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There is an approximately 9% discrepancy, corresponding to 2.4σ, between two independent con-
straints on the expansion rate of the universe: one indirectly arising from the cosmic microwave
background and baryon acoustic oscillations, and one more directly obtained from local measure-
ments of the relation between redshifts and distances to sources. We argue that by taking into
account the local gravitational potential at the position of the observer this tension – strengthened
by the recent Planck results – is partially relieved and the concordance of the standard model of
cosmology increased. We estimate that measurements of the local Hubble constant are subject to a
cosmic variance of about 2.4% (limiting the local sample to redshifts z > 0.010) or 1.3% (limiting it
to z > 0.023), a more significant correction than that taken into account already. Nonetheless, we
show that one would need a very rare fluctuation to fully explain the offset in the Hubble rates. If
this tension is further strengthened, a cosmology beyond the standard model may prove necessary.
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Introduction We can only observe the universe from
our own position, which is – in terms of cosmological
scales – fixed and lying in a gravitational potential the
value of which possibly cannot be probed [1]. If the ob-
server could move around in the universe, they would
measure the variation of local parameters, a variation
caused by observing from locations with different val-
ues of the gravitational potential. However, as we can-
not measure this unavoidable variation, there is a cosmic
variance on physical parameters that are potentially sen-
sitive to the local spacetime around the observer. One
such parameter is the local expansion rate.

In this Letter we discuss how the locally measured ex-
pansion rate is offset from the global average expansion
rate of the universe by the value of the gravitational po-
tential at the observer. By considering the statistics of
the distribution of matter in the universe, we derive the
distribution of the gravitational potential at the observer,
and, consequently, the expected distribution of the offset
of the local expansion rate with respect to the global
expansion rate. On one hand this analysis (partially) re-
lieves the tension between existing local and global mea-
surements of the expansion rate. On the other hand,
our results suggest that local measurements of the Hub-
ble parameter are limited to a minimum systematic error
of a few percent, which should be included in the error
budget of such measurements.

Constraints on the Hubble constant The most
recent measurement of the local Hubble parameter per-
formed by considering recession velocities of objects
around us reports a value of H local

0 = 73.8 ± 2.4
km s−1 Mpc−1 [2], while the Planck 2013 analysis gives
HCMB

0 = 67.80±0.77 km s−1 Mpc−1 [3, Table 5], assuming
a spatially flat ΛCDM model (a homogeneous universe
with a cosmological constant Λ and cold dark matter)
and fitting to observations of the cosmic microwave back-

ground (CMB) and baryon acoustic oscillations (BAO)
only. These two independent measurements give a dis-
crepancy of approximately 9%, corresponding to 2.4σ. It
is worth stressing that the recent Planck results strength-
ened this tension, which is only marginal, at 2.0σ, when
the 9-year WMAP data is used [4]. The 9% disagree-
ment between the expansion rates could be a statistical
fluke or instead a hint for a neglected systematic error.
Here we take the second point of view. Local fluctua-
tions of the Hubble parameter are indeed to be expected
as a consequence of the density perturbations abundant
in the late non-linear universe. In particular, a higher
H local

0 will be observed if we happen to live inside an
underdensity (see e.g. [5–22] for studies of the effect of
a neglected inhomogeneity on cosmological parameters).
It is therefore natural to ask if the tension between H local

0
and HCMB

0 can be relieved if a local underdensity consis-
tent with large-scale structure is taken into account in
the analysis.
It is interesting to note that the possibility of living in

a local underdense “Hubble bubble” has been considered
before. Ref. [23] found indeed that the Hubble parameter
estimated from supernovae Ia (SNe) within 74h−1Mpc is
6.5%±1.8% higher than the Hubble parameter measured
from SNe outside this region (see also [24, 25]). The
analysis of [2] considers this issue and tries to correct
for it; we will discuss this later. The topic of a local
Hubble bubble dates back to the 90’s, see e.g. [26–32] for
previous work on the cosmic variance of the local Hubble
parameter.

The Hubble bubble model To tackle this problem
we take the simplest approach, that is, we model the
inhomogeneity by means of the Hubble bubble model,
which is the basis of the so-called spherical “top-hat”
collapse [33]. The idea is to carve out of the FLRW back-
ground a sphere of matter which is then compressed or
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Figure 1. Function Θ which corrects the relation of Eq. (1)
when the density contrast is not linear. The plot assumes the
Planck+BAO best-fit value of Ωm = 0.3086, but the depen-
dence of Θ on cosmological parameters is very weak.

diluted so as to obtain a toy model of the inhomogeneity
with a slightly different FLRW solution. At the junction
of the two metrics, the density is discontinuous and the
description could be improved by means of the spheri-
cally symmetric Lemaître-Tolman-Bondi (LTB) solution
of Einstein’s equation [34–36]. For our purposes, how-
ever, the Hubble bubble model suffices, as we are not
interested in the junction between inhomogeneity and
background.

A straightforward prediction of the Hubble bubble
model is that an adiabatic perturbation in density causes
a perturbation in the expansion rate given by:

δH

H
= −1

3
δρ

ρ
f(Ωm) Θ

(
δρ

ρ
,Ωm

)
, (1)

where all quantities are evaluated at the present time.
The function f(Ωm) is the growth rate and embodies the
effect of a non-negligible cosmological constant1. Dur-
ing matter domination one has f = 1, and the standard
relation is recovered. In Fig. 1 we show the function
Θ
(
δρ
ρ ,Ωm

)
, which parametrizes the effect of values of

δρ/ρ approaching the non-linear regime, computed by
means of the ΛLTB model [38, 39].2 For linear contrasts,
|δρ/ρ| � 1, we have Θ ' 1 and Eq. (1) becomes a linear
relation between perturbations in the density and per-
turbations in the expansion rate.

The local measurements of the Hubble constant from
Ref. [2] use standard candles within the redshift range
bounded by zmin = 0.010 (or 0.023) and zmax = 0.1.

1 We assume spatial flatness so that f(Ωm) = − 3
2 Ωm +

15
16 Ω1/2

m

2F1
(

− 1
2 ,

5
6 ; 11

6 ;1−Ω−1
m

)
−( 3

8 + 1
4 Ω−1

m ) 2F1
(

1
2 ,

5
6 ; 11

6 ;1−Ω−1
m

) ≈ Ω0.55
m

[see 37, where also a fit valid for w 6= