quintessence to string landscape.

Unfortunately, as we know, none of these alternatives seem to improve in any practical way the

fine-tuning illness [4] – a very serious matter by the way, which for some (no less) mysterious reason

is unjustly blamed to the CC option almost exclusively. In fact, the fine tuning problem in such

new frameworks not only does not become milder but it gets even worse than in the CC case,

simply because the traditional vacuum energy of the SM is still there, and so one has to cope with

its fine tuning, plus the (no less severe) one associated to the field or string object (usually linked to

some form of high energy physics) replacing the CC term. As a result the two fine tunings make the

overall job even more bizarre. Let alone that, quite often, in these frameworks an extremely light

new particle is predicted in the ballpark of ∼ 10−33 eV. However, we should seriously worry about

the fact that such (incommensurably tiny!) mass scale is some 30 orders of magnitude smaller

than the mass scale which these models aim to explain – namely the millielectronvolt (∼ 10−3 eV)

mass scale associated to the CC term! Why such strategy is not perceived as trying to solve a
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big problem by creating an even major one? The answer is perhaps another profound mystery of

Nature; quite likely it must be that the CC problem is such a disproportionately big problem that

we are – too soon – ready to redefine dramatically the scope and limits of our physical perceptions.

The “instinctive” option of replacing the vacuum energy by alternative theoretical constructs

can be counterproductive, though, because in doing so many people (consciously or unconsciously)

may give up the duty of explaining why the usual vacuum energy of QFT (say the SM of Particle

Physics) does not participate at all in accounting for the value of the CC. Please notice that after

the likely discovery of a Higgs boson at the LHC collider [7], the reality of the vacuum energy

associated to the spontaneous symmetry breaking mechanism of the electroweak theory starts to

acquire a very palpable reality. If we wish to face the CC problem in earnest, we should somehow

move on and stop leaving the vacuum energy of the SM in the most complete oblivion, literally as

if the mere fact of not thinking or talking about it would make it completely disappear from our

world! If we think seriously about it, wouldn’t this attitude be more typical of an inhabitant of

some “Ostrichland”?

In the following I shall dwell on the properties of the CC term in Einstein’s equations and

generalizations thereof. Our main aim here is to consider models where the prime driving force

accelerating the universe is dynamical vacuum energy and hence a time variable CC. I will also

discuss some intriguing phenomenological implications of the dynamical vacuum framework as a

potential source for a mild variability of the fundamental “constants” of Nature, which could help

in effectively testing these ideas. For a more detailed exposition, see e.g. [8]; and for a summarized

introduction to time evolving vacuum models along these lines, see [9].

2 DE and Einstein’s original “constant cosmological constant”

Historically, the Λ-term in the field equations was introduced by A. Einstein 96 years ago [10], but

the “CC problem” as such was formulated 50 years later by Y. B. Zeldovich [11]. The latter is

the realization that the quantum theory applied to the world of the elementary particles seems to

predict an effective value for Λ which is much larger than the critical density of the universe (to

which the vacuum energy density is found to be comparable) – see the reviews [4, 5]. The first

models trying to circumvent this tough difficulty from a fundamental quantum field theory (QFT)

point of view – confer e.g. [12, 13, 14, 15, 16] – tried to use dynamical scalar fields; they tried to

explain the small value of the CC density ρΛ = Λ/(8π G), assuming that the latter was actually

the energy density value of a cosmic scalar field (called “cosmon” in one of the formulations [13])

starting with a huge value in the early universe and then eventually settling it down dynamically

(hence without fine tuning) to the present current value [3] ρ0Λ ≃ 2.5×10−47 GeV4. No model of this

kind ever succeeded in achieving that main aim. Later on the first quintessence models bearing this

name appeared in the market [17], but with a much more modest aim: they did not try to explain

the value of ρ0Λ, but just the cosmic coincidence problem, i.e. the reason why the current value of

the CC density is so close to the present matter density – see [18] for a comprehensive exposition

and more references. However, not even this lower target was ever reached satisfactorily. Nor could

be reached either by the many phenomenological proposals for a time dependent cosmological term
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or other alternative notions [19] – see e.g. the reviews [20] and [21]. Subsequently (in the years

after the discovery of the accelerated expansion of the universe [1]) a new and powerful wave

of proposals invaded all corners of the cosmological literature: the multifarious notion of dark

energy (DE) was born, its main purpose being to replace (in infinitely many different disguises)

the function made by the Λ-term in Einstein’s equations. And here we are, still fighting with the

phenomenal cosmological problems triggered by Einstein’s first idea to introduce the Λ term in his

almost centennial General Relativity framework! Somehow Einstein knew he was going to raise

such a pandemonium, as he felt that by introducing Λ in the field equations he was in danger of

being interned in a madhouse: “Ich habe wieder etwas verbrochen in der Gravitationstheorie, was

mich ein wenig in Gefahr bringt, in ein Tollhaus interniert zu werden” (A. Einstein, Letter to P.

Ehrenfest, February 4th 1917).

Almost a century ago the gravitational field equations (Die Feldgleichungen der Gravitation)

were first introduced by A. Einstein in 1915, with no cosmological term at all [22]:

Gµν ≡ Rµν −
1

2
gµν R = 8πGTµν . (2.1)

It was only two years later when Einstein, in an attempt to describe the largely accepted idea, at

that time, of a finite, static and closed universe hypothetical fulfilling Mach’s principle, introduced

the Λ term [10] and modified his field equations in the form we still write them today:

Gµν − gµν Λ = 8πGTµν . (2.2)

The reason why he was able to introduce that term is because it is perfectly consistent with the idea

of general covariance, which was the building principle of GR. This is mathematically expressed

by the fact that the covariant derivative on both sides of the original field equations (2.1) gives

zero: indeed ∇µGµν = 0 is always (automatically) satisfied on account of the Bianchi identity of

the Riemann tensor; whereas the covariant derivative on the right-hand-side can be satisfied in

different ways, the simplest one being perhaps to assume that G (Newton’s gravitational coupling)

is a fundamental constant, and that matter is covariantly conserved (i.e. ∇µTµν = 0). Under

these conditions, if we compute once more the covariant derivative on both sides, but this time on

the modified field equations (2.2), and under the same set of assumptions (on fixed G and matter

conservation), we are immediately led to

∇µΛ = ∂µΛ = 0 ⇒ Λ = const . (2.3)

This is of course what justifies the name “cosmological constant” to the parameter Λ introduced by

Einstein in Eq. (2.2). But the justification is only partial, as it should be clear from our carefully

stating the conditions under which it has been derived. If G is not constant and/or matter is not

covariantly conserved (both of them being assumptions which should not be rejected too fast) then

the canonical conclusion (2.3) is not guaranteed at all. A time dependent Λ, or more precisely, a

spatially homogeneous function of the cosmic time, Λ = Λ(t), would still be perfectly compatible

with the Cosmological Principle. However, in order to still fulfill the Bianchi identity we would need

either a time dependent gravitational coupling, G = G(t), or to admit the possibility that matter
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exchanges energy with vacuum (hence that matter is not self-conserved, in a locally covariant

sense), or a combination of the two possibilities. While some of these possibilities may look bizarre

at first sight, it is no less bizarre than the possibility that the fundamental “constants” of Nature

might not be constant after all. There are actually some hints that this could be the case – and

also that the two “bizarre stories” could in fact be deeply related [24] – see Sect. 9.

The Cosmological Principle is based on the homogeneous and isotropic Friedmann-Lemâıtre-

Robertson-Walker (FLRW) metric [23]

ds2 = c2dt2 − a2(t)

[

dr2

1−K r2
+ r2 dΩ2

]

, (2.4)

with dΩ2 = r2 dθ2 + r2 sin2 θ dφ2. The basic cosmological equations emerging from Einstein’s

field equations with Λ-term (2.2) in the FLRW metric are well-known. Adopting for matter the

energy-momentum tensor for a perfect cosmic fluid,

Tµν = (ρm + pm)UµUν − pm gµν , (2.5)

and computing the various components of the geometric tensors in (2.2), we find the desired result,

which is summarized in two fundamental equations. On the one hand we have

H2 ≡
(

ȧ

a

)2

=
8πG

3
ρm +

Λ

3
− K

a2
, (2.6)

where the constant K is the spatial curvature parameter appearing in (2.4), and on the other

ä

a
= −4πG

3
(ρm + 3pm) +

Λ

3
. (2.7)

Here a = a(t) is the scale factor of the FLRW metric (2.4). The first equation (2.6) is called the

Friedmann-Lemâıtre equation, whereas equation (2.7) is the acceleration equation.

If we would take the “simplest” possibility conceived by Einstein, namely a strictly constant

Λ and spherical symmetry of the three-dimensional space – entailing K = +1 in Eq. (2.6) –

one can easily derive the explicit form of the field equations in terms of just the constant matter

density ρm, the newly introduced Λ-term and the scale factor a of the metric. We can, of course,

recover Einstein’s universe as a very particular case of the above dynamical equations (2.6)-(2.7).

Indeed, assuming a universe made of dust (hence zero pressure, pm = 0) and imposing equilibrium

(static universe), i.e. H = 0 and ä = 0, a simple relation ensues immediately between these three

quantities: 4πGρm = 1/a2 = Λ, or equivalently

ρm =
1

4πGa2
= 2 ρΛ , (2.8)

where we recall that Λ = 8πGρΛ. Clearly, it is thanks to the assumed nonvanishing, and positive,

Λ-term that such relation is possible. This made Einstein happy, but his happiness was ephemeral.

It is not only that E. Hubble soon provided evidence that our universe is actually expanding, but

the fact (immediately noticed by A. Eddington) that even in the absence of this information the

relation (2.8) is completely unrealistic, for it corresponds to an unstable position of equilibrium! It

means that the slightest perturbation in the value of ρm around the one satisfying (2.8) triggers a
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runaway solution that kicks forever the “marble off the hill’s top”! This result is perfectly intuitive.

Indeed, the gravitational law corrected with the Λ-term reads

g(r) = −G
M

r2
ur +

1

3
Λ r ur , (2.9)

where ur is a unit vector directed radially outwards with respect to the position of the body of mass

M creating the field. Thus, if for some reason this universe would expand slightly (r → r + δr),

this would diminish the gravitational attraction but at the same time would enhance the repulsive

Λ-force because the latter is larger the larger is the separation between particles, if Λ > 0 – as

implicit in Eq. (2.8). So there is no possible compensation between the two. As a result the original

seed expansion, no matter how small it is, would destabilize the universe into a runaway expansion.

Similarly, an initial seed contraction (r → r − δr) would cause the universe to shrink indefinitely

into the “Big Crunch”.

Paradoxically, ten years later after Λ was introduced by Einstein to insure a static non-evolving

universe, G. Lemâıtre [25] used the form (2.2) with nonvanishing Λ to discuss his dynamical mod-

els of the expansion of the universe, strongly motivated by E. Hubble’s observations prior their

publication in 1929. The same models had already been independently discussed (without Λ)

a few years before by A. Friedmann [26] on pure mathematical grounds and with no connection

whatsoever with observations. In 1931, fourteen years after Einstein had introduced the Λ-term,

he finally rejected it [27], as if the observational evidence collected by Hubble against his original

static model of the universe should have any impact at all on the theoretical status of the Λ term.

As we know, 96 years after its introduction in the gravitational field equations, Λ is still there,

“alive and kicking”, we like it or not!

3 The electroweak Higgs vacuum in classical field theory

In the following we summarize the old CC problem and perform a preliminary discussion of the

associated fine-tuning problem, leaving the more sophisticated effects for the subsequent sections.

We wish to illustrate the problem within the context of the standard model (SM) of particle physics,

and more specifically within the Glashow-Weinberg-Salam model of electroweak interactions [28].

This is the most successful QFT we have at present (together with the QCD theory of strong

interactions [29]), both theoretically and phenomenologically, and therefore it is the ideal scenario

where to formulate the origin of the problem. As is well-known, the unification of weak and

electromagnetic interactions into a renormalizable theory requires to use the principle of local gauge

symmetry in combination with the phenomenon of spontaneous symmetry breaking (SSB) [30]. It

is indeed the only known way to generate all the particle masses by preserving the underlying

gauge symmetry. In the SM, one must introduce a fundamental complex doublet of scalar fields.

However, in order to simplify the discussion, let us just consider a field theory with a real single

scalar field φ, as this does not alter at all the nature of the problem under discussion. To trigger

SSB, one must introduce a potential for the field φ, which in renormalizable QFT takes the form

(the tree-level Higgs potential):

V (φ) =
1

2
m2 φ2 +

1

4!
λφ4 (λ > 0) . (3.1)
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Since we are dealing with a problem related with the CC, we must inexcusably consider the

influence of gravity. To this effect, we shall conduct our investigation of the CC problem within

the semiclassical context, i.e. from the point of view of quantum field theory (QFT) in curved

space-time [31, 32]. It means that we address the CC problem in a framework where gravity is an

external gravitational field and we quantize matter fields only [33]. The potential in equation (3.1)

is given at the moment only at the classical level, but it will eventually acquire quantum effects

generated by the matter fields themselves (cf. Sect.6). In this context, we need to study what

impact the presence of such potential may have on Einstein’s equations both at the classical and

at the quantum level.

Einstein’s field equations for the classical metric in vacuo are derived from the Einstein-Hilbert

(EH) action with a cosmological term Λ(b) (hereafter the CC vacuum term). The EH action in

vacuo reads [23]:

SEH =
−1

16π G

∫

d4x
√−g (R+ 2Λ ) = −

∫

d4x
√−g

(

1

16π G
R+ ρΛvac

)

.

(3.2)

Here we have defined ρΛvac, the energy density associated to the CC vacuum term:

ρΛvac =
Λ

8π GN
. (3.3)

The classical action including the scalar field φ with its potential (3.1) is

S = SEH +

∫

d4x
√

|g|
[

1

2
gµν ∂µφ∂νφ− V (φ)

]

. (3.4)

Due to the usual interpretation of Einstein’s equations as an equality between geometry and a

matter-energy source, it is convenient to place the ρΛvac term as a part of the matter action, S[φ].

Then the total action (3.4) can be reorganized as

S =
1

16π GN

∫

d4x
√

|g|R+ S[φ] , (3.5)

with

S[φ] =

∫

d4x
√

|g|
[

1

2
gµν ∂µφ∂νφ− ρΛvac − V (φ)

]

≡
∫

d4x
√

|g| Lφ , (3.6)

where Lφ is the matter Lagrangian for φ. For the moment, we will treat the matter fields contained

in Lφ as classical fields, and in particular the potential V is supposed to take the classical form

(3.1) with no quantum corrections. If we compute the energy-momentum tensor of the scalar field

φ in the presence of the vacuum term ρΛvac, let us call it T̃
φ
µν , we obtain

T̃ φ
µν =

2
√

|g|
δ S[φ]

δ gµν
= 2

∂Lφ

∂ gµν
− gµν Lφ = gµν ρΛvac + T φ

µν , (3.7)

where we have used ∂
√

|g|/∂gµν = −(1/2)
√

|g| gµν . Here

T φ
µν =

[

∂µφ∂νφ− 1

2
gµν ∂σφ∂σφ

]

+ gµν V (φ) (3.8)
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is the ordinary energy-momentum tensor of the scalar field φ.

In the vacuum (i.e. in the ground state of φ) there is no kinetic energy, so that the first term

on the r.h.s of (3.8) does not contribute in that state. Only the potential can take a non-vanishing

vacuum expectation value, which we may call 〈V (φ)〉. Thus, the ground state value of (3.7) is

〈T̃ φ
µν〉 = gµν ρΛvac + 〈T φ

µν〉 = gµν (ρΛvac + 〈V (φ)〉) ≡ ρclvac gµν (m2 < 0) , (3.9)

where ρclvac is the classical vacuum energy in the presence of the field φ.

If m2 > 0 in equation (3.1), then 〈φ〉 = 0 ⇒ 〈V (φ)〉 = 0, and there is no SSB. The classical

vacuum energy is just the original ρΛvac term,

〈T̃ φ
µν〉 = gµν ρΛvac (m2 > 0) . (3.10)

This result also applies in the free field theory case. However, if the phenomenon of SSB is active,

which precisely occurs when m2 < 0, we have a non-trivial ground-state value for φ, or vacuum

expectation value (VEV):

v ≡ 〈φ〉 =
√

−6m2

λ
. (3.11)

In this case, there is an induced part of the vacuum energy at the classical level owing to the

electroweak phase transition generated by the Higgs potential. This transition induces a non-

vanishing contribution to the cosmological term which is usually called the “induced CC”. At the

classical level, it is given by

ρΛind ≡ 〈V (φ)〉 = −3m4

2λ
=

1

4
m2 v2 = −1

8
M2

H v2 = − 1

8
√
2
M2

HM2
F , (3.12)

In the last equation we have used the physical Higgs mass squared:

M2
H =

∂2 V (φ)

∂φ2

∣

∣

∣

∣

φ=v

= m2 +
1

2
λ v2 = −2m2 > 0 . (3.13)

Indeed, if we redefine the Higgs field as H = φ − v then its value at the minimum will obviously

be zero. This is the standard position for the ground state of the field before doing perturbation

theory. The physical mass is just determined by the oscillations of H around this minimum, i.e.

it follows from the second derivative of V at φ = v, as in Eq. (3.13). In the last equality of that

equation we have also introduced the so-called Fermi’s scale MF ≡ G
−1/2
F ≃ 293 GeV, which is

defined from Fermi’s constant obtained from muon decay, GF ≃ 1.166×10−5 GeV−2. The relation

of GF with the W± gauge boson mass and the SU(2)L weak gauge coupling, g, reads (at the lowest

order):
GF√
2
=

g2

8M2
W

=
1

2 v2
, (3.14)

where in the second equality we have used the formula for the W± mass in the SM, namely

MW = (1/2) g v. In this way, Eq. (3.14) provides a direct determination of the Higgs VEV in terms

of Fermi’s constant:

v = 2−1/4 G
−1/2
F ≃ 246GeV , (3.15)
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and this relation has been used in the last equality of Eq. (3.12).

In view of the SSB phenomenon, it is clear that we must replace gµν ρΛvac → gµν ρ
cl
vac , given by

Eq. (3.9), in the expression of Einstein’s equations in vacuo. This modifies the effective cosmological

constant contribution in Einstein’s equations. Furthermore, in the presence of incoherent matter

contributions (e.g. from dust and radiation) described by a perfect fluid we have the additional

contribution (2.5). Therefore, the final Einstein’s equations in terms of coherent and incoherent

contributions of matter, plus the vacuum energy of the fields, finally read

Rµν −
1

2
gabR = 8πGN

(

〈T̃ φ
µν〉+ Tµν

)

= 8πGN [gµν (ρΛvac + ρΛind) + Tµν ] . (3.16)

We conclude that the “physical value” of the CC, at this stage, is not just the original term ρΛvac,

but

ρΛph = ρΛvac + ρΛind , (3.17)

where the induced part is given by (3.12). On the face of this result, it is pretty obvious that when

we compare theory and experiment a severe fine tuning problem is conjured in equation (3.17).

Indeed, the lowest order contribution from the Higgs potential, as given by equation (3.12), is

already much larger than the observational value of the CC. Using the recent LHC measurement

of the mass of the Higgs-like particle, suggesting the value MH ≃ 125 GeV [7], equation (3.12)

yields ρΛind ≃ −1.2 × 108 GeV4. Thus, being the CC observed value of order ρ0Λ ∼ 10−47 GeV4,

the electroweak vacuum energy density is predicted to be 55 orders of magnitude larger than the

currently measured ρ0Λ:
∣

∣

∣

∣

ρEWΛind
ρ0Λ

∣

∣

∣

∣

= O(1055) . (3.18)

Suppose that the induced result would exactly be ρΛind = −108 GeV4 and that the vacuum density

would exactly be ρ0Λ = +10−47 GeV4. In such case one would have to choose the vacuum term

ρΛvac in equation (3.17) with the rather bizarre precision of 55 decimal places in order to fulfill the

equation

10−47 GeV4 = ρΛvac + ρΛind = ρΛvac − 108 GeV4 . (3.19)

This is of course the famous fine-tuning problem.

Let us note that this problem is in no way privative of the cosmological constant approach to the

DE, but is virtually present in any known model of the DE, in particular also in the quintessence

approach [18]. Indeed, the quintessence scalar field potential V (ϕ) is supposed to precisely match

the value of the measured DE density at present, ρ0Λ, starting from a high energy scale, usually

some grand unified theory (GUT) scale ϕ = MX between ∼ 1016 GeV and MP ∼ 1019 GeV. Even

in the simplest case V (ϕ) ∼ m2
ϕ ϕ

2, one finds m2
ϕ ∼ ρ0Λ/M

2
X . Defining the mass scale associated to

the current CC value, mΛ ≡ (ρ0Λ)
1/4 = O(10−3) eV, we have the ratio

mϕ

mΛ
∼ mΛ

MX
∼ 10−30 , (3.20)

which tells us that the mass of the quintessence field should be some thirty orders of magnitude

smaller than the CC mass scale that one tries to explain! Apart from the numerical mass value that

this implies (mϕ ∼ 10−33 eV), such situation is of course preposterous. Therefore, the quintessence
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approaches, in addition from being plagued with fine-tuning problems in no lesser degree than the

original CC problem, they introduce extremely unnatural small mass scales.

However, this is not quite the end of the story yet. In QFT the induced value of the vacuum

energy is much more complicated than just the simple result (3.12), and the fine-tuning problem

is much more cumbersome than the one expressed in equation (3.19), see Sect.6 for some clues

about this additional complication.

4 Vacuum energy: ZPE and some cosmic numerology

As we know, a nonvanishing Λ leads to a nonvanishing value of the vacuum energy density, or CC

density, ρΛ = Λ/(8πG). In the previous section we have seen that even at the classical level we can

get a large contribution to ρΛ from the spontaneous symmetry breaking (SSB) of the electroweak

symmetry, i.e. from the ground state of the Higgs potential. Furthermore, quantum corrections to

the this potential can be quite significant, as we will discuss later. The possible confirmation of the

Higgs finding at the LHC collider at CERN certainly strengthens the case for the vacuum energy

in QFT, but the quantum effects which we are going to refer now do not depend on the existence of

the Higgs potential as they have a very generic character. They were noted much before the Higgs

potential and the SSB phenomenon entered the stage. We pay now some preliminary attention

to this important (and generic) phenomenon of the quantum vacuum, only to come back to it in

subsequent sections from a more rigorous point of view.

The quantum effects we are now referring to are those emerging from the vacuum-to-vacuum

fluctuations of the quantum matter fields. They occur already in the free field theory, in con-

trast to the SSB phenomenon. These quantum fluctuations correspond to closed loop diagrams

without external tails (“blobs”). They describe the infinite number of oscillators with all possible

frequencies ωk to which we attach to any free quantum matter field. The sum of all the (nonva-

nishing) ground state energies of these oscillators constitutes the zero-point energy (ZPE) of the

corresponding quantum field: E0 = (1/2)
∑

k
~ωk. Let us recall that the historical origin of the

ZPE emerges from Planck’s theory for the black-body radiation in 1900. For the average energy

of an oscillator of frequency ω in equilibrium with radiation at temperature T , Planck obtained

Eω =
~ω

e~ω/kT − 1
+

1

2
~ω . (4.1)

He realized immediately that Eω → (1/2) ~ω for T → 0. This is the Nullpunktsenergie or zero-

point energy of the oscillator, therefore a nonvanishing one. Despite he soon tried to normalize

it away treating it as an unphysical effect, thirteen years later Einstein and Stern paid clever

attention to the fact that if one expands the formula (4.1) in the classical limit kT ≫ ~ω one finds

Eω ≃ kT − (1/2) ~ω + (1/2) ~ω = kT , as easily checked. In other words, thanks to the isolated

ZPE term on the r.h.s. of (4.1) one can recover the expected classical limit for the average energy

of an oscillator in thermal equilibrium at temperature T . This firmly convinced Einstein that the

ZPE could have some physical meaning after all.

But things are not so easy. The electromagnetic field oscillates with all frequencies, and there-

fore one has to compute the infinite sum E0 = (1/2)
∑

k
~ωk. The unrenormalized result is of
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course infinite, but the renormalized quantity is perfectly finite (cf. Sect. 5) and its value may be

of concern. The first considerations on the ZPE of the quantum vacuum dates back to the theo-

retical discussions made by W. Nernst as early as 1916 and by W. Pauli in the 1920s (and again

in a more formal way in 1933, see Sect. 5). However, all these discussions were mainly focused on

the electromagnetic field. As, however, the renormalized form of the ZPE is proportional to the

quartic power of the renormalized mass of the corresponding field quantum (ρΛ ∝ m4, see below),

in the electromagnetic case we have no such physical contribution to the ZPE (at least in the way

it was originally conceived by the first pioneers discussing these matters) owing to the massless

nature of the photon.

It was probably Y.B. Zeldovich who first raised a serious concern on the contribution to the

ZPE from a “typical” massive particle [11] and expressed the necessity to subtract its leading – or

“first order”– effect in the computation of the physical value of the CC 1. In particular he noticed

that the leading proton contribution to the ZPE (ρΛ ∝ m4
p ∼ 1GeV4) is overwhelmingly large as

compared to any cosmic density, say the current critical density ρ0c expressed in typical particle

physics units:

ρ0c =
3H2

0

8π G
=

3

8π
H2

0 M
2
P ∼ 10−47 GeV4 , (4.2)

where H0 ∼ 10−42 GeV is the current value of the Hubble rate and MP = 1/
√
G ∼ 1019 GeV is

Planck’s mass (both expressed in natural units). The current matter and vacuum energy densities

(ρ0m and ρ0Λ) are proportional to (4.2) up to factors of order one, i.e. ρ0m = Ω0
M ρ0c and ρ0Λ = Ω0

Λ ρ0c ,

with Ω0
M ∼ Ω0

Λ = O(1). After subtracting the exceedingly large leading term in the theoretical ZPE

estimate, Zeldovich realized that starting once more from mp as the “typical” mass scale of particle

physics one could produce a much more reasonable order of magnitude estimate of the CC density

by means of a “second order” (or “next-to-leading”) formula involving the natural presence of the

gravitational coupling, G. To this purpose he concocted the dimensionally consistent “construct”

ρΛ ≃ Gm6
p =

m6
p

M2
P

∼ 10−38 GeV4 . (4.3)

The previous estimate still strays off the modern value, but by “only” nine orders of magnitude – in

contrast to the demolishing 47 orders of magnitude that one has to face if keeping the leading term

ρΛ ∼ m4
p. Needless to say at the time of Zeldovich there was no real measurement of Λ, although

of course an upper bound estimate of the order of the critical density was in force. Therefore the

order of magnitude discrepancy was not that different from the present one. Even so, formula

(4.3) could somehow still be considered as a respectable estimate. An even more intriguing result

obtains if one replaces the proton by the pion (whose mass mπ ≃ 0.1 GeV is roughly ten times

smaller than that of the proton). Then one gets a better approximation which differs now by

“only” three orders of magnitude from the correct order of magnitude result (4.2). It turns out

that a kind of “cosmic prediction” of the pion mass was proposed by Weinberg in 1972 [37] through

1It is not my intention to make full justice, in this summarized account, to the extensive historical literature on

the CC problem – see e.g. [4, 5] and [34, 35], and references therein. It will suffice to say that the connection between

vacuum energy and CC had already been glimpsed by Lemâıtre in 1934 a few years after he found the cosmological

expanding solution in the presence of a Λ-term [36].
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the curious numerical relation

m3
π ∼ H0

G
= H0M

2
P ∼ 10−4 GeV3 , (4.4)

which indeed leads to mπ ≃ 0.1 GeV. Amusingly, if we now substitute Eq. (4.4) into (4.3) — after

first replacing mp → mπ, according to our prescription – we find

ρΛ ∼ H2
0 M

2
P ∼ 10−46 GeV4 , (4.5)

which, according to (4.2), is very close to the correct order of magnitude of the current CC density,

since ρ0Λ = Ω0
Λ ρ0c , with Ω0

Λ ≃ 0.7. From (4.4) and (4.5) it also ensues the (no less “cabalistic”)

relation ρΛ ∼ m3
π H0, somehow suggesting a possible link between the meson world of particle

physics and cosmology. Unfortunately such relation is untenable within GR, and therefore such

link is impossible if following that pathway. Equally untenable is a (subtlety disguised) form of

the previous relation, which has iteratively appeared in the literature in more recent times, to wit:

ρΛ ∼ H0 Λ
3
QCD , (4.6)

where ΛQCD ≃ 200 MeV is the QCD scale of the strong interactions (not far away from the pion

mass). Some people has tried hard to seek for a fundamental reason behind a formula like (4.6) [38].

Numerically it is much worse than (4.5), as it yields ρΛ ∼ 10−44 GeV4, thus failing by “only” three

orders of magnitude. But it is not this numerical failure which is most disturbing (as numbers are

comparable to the situation with the previous pion formula – thought of as an improved form of

Zeldovich’s one); the problem here is of theoretical nature. As has been emphasized in [33], an

equation like (4.6) – or, for that matter, any other relation where ρΛ is extracted from an odd power

of the Hubble rate – is incompatible with the general covariance of the effective action in QFT in

curved spacetime2. One possibility would be to resort to fractional powers of the invariants, but

are we ready for such an eccentric possibility while other, more amenable ones, are still there to be

fully exploited? For example, the numerically successful relation (4.5) depends quadratically on

H and therefore is compatible with the aforementioned covariance. It follows that the argument

that led to Eq. (4.5) cannot be (without invoking contrived assumptions) the one that we followed

above through ρΛ ∼ m3
π H0 or (4.6) since the latter cannot be accepted in a natural way. It means

that if there is any truth around Eq, (4.5) there must exist some completely independent pathway

leading to it. We will see that there are indeed quite different paths pointing to (4.5), or in general

to the more general “affine” quadratic relation

ρΛ(H) = c0 + βM2
P H2 , (4.7)

with a non-vanishing c0 term, β being here a dimensionless coefficient. The presence of c0 6= 0 is

crucial for a realistic implementation of the model, as it enables the transition from deceleration

to acceleration in this kind of models. The strict model (4.5), understood as a model of the

2In Sect. 9 we will see that the ΛQCD scale could play a relevant cosmological role, but for quite a different reason,

namely on account of its potential cosmic time dependence linked to that of the vacuum energy, and within a fully

covariant formulation [24].
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kind (4.7) with c0 = 0, is ruled out [39, 40] as it cannot satisfy the aforementioned transition

condition. This is the situation with entropic force models [41], for example, and many other

models previously presented on purely phenomenological grounds. In contrast, the class of affine

models (4.7) is perfectly safe in this respect, and in fact it has been successfully tested against the

recent cosmological data [39, 40, 42].

In principle, we have no fundamental reason behind any of these numerical games. The only

“fundamental” thing to be done here is to make sure that we subtract the leading (“first order”)

contribution from the ZPE, which for all kinds of known elementary particles (except perhaps

for a light neutrino) is much larger than the measured ρΛ
3. For a hypothetical neutrino of a few

meV= 10−3 eV, we have the suggestive result [43]

ρΛ ∼ m4
ν ∼ 10−11 meV4 ∼ 10−47 GeV4 , (4.8)

that falls in the right ballpark of the cosmic densities (4.2). In the next sections we will go in a

summarized way thorough models that could justify some of the more successful evolution laws

for the cosmological term, say of the form (4.7), on more fundamental grounds.

5 Zero-point energy in quantum field theory in flat spacetime

If we wish to go beyond the previous numerical games, things can get a bit harder, even if we

still try to keep them as simple as possible. Let us therefore first follow a very naive formulation.

Formally the ZPE of a given quantum field, say a scalar field φ, is obtained by selecting that part

of the effective potential which does not depend on the external tails of φ (i.e. that part which is

not a function of φ). For example, the Higgs potential (cf. Section 3) is in general not a part of

the ZPE because it has a classical part (one which does not vanish when we set ~ = 0). It means

that it consists of all the bubble-type (vacuum-to-vacuum) diagrams at all orders in perturbation

theory. The ZPE is thus a pure quantum effect: it vanishes if there is no quantum theory, ~ = 0.

Indeed, vacuum-to-vacuum diagrams can only exist in a field theory with vacuum fluctuations:

QFT. The final result therefore can only depend on a list of parameters P (masses and coupling

constants), but not on φ itself, which can only enter virtually in the loop propagators. If we count

the loop order of perturbation theory with the corresponding power of ~, the loopwise expansion

can be presented as a power series in ~:

VZPE(P ) = ~V
(1)
P + ~

2 V
(2)
P + ~

3 V
(3)
P + .... (5.1)

(A contribution to the 21th term of this pure vacuum-to-vacuum series within the SM can be seen

in Fig. 1.) From Eq. (5.1) it is obvious that even the first term depends on ~, just linearly. This

is the one-loop approximation. Since we promised to keep things simple, let us evaluate the ZPE

3The maximum wildness (or should I say madness) of the∼ m4 contributions to ρΛ is achieved for the Planck mass,

for which the discrepancy with the current value is M4
P /ρ

0
Λ = (MP /mΛ)

4 ∼
(

O(1019GeV)/O(10−3eV)
)4 ∼ 10123.

This is the ultimate state of “paroxysm” of the CC problem. But, as we have seen in Sect. 3 (and as we shall further

emphasize later on), those 123 orders of magnitude should not be considered as the most obvious and worrisome

aspect of the “real” CC problem!
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of a QFT for a free scalar field at one loop only. For fermion field of spin sf = 1/2 an additional

factor of 4 (= Tr 1̂) and an overall minus sign should both be inserted.

A naive calculation of the coefficient V
(1)
P in (5.1) is obtained by ignoring for the moment gravity

and regularizing the infinite sum (1/2)
∑

k
~ωk = (1/2)

∑

k
~
√
k2 +m2 by means of a cutoff M.

Moving to the continuum and trivially integrating the solid angle, it gives

V
(1)
P =

1

2

∫

d3k

(2π)3

√

k2 +m2 =
1

4π2

∫

M

0
dk k2

√

k2 +m2 =
M4

16π2

(

1 +
m2

M2
− 1

4

m4

M4
ln

M2

m2
+ · · ·

)

,

(5.2)

where in the expansion in powers of m/M we have explicitly kept the important ∼ m4 lnm2 term

because this one does not depend on any power of the cutoff and therefore is the term that should

remain after we attempt to remove the cutoff by some renormalization procedure. In the 1930’s

Pauli applied this näıf approach to the electromagnetic field (m = 0 for the photon) and choosing

the inverse of the classical electron radius for the cutoff, i.e. M = 2πme/α (here α standing for

the fine structure constant). Then he plugged the result into Einstein’s universe formula (2.8), i.e.

he replaced ρΛ there by the previous one-loop estimate of the ZPE, and obtained the “radius” of

the ensuing universe:

a =

√

2π

G

1

M2
= (2π)−3/2

(

MP

me

)

α2

me
. (5.3)

It would not even reach the Moon! (as a matter of fact the result is appallingly small, some

twenty six kilometers only!) 4. As we can see, the larger is the vacuum density the smaller is

the equilibrium “radius”. This is intuitively obvious from the fact that the negative pressure

associated to the CC value is very big even for a cutoff as small as the electron mass, so that if

gravity has to compensate such outwards vacuum pressure the universe must be small enough to

produce a gravitational (inwards) effect of the same size. He was dismayed, but the argument is

itself actually non-rigorous. Indeed, the results (5.2)-(5.3) explicitly depend on the value we can

arbitrarily assign to the regulator M; in other words, it is merely an unphysical result obtained

in the “bare theory”. Sometimes a particular value can better approximate the final result, but in

actual fact the physical result should be completely independent ofM. It means that one must first

renormalize the theory before jumping to conclusions, as without renormalization the result (5.3)

means very little. This implies, among other things, to get rid of the regulator before extracting

meaningful conclusions on the ZPE contribution from the electromagnetic field. However, after

doing so we are left with nothing since the photons have no mass and hence no contribution to the

ZPE could remain from them. Indeed, upon removing the cutoff we expect that the renormalized

result should be of order

V
(1)renorm
P = − m4

64π2
ln

µ2

m2
+ · · · . (5.4)

where µ is some subtraction scale that must remain after renormalization. From the above formula

it is clear that the ZPE becomes zero if we set m = 0 in it. If we would instead compute the

contribution, not from the electromagnetic field, but from a scalar field of massm, the renormalized

contribution should be of the order (5.2), thus proportional to m4. Unfortunately, we find that

4Strictly speaking one has to include a factor of 2 in Eq. (5.2) to account for the two helicities of the photon, so

the result for the “radius” is 1/
√
2 smaller , i.e. some ∼ 18 kilometers, but of course this nicety is irrelevant here.
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even after trying to make some sense out of the ZPE within QFT we are back to the huge quartic

contributions to the CC which we tried to avoid in the previous section. They are back here and

this becomes of course disquieting. As for Pauli’s quantitative result, despite its roughness and

severe limitations it transmits the correct qualitative idea that any typical choice for the cutoff

scale within the particle physics domain leads to a very unsatisfactory value for the cosmological

constant as compared to the observational measurements. We thus realize that the ZPE calculation

becomes conflictive with observations even after renormalization. Despite we did not use a concrete

renormalization scheme to guess at the renormalized form (5.4) from the regularized expression

(5.2), it turns out that the latter is indeed what is obtained e.g. using dimensional renormalization

(see below).

Although every scheme is in principle valid, not every scheme has the property that the renor-

malized quantities are in good correspondence with the physical quantities in the particular frame-

work of the calculation. For example, it makes no much sense to renormalize QCD (the gauge

theory of strong interactions) in the on-shell scheme because we never find quarks and gluons on

mass shell! One is forced to use an off-shell renormalization scheme. This can complicate the phys-

ical interpretation, for there can indeed be a nontrivial gap between the renormalized parameters

and the physical ones. And if all that is not enough, the CC problem [4] is of course a problem

where gravity should play a role somewhere in the calculation of the ZPE, shouldn’t it? So, at the

end of the day, we realize that the result (5.2) is in itself far from having any physical meaning!

In an attempt to smooth out some of these problems, suppose we adopt the MS-scheme (or

Minimal Subtraction scheme) in n-dimensional regularization. Then, the one-loop approximation

to the ZPE renders

V
(1)
P =

1

2
µ4−n

∫

dn−1k

(2π)n−1

√

k2 +m2 =
1

2
β
(1)
Λ

(

− 2

4− n
− ln

4πµ2

m2
+ γE − 3

2

)

, (5.5)

where γE is Euler’s constant, and

β
(1)
Λ =

m4

2 (4π)2
(5.6)

is the one-loop β-function for the vacuum term (see below). Notice that µ is the characteristic

’t Hooft mass unit of dimensional regularization, and n → 4 is understood in the final result. So

obviously the ZPE is UV-divergent once more, as it could not be otherwise without renormalization.

In the MS scheme one introduces, as usual, a counterterm killing the “bare bone” UV-part (the

pole at n → 4). In the slightly modified MS scheme one collects also some additive constants.

Specifically, the counterterm reads:

δρMS
Λ =

m4
~

4 (4π)2

(

2

4− n
+ ln 4π − γE

)

. (5.7)

How to get now a finite (if still not physical) value of the ZPE? We just have to follow the

renormalization program. Recall that the Einstein-Hilbert action from which the field equations

(2.2) are derived reads as in Eq. (3.2) [23]:

SEH =
−1

16π G(b)

∫

d4x
√−g

(

R+ 2Λ(b)
)

= −
∫

d4x
√−g

(

1

16π G(b)
R+ ρ

(b)
Λ

)

.

(5.8)
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Here (and hereafter) we have rewritten the parameters Λ → Λ(b), ρΛvac → ρ
(b)
Λ and G → G(b) so

as to emphasize it is the bare action, i.e. the action before any renormalization program is applied

to account for the UV-divergences related to the quantum matter contributions. In particular,

the CC term and the gravitational coupling are the bare ones – and so have been denoted with

the superindex “b” . Even though this action is not renormalizable, we know that by including

the higher order invariant terms ( i.e. R2, RµνR
µν ..., only relevant for the short-distance behavior

of the theory) the extended action is renormalizable in the context of QFT in curved spacetime

(where gravity is not quantized but the matter fields yes), provided (!) we keep the Λ-term in

it. So let us maintain this term in the low-energy part of the full renormalizable action, i.e. the

long-distance EH action (5.8), as this part is both necessary for the renormalization program and

is accessible to observation (as we indeed know from the observed accelerated expansion).

The key point now, at the theoretical level, is that the CC-term in (5.8) is not yet the physical

quantity, it is only the bare parameter of the bare EH action. When we include the ZPE as

a part of the full action, the overall additive term is no longer ρ
(b)
Λ but the sum ρ

(b)
Λ + V

(bare)
ZPE ,

where V
(bare)
ZPE is given by (5.1). Next we split ρ

(b)
Λ into a renormalized part plus a counterterm,

ρ
(b)
Λ = ρΛ(µ) + δρΛ, where the renormalized part depends on the arbitrary renormalization scale

µ and the counterterm depends on the regularization and renormalization scheme. Adopting MS

in dimensional regularization we are led to use the explicit form (5.7) for δρΛ. Finally, since the

(effective action of the) bare theory must equal (that of) the renormalized theory (in whatever

renormalization scheme), we must have ρ
(b)
Λ + V

(bare)
ZPE = ρΛ(µ) + VZPE(µ). This condition defines

the MS-renormalized one-loop value of the ZPE. Using the above equations, at one-loop it reads:

V
(1)
ZPE(µ) = ~V

(1)
P + δρMS

Λ =
m4

~

4 (4π)2

(

ln
m2

µ2
− 3

2

)

, (5.9)

which is perfectly finite. Incidentally, with this result we have checked that the one-loop correction

in dimensional regularization with minimal subtraction indeed provides the kind of finite correction

that we guessed in Eq. (5.4) from the bare result (5.2), up to additive parts related with the

subtraction procedure. This does not mean that the obtained expression is the physical result, but

at least is a renormalized and hence finite one. The price for the finiteness of the renormalized

result is its dependence on the arbitrary mass scale µ. However, while both pieces (5.9) and ρΛ(µ)

separately depend on the scale µ, the sum

ρ(1)vac = ρΛ(µ) + V
(1)
ZPE(µ) = ρΛ(µ) +

m4
~

4 (4π)2

(

ln
m2

µ2
− 3

2

)

, (5.10)

does not since by construction we started from the bare theory, which is of course µ-independent.

The sum (5.10) represents the MS-renormalized vacuum energy of the free field at one loop. As this

quantity is the same starting bare expression, just rewritten in terms of renormalized parameters,

it is overall µ-independent. This is actually the main message of the renormalization group (RG):

the sum of the various µ-dependencies must cancel in the renormalized effective action, and also

in the renormalized S-matrix elements (when they can be defined). We can now check explicitly

that (5.6) is indeed the one-loop β-function for the running of the renormalized CC. Computing

the logarithmic derivative d/d ln µ = µd/dµ on both sides of (5.10) and taking into account that
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this gives dρ
(1)
vac/d lnµ = 0 on the l.h.s (for the reasons just mentioned above), we immediately find

the desired result:

µ
dρΛ(µ)

dµ
=

~m4

2 (4π)2
= β

(1)
Λ . (5.11)

The RG tells us something useful about the explicit µ-dependence affecting incomplete structures

of the effective action. Indeed, while we may not know the full structure of the effective action

in a particular complicated situation, our educated guess in associating µ with some relevant

dynamical variable of the system can give relevant information on physics, similarly as we do in

particle physics. This is e.g. the case with an effective charge (or “running coupling constant”),

say the QED or QCD renormalized gauge coupling g = g(µ), which is explicitly µ-dependent even

though the full effective action or S-matrix element is not.

For a more rigorous connection with the curved space-time case discussed in the next section,

it is convenient to approach Eq. (5.5) from a more formal point of view, namely from the notion

of effective action [44]. The desired form for the effective action at one-loop reads:

Γeff [φc] = S[φc] +
i~

2
Tr lnK(x, x′) . (5.12)

where S[φc] is the classical action

S[φc] =

∫

d4xL =

∫

d4x

[

1

2
gµν ∂µφc ∂νφc − Vc(φc)

]

. (5.13)

and

K(x, x′) =
[

�x + V ′′(φc)
]

δ(x− x′) , (5.14)

is essentially the inverse propagator in the presence of the background matter field φc. Here Vc is

the tree-level or classical part of the potential for that field, typically of the form (3.1). For a free

field (λ = 0) it contains only the mass term: V (φ) = (1/2)m2 φ2 and Eq. (5.14) simplifies to

K(x, x′) =
[

�x +m2
]

δ(x − x′) (free QFT) . (5.15)

The result (5.12) was expected, namely the effective action at this order is the sum of the classical

action (5.13) and the one-loop term (5.14) – notice the presence of ~ in front of it in Eq. (5.12).

The quantum correction term, call it Γ(1), is generated exclusively by the vacuum diagrams, and

therefore represents the ZPE. We can understand that indeed Γ(1) is associated to vacuum-to-

vacuum diagrams (i.e. closed loop diagrams without external tails of quantum matter) by the fact

that we have to compute a trace over all indices, including the spacetime ones:

Γ(1) =
i~

2
Tr lnK(x, x′) =

i~

2

∫

d4x lim
x→x′

ln[K(x, x′)] . (5.16)

Diagrammatically we can interpret we are following a closed line starting at one point and ending

at the same point, i.e. a vacuum-to-vacuum diagram or “blob”. Furthermore, we have to sum

these blobs over all of the spacetime points, as indicated by the above integral. Setting φc =const.

the classical action (5.13) just boils down to (minus) the classical potential times the spacetime

volume Ω, i.e. S[φc] = −
∫

d4xV (φc) = −ΩV (φc). The l.h.s. of (5.12) can then be written
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as −Veff Ω, where Veff is the so-called effective potential. Clearly Veff = Vc + ~V (1), where the

one-loop correction reads

V (1) = − i

2
Ω−1 Tr lnK . (5.17)

Next the integral can be conveniently worked out in momentum space. For the free field case

(5.15) it immediately leads to

Tr lnK = Ω

∫

dnk

(2π)n
ln
(

−k2 +m2
)

, (5.18)

where we moved to n dimensions to regularize the result. The spacetime volume finally cancels in

(5.17) and after a simple calculation one finally retrieves the formula (5.5) and the corresponding

MS-renormalized final result(5.10).

6 The ZPE and the full effective Higgs potential for QFT in flat

spacetime

The ZPE calculation for free fields considered in the previous section is the simplest kind of

quantum vacuum effect one can deal with. However, the general renormalized effective potential

extending to the quantum domain the classical potential, Vc → Veff , takes on the form

Veff = Vc + ~V1 + ~
2 V2 + ~

3 V3 + ... (6.1)

The quantum effects to all orders of perturbation theory arrange themselves in the form of a

loopwise expansion where the number of loops is tracked by the powers of ~. Thus, at one loop

we have only one power of ~, at two loops we have two powers of ~ etc. For ~ = 0, however,

there are no loops and the effective potential just reduces to the classical potential, Vc, given by

equation (3.1) in the electroweak standard model. On the other hand, each of the loop terms in

(6.1) can be split into two independent contributions, one consisting of loops with no external legs

(vacuum-to-vacuum parts V
(i)
P , i.e. the ZPE contribution at ith-order) and the other involving

loops with external legs of the Higgs field φ (i.e. the ith-loop correction V
(i)
scal(φ) to the classical

Higgs potential):

V1 = V
(1)
P + V

(1)
scal(φ) , V2 = V

(2)
P + V

(2)
scal(φ) , V3 = V

(3)
P + V

(3)
scal(φ)... . (6.2)

As a result, the effective potential (6.1) at the quantum level splits naturally into two parts, one

which is φ-independent and another that is φ-dependent:

Veff(φ) = VZPE + Vscal(φ) , (6.3)

where

VZPE = ~V
(1)
P + ~

2 V
(2)
P + ~

3 V
(3)
P + .... (6.4)

is the full zero-point energy (ZPE) contribution. It is a number, it only depends on the set of

parameters P = m,λ, ... of the classical potential, not at all on the fields. As mentioned, the latter

consists in the sum of all the vacuum-to-vacuum parts of the effective potential. The ZPE part is

18



sourced exclusively from closed loops of matter fields (i.e. vacuum loops without external φ-legs).

In the previous section we have computed the one-loop contribution to the ZPE and for free fields,

i.e. just the term V
(1)
P . The ZPE receives in general contributions to all orders of perturbation

theory, except at zero loop level since VZPE is a pure quantum effect that vanishes for ~ = 0. Now,

besides the ZPE there is the scalar field dependent part of the effective potential:

Vscal(φ) = Vc(φ) + ~V
(1)
scal(φ) + ~

2 V
(2)
scal(φ) + ~

3 V
(3)
scal(φ) + ... (6.5)

This one is not purely quantum (i.e. it does not vanish for ~ = 0) as the first term (the classical

potential) is, of course, not proportional to ~. The above φ-dependent part of Veff receives in

general also contributions to all orders of perturbation theory, and vanishes for φ = 0 since in this

case all the loops have external φ legs, including the tree-level part. Thus, in the absence of SSB

the effective potential boils down to just the ZPE,

Veff(φ = 0) = VZPE (6.6)

which is a number entirely constructed from a power series of ~. On the other hand, the expression

(6.5) is the effective potential excluding that ZPE number. The full effective potential (6.3) contains

both contributions.

In the above formulae, all the field theoretical ingredients (m, λ, φ and Veff) are in fact bare

quantities (m0, λ0, φ0 and Veff 0) that require renormalization, as the loopwise expansion is UV-

divergent order by order. Renormalization means that we replace all the bare quantities with

renormalized ones (in some given renormalization scheme with a specific set of renormalization

conditions) plus counterterms (which are also scheme dependent and are partially fixed by the

condition of canceling the UV-divergences): m0 = m + δm, λ0 = λ + δλ, φ0 = Z
1/2
φ φ = (1 +

δZφ/2)φ... Of course, a similar splitting occurs with the vacuum term, which was originally a bare

term ρ
(b)
Λ . We must also split it into a renormalized piece plus a counterterm: ρ

(b)
Λ = ρΛ(µ) + δρΛ.

The full set of counterterms is essential to enable the loop expansion to be finite order by order

in perturbation theory. For instance, if we would renormalize the theory in the MS scheme in

dimensional regularization, the suitable counterterm for the vacuum parameter was given in Sect. 5,

see Eq. (5.7).

For a practical calculation of the first (one-loop) quantum correction to the Higgs potential

(3.1), we have to compute the one-loop term (5.16) in the presence of the λ 6= 0 term in the

potential. In this case,

K(x, x′) =
[

�x + V ′′(φc)
]

δ(x − x′) =

[

�x +m2 +
1

2
λφ2

c

]

δ(x− x′) . (6.7)

For φc =const. this will lead us to determine the explicit form for V
(1)
scal(φ) in the above language.

This introduces some complications but the calculation can still be carried out without much

problems. In the constant mean field limit we may equate the bare and renormalized effective

action and we obtain

ρ
(b)
Λ + Veff(φ0,m0, λ0) = ρΛ(µ) + Veff(φ(µ),m(µ), λ(µ);µ) . (6.8)
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As always the renormalized result depends on an arbitrary mass scale µ The overall µ-dependence,

however, must eventually cancel. In fact, the renormalized parameters are finite quantities which

are also functions of µ: φ = φ(µ), m = m(µ), λ = λ(µ), ρΛ = ρΛ(µ), and since the vacuum

energy cannot depend on the arbitrary scale µ, the sum of the renormalized vacuum term and the

renormalized potential must be globally scale-independent (i.e. µ-independent). This is obviously

so because the bare vacuum term and bare effective potential were scale-independent to start with.

Thus, from (6.8) we have

µ
d

dµ
[ρΛ(m(µ), λ(µ);µ)) + Veff(φ(µ);m(µ), λ(µ);µ)] = 0 . (6.9)

This relation implies that the full effective potential is actually not renormalization group (RG)

invariant (contrary to some inaccurate statements in the literature), but it becomes so only after

we add up to it the renormalized CC vacuum part ρΛ. In reality, the structure of the effective

potential (6.3) is such that the previous relation splits into two independent RG equations:

µ
d

dµ
[ρΛ(m(µ), λ(µ);µ)) + VZPE(m(µ), λ(µ);µ)] = 0 (6.10)

and

µ
d

dµ
Vscal(φ(µ);m(µ), λ(µ);µ) = 0 . (6.11)

Equation (6.10) shows that it is only the strict vacuum-to-vacuum part (i.e. the ZPE) the one that

needs the renormalized vacuum term ρΛ to form a finite and RG-invariant expression, whereas the

renormalized φ-dependent part of the potential (i.e. the tree-level plus the loop expansion with

external φ-tails) is finite and RG-invariant by itself. This is of course the essential message from

the renormalization group. Explicitly, equation (6.11) reads

{

µ
∂

∂µ
+ βP

∂

∂P
− γφ φ

∂

∂φ

}

Vscal [P (µ), φ(µ);µ] = 0 , (6.12)

where as usual βP = µ∂P/∂µ (P = m,λ, ...) and γφ = µ∂ lnZ
1/2
φ /∂µ. Similarly, equation (6.10)

can be put in the form (6.12), except that the φ term is absent.

Plugging equation (5.9) in the general RG equation (6.10), we find immediately that the renor-

malized vacuum term ρΛ(µ) obeys the one-loop RG-equation which we have found previously, i.e.

Eq. (5.11).

The next step is the one-loop renormalization of the effective potential. This is standard [44],

of course, although the usual discussions on this subject rarely pay much attention to disentangle

the ZPE part from it. Let us do it. Once more we have to compute the one-loop expression (5.16),

but in this case for the operator (6.7), so we have

Tr lnK = Ω

∫

dnk

(2π)4
ln
(

−k2 + V ′′(φc)
)

. (6.13)

Substituting this expression in (5.17), we may split the result in the suggestive form

V1(φc) = − i

2

∫

dnk

(2π)n
ln
[

−k2 +m2
]

− i

2

∫

dnk

(2π)n
ln

(

k2 − V ′′(φc)

k2 −m2

)

. (6.14)
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Notice that the first term is independent of φ, i.e. it only depends on the parameters of the

potential. In the one-loop case, it depends only on m, but at higher loops it would also depend

on λ (in the interactive theory). Diagrammatically, it corresponds to a closed one-loop diagram

without external φ-tails, i.e. to a vacuum-to-vacuum one-loop diagram. As could be expected,

this term can be identified with the one-loop contribution for the VZPE in Eq. (6.4), previously

addressed in Sect. 5. Similarly, the second integral on the r.h.s. of Eq. (6.14) just gives the one-

loop correction to the φ-dependent part of the potential, i.e. the second term on the r.h.s. of

Eq. (6.5). Therefore Eq. (6.14) contains the full one-loop correction, which includes the ZPE part

and the φ-dependent contribution to the potential. To it we still have to add the classical potential,

cf. Eq. (6.5).

Sticking to the MS scheme in dimensional regularization to fix the counterterms, one finds the

final result for the renormalized full effective potential (6.3) up to one-loop:

Veff(φ) =
1

2
m2(µ)φ2 +

1

4!
λ(µ)φ4 + ~

(

m2 + 1
2 λφ

2
)2

4(4π)2

(

ln
m2 + 1

2 λφ
2

µ2
− 3

2

)

, (6.15)

Notice the implicit µ-dependence of the masses and couplings. Together with the explicit µ-

dependent parts of the effective potential, this insures the full RG-invariance of the effective action

in the constant mean field limit, i.e. the fulfilment of Eq. (6.9).

As shown in Eq. (6.14), the two kind of one-loop effects are built in the calculation. Therefore,

the expression (6.15) must boil down to the renormalized ZPE for φ = 0, and indeed we verify

that in this limit we recover the one-loop term on the r.h.s. of Eq. (5.10):

Veff(φ = 0) =
~m4

4(4π)2

(

ln
m2

µ2
− 3

2

)

. (6.16)

This is accordance with the expectation in Eq. (6.6). We are now ready for addressing the CC fine-

tuning problem in the context of a well-defined, renormalized, and RG-invariant vacuum energy

density in flat space.

Once the full effective potential has been renormalized, the two loopwise expansions (6.4) and

(6.5) become finite to all orders of perturbation theory. Furthermore, the basic equation (3.17)

remains formally the same in the quantum theory, i.e. the physical energy density associated

to the CC is the sum of the vacuum part plus the induced part. The only difference is that

the induced part now contains all the quantum effects, i.e. it reads ρΛind = 〈V ren
eff (φ)〉, where

V ren
eff (φ) ≡ Veff(φ(µ);m(µ), λ(µ);µ) is the renormalized effective potential. Notice that the latter

includes the (renormalized) ZPE part, which was absent in the classical theory. Thus, the physical

CC emerging from the renormalization program (in any given subtraction scheme) reads

ρvac = ρrenΛ + 〈V ren
eff (φ)〉 = ρrenΛ + V ren

ZPE + 〈V ren
scal(φ)〉 . (6.17)

The formal structure of this renormalized result is valid to all orders of perturbation theory.

For simplicity we have obviated the µ-dependence, which appears implicitly in all couplings and

fields, and explicitly in the structure of the terms beyond the tree-level. RG-invariance of physical

quantities, initially formulated in the bare theory, tells us that such µ-dependence must finally
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cancel among all terms in the renormalized theory. Thus dρvac/d ln µ = 0. This cancelation,

however, does not mean that the role played by the scale µ is necessarily irrelevant. In fact, since

the entire structure of the renormalized ρvac is parameterized through µ, this fact can help us to

unveil the form of the quantum effects in ρvac and their dependence on relevant physical scales of

the problem. In the cosmological case this is only possible if the theory is formulated in curved

spacetime and when we consider the renormalization effects on the effective action, not just the

effective potential. We will come back to this point later on.

We are now ready to formulate the extreme severity of the fine-tuning problem, which we

address here only in QFT in flat spacetime. Indeed, being the expression (6.17) the precise QFT

prediction of the physical value of the vacuum energy density to all orders of perturbation theory,

it must be equal to the observational measured value [3], i.e. ρvac = ρ0Λ ≃ 2.5 × 10−47 GeV4. We

have already seen in section 3 that the lowest order contribution from the Higgs potential is 55

orders of magnitude larger than ρ0Λ, and that this enforces us to choose the vacuum term ρΛ with

a precision of 55 decimal places such that the sum ρΛ+ ρΛind gives a number of order 10−47 GeV4.

The problem is that the fine-tuning game, ugly enough already at the classical level, becomes

devastating at the quantum level. Indeed, recall that we have the all order expansions (6.4) and

(6.5). Therefore, the quantity that must be equated to ρ0Λ is not just (3.12) but the full r.h.s.

of (6.17), which as we said is a well-defined (finite and RG-invariant) expression. It means that,

instead of the “simple” equation (3.19), we must now fulfill the much more gruesome one:

10−47 GeV4 = ρΛ − 108 GeV4 + ~V
(1)
P + ~

2 V
(2)
P + ~

3 V
(3)
P ....

+ ~V
(1)
scal(φ) + ~

2 V
(2)
scal(φ) + ~

3V
(3)
scal(φ)... (6.18)

As compared to Eq. (3.19), on the r.h.s. of the equation we now have, in addition, two independent

perturbatively renormalized series contributing to the observed value of the vacuum energy density

to one-loop, two-loops, three-loops etc... up to some nth-loop order (both for the ZPE series and

the series associated to the quantum corrected Higgs potential). It follows that the numerical

value for the “renormalized vacuum counterterm” ρΛ must be changed accordingly order by order

in perturbation theory. Specifically, the number ρΛ on the r.h.s. of equation (6.18) must be re-

tuned with 55 digits of precision as many times as the number of diagrams (typically thousands)

that contribute to the highest nth-loop still providing a contribution to the CC that is at least of

the order of the experimental number placed on the l.h.s. of that equation. For example, let us

roughly assume that each electroweak loop contributes on average a factor g2/(16π2) times the

fourth power of the electroweak scale v ≡ 〈φ〉 ∼ 250 GeV (see section 3), where g is either the

SU(2) gauge coupling constant or the Higgs self-coupling, or a combination of both. It follows

that the order, n, of the highest loop diagram that may contribute to the measured value of the

vacuum energy density, and that therefore could still be subject to fine-tuning, can approximately

be derived from
(

g2

16π2

)n

v4 = 10−47 GeV 4 . (6.19)

Take e.g. g equal to just the SU(2) gauge coupling constant of the electroweak SM, which satisfies

g2/(16π2) = αem/(4π sin2 θW ) ≃ 2.5× 10−3. This is actually a conservative assumption because in
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Figure 1: One of the many thousand 21th-loop vacuum-to-vacuum diagram still contributing to

the value of the cosmological constant in the Standard Model of Electroweak interactions.

practice there are larger contributions in the SM associated to the big top quark Yukawa coupling,

but it will suffice to illustrate the situation. Since v ≡ 〈φ〉 ∼ 250 GeV, we find n ≃ 21. Therefore

all of the (many thousand) loop diagrams pertaining to the 21th electroweak order (see Fig. 1 for

a typical example) are still contributing sizeably to the value of the CC, and must therefore be

readjusted by an appropriate choice of the renormalized value of the vacuum term ρΛ. This is of

course preposterous and completely unacceptable. Even though this is nonsense, it is implicitly

accepted by everyone that admits that such “technical trick” is a viable solution to the CC problem.

It goes without saying that this situation worsens even more for higher energy extensions of the

SM, such as in GUT’s. Furthermore, replacing the cosmological term by a cosmic scalar field with

some peculiar potential just iterates the same kind of fine tuning problem, let alone that it does

not explain why e.g. the electroweak vacuum energy can be hidden under the rug with no relation

to the CC value.

Special symmetries (such as Supersymmetry (SUSY), for example) are of little help to solve

the CC problem, despite some early hopes [45], since SUSY is necessarily broken, and hence all the

above problems just replicate very similarly to the SM case. Only dynamical mechanisms could

really help here, namely mechanisms capable of automatically adjusting the CC to the present tiny

value even starting from an arbitrarily large one in the early universe. As we know, they were first

attempted using scalar fields, but these suffer from a “no-go theorem” [4]. However, these mecha-

nisms are technically possible within generalized dynamical vacuum models with modified gravity

(cf. the intriguing proposal in Ref. [6]). Unfortunately, we still don’t know which fundamental

theory could naturally accommodate them.
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7 Zero-point energy in curved space-time

So far so good, but where does the curvature of spacetime enter the previous discussion on the

ZPE in Sect. 5 or the Higgs potential in Sect. 6? Nowhere! However, it should be natural to discuss

the vacuum energy in a curved background if we aim at elucidating its possible connection to the

value of the cosmological term, shouldn’t it? In this section, we are going to summarize the effects

of curvature for the calculation of the ZPE. The discussion of the Higgs potential part in curved

spacetime does not change in any fundamental way the kind of problems that we will meet for the

discussion of the ZPE in a curved background, so we shall limit here to briefly consider this last

aspect of the vacuum problem and leave the (somewhat bulky) details for a more comprehensive

exposition elsewhere [8].

The first and most important observation is that in the presence of vacuum energy (and hence

with a nonvanishing value of the CC in Einstein’s equations) the constant Minkowski metric

ηµν = (+,−,−,−) obviously is not a solution of the field equations (2.2). It means that, with

Λ 6= 0, the metric gµν solving them is a nontrivial one and therefore the spacetime is intrinsically

curved. However, this is not what we have assumed in the calculation leading to the result (5.10).

Therefore, that calculation is, in principle, not appropriate to reflect any dynamical aspect of the

expanding spacetime. In particular, the arbitrary mass scale µ has no immediate connection with

any physical quantity of relevant interest, in contrast to the situation of a cross-section calculation

in, say, QCD, where one tries to make an association with some characteristic energy scale of the

colliding or decaying process in order to estimate the quantum corrections with the help of the

RG.

This is certainly a relevant issue for QFT in curved spacetime [31, 32], i.e. the theory of quan-

tized fields on a curved classical background, where the gravitational field itself does not participate

of the quantization process. In the functional formulation this means that the generating functional

of the theory (from which we can derive the Green’s functions from the functional derivatives of

it with respect to a classical source J(x)) can be written as a path integral over only the quantum

matter fields (collectively represented here by φ):

Z[J ] =

∫

[Dφ] exp

{

i

~

[

S [φ, gµν ] +

∫

d4x
√

−g(x) J(x)φ(x)

]}

. (7.1)

Once more S[φc] in that formula is the classical action for the scalar field, but adapted to the

curved spacetime:

S[φ, gµν ] =

∫

d4x
√

−g(x)

[

1

2
gµν ∂µφ∂νφ+

1

2
ξ φ2

c R− Vc(φ)

]

. (7.2)

A first complication is that this matter action generalizes the original form (5.13) in that we

have included in it the generally invariant integration measure d4x
√

−g(x); and also a possible

non-minimal coupling term ξ φ2
c R, where ξ is a dimensionless coefficient, which is necessary for

renormalizability (see below).

In principle, the problem under discussion should also be a focus of attention for Quantum

Gravity [46], the theory where the gravity field is also quantized together with the matter fields.
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Unfortunately, QG is essentially non-perturbative and nonunitary [47], although some interesting

perturbative results have been discussed in the literature [48]. Despite countless efforts QG does not

exist as a consistent theory yet. String theory seems to be able to address some of the fundamental

problems posed by QG, but it is not obvious that it can solve all of them, not even a significant

part. In any case we do not wish to discuss them here. Our objective right now is much more

modest, and yet not trivial. We deal with the problems of QFT in curved spacetime. In contrast

to QG, the former exists as a renormalizable theory in the perturbative sense. It can be considered

a fairly successful theory of the external gravitational field in interaction with quantum matter.

That beautiful theory has already a long time-honored tradition, collected in several books and

reviews [31, 32, 49, 50]. However, not even at present such semiclassical approach to gravity is

completely understood. In fact, it is far from being so [33]. A serious hint is the fact that the ZPE

contribution to the vacuum energy density in QFT in curved spacetime turns out to be exactly

the same as the one we have obtained for flat space, i.e. Eq. (5.10), up to the renormalization of

the higher order operators R2, RµνR
µν ... in the vacuum action, including of course the low energy

part represented by the Einstein-Hilbert term with cosmological constant (5.8). To see this, let

us first recall that in order that the QFT theory becomes renormalizable in curved spacetime, the

classical vacuum action must also contain the standard higher derivative (HD) part:

SHD =

∫

d4x
√−g

{

α
(b)
1 C2 + α

(b)
2 R2 + α

(b)
3 E + α

(b)
4 ∇2R

}

, (7.3)

where, α
(b)
1,2,3,4 are bare parameters, C2 = RµνρσR

µνρσ − 2RµνR
µν + (1/3)R2 is the square of the

Weyl tensor and E = RµνρσR
µνρσ−4RµνR

µν+R2 is the topological Euler’s density. The coefficients

αi of these terms are then renormalized by the quantum effects, which have the same structure, and

in this way we can absorb the new infinities. The theory is thus one-loop renormalizable in curved

spacetime. The HD terms are short distance effects which have no impact at low energies, i.e. they

do not lead to significant corrections to the Einstein equations (2.2), valid at long distances (the

situation of the present, low-energy, universe). In the FLRW metric all these terms are of order

R2 ∼ H4 (including �R ∼ H4), which are negligible for the entire post-inflationary history of the

universe. The terms we are interested in are those which are at least of order R ∼ H2.

To achieve a finite renormalized theory we proceed as follows. As usual we split each bare

coefficient into a renormalized term plus a counterterm:

α
(b)
1 = α1(µ) + δα1 , α

(b)
2 = α2(µ) + δα2 (7.4)

and similarly,
1

G(b)
=

1

G(µ)
+ δ

(

1

G

)

, ρ
(b)
Λ = ρΛ(µ) + δρΛ , (7.5)

We disregard here the details on the topological term and the total derivative part of the HD action.

In doing these splittings the renormalized quantities are µ-dependent because they are supposed to

be defined at a given renormalization point µ in RG-space, where they should hypothetically make

contact with some experimental input. The point µ is arbitrary, and in fact the wisdom of the RG

is that the physics should not depend on its election. However, µ can have a more or less physical

meaning depending on the renormalization scheme that is used. Finally, the counterterms can be
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chosen to cancel the UV divergences. These have been dimensionally regularized in our approach

(they appear as poles at n = 4) and therefore the cancelation can be easily arranged. We just

require that δα1,2, as well as δ(1/G) and δρΛ, are chosen so as to make finite the values of the final

one-loop parameters. The use of dimensional regularization is quite standard and relatively simple,

but on the other hand it is a source of ambiguity when we face the physical interpretation of the

results. This ambiguity reaches a climax when we next use minimal subtraction to renormalize

the theory. Again, minimal subtraction (whether in the MS form or pole subtraction followed with

whatever finite part we like) is simple enough, but the renormalized quantities (which become

functions of the arbitrary mass scale µ) suffer from a direct physical interpretation. Let us note

that we can do all this without still mentioning what is the physical system we have behind, we

only know that we are renormalizing the classical vacuum action. The system can be the universe

or some other gravitational framework in which we may be interested to study the quantum matter

effects. It is obvious that at some point we have to put our system in context, and then assess what

could be the physical quantity with which we could dream establishing a possible association with

µ. This would, of course, be unnecessary if µ had been a physical subtraction point from the very

beginning (say some momentum subtraction point [51]), although this has a calculational price.

But if we want to still stay with the mathematical simplicity of dimensional regularization with

MS-like subtraction, we are forced to look for such a physical interpretation in the last stage of

the calculation. Unfortunately, not even solving this problem should mean the end of our troubles;

there are still some other headaches in the list, maybe the most severe ones.

Let us however move on and see. Following the aforementioned procedure, the total effective

action (classical plus one-loop corrections) can be conveniently organized as follows:

Γ = S[φc] + SHD + SEH + Γ
(1)
eff = S[φc] + S

(1)
HD + S

(1)
EH , (7.6)

where

S
(1)
HD ==

∫

d4x
√−g

(

α
(1)
1 C2 + α

(2)
2 R2 + ...

)

(7.7)

and

S
(1)
EH = −

∫

d4x
√−g

(

1

16πG(1)
R+ ρ(1)vac

)

. (7.8)

In the above equations we have absorbed the bare terms and the quantum matter effects in the

one-loop coefficients α
(1)
1 and α

(1)
2 of the HD action and the one-loop Newton’s constant and CC
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term, G(1) and ρ
(1)
vac, of the low energy EH action 5. The final result reads

α
(1)
1 = α1(µ)−

~

2(4π)2
1

120

(

ln
m2

µ2
+ finite const.

)

(7.9)

α
(1)
2 = α2(µ)−

~

4(4π)2

(

1

6
− ξ

)2 (

ln
m2

µ2
+ finite const.

)

(7.10)

1

16πG(1)
=

1

16πG(µ)
+

~m2

2(4π)2

(

1

6
− ξ

) (

ln
m2

µ2
+ finite const.

)

(7.11)

ρ(1)vac = ρΛ(µ) +
m4

~

4 (4π)2

(

ln
m2

µ2
+ finite const.

)

. (7.12)

The parameters P
(1)
i = α

(1)
1 , α

(1)
2 , 1/G(1), ρ

(1)
vac on the l.h.s. of these expressions are the final “one-

loop parameters”; they are finite at one loop because we have used the counterterms to cancel the

divergences coming from the one-loop contributions to them. The very fact that such redefinition

of the original coefficients of (7.3) can be made shows the practical possibility to renormalize the

theory. It does not mean, however, that we can get an immediate physical interpretation of the

renormalized expressions. The arbitrariness of the finite constant terms in the expressions (7.12)

is only a small hint of the ambiguity and lack of direct interpretation of these formulas.

If we would continue the calculation at 2-loops, the parameters P
(1)
i would play the role of

bare parameters, in a similar way as the bare parameters (7.4)-(7.5) of the classical action, and

therefore they would be UV-divergent quantities that split once more into a renormalized parameter

and a corresponding counterterm. These counterterms would then be used to cancel the 2-loop

divergences etc. As parameters of the bare action, all of the P
(1)
i are of course independent of the

arbitrary renormalization point µ. The explicit µ-dependence of the various terms in each P
(1)
i

must cancel in the overall expression. One source of µ-dependence comes from the corresponding

“renormalized parameters”, Pi(µ), which therefore “run” with the scale µ. However, as already

warned before, at this point such “running” has no obvious relation with the variation of any

physical quantity; whether such connection is possible cannot be unambiguously decided in the

absence of a concrete physical framework. In the next section, however, we place these formulae in

the cosmological context and only then some chance exists for a possible physical interpretation.

Mathematically, the µ-running is determined by the corresponding renormalization group equa-

tion (RGE) for each of the parameters, and follows from setting the total derivatives of the one-loop

parameters P
(1)
i with respect to µ to zero. For convenience we compute the logarithmic deriva-

tives of each one of them, i.e. dP
(1)
i /d ln µ = 0. The explicit RGE’s are immediately obtained from

5These are the quantum effects from the matter field φ encoded in the explicit computation of the one-loop part

of the effective action, Eq. (5.16), in the curved space-time case. This is of course the hardest part of the calculation,

that I am fully sparing to the reader here – see e.g. [31, 32]; confer also [8] for the details along the present lines.
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equations (7.9)-(7.12):

dα1(µ)

d lnµ
= − ~

120(4π)2
≡ β

(1)
1 (7.13)

dα2(µ)

d lnµ
= − ~

2(4π)2

(

1

6
− ξ

)2

≡ β
(1)
2 (7.14)

d

d lnµ

(

1

16πG(µ)

)

=
~m2

(4π)2

(

1

6
− ξ

)

≡ β
(1)
G−1 (7.15)

dρΛ(µ)

d ln µ
=

~m4

2 (4π)2
≡ β

(1)
Λ . (7.16)

Notice that the obtained RGE’s do not depend at all on the unspecified finite terms indicated

in equations (7.9)-(7.12). The r.h.s’s of these expressions define the corresponding one-loop β-

functions that control the running of these parameters in the renormalization scheme we have

used, an MS-based one. Note, in particular, the RGE for ρΛ, Eq. (7.16). It coincides exactly with

Eq. (5.11), the flat spacetime result. Integration of (7.16) immediately furnishes the one-loop

finite result

ρ(1)vac = ρΛ(µ) +
m4

~

4 (4π)2

(

ln
m2

µ2
+ finite const.

)

. (7.17)

The finite additive constant in this formula is not very important, as it depends on the kind of

MS-based subtraction scheme we use. For exact MS, the constant must of course be the same

one as in Eq. (5.10), but this is quite irrelevant as it does not change at all the worrisome aspect

of the result, namely the fact that we get a quantum “correction” to the vacuum energy density

growing as ∼ m4, for a particle of mass m. So we are back to the numerological disaster first

struck by Zeldovich (cf. Sect.4), which forced him to change his strategy to estimate the vacuum

energy in particle physics. Somehow we have not advanced a single step since then, despite much

QFT in curved spacetime! This is the result we mentioned before, and it comes as a kind of an

“unexpected” surprise. It certainly does not help shed light on our poor understanding of the

vacuum energy density in QFT in curved spacetime. We will come back to it in the next section.

In view of the situation, it would be unwise to rush into conclusions at this point. For example,

it would make little sense to evaluate the found formula for the vacuum energy density by using

some value of µ and, say, the full collection of particle masses of the SM of strong and electroweak

interactions, or whatever extension of it. First, because on the face of the obtained result we feel

that we are somehow in deep water and we don’t know what is the next surprise we’ll come across

in this story; and, second, because it is obvious that the contribution from a single mass, being

proportional to the quartic power of it, is completely out of range (cf. our “numerology discussion”

in Sect. 4). The only possible exception is perhaps a very light neutrino mass, see Eq. (4.8), or the

existence of new degrees of freedom at a similar mass scale that would determine the behavior of

the cosmological term [43].

We already mentioned quantum gravity as a dreamed theory in this field, and string theory

as a promising approach to it. But unfortunately neither QG nor string theory have been able to

solve the vacuum energy problem either. As a matter of fact no theoretical framework at present

is capable to provide a fully consistent and realistic account for the vacuum energy density in
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the cosmological context. Although some of the technical problems can be glimpsed in the more

modest curved QFT arena [33], the situation is far from being completely (not even substantially)

understood. We feel that if the problem cannot be minimally dealt with at the level of unquantized

gravity, the role of QG may not be such decisive to settle this issue, especially if we limit the scope of

the CC problem to the scale of the SM of strong and electroweak interactions (which is extremely

far away from the Planck scale). We should judiciously expect that QFT in curved spacetime

is competent enough in this energy domain so as to provide a first reliable hint of the possible

solution, i.e. something that goes beyond the “cul de sac” situation we have now.

8 Dynamical vacuum energy in an expanding universe

Let us focus here on the vacuum part of the effective cosmological term, i.e. we are now mainly

concerned with the ZPE in curved spacetime. With the traditional approach the metric expansion

is usually made around flat space, i.e. gµν = ηµν+hµν . If one traces the details of the calculation [8],

one can easily see that this is the reason why the result (7.17) is the same as in flat space, Eq. (5.9).

In fact, the result is entirely dependent on the free propagator in flat spacetime, which appears

as the first term of the adiabatic expansion of the Green’s function in the curved case. This can

be troublesome since we are dealing with the renormalization of the cosmological term, namely a

term which does not exist in Minkowski space. Therefore, in those situations when the spacetime

background is unavoidably curved, sticking to the expansion gµν = ηµν + hµν misses the precise

dynamical correction to the vacuum energy density that we are looking for. Although the root of

the problem has been identified [33], the remedy for it is not available yet. One needs to compute

not only the divergences, but also the first finite correction using a physical renormalization scheme

(beyond MS or the like); and, above all, one has to learn how to cope with the technical limitations

of the current QFT methods for computing the renormalization corrections around a non-trivial

background. For de Sitter background, for example, one expects ρvac ∼ H4 by pure dimensional

analysis, and indeed particular calculations reach that kind of conclusion [52, 53]. But no realistic

attempt has ever been made for a FLRW background, where we should expect both M2
i H

2 and

H4 terms, where Mi are the particle masses. Such calculation should be a rather nontrivial one,

perhaps unreachable by the presently known methods. However we expect that it should lead to

a RGE of the form:

dρΛ
d lnH2

=
1

(4π)2

∑

i

[

aiM
2
i H

2 + bi H
4 + ci

H6

M2
i

+ ...

]

, (8.1)

in which µ = H should sensibly act as the natural running scale in the cosmological context.

Obviously the O(H6/M2
i ) terms represent the decoupling contributions that should appear in a

physical renormalization scheme. Notice that the scheme used in Sect. 7 was off-shell and it could

not trace the decoupling effects. The above equation should describe the “change in the value of

the vacuum energy density” (triggered by the quantum matter effects) associated to a “change

in the curvature of the spacetime”, this curvature being of order R ∼ H2 in the FLRW metric.

It is well known that renormalization theory can only be predictive if we first input the value of

the relevant parameters at a given renormalization point. It is only then when we can predict the
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value at another point. For instance, the e.m. fine structure constant at the scale of the electron

mass, me ≃ 0.5 MeV = 5 × 10−4 GeV, is α(me) ≃ 1/137, whereas its value at the scale of the

Z-boson mass, MZ ≃ 90 GeV, is ∼ 7% larger: α(MZ) ≃ 1/128. The RG approach cannot pretend

to “compute” α(me) or α(MZ), only the change from one value to the other when moving from

µ = me to µ = MZ , where here we make a direct association of µ with the physical scale of the

particle masses. Similarly, renormalization theory cannot aim at computing “the value” itself of

the vacuum energy density and the CC, but only the evolution or running of this value after we

have measured it at some cosmic energy scale. This should suffice for an effective QFT study of the

running vacuum energy density, quite different from the more ambitious attempts at predicting

its current value (the old CC problem [4]). These attempts are probably doomed to fail until

we can first cope with the prediction, or a more fundamental understanding, of the fundamental

parameters of the SM, if that is possible at all.

8.1 Running gravitational coupling and vacuum energy

While it is not possible to derive the general RGE for ρΛ in QFT in curved spacetime of the

form given in (8.1) yet, we may be able to hint at the expected dynamical effects induced by the

quantum corrections in some indirect way.

If we look at the vacuum diagrams of Fig. 2, we notice the following. The simplest diagram there

is the classic “blob” with just a closed loop line of the scalar field. This one is already present in the

flat spacetime case. However, the presence of the external gravitational field introduces “hair” (i.e.

hµν -tails of the classical field departing from the flat space structure). This modifies the originally

“bald” quantum vacuum blob, and for this reason we have many other blob diagrams in Fig. 2,

which we call the “haired” ones. The infinitely many tails are induced on all possible diagrams

that are preexisting in flat space, and are generated by the non-polynomial expansion of the factor
√−g = 1+ 1

2 h+O
(

h2
)

+O (hµν h
µν) + ... in the action (7.2) of the scalar field, which we take as

a free field here, i.e. V (φ) = (1/2)m2 φ2. For the particular case of the vacuum diagrams under

consideration, the expansion of
√−g is performed in the one-loop correction term of the effective

action in flat space, Eq. (5.16), after we replace d4x → √−g d4x in it so as to account for the

curvature effects. The previously computed renormalization effects from the matter field φ on the

parameters of the purely geometric vacuum action SEH + SHD (conf. Sect. 7) can now be viewed

diagrammatically in Fig. 2, which leads more intuitively to a possible physical interpretation after

we put our external gravity system in context – the FLRW cosmological one in this case.

What is important from this diagrammatic representation is to realize that the first “blob”

does not interact with the curved background at all, as it has no external tails of the gravitational

field. So any result that depends solely on that “bald” diagram contains the same information

as in flat space. This is what happens with the unsuccessful Eq. (7.17). In contrast, the ‘haired

blobs” do interact with the background geometry. Let us concentrate on the first “haired blob”.

It contains one insertion point where infinitely many tails of the external gravitational field hµν

can be attached. That blob, as all the other ‘haired” ones, is pumping external energy-momentum

from the FLRW background. The typical magnitude of the momentum should be of the order of

H, which has dimension of energy in natural units. In this sense the association µ = H looks quite
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Figure 2: The one-loop vacuum-to-vacuum diagrams of the scalar matter field in the presence of an

external gravitational field. The first type of contribution is the “bald blob” with no external tails,

which is quartically divergent. The other contribution are the “haired blobs” with one or more

external field insertion, where an arbitrary number of hµν -tails of the background field are attached

to one or more points. They appear from the expansion of the metric in the form gµν = ηµν +hµν ,

and the corresponding determinant in the action:
√−g = 1+ 1

2 h+O
(

h2
)

+O (hµν h
µν)+ ... with

(h ≡ gµνh
µν). The first haired vacuum diagram with one insertion is quadratically divergent, as

there is one propagator of the scalar field. The bunch of tails organize themselves in a covariant way

to generate an action term of the form
√−gm2 R, and hence renormalize the inverse gravitational

Newton’s coupling 1/G in the EH action (7.8). The third type of diagram is the “doubly haired

blob” and contains two insertion points. With two propagator lines, it is only logarithmically

divergent; it renormalizes the coefficients α1,2 of the HD-action (7.7). The diagrams with three

or more insertions of the external field are finite. In the flat spacetime case only the “bald blob”

contributes, so the dynamics of the vacuum energy in an expanding universe must come from

the “haired blobs”, which may pump in energy from the expanding background into the vacuum

matter loops.
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reasonable and physically intuitive, but only after we have placed the system in the cosmological

context. This is similar to the correspondence of µ with a momentum variable q in particle physics

processes, although admittedly in the cosmological case the interpretation is less straightforward,

specially in the low energy domain.

The bunch of hµν -tails in the first “haired” diagram organize themselves in a covariant way to

generate an action term of the form
√−gm2R, and hence renormalize the inverse gravitational

Newton’s coupling 1/G in the EH action (7.8). The precise RGE for this coupling was given before

in Eq. (7.15). At this point this does not yet lead to a renormalization of the vacuum energy, but

it can be related to it in an indirect way, as we shall see. Whereas in the absence of a physical

context the µ-dependence would not be of much help, if we now follow the aforementioned ansatz

µ = H within the cosmological context, we can immediately integrate (7.15) to find (in natural

units):
1

G(H)
=

1

G0
+

m2

2π

(

1

6
− ξ

)

ln
H2

H2
0

, (8.1.1)

where G0 ≡ G(H0) = 1/M2
P is the current value of the gravitational coupling. Equivalently,

G(H) =
G0

1 + ν ln
(

H2/H2
0

) , (8.1.2)

where ν = (1/2π)
(

1
6 − ξ

)

m2/M2
P is a dimensionless coefficient which acts as the reduced β-

function for the running of the gravitational coupling with the physical scaleH. Since the coefficient

ξ in the previous equation is not determined and the number of participating matter fields is

arbitrary, we can generalize ν in the form

ν =
1

2π

∑

i

(

1

6
− ξi

)

m2
i

M2
P

. (8.1.3)

It is important to realize that if the running gravitational coupling as a function of µ = H is given

by Eq. (8.1.2), we cannot continue with Eq. (7.17) as a valid RGE for the running vacuum energy

density, since there is a link between the running of G(H) and the running of ρΛ(H) which must

be preserved. That link is enforced by the Bianchi identity satisfied by the Einstein tensor on the

l.h.s. of Eq. (2.1), namely ∇µGµν = 0. There are also the contributions provided by the HD

terms in the action (7.3), which modify of course the complete field equations. These higher order

effects are represented in diagrammatic form by the “double haired” diagrams in Fig. 2. But at

low energies we can disregard them since they entail O(H4) corrections which are negligible. In

this way we obtain the following relation for the source term on the r.h.s. of Einstein’s equations:

∇µ
(

GT̃µν

)

= ∇µ [G (Tµν + gµν ρΛ)] = 0 . (8.1.4)

Using the FLRW metric (2.4) and the standard energy-momentum tensor for matter in the form of

a perfect fluid, Eq. (2.5), a straightforward calculation from (8.1.4) provides the following “mixed”

local conservation law:
d

dt
[G(ρm + ρΛ)] + 3GH (ρm + pm) = 0 . (8.1.5)

Therefore, if G(t) = G(H(t)) is evolving with the expansion rate in some particular way, the

previous identity enforces ρΛ = ρΛ(H(t)) to evolve accordingly. Let us assume that G(t) = G(H(t))
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runs with H as in Eq. (8.1.2). Let us also assume at this point that matter is covariantly conserved,

i.e.

ρ̇m + 3H (ρm + pm) = 0 ⇒ ρm(a) = ρ0m a3(1+ωm) , (8.1.6)

where pm = ωmρm is the equation of state of matter. It is then easy to show that (8.1.5) boils

down to

(ρm + ρΛ)Ġ+Gρ̇Λ =

[

(ρm + ρΛ)
dG

dH
+G

dρΛ
dH

]

Ḣ = 0 . (8.1.7)

Obviously Ḣ 6= 0, so we can equate to zero the expression in the parenthesis.

In the following we stick to flat space geometry, i.e. we take K = 0 in Eq. (2.6), and hence

the metric of spacetime becomes ds2 = dt2 − a2(t)dx2. After all, this seems to be the most

plausible possibility in view of the present observational data [3] and the natural expectation from

the inflationary universe. Friedmann’s equation for flat space just reads

H2 =
8πG

3
(ρm + ρΛ) . (8.1.8)

Combining this equation with the Bianchi identity (8.1.7) a simple differential equation for ρΛ as

a function of the Hubble rate emerges. Let us note that G in (8.1.8) is not constant in the present

instance, but given by (8.1.2). Solving for ρΛ = ρΛ(H) we find a simple “affine” quadratical law:

ρΛ(H) = c0 +
3ν

8π
M2

P H2 , (8.1.9)

ν being here, of course, the same coefficient defined in (8.1.3). This is a nice equation. With it

we have found an explicit realization of the kind of dreamed law for the vacuum energy density

suggested in Eq. (4.7), with β = 3ν/8π.

Interestingly enough the obtained equation (8.1.9) is precisely of the same form as the one that

would follow from solving the previously mentioned general RGE (8.1) provided we restrict the

latter to the current universe, namely when the O(H4) terms can be neglected, which is consistent

with the approximation we used to derive (8.1.9). Integrating (8.1), and comparing with (8.1.9) it

follows that ν must also be given by

ν =
1

6π

∑

i=f,b

ai
M2

i

M2
P

, (8.1.10)

in which only the coefficients ai of the first term on the r.h.s of (8.1) are involved. We shall

adopt this equation as it is more general and assumes independent contributions from bosons and

fermions with different multiplicities. Normalizing the obtained result (8.1.9) with respect to the

current CC value ρΛ(H0) = ρ0Λ, we can rewrite it as

ρΛ(H) = ρ0Λ +
3ν

8π
M2

P (H2 −H2
0 ) . (8.1.11)

where c0 is related with the current value of the vacuum energy as ρ0Λ = c0 + (3ν/8π) M2
P H2

0 .

The present value of the Hubble rate is H0 ≡ 100 hKm/s/Mpc = 1.0227h × 10−10 yr−1. The

observations give h ≃ 0.70 (e.g. h = 0.673 ± 0.012 from PLANCK [3]).
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As explained around Eq. (4.7) in Sect. 4, the presence of the affine term c0 6= 0 is crucial for

a realistic implementation of the model. A vacuum energy evolving only as ∼ H2 (with c0 = 0)

would be incompatible with the transition from deceleration to acceleration [40].

Let us emphasize that the affine quadratic law (8.1.11) insures a mild evolution of the vacuum

energy density, specially if the parameter |ν| < 1. We shall consider observational limits on this

parameter in Sect. 8.5, but it is obvious from its definition (8.1.3) or (8.1.10) that the natural

theoretical range expected for it is |ν| ≪ 1. This expectation will be confirmed by the phenomeno-

logical analysis. What is utmost important to note is that no term of the form ∼ M4
i drives now

the evolution of the vacuum energy. Indeed, this kind of terms are incompatible with the mild

running of the gravitational coupling, as determined by Eq. (8.1.2). This equation, together with

the covariant constraint imposed by the Bianchi identity (8.1.7), imply that the cosmological term

must evolve in the form (8.1.11). Furthermore, from the renormalization group point of view the

∼ M4
i terms are not expected on the r.h.s. of the general RGE (8.1) either, as otherwise this would

mean that a particle with mass Mi is an active degree of freedom for the running of ρΛ. Since,

however, the running is parameterized by the scale µ = H, this would entail H > Mi, which is

impossible for any known particle mass at any time in the matter dominated epoch (recall that

H0 ∼ 10−42 GeV) 6.

To summarize, while a direct calculation of the dynamical renormalization effects on the cos-

mological term is not possible at the moment without expanding around a non-flat background in

the presence of massive fields and within a physical renormalization scheme, at least an indirect

hint of the result should be glimpsed by requiring the consistency of the renormalization effects on

the different terms of the effective action. As these terms are linked by the Bianchi identity, the

possible quantum effects are tied to the general covariance of the theory. This requirement could

give us an indirect clue, which can be read off on more physical grounds from the diagrams of

Fig. 2. We suggested that while for flat spacetime only the “bald blob” contributes, the dynamics

of the vacuum energy in an expanding universe should emerge from the “haired blobs”, which may

pump in energy from the expanding background into the vacuum matter loops. At low energies

we found that this procedure indicates that the renormalization effects impinged upon the cos-

mological term of the vacuum action consists in the O(H2) terms reflected in Eq. (8.1.9). These

are of course the same kind of quantum effects that should be found from a direct computational

approach, when it will be technically feasible.

8.2 A comment on, and an analogy with, the Casimir effect

In the meanwhile our roundabout path gives us a handle on the type of effects we are looking

for. It is encouraging to see that the obtained result by the indirect procedure is free from the

6Even if we go to the radiation dominated epoch, at temperature T , we find from Friedman’s equation (with

ρm ∼ T 4) that to satisfy the condition H > Mi roughly means T 2/MP > Mi, or equivalently M4
i /T

4 < M2
i /M

2
P ≪ 1

(for any particle). Hence, at the time when the ∼ M4
i vacuum contributions start being active they are negligible

as compared to the radiation contribution ∼ T 4. We conclude that, in the RG formulation, the terms ∼ M4
i remain

innocuous throughout the entire cosmic history: for, at low energies, these terms are not allowed since the condition

H > Mi can never be fulfilled, whilst the effect becomes completely irrelevant at high energies (when that condition

is possible).
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unwanted ∼ m4 contributions that plague the traditional approach. Somehow the O(H2) terms

are the real effects that remain in the expanding spacetime after we subtract the flat spacetime

result — quite in the same manner as when in the calculation of the Casimir effect (see e.g. [54, 55]

for a review) one removes the divergence of the result upon subtracting the vacuum energy density

when there are no plates. Recall that in the Casimir effect the (attractive) force between a pair

of neutral, parallel conducting planes is due to the disturbance of the quantum electrodynamics

(QED) vacuum caused by the presence of the boundaries. Since at zero temperature there are no

real photons in between the plates, it should be the vacuum alone, i.e., the ground state of QED

which causes the plates to attract each other 7. The pressure, or force per unita area (F/A), on the

plates is a pure quantum effect (proportional to ~) that goes as the inverse of the quartic power

of the distance a between the plates, i.e.

F/A = − 1

A

dE

da
= −~ c

π2

240 a4
. (8.2.1)

The Casimir effect is caused by the difference between the vibrational modes of the QED vacuum in

between the plates as compared to the region outside. While the ZPE itself may not be measurable,

“changes in the ZPE” are detectable. The effect would, of course, be dynamical if the distance

between the plates would change in time, a = a(t). Similarly, we may view the evolution of the

vacuum energy in an expanding background with (dynamical) curvature R ∼ H2(t), as the change

that remains of the disturbed vacuum energy density after we remove the flat spacetime result –

which is also contained in the curved spacetime calculation, Eq. (7.17). The mass term m4 there

is replaced here by 1/a4 (note that no mass contribution is possible for the Casimir effect in QED

since photons are massless). Now, while the m4 term is removed when the flat spacetime result is

subtracted, the term 1/a4 remains in the Casimir effect because the plates, of course, stay. In the

Casimir effect one regularizes the infinite mode sum
∑

k

1
2 ~ωk by subtracting the infinite value of

the ZPE when the plates are infinitely apart. This infinite quantity cancels against the infinite

ZPE value corresponding to the two plates being at finite distance a, and in this way the final, and

finite, result (8.2.1) emerges – reflecting the “differential effect” caused by the inner modes only.

But notice that if letting a → 0, we would strike another infinite value. This is a short distance

effect or UV-divergence. The new infinity ought again to be subtracted because it corresponds to

a situation where the space between the plates disappears, so no “distinctive” standing waves can

form in that limit. Such situation should be the equivalent of subtracting the unphysical ∼ m4

term in the vacuum energy density of free fields, as it appears in taking care of the UV divergences

through the MS-renormalization procedure both in Minkowski and curved spacetime cases [8].

At the end of the day only theO(H2) disturbance, along with the additive c0 term in Eq. (8.1.9),

are left at low energy as the final measurable output for the curved spacetime case. Let us

emphasize once more that both terms are obtained in the RG formulation, and in particular the

additive term c0 is absolutely essential for a correct phenomenological description of the transition

from deceleration to acceleration. This term appears in a natural way in the present framework

from the integration of the general RGE (8.1) for the vacuum energy in an expanding spacetime.

7For this reason the Casimir effect is usually advocated as experimental evidence for the ZPE. See [56] though.
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Interestingly, a kind of equation such as (8.1.11) was suggested in [33], and previously in

[57, 58, 59, 60] on more phenomenological grounds. But the first hint that an expression of that

sort could be somehow derived from a specific QFT framework was provided in Ref. [61] in a

conformal field theory context. More recently there have appeared alternative QFT frameworks

suggesting a similar kind of evolution of the vacuum energy leading once more to dynamical terms

∼ H2 [62]. See also [63] for other interesting considerations along these lines.

8.3 Extension to the early universe

We expect that the low energy running vacuum model (8.1.9) can be generalized in the form (8.1)

so as to include the important effects from the higher powers of H at the early inflationary times.

A unified model of this kind, where the dark energy emerges at late times as a “fossil” of the early

inflationary universe was presented in [61] in the framework of the generalized anomaly induced

inflation [64]. These models of the early universe, combined with the low energy theory, suggest

that the effective expression of the vacuum energy density should be a combination of even powers

of H, essentially H2 and H4. Recently, in Ref. [65, 66, 67] a detailed analysis of the complete

cosmic history of the universe has been presented by considering the class of models of the form

ρΛ(H) = c0 +
3ν

8π
M2

PH
2 +

3α

8π
M2

P

H2n

H
(2n−2)
I

, (8.3.1)

in which n > 2. Clearly, this expression is an extension of Eq. (8.1.9) along the lines of the general

RGE (8.1). The higher power of H should obviously be operative only for large values of H

near the inflationary scale HI (presumably a GUT scale not very far from the Planck scale) 8.

Typically we expect n = 2, i.e. a high energy behavior ∼ H4 [65]. At present, the H4 term is

of course negligible and we are effectively left with the low energy theory (8.1.9). Notice that the

dimensionless coefficient α (enabling the running of the vacuum energy near the GUT scale) can

be related to the coefficients of the general RGE (8.1) as follows:

α =
1

12π

H2
I

M2
P

∑

i=f,b

bi . (8.3.2)

We point out that while we use only even powers of the Hubble rate, odd powers have also been

considered phenomenologically in the old literature for the treatment of the inflationary stages [69].

More recently one can also find models where odd powers are used for describing the CC evolution

for the present universe, or in combination with even powers for the early universe [38, 70]. Finally,

let us mention that powers of H, including linear ones, have also been used to describe the late

time evolution in terms of the so-called bulk viscosity parameters, but again this is a purely

phenomenological treatment of the purported DE fluid [71]. Let us insist that the general form

that we propose in (8.3.1) involves only even powers of the expansion rate, at all stages of the

cosmological evolution, as a most fundamental requirement from the general covariance of the

effective action of QFT in curved spacetime [33].

8See Ref. [68] for interesting thermodynamical considerations on this kind of Λ(H) dynamical vacuum models.
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We shall not dwell here on the phenomenological application of the class of unified vacuum

models (8.3.2), see [65, 66, 67] for details. It suffices to say that all these models start from an

inflationary phase and, for all n > 2, they automatically reach “graceful exit” from the inflationary

phase into a standard radiation dominated epoch, which is already an achievement. In general

they provide an effective framework containing most of the basic ingredients that should probably

be desirable for a future fundamental theory of the cosmic evolution, namely a theory capable

of tackling efficiently the important cosmological problems which are still pending. And, most

important, the late time cosmic expansion history is very close to the standard ΛCDM model.

8.4 Different scenarios for running cosmological parameters at low energies

We discuss now some possible scenarios for running cosmological parameters. We shall focus here

on the implications for the low energy regime of the cosmological evolution and therefore we do

not consider the highest powers of H introduced in Eq. (8.3.1), it will be enough to consider the

H2 dynamical effects. Once more we adopt the spatially flat FLRW metric, i.e. K = 0 in Eq. (2.4),

for all models to be discussed henceforth. In such conditions, the relevant Friedmann’s equation

providing the Hubble rate reads as in Eq. (8.1.8). As stated, we assume that ρΛ = ρΛ(t) and

G = G(t) can be functions of the cosmic time t. Furthermore, the dynamical equation for the

acceleration of the universe is given by the expression (2.7), or equivalently

ä

a
= −4πG

3
(ρm + 3pm − 2ρΛ) = −4π G

3
(1 + 3ωm) ρm +

8π G

3
ρΛ . (8.4.1)

In the late universe (ρm → 0) the vacuum energy density ρΛ dominates. It accelerates the cosmos

for ρΛ > 0. This may occur either, because ρΛ is constant, and for a sufficiently old universe one

finally has ρm(t) < 2 ρΛ, or because ρΛ(t) evolves with time, and the situation ρΛ(t) > ρm(t)/2 is

eventually reached sooner or later than expected.

Let us come back to the general covariant conservation law, Eq. (8.1.5), and consider various

possibilities 9:

• Model I: G =const. and ρΛ =const.:

Under these conditions and in the absence of other components in the cosmic fluid, apart

from matter and a strictly constant Λ-term, the local covariant conservation law of matter-

radiation is strictly fulfilled, i.e. Eq. (8.1.6). If, in addition, we have zero spatial curvature,

K = 0, then Model I becomes the almost thirty years old flat ΛCDM, or “concordance”

cosmological model [72], viz. the currently reigning standard cosmological model.

• Model II: G =const and ρ̇Λ 6= 0:

Here Eq.(8.1.5) leads to the mixed conservation law:

ρ̇Λ + ρ̇m + 3H (ρm + pm) = 0 . (8.4.2)

9The local covariant conservation equation (8.1.5) is not independent from equations (2.6) and (2.7), as it is

actually a first integral of the system formed by the last two. For example, it is easy to check from equations (2.6)

and (8.1.5) that the acceleration equation for the scale factor takes the usual form (2.7) – or equivalently (8.4.1) –

even for time evolving G and ρΛ (and for nonvanishing spatial curvature K).
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An exchange of energy between matter and vacuum takes place. The model can be solved

only if more information is provided on e.g. the cosmic evolution of ρΛ, see the next section.

• Model III: Ġ 6= 0 and ρΛ =const.:

Ġ(ρm + ρΛ) +G[ρ̇m + 3H(ρm + pm)] = 0 . (8.4.3)

Since G does not stay constant here, this equation implies matter non-conservation. It could

be solved e.g. for G, if the (anomalous) cosmic evolution of ρm would be given by some

particular ansatz.

• Model IV: Ġ 6= 0 and ρ̇Λ 6= 0:

Although several possibilities are available here, the simplest one is of course the framework

that has motivated our analysis in the previous section, where matter is covariantly conserved

and the dynamical interplay occurs between G and ρΛ through Eq. (8.1.7). The cosmological

equations for this model were solved in Sect. 8.1. In the next section we solve also the

“running” Models II and III and compare with the present one.

8.5 Solving the cosmological equations for Models II and III

The class of Models II and III is quite general and we cannot solve them unless we provide some

more information, similarly to the situation with Model IV. Let us first concentrate on solving

the class of scenarios denoted as Model II. Let ρ0M be the total matter density of the present

universe, which is essentially non-relativistic (ωm ≃ 0). The corresponding normalized density is

Ω0
M = ρ0M/ρ0c ≃ 0.3 , where ρ0c is the current critical density. Similarly, Ω0

Λ = ρ0Λ/ρ
0
c ≃ 0.7 is the

current normalized vacuum energy density, for flat space. If ρΛ evolves with the Hubble rate in

the form indicated in Eq. (8.1.11), the non-relativistic matter density and vacuum energy density

evolve with the redshift as follows [39, 58]:

ρM (z; ν) = ρ0M (1 + z)3(1−ν) , (8.5.1)

and

ρΛ(z) = ρ0Λ +
ν ρ0M
1− ν

[

(1 + z)3(1−ν) − 1
]

. (8.5.2)

The corresponding Hubble function reads

H2(z) =
8πG

3 (1 − ν)

[

ρ0Λ − ν ρ0c + ρ0m (1 + z)3(1−ν)
]

. (8.5.3)

The crucial parameter is ν, which we have introduced in sect. 8.1. It is responsible for the time

evolution of the vacuum energy. From Eq. (8.5.1) we confirm, that it accounts also for the non-

conservation of matter. For ν = 0 it leads to the exact local covariant conservation, which for

non-relativistic matter reads

ρM (z) = ρ0M (1 + z)3 . (8.5.4)

Next we note that δρM ≡ ρM (z; ν) − ρM (z) is the net amount of non-conservation of matter per

unit volume at a given redshift. This expression must be proportional to ν, since we subtract
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the conserved part. At this order we have δρM = −3 ν ρ0M (1 + z)3 ln(1 + z). We differentiate it

with respect to time and expand in ν, and finally divide the final result by ρM . This provides the

relative time variation:
δρ̇M
ρM

= 3ν (1 + 3 ln(1 + z)) H +O(ν2) . (8.5.5)

Here we have used ż = (dz/da)ȧ = (dz/da)aH = −(1 + z)H. Assuming relatively small values of

the redshift, we may neglect the log term and are left with:

δρ̇M
ρM

≃ 3ν H . (8.5.6)

From (8.5.2) we find:
ρ̇Λ
ρΛ

≃ −3ν
Ω0
M

Ω0
Λ

(1 + z)3 H +O(ν2) . (8.5.7)

It is of the same order of magnitude as (8.5.6) and has the opposite sign. From a detailed analysis of

the combined data on type Ia supernovae, the Cosmic Microwave Background (CMB), the Baryonic

Acoustic Oscillations (BAO) and the structure formation data a direct cosmological bound on ν

has been obtained in the literature [39]:

|ν|cosm. . O(10−3) , (Model II) . (8.5.8)

It is consistent with the theoretical expectations [61].

Let us now analyze Model III, which can also accommodate matter non-conservation in the

form (8.5.1), but at the expense of a time varying G. We compare it with a similar model where

G is also running, Model IV, but where matter is conserved.

Within the class of scenarios indicated as Model III the parameter ρΛ remains constant (ρΛ =

ρ0Λ) and G is variable. This is possible due to the presence of the non self-conserved matter density

(8.5.1). Trading the time variable by the scale factor, we can rewrite Eq. (8.4.3) as follows:

G′(a)
[

ρM (a) + ρ0Λ
]

+G(a)

[

ρ′M (a) +
3

a
ρM (a)

]

= 0 . (8.5.9)

The primes indicate differentiation with respect to the scale factor. We insert equation (8.5.1) in

(8.5.9), integrate the resulting differential equation for G(a) and express the final result in terms

of the redshift:

G(z) = G0

[

Ω0
M (1 + z)3(1−ν) +Ω0

Λ

]ν/(1−ν)
. (8.5.10)

Here G0 = 1/M2
P is the current value of the gravitational coupling. The previous equation is

correctly normalized: G(z = 0) = G0, due to the cosmic sum rule in flat space: Ω0
M +Ω0

Λ = 1. For

ν = 0 the gravitational coupling G remains constant: G = G0. Since ρΛ is constant in the current

scenario, the small variation of G is entirely due to the non-vanishing value of the ν-parameter in

the matter non-conservation law (8.5.1). This leads to the dynamical feedback of G with matter 10.

For the present model Friedmann’s equation (8.1.8) becomes:

H2(z) =
8πG(z)

3

[

ρ0M (1 + z)3(1−ν) + ρ0Λ

]

= H2
0

G(z)

G0

[

Ω0
M (1 + z)3(1−ν) +Ω0

Λ

]

. (8.5.11)

10The matter non-conservation law (8.5.1) was first suggested and analyzed in [58], and later on in [73].

39



Combining (8.5.10) and (8.5.11), we find the Hubble function of this model in terms of z:

H2(z) = H2
0

[

Ω0
M (1 + z)3(1−ν) +Ω0

Λ

]1/(1−ν)
, (8.5.12)

and we obtain:
G(z)

G0
=

[

H2(z)

H2
0

]ν

. (8.5.13)

Since ν is presumably small in absolute value (as in the previous section), we can expand (8.5.13)

in this parameter:

G(H) ≃ G0

(

1 + ν ln
H2

H2
0

+O(ν2)

)

. (8.5.14)

At leading order in ν this expression for the variation of G is identical to the one found for Model

IV, see Eq. (8.1.2), except for the sign of ν. The equation(8.5.14) allows us to estimate the value

of the parameter ν by confronting the model with the experimental data on the time variation of

G. Differentiating (8.5.14) with respect to the cosmic time, we find in leading order in ν:

Ġ

G
= 2ν

Ḣ

H
= −2 (1 + q) ν H , (8.5.15)

where we have used the relation Ḣ = −(1 + q)H2, in which q = −ä/(aH2) is the deceleration

parameter. From the known data on the relative time variation of G the bounds indicate that

|Ġ/G| . 10−12 yr−1 [74]. If we take the present value of the deceleration parameter, we have

q0 = 3Ω0
M/2− 1 = −0.595 ≃ −0.6 for a flat universe with Ω0

M = 0.27. It follows:
∣

∣

∣

∣

∣

Ġ

G0

∣

∣

∣

∣

∣

. 0.8|ν|H . (8.5.16)

Taking the current value of the Hubble parameter: H0 ≃ 7× 10−11 yr−1 (for h ≃ 0.70), we obtain

|ν| . 10−2. The real value of |ν| can be smaller, but to compare the upper bound that we have

obtained with observations makes sense in view of the usual interpretation of ν in sect. 8.1 and

the theoretical estimates indicated there. The constraints from Big Bang nucleosynthesis (BBN)

for the time variation of G are more stringent and lead to the improved bound. Since Models III

and IV share a similar kind of running law for the gravitational coupling (except for the sign of

ν) we can extract the same bound for |ν| in the two models following the method of Ref. [75] and

references therein, particularly [76]. The final result is

|ν|BBN . 10−3 (Models III and IV) . (8.5.17)

The cosmological data from different sources furnish about the same upper bound on |ν| for the

two running models where matter is non-conserved, i.e. Models II and III. In both cases the upper

bound on |ν| is ∼ 10−3, as shown by equations (8.5.8) and (8.5.17).

Although the order of magnitude of the bounds on |ν| are sometimes coincident for different

models, the interpretation can be quite different. For example, Model IV cannot – in contrast to

Models II and III – be used to explain the possible time variation of the fundamental constants of

the strong interactions and the particle masses (see next section). It can only be used to explain

the time variation of the cosmological parameters ρΛ and G in a way which is independent, in

principle, from the microphysical phenomena in particle physics and nuclear physics.
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9 Dynamical vacuum energy and the time variation of the funda-

mental constants

As we have seen in Sect. 8.1, in an expanding universe the vacuum energy density ρΛ is expected

to be a dynamical quantity, and should exhibit a slow evolution determined by the expansion

rate of the universe H. While a formal and completely rigorous proof of this contention is at the

moment not feasible, the hints that it must be so are sufficiently encouraging to further spur these

investigations at least from the phenomenological side [9], let alone the theoretical studies pointing

to that possibility in particular QFT frameworks [61, 77]. If so, the dynamical vacuum in QFT

in curved spacetime could provide an alternative scenario (beyond the usual quintessence kind of

approaches) for implementing dynamical dark energy (DE) as a general paradigm for curing or

alleviating the old CC problem, as well as the so-called cosmic coincidence problem. Interestingly

enough, this possibility has been phenomenologically tested and profusely confronted with the

latest accurate data on type Ia supernovae (SNIa), the Baryonic Acoustic Oscillations (BAOs),

and the anisotropies of the Cosmic Microwave Background (CMB), see particularly [39, 40, 78, 42]

for the most recent and comprehensive studies. Furthermore, a unified vacuum framework capable

of describing the complete cosmic history as of the early inflationary times to the present dark

energy epoch has also recently been proposed within this same kind of approach [65, 66].

If that is not enough, quite intriguingly the idea could also be tested from an entirely different

vein, namely one capable of providing a new and completely independent insight into the whole

subject. This novel and recent approach was first suggested in [24], and it is related with the

precise measurements of the so-called Fundamental Constants of Nature and their possible time

variation, see e.g. [74] (and the long list of references therein). I would like to devote some time in

this review to this particular phenomenological approach to dynamical vacuum energy.

Recent measurements on the time variation of the fine structure constant and of the proton-

electron mass ratio suggest that basic quantities of the Standard Model, such as the QCD scale

parameter ΛQCD, may not be conserved in the course of the cosmological evolution [79]. The masses

of the nucleons mN and of the atomic nuclei would also be affected. Matter is not conserved in

such a universe. In the framework of ideas that we have developed in Sect. 8.4, these measurements

could be interpreted as a leakage of matter into vacuum or vice versa. In the following we wish

to show that the amount of leakage necessary to explain the measured value of the time variation

ṁN/mN could be of the same order of magnitude as the observationally allowed value of ρ̇Λ/ρΛ,

with a possible contribution from the dark matter particles [24]. Therefore, the dark energy in our

universe could be the dynamical vacuum energy in interaction with ordinary baryonic matter as

well as with dark matter.

The QCD scale parameter is related to the strong coupling constant αs = g2s/(4π). To lowest

(1-loop) order one finds:

αs(µR) =
1

β0 ln
(

Λ2
QCD/µ

2
R

) =
4π

(11− 2nf/3) ln
(

µ2
R/Λ

2
QCD

) , (9.1)

where µR is the renormalization point and β0 ≡ −b0 = −(33− 2nf )/(12π) (nf being the number

of quark flavors) is the lowest order coefficient of the β-function. If we include all the know flavors,
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we obviously have β0 < 0 and therefore when the renormalization scale µR increases the strong

coupling constant diminishes (this is the famous asymptotic freedom property of QCD). However,

for lower scales, namely for µR near ΛQCD ∼ O(100) MeV, the strong coupling constant increases

and in practice it becomes arbitrarily large. This is just the regime which we cannot explore with

perturbation theory, and as we see the two regimes are roughly separated by the ΛQCD scale. Not

surprisingly this scale is the one that rules the calculation of the strongly interacting hadronic

bound states like the proton, and in fact it dominates the calculation of its mass, see Eq. (9.5)

below. The QCD scale parameter ΛQCD has actually been experimentally measured with ∼ 10%

precision: ΛQCD = 217± 25 MeV.

The next observation is crucial for our discussion [24]. When we embed QCD in the FLRW

expanding background, the value of ΛQCD need not remain rigid anymore. The value of ΛQCD

could change with H, and this would mean a change in the cosmic time. If ΛQCD = ΛQCD(H) is a

function of H, the coupling constant αs = αs(µR;H) is also a function of H (apart from a function

of µR). The relative cosmic variations of the two QCD quantities are related (at one-loop) by:

1

αs

dαs(µR;H)

dH
=

1

ln (µR/ΛQCD)

[

1

ΛQCD

dΛQCD(H)

dH

]

. (9.2)

The potential significance of this relation is out of discussion: if the QCD coupling constant αs

or the QCD scale parameter ΛQCD undergo a small cosmological time shift, the nucleon mass and

the masses of the atomic nuclei of the universe would also change in proportion to ΛQCD.

The cosmic dependence of the strong coupling αs(µR;H) can be generalized to the other

couplings αi = αi(µR;H) [80], in particular the electromagnetic fine structure constant αem. In

a grand unified theory (GUT) these couplings converge at the unification point. Let dαi be the

cosmic variation of αi with H. Each of the αi is a function of µR, but the expression α−1
i (dαi/αi)

is easily seen to be independent of µR. As a result we can see, using Eq. (9.2), that the running of

αem is related to the corresponding cosmic running of ΛQCD as follows:

1

αem

dαem(µR;H)

dH
=

8

3

αem(µR;H)/αs(µR;H)

ln (µR/ΛQCD)

[

1

ΛQCD

dΛQCD(H)

dH

]

. (9.3)

At the renormalization point µR = MZ , where both αem and αs are well-known, one finds:

1

αem

dαem(µR;H)

dH
≃ 0.03

[

1

ΛQCD

dΛQCD(H)

dH

]

. (9.4)

Thus the QCD scale ΛQCD runs more than 30 times faster with the cosmic expansion than the

electromagnetic fine structure constant. Searching for a cosmic evolution of ΛQCD is thereby much

easier than searching for the time variation of αem. It is important to note that the cosmic running

properties of the QCD scale parameter could have nontrivial implications on the physics of the

fundamental constants of Nature. This is sooner said than done: how do we search for a possible

cosmic running of the QCD scale? The answer is: searching for a possible running of the proton

mass, a parameter which has been (and is being) monitored by many astrophysical and laboratory

experiments (or more specifically, what is traced is the ratio of the proton mass to the electron

mass, where the latter is of course independent of QCD) [74]. Let us take for instance the proton
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mass mp ≃ 938 MeV, supposed to be a fundamental constant. It can be computed from ΛQCD,

the quarks masses and the electromagnetic contribution. The precise formula reads

mp = cQCDΛQCD + cumu + cd md + cs ms + cemΛQCD

= (860 + 21 + 19 + 36 + 2) MeV , (9.5)

from which we learn that it is largely dominated by the QCD scale, namely the bulk (∼ 92%) of

the proton mass is given by mp ≃ cQCDΛQCD. We will take advantage of this fact in what follows.

Let us focus on the impact of the cosmological Models II and III of Sect. 8.4 on the non-

conservation of matter in the universe. Recall that we have considered bounds on the “leakage

parameter” ν within the class of these models based on the non-conservation matter density law

(8.5.1). We must be careful in interpreting such a non-conservation law. For example, if we take

the baryonic density in the universe, which is essentially the mass density of protons, we can write

ρBM = npmp, where np is the number density of protons and m0
p = 938.272013(23) MeV is the

current proton mass. If this mass density is non-conserved, either np does not exactly follow the

normal dilution law with the expansion, i.e. np ∼ a−3 = (1 + z)3, but the anomalous law:

np(z) = n0
p (1 + z)3(1−ν) (at fixed proton mass mp = m0

p) , (9.6)

and/or the proton mass mp does not stay constant with time and redshifts with the cosmic evolu-

tion:

mp(z) = m0
p (1 + z)−3ν (with normal dilution np(z) = n0

p (1 + z)3) . (9.7)

In all cases it is assumed that the vacuum absorbs the difference (i.e. ρΛ = ρΛ(z) “runs with the

expansion”). The first possibility implies that during the expansion a certain number of particles

(protons in this case) are lost into the vacuum (if ν < 0; or ejected from it, if ν > 0), whereas

in the second case the number of particles is strictly conserved. The number density follows the

normal dilution law with the expansion, but the mass of each particle slightly changes (decreases

for ν < 0, or increases for ν > 0) with the cosmic evolution.

For the following considerations we adopt the second point of view, i.e. Eq. (9.7). Being the

matter content of the universe dominated by the dark matter (DM), we cannot exclude that the

particle masses of which is made also vary with cosmic time. Let us denote the mass of the average

DM particle mX , and let ρX and nX be its mass density and number density, respectively. The

overall matter density of the universe can be written as follows:

ρM = ρB + ρL + ρR + ρX = (npmp + nnmn) + neme + ρR + nX mX

≃ npmp + nnmn + nX mX . (9.8)

Here np, nn, ne, nX (mp,mn,me,mX) are the number densities (and masses) of protons, neutrons,

electrons and DM particles. The baryonic and leptonic parts are ρB = npmp + nnmn and ρL =

neme respectively. The small ratio me/mp ≃ 5 × 10−4 implies that the leptonic contribution to

the total mass density is negligible: ρL ≪ ρB . We have also neglected the relativistic component

ρR (photons and neutrinos).
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If we assume that the mass change through the cosmic evolution is due to the time change

of mp, mn and mX , we can compute the mass density anomaly per unit time, i.e. the deficit

or surplus with respect to the conservation law, by differentiating (9.8) with respect to time and

subtracting the ordinary (i.e. fixed mass) time dilution of the number densities. The result is:

δρ̇M = np ṁp + nn ṁn + nX ṁX . (9.9)

The relative time variation of the mass density anomaly can be estimated as follows:

δρ̇M
ρM

=
np ṁp + nn ṁn + nX ṁX

npmp + npmp + nX mX
≃ np ṁp + nn ṁn + nX ṁX

nX mX

(

1− npmp + nnmn

nX mX

)

. (9.10)

The current normalized DM density Ω0
DM = ρX/ρc ≃ 0.23 is significantly larger than the cor-

responding normalized baryon density Ω0
B = ρB/ρc ≃ 0.04. Therefore nX mX is larger than

npmp + nnmn by the same amount. If we assume ṁn = ṁp, we find approximately:

δρ̇M
ρM

=
np ṁp

nX mX

(

1 +
nn

np
− ΩB

ΩDM

)

+
ṁX

mX

(

1− ΩB

ΩDM

)

. (9.11)

In the approximation mn = mp we can rewrite the prefactor on the r.h.s of Eq. (9.11) as follows:

np ṁp

nX mX
=

ΩB

ΩDM

ṁp

mp

(

1− nn/np

1 + nn/np

)

≃ ΩB

ΩDM

ṁp

mp

(

1− nn

np

)

. (9.12)

The ratio nn/np is of order 10% after the primordial nucleosynthesis. Since ΩB/ΩDM is also of

order 10%, we can neglect the product of this term with nn/np . When we insert the previous

equation into (9.11), the two nn/np contributions cancel each other. The expression 1− ΩB/ΩDM

factorizes in the two terms on the r.h.s of Eq. (9.11). The final result is:

(

1− ΩB

ΩDM

)−1 δρ̇M
ρM

=
ΩB

ΩDM

ṁp

mp
+

ṁX

mX
=

ΩB

ΩDM

Λ̇QCD

ΛQCD
+

ṁX

mX
. (9.13)

As mentioned, we have approximated mp ≃ cQCD ΛQCD.

The expression δρ̇M/ρM in Eq. (9.13) must be the same as the one we have computed in (8.5.5),

if we consider the models based on the generic matter non-conservation law (8.5.1). Therefore the

two expressions should be equal, and we obtain approximately:

3νeff H =
ΩB

ΩDM

Λ̇QCD

ΛQCD
+

ṁX

mX
, (9.14)

where we have defined

νeff =
ν

1− ΩB/ΩDM
, (9.15)

and numerically νeff ≃ 1.2 ν. The differential equation (9.14) describes approximately the relation-

ship between the matter non-conservation law (8.5.1), the evolution of the vacuum energy density

ρΛ (and/or G) and the time variation of the nuclear and particle physics quantities.

Various scenarios are possible. Suppose that the dark matter particles do not vary with time,

i.e. ṁX = 0, and only the cosmic evolution of ΛQCD accounts for the non-conservation of matter.

44



Trading the cosmic time for the scale factor through Λ̇QCD = (dΛQCD/da) aH and integrating the

resulting equation, we can express the final result in terms of the redshift:

ΛQCD(z) = Λ0
QCD (1 + z)−3 (Ω0

DM
/Ω0

B
) νeff . (9.16)

Since the contribution of the quark massesmu,md andms to the proton mass is small – cf. Eq. (9.5)

– we can approximate the proton mass by mp ≃ cQCD ΛQCD. Therefore, for the protons we have

mp(z) = m0
p (1 + z)−3 (Ω0

DM/Ω0
B
) νeff . (9.17)

Here Λ0
QCD and m0

p are the QCD scale and proton mass at present (z = 0); Ω0
DM and Ω0

B being

the current values of these cosmological parameters.

The presence of the factor Ω0
B/Ω

0
DM in the power law makes eq. (9.17) more realistic than eq.

(9.7). In the case ν = 0 the QCD scale and the proton mass would not vary with the expansion

of the universe, but for non-vanishing ν it describes the cosmic running of ΛQCD = ΛQCD(z) and

mp = mp(z). For ν > 0 (ν < 0) the QCD scale and proton mass decrease (increase) with the

redshift. This is consistent, since for ν > 0 (ν < 0) the vacuum energy density is increasing

(decreasing) with the redshift – cf. Eq. (8.5.2) –, and it is smaller (larger) now than in the past.

We can write down the variation of the QCD scale in terms of the Hubble rate H. With the

help of Eq. (8.5.3) it is easy to see that Eq. (9.16) can be turned into an expression for ΛQCD given

explicitly in terms of the primary cosmic variable H:

ΛQCD(H) = Λ0
QCD

[

1− ν

Ω0
M

H2

H2
0

− Ω0
Λ − ν

Ω0
M

]−(Ω0
DM

/Ω0
B
) νeff/(1−ν)

, (9.18)

with Ω0
M = Ω0

B + Ω0
DM. ν and νeff are involved in (9.18), since they come from different sources.

This equation satisfies the normalization condition ΛQCD(H0) = Λ0
QCD due to the cosmic sum rule

for flat space: Ω0
M +Ω0

Λ = 1.

Obviously the cosmic time variation of the ΛQCD scale is very small in our framework. This

can be more easily assessed if we use Eqs. (9.16) and (9.18) to compute the relative time variation

of the QCD scale with respect to the present value. Since ν is small it it easy to show that

ΛQCD(z)− Λ0
QCD

Λ0
QCD

= −Ω0
DM

Ω0
B

νeff
1− ν

ln

[

1− ν

Ω0
M

H2(z)

H2
0

− Ω0
Λ − ν

Ω0
M

]

. (9.19)

As a concrete example, let us consider the studies made in Ref. [81] on comparing the H2 spectral

Lyman and Werner lines observed in the Q 0347-383 and Q 0405-443 quasar absorption systems.

The comparison with the corresponding spectral lines at present may be sensitive to a possible

evolution of these lines in the last twelve billion years and involves redshifts in the range z ≃
2.6−3.0. A positive result could be interpreted as a small variation of the proton to electron mass

ratio between two widely separated epochs of the cosmological evolution [81] . Assuming that

|ν| = O(10−3), as suggested by Eq. (8.5.8), it follows from the previous formulae that the relative

variation of ΛQCD in this lengthy time interval is only at the few percent level with respect to its

present day value. From Eq. (8.5.2) we can then easily check that the corresponding variation of

ρΛ(z) with respect to the current value ρ0Λ is also of a few percent. As expected, the two scales
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undergo tiny variations over very long periods of time, in fact cosmological periods, and therefore

the large hierarchy between them at present – namely ΛQCD = O(100) MeV= O(108) eV and

ρ
1/4
Λ = O(10−3) eV – is essentially preserved over the cosmological evolution. However, even this

small crosstalk between these two widely separated scales could be sufficient for being eventually

detected by the aforementioned high precision experiments aiming at measuring very tiny variation

of the proton to electron mass ratio.

Indeed, this is suggested by the fact that the expected range of values of ν is within the scope

of the precision of these experiments. Consider the state of the art in the current laboratory tests,

using atomic clocks. According to our estimate (9.4), the largest effect is expected to be a cosmo-

logical redshift (hence time variation) of the nucleon mass, which can be observed by monitoring

molecular frequencies. These are precise experiments in quantum optics, e.g. obtained by com-

paring a cesium clock with 1S-2S hydrogen transitions. In a cesium clock the time is measured by

using a hyperfine transition 11. Since the frequency of the clock depends on the magnetic moment

of the cesium nucleus, a possible variation of the latter is proportional to a possible variation of

ΛQCD. A hyperfine splitting is a function of Z αem (Z being the atomic number) and is proportional

to Z α2
em(µN/µB)(me/mp)R∞, where R∞ is the Rydberg constant, µN is the nuclear magnetic

moment and µB = e~/2mpc is the nuclear magneton. We have µ̇N/µN ∝ −Λ̇QCD/ΛQCD. The hy-

drogen transitions are only dependent on the electron mass, which we assume to be constant. The

comparison over a period of time between the cesium clock with hydrogen transitions provides an

atomic laboratory measurement of the ratio µpe ≡ mp/me. The most sophisticated atomic clock

experiments aim soon to reach a sensitivity limit of
∣

∣

∣
Λ̇QCD/ΛQCD

∣

∣

∣
< 10−14 yr−1 [24]. Since the

proton mass is given essentially by ΛQCD, as indicated by Eq. (9.5), we have ṁp ≃ cΛQCD
Λ̇QCD

and the corresponding time variation of the ratio of the proton mass would be:
∣

∣

∣

∣

µ̇pe

µpe

∣

∣

∣

∣

=

∣

∣

∣

∣

ṁp

mp

∣

∣

∣

∣

≃
∣

∣

∣

∣

∣

Λ̇QCD

ΛQCD

∣

∣

∣

∣

∣

< 10−14 yr−1 . (9.20)

The atomic clock result (9.20) would indicate a time variation of the ratio µpe, which is consistent

(in absolute value) with the astrophysical measurements [81].

Using the above equations and Eq. (9.1), we can obtain the corresponding evolution of the

strong coupling constant αs with the redshift:

1

αs(µR; z)
=

1

αs(µR; 0)
+ 6 b0

Ω0
DM

Ω0
B

νeff ln (1 + z) , (9.21)

where αs(µR; 0) is the value of αs(µR; z) today (z = 0). Since b0 > 0, we observe that for ν > 0

(ν < 0) the strong interaction αs(µR; z) decreases (increases) with z, i.e. with the cosmic evolution.

The corresponding variation of the strong coupling with the Hubble rate can also be determined
12:

1

αs(µR;H)
=

1

αs(µR;H0)
+ 2 b0

Ω0
DM

Ω0
B

νeff
1− ν

ln

[

1− ν

Ω0
M

H2

H2
0

− Ω0
Λ − ν

Ω0
M

]

. (9.22)

11Recall that the cesium hyperfine clock provides the modern definition of time. In SI units, the second is defined

to be the duration of 9.192631770 × 109 periods of the transition between the two hyperfine levels of the ground

state of the 133Cs atom
12We point out that a similar running of the strong coupling constant with the cosmic expansion was pointed out

in a different context by J.D. Bjorken in [82].
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Here αs(µR;H0) is the current value of αs(µR;H).

Remarkably, the above expression displays the logarithmic running of the strong coupling as a

function of two energy scales: one is the ordinary QCD running scale µR, the other is the cosmic

scale defined by the Hubble rate H, which has dimension of energy in natural units. The second

term on the r.h.s. depends on the product of the two β-function coefficients, the one for the

ordinary QCD running (b0) and the one for the cosmic running (ν ∝ νeff).

The following remarks are in order:

i) for ν = 0 there is no cosmic running of the strong interaction,

ii) for ν > 0 the strong coupling αs(µR;H) is “doubly asymptotically free”. It decreases for large

µR and also for large H, whereas for ν < 0 the cosmic evolution drives the running of αs

opposite to the normal QCD running,

iii) the velocity of the two runnings is very different, because H is slowly varying with time and

|ν| ≪ 1 and |ν| ≪ b0 . 1. The cosmic running only operates in the cosmic history and is

weighed with a very small β-function. But it may soon be measured in the experiments with

atomic clocks and through astrophysical observations.

We should not overlook the fact that the previous equations describe not only the leading

cosmic evolution of the QCD scale and the proton mass with the redshift and the expansion rate

H of the universe, but they can account for the redshift evolution of the nuclear masses. For the

neutron we can write approximately: mn ≃ cQCD ΛQCD. For an atomic nucleus of current mass

MA and atomic number A we have MA = Z mp + (A − Z)mn − BA, where Z is the number of

protons and A−Z the number of neutrons, and BA is the binding energy. Although BA may also

change with the cosmic evolution, the shift should be less significant, since at leading order the

binding energy relies on pion exchange among the nucleons. The pion mass has a softer dependence

on ΛQCD: mπ ∼
√

mq ΛQCD, due to the chiral symmetry.

In the previous approximations we have neglected the light quark masses mq. We can assume

that the binding energy has a negligible cosmic shift as compared to the masses of the nucleons.

In the limit where we neglect the proton-neutron mass difference and assume a common nucleon

mass m0
N at present, the corresponding mass of the atomic nucleus at redshift z is given at leading

order by:

MA(z) ≃ Am0
N (1 + z)−3 (Ω0

DM/Ω0
B
) νeff −BA . (9.23)

Although the chemical elements redshift their masses, a disappearance or overproduction of nuclear

mass (depending on the sign of ν) is compensated by a running of the vacuum energy ρΛ, which

is of opposite in sign, see (8.5.7).

Above we have described a simplified case, in which the nuclear matter evolves with the cosmic

evolution as a result of the evolution of the fundamental QCD scale. In this scenario the light

quark masses are neglected, and the DM does not participate in the cosmic time evolution.

Alternatively we can assume that the nuclear matter does not vary with time, i.e. Λ̇QCD = 0,

and only the DM particles account for the non-conservation of matter. In general we expect a
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mixed situation, in which the temporal rates of change for nuclear matter and for DM particles

are different:
Λ̇QCD

ΛQCD
= 3 νQCD H ,

ṁX

mX
= 3 νX H . (9.24)

We have defined the QCD time variation index, which is characteristic of the redshift rate of the

QCD scale, while νX is the corresponding one for the DM. In this more general case we find:

ΛQCD(z) = Λ0
QCD (1 + z)−3 νQCD , mX(z) = m0

X (1 + z)−3 νX . (9.25)

We introduce the effective baryonic redshift index νB:

νB =
ΩB

ΩDM
νQCD . (9.26)

The equations (9.25) satisfy the relation (9.14), provided the coefficients νB and νX are related by

νeff = νB + νX . (9.27)

νQCD is the intrinsic cosmic rate of variation of the strongly interacting particles. The effective

index νB weighs the redshift rate of these particles taking into account their relative abundance

with respect to the DM particles. Even if the intrinsic cosmic rate of variation of ΛQCD would be

similar to the DM index (i.e. if νQCD & νX), the baryonic index (9.26) would still be suppressed

with respect to νX , because the total amount of baryon matter in the universe is much smaller

than the total amount of DM.

In this mixed scenario the mass redshift of the dark matter particles follows a similar law as in

the case of protons (9.17), except now we have νeff → νB. The proton would have the index νQCD

characteristic of the free (and bound) stable strongly interacting matter:

mp(z) = m0
p (1 + z)−3 (ΩDM/ΩB) νB = m0

p (1 + z)−3νQCD . (9.28)

The DM particles have another independent index νX . The sum (9.27) must reproduce the original

index νeff ∝ ν, which we associated with the non-conservation of matter.

Finally we consider the possible quantitative contribution to the matter density anomaly from

the dark matter. The global mass defect (or surplus) is regulated by the value of the ν parameter,

but the contribution of each part (baryonic matter and DM) depends on the values of the individual

components νB and νX . We can obtain a numerical estimate of these parameters by setting the

expression (9.13) equal to (8.5.6). The latter refers to the time variation of the matter density ρM

without tracking the particular way in which the cosmic evolution can generate an anomaly in the

matter conservation. The former does assume that this anomaly is entirely due to a cosmic shift

in the masses of the stable particles. Taking the absolute values, we obtain:

3|νeff |H ≃
∣

∣

∣

∣

∣

4

23

Λ̇QCD

ΛQCD
+

ṁX

mX

∣

∣

∣

∣

∣

<
4

23
× 10−14 yr−1 +

∣

∣

∣

∣

ṁX

mX

∣

∣

∣

∣

. (9.29)

Here we have used the experimental bound (9.20) on the time variation of ΛQCD.

Several cases can be considered, depending on the relation between the intrinsic cosmic rates of

variation of the strongly interacting particles and DM particles, νQCD and νX . Since these indices

can have either sign, we shall compare their absolute values:
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• 1) |νX | ≪ |νB |:

This condition implies |νX | ≪ |νQCD|. By demanding the stronger condition |νX | ≪ |νB |,
we insure that the intrinsic QCD cosmic rate |νQCD| is much larger than the corresponding

DM rate |νX |. We can neglect the ṁX/mX term on the r.h.s. of (9.29), and we recover the

equations (9.16)-(9.22) with νeff ≃ νB . Using H0 ≃ 7× 10−11 yr−1 , we find:

|νX | ≃ 0 , |νeff | ≃ |νB | < 10−5 , |νQCD| < 5× 10−5 . (9.30)

• 2) |νX | ≃ |νB |:

Here we still have |νX | smaller than |νQCD|, but the requirement is weaker. It follows:

|νeff | ≃ 2|νX | ≃ 2|νB | = 2(ΩB/ΩDM) |νQCD|, and we find

|νeff | < 2× 10−5 , |νX | ≃ |νB | < 10−5 , |νQCD| < 5× 10−5 . (9.31)

• 3) |νX | ≃ |νQCD|:

The two intrinsic cosmic rates for strongly interacting and DM particles are similar, i.e.

Λ̇QCD/ΛQCD and ṁX/mX do not differ significantly. In this case Eq. (9.29) leads to

3|νeff |H <

(

4

23
+ 1

)

× 10−14 yr−1 . (9.32)

There are two sign possibilities (νQCD = ±νX), and we take the absolute value:

|νeff | .
(

ΩB

ΩDM
+ 1

)

|νQCD| ≃ |νQCD| . (9.33)

We find:

|νeff | . |νQCD| ≃ |νX | < 5× 10−5 . (9.34)

• 4) |νQCD| ≪ |νX |:

Here the nuclear part is frozen. The non-conservation of matter is entirely due to the time

variation of the DM particles. Eq. (9.29) gives:

3ν H ≃ ṁX

mX

(

1− ΩB

ΩDM

)

. (9.35)

We have written this expression directly in terms of the original ν parameter. In this case

we cannot get information from any laboratory experiment on ṁX/mX , but we do have

independent experimental information on the original ν value (irrespective of the particular

contributions form the nuclear and DM components). It comes from the cosmological data

on type Ia supernovae, BAO, CMB and structure formation. The analysis of this data [39, 40]

leads to the bound (8.5.8), which applies to all models, in which matter follows the generic

non-conservation law (8.5.1) and the running vacuum law (8.1.11) — or the same matter non-

conservation law and the running gravitational coupling law (8.5.14), as shown in Eq. (8.5.17).
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|ν|cosm |ν|lab = |νB | |νX |cosm

Model II 10−3 (SNIa+BAO+CMB) 10−5 (Atomic clocks+Astrophys.) 10−3

Model III 10−3 (BBN) 10−5 (Atomic clocks+Astrophys.) 10−3

Model IV 10−3 (SNIa+BAO+CMB)+BBN 0 0

Table 1: Upper bounds on the running index |ν| for the various models defined in sect. 8.4 – cf.

[24]. Only for Models II and III a non-vanishing value of |ν| is related to non-conservation of matter

and a corresponding time evolution of ρΛ and G, respectively. For these models, the baryonic part

of ν (denoted νB) can be accessible to accurate lab experiments – cf. Eq. (9.20) – whereas the DM

part (νX) can only be bound indirectly from cosmological observations (same cosmological bound

as for the overall ν). For Model IV matter is conserved, and a non-vanishing value of |ν| (only
accessible from pure cosmological observations) is associated to a simultaneous time evolution of

ρΛ and G – with no microphysical implications.

Since it depends on the cosmological effects from all forms of matter, it applies to the DM

particles in particular. We find:

|νX |cosm . 10−3 . (9.36)

This bound is significantly weaker than any of the bounds found for the previous scenarios

in which the nuclear matter participated of the cosmic time variation. It cannot be excluded

that the matter non-conservation and corresponding running of the vacuum energy in the

universe is mainly caused by the general redshift of the DM particles. In this case only

cosmological experiments could be used to check this possibility. If the nuclear matter also

participates in a significant way, it could be analyzed with the help of experiments in the

laboratory. For a summary of the bounds, see Table 1.

If in the future we could obtain a tight cosmological bound on the effective νeff -parameter

(9.27), using the astrophysical data, and an accurate laboratory (and/or astrophysical) bound on

the baryonic matter part νB , we could compare them and derive the value of the DM component

νX . If νeff and νB would be about equal, we should conclude that the DM particles do not

appreciably shift their masses with the cosmic evolution, or that they do not exist. If, in contrast,

the fractional difference | (νeff − νB)/νeff | would be significant, the DM particles should exist to

compensate for it.

10 Discussion and conclusions

We have discussed a few old and new aspects of the Λ-term in Einstein’s equations and its relation

with the vacuum energy. After some brief historical remarks, we have dealt with the cosmological

constant (CC) problem and assessed its significance and possible phenomenological implications.

In doing so we have focused on the notion of vacuum energy in quantum field theory (QFT) both

in flat and curved spacetime, and we have dwelled on the fact that the term which is usually
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interpreted as the vacuum energy density (originating from the quantum vacuum fluctuations of

the matter fields) is the same both in flat and curved spacetime. This is a well-known fact, but this

does not make it less disquieting, since particles with mass m provide huge quartic contributions

to the zero-point energy (ZPE), VZPE ∼ m4, and these do not seem to be acceptable from the

phenomenological point of view.

In the SM of particle physics there are other, no less preoccupying, contributions to the vac-

uum energy that come from the spontaneous symmetry breaking (SSB) of the electroweak gauge

symmetry, specifically from the Higgs mechanism. These contributions are associated to the vac-

uum expectation value of the Higgs potential and increase as 〈V 〉 ∼ v2 M2
H ∼ 108 GeV4, where

v = O(100) GeV is the vacuum expectation value that defines the electroweak scale, andMH ≃ 125

GeV is the presumed physical mass of the Higgs boson [7]. While every single vacuum energy source

alone is already vastly worrisome, the combination of them all amounts to a devastating fine tuning

problem, which is further aggravated at the quantum level when we consider the many higher loop

effects involved. We have illustrated quite vividly this fact in Sect. 6 by considering what are the

highest loop diagrams still contributing to the CC value (and to the awful fine tuning process).

Of the two main sources of difficulties with the vacuum energy in QFT, namely the ZPE and

the SSB, the reality of the former has been disputed sometimes by the inconclusive interpretations

about the origin of the Casimir effect as being a pure QFT vacuum effect or something else; whereas

the latter also remained in the limbo of the theoretical ideas as long as the Higgs mechanism could

not be fully substantiated on the experimental side. Because of this the CC problem could remain

dormant for a long time in the ethereal world of the theoretical conundrums, which are that

kind of problems whose dangerousness and threatening power on the physical world of mortals is

only potential, not yet factual. Such situation, however, may have given signs of changing quite

dramatically in recent times. Needless to say, not because the physical world changes an inch every

time the human knowledge gives a jerk in its perception of the reality, but because we might now

be reaching a situation where the two giant paradigms of the fundamental physics knowledge, viz.

the SM of particle physics and the SM of cosmology, have finally been put furiously face to face for

a very serious parley. Indeed, we have recently heard of the exciting news from CERN about the

∼ 5σ evidence on the discovery of a bosonic Higgs-like resonance at the LHC collider [7]. If fully

confirmed, this can be considered as one of the greatest triumphs of particle physics ever. But, at

the same time, we should not overlook that such discovery could be certifying the very existence

of the electroweak vacuum energy, with all its potential consequences for (theoretical) cosmology.

On the other hand, we should not forget that apart from the classical and quantum Higgs

vacuum energy we have other sorts of vacuum fluctuations in the electroweak domain, which are

perfectly “alive and kicking” since long ago. Recall that quantum corrections to high precision

electroweak observables have reached a level of certainty that is beyond any possible doubt. A

simple example should suffice. Take the famous ∆r parameter from electroweak theory 13. This

is the famous parameter that allows to compute the W± gauge boson mass, MW , in the on-shell

renormalization scheme with quantum precision, i.e. including the quantum output from radiative

13See e.g. Ref.[83], and references therein, for contextual explanations on the ∆r parameter, and for a compre-

hensive and updated study of that important electroweak parameter within the SM and beyond.
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corrections. We may ask ourselves, to which extent we can attest that the “genuine” electroweak

quantum effects (i.e. those beyond the pure QED running of αem) have been measured when

we compare the theoretical value of MW and the experimentally measured one. To ask (and

answer!) this question is important since the electroweak radiative corrections are a manifestation

of the properties of the electroweak vacuum at the quantum level, namely the same vacuum that is

supported by the likely existence of the Higgs particle. The answer is known, and is astounding: we

know unmistakably that they are there with a confidence level of ∼ 25σ! The formerly proclaimed

∼ 5σ evidence of the Higgs-like particle now pales in comparison! But the latter kind evidence

is direct whereas the former is indirect, and when we put both the direct and indirect signatures

together they dramatically reinforce the case for the electroweak vacuum energy; and, overall, the

overwhelming evidence of the electroweak vacuum becomes even more defiant and challenging for

cosmology. Somehow time has come to try to find a final solution which comes to grips with the

basic notion of vacuum energy in QFT, rather than constantly eschewing the issue in an almost

non-denumerable number of ways.

Although the problem is huge, and far from being solved, some avenues for its eventual solution

might be looming in the horizon. We have discussed a possible reinterpretation of the results

obtained in the calculation of the vacuum energy density ρΛ in QFT in curved spacetime, and

suggested that although the resolution of the CC problem cannot be addressed at present from a

rigorous computation of ρΛ in an expanding FLRW universe, at least some consistency relations

seem to hint at the possible form of the correct dynamical dependence of that important quantity

as a function of the Hubble rate. For example, if both the vacuum energy and the gravitational

coupling are evolving with the Hubble rate, H, the Bianchi identity leads to the possible form

for the running of the vacuum density ρΛ = ρΛ(H), given the logarithmic running suggested for

G = G(H) in the expanding spacetime. One is led to the following behavior for the low energy

regime: ρΛ(H) = c0 + βM2
P H2, where MP is the Planck mass, c0 a constant (close to the current

CC density value ρ0Λ) and β is a dimensionless coefficient parameterizing the CC running. This

form for the evolving vacuum energy density is perfectly tenable and has been profusely tested

against the latest cosmological data [39, 40]. At the same time, a nonvanishing value of β leads to

a dynamical vacuum behavior which may effectively appear as quintessence, or as phantom energy,

without need of invoking the existence of fundamental quintessence and phantom fields [42, 60].

This could eventually provide a strong phenomenological evidence in favor of the vacuum energy

being a serious candidate for dynamical dark energy (DE).

We believe that the CC problem can only be solved as a physical problem, not just as a the-

oretical conundrum. This means that only through phenomenological tests it should be possible

to disentangle the most difficult theoretical aspects of the CC problem. In this respect, another

potentially interesting aspect of the dynamical vacuum models is the fact that they could provide

an explanation for a possible variation of the so-called fundamental constants of Nature [24]. There

is currently plentiful of experimental activity, both in the lab and from observations in the astro-

physical domain, that will provide sooner or later interesting news on this field [74, 81]. Future

data from these experiments should be very helpful for effectively testing the proposed vacuum

ideas in the near future. For this reason we have discussed this issue at length in Sect. 9.
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The idea of a running vacuum energy in an expanding universe, i.e. ρΛ = ρΛ(H), appears as

a most natural one. It would be very difficult to admit the existence of a tiny and immutable

constant from the early times to the present days, maybe even ruling the entire future evolution

of the universe. Nonetheless, the ultimate value that ρΛ(H) takes at present, i.e. ρ0Λ, cannot be

predicted within these models and hence can only be extracted from observations. Notice that if we

would have the ability to predict this value it would be tantamount to solve the old CC problem [4].

This is of course the toughest part of the job. In our discussion, however, the running vacuum

paradigm ascribes a new look to the problem, one that could perhaps make it more amenable for

an eventual solution; namely it conceives the cosmological term as a time evolving variable that

underwent a dramatic reduction from the inflationary time till the present days. A generic model

that implements this idea is the following: ρΛ(H) = c0 + c2 H
2 + c4 H

4, in which the highest

power of the Hubble rate, H4, would only be relevant for the early universe, i.e. for values of

H of order of the inflationary expansion rate HI . Models of this kind can be motivated by the

general running vacuum framework that we have described, and they should have a real chance to

provide a complete description of the cosmic history [65, 66, 67]. In contrast to the standard ΛCDM

model, in which the two opposite poles of the cosmic history (inflation and DE) are completely

disconnected, the running vacuum models offer a clue for interconnecting them and let the present

DE appear as a “quantum fossil” from the inflationary universe [61]. In this way the two de Sitter

epochs, viz. the primordial inflationary one and the late DE epoch, can be thought of as two

vacuum dominated stages of the cosmic evolution smoothly interpolated (within a single unified

model) by the radiation and matter dominated epochs.

In the kind of decaying vacuum framework that we have proposed, we can better understand

why the present vacuum energy density has to be small as compared to its primordial value at

the inflationary scale, i.e. ρ0Λ ≪ ρΛ(HI). Therefore, the main task that remains should be to

understand why ρ0Λ has the concrete value we have measured. In other words, we are left with

the question of why the mass scale mΛ ≡ (ρ0Λ)
1/4 associated to the cosmological term is of order

of mΛ = O(10−3) eV rather than, say, ten times or a hundred times bigger. While such values

cannot be admitted, as they would obviously be incompatible with the observations, here we are

addressing a matter of principle, i.e. we are asking: is there a fundamental physical theory which

can explain the value of the vacuum energy that we measure at present? Put another way: should

the millielectronvolt energy scale mΛ be ultimately predictable, for example from the value of the

Planck scale MP ? This is a very interesting question, but is not at all an obvious one, cf. [84],[85].

When we face the possibility to explain the mass scale mΛ in our universe, we should note

that in particle physics essentially all physical scales remain still unexplained. For example, we

cannot explain why the value of the electron mass is me ≃ 0.511 MeV in our universe, since we

do not understand why its Yukawa coupling, λe, takes the value it takes in order to yield the

precise value of the electron mass from its product with the vacuum expectation value of the Higgs

doublet: me = λe v. Similarly, we do not understand why we have so many fermion flavors and

with widely different mass scales (or family of Yukawa couplings). In particular, why the masses

of the neutrinos are much lighter, and why one species of neutrinos is possibly not far away from

the same ∼ meV scale mΛ associated to the cosmological constant.
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Whether we can ultimately predict or not the scale of the vacuum energy in the present universe

can be a debatable question, but what is perhaps less debatable is that there is, in principle, no

reason why we should be able to bypass all the foreseeable difficulties well before we can minimally

understand the origin of the scales of the fermion and boson masses in the SM of particle physics,

and of course the values of the two basic “order parameters” that set the fundamental scales of

the model, to wit: i) the electroweak scale v ≃ G
−1/2
F (associated to the Higgs mechanism and

linked to Fermi’s constant); and ii) the value of the QCD scale ΛQCD (associated to the strong

interactions and determined by the non-perturbative confinement dynamics of QCD). In both cases

an experimental input is needed to make contact with physics. For the electroweak sector (which

provides the dominant contribution to the vacuum energy of the SM) we need to perform a precise

measurement of Fermi’s constant from muon decay. Similarly, in the domain of strong interactions

we have to measure ΛQCD to account for the QCD vacuum contribution. It is fascinating to

entertain that the possible cosmic time dependence of ΛQCD could also play a decisive role in

elucidating the nature of the CC problem, as we have amply emphasized in Sect. 9.

Owing to its especial position in the realm of the physical quantities, and because of the

general covariance of Einstein’s equations, we should expect a tight connection of the CC with the

remaining scales of the universe. For this reason the help of the phenomenological input appears

as indispensable. Is this not a most fundamental physical requirement, even for the glory of the

CC problem? In this sense, if the vacuum energy density is treated as a running quantity in an

expanding universe, it would be natural to input its value at a given cosmic time (say, now) and

then focus our efforts on finding its past and future evolution. After all it is not granted that we

can reach a purely theoretical solution, unless e.g. all scales of the universe should come from a

single one, say the Planck mass MP , and all the others be referred to it through dimensionless

(and computable) ratios. But it is far from obvious that we can happily make such an aprioristic

assumption. For the time being quantum gravity is not a consistent theory, and we cannot know

for certain if MP – which is nothing but a shorthand for (~ c/G)1/2 (G being Newton’s constant)

– is truly a physical scale!

The bare truth is that we still need the help from the phenomenological input so as to set the

scale for the vacuum energy in our low energy universe, and there is no foreseeable change in this

situation. But this does not mean we cannot hope for some progress. Take for example the RG

approach we have discussed here; after we input mΛ (or, equivalently, c0) what remains of the CC

problem is still a hard enough challenge for our intellect! The CC problem is then formulated as the

problem of explaining why the dynamical term in the low energy expression ρΛ(H) = c0+βM2
P H2

is just the soft (and completely harmless) ∼ H2 contribution in the context of QFT in an expanding

spacetime. Such term endows the vacuum energy density of a very mild (albeit non-negligible)

time evolution, which causes no tension with the observations. It is therefore a very attractive

option, in which the time effect could eventually surface in the form of a smooth dynamical DE.

To check this possibility is a task reserved for the future observations. On the theoretical side,

while we have given some indirect clues on how to effectively achieve an appealing scenario for

ρΛ(H) within QFT in curved spacetime, much more work (and thought!) is of course needed to

tackle the most challenging and fierce angles of the CC problem, face to face.
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[39] S. Basilakos, M. Plionis and J. Solà, Phys. Rev. D 80, (2009) 3511, arXiv:0907.4555
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[42] S. Basilakos, and J. Solà, Effective equation of state for running vacuum: “mirage”

quintessence and phantom dark energy (to appear).
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[65] J. A. S. Lima, S. Basilakos, and J. Solà, Mon. Not. Roy. Astron. Soc. 431 (2013) 923,

[arXiv:1209.2802].
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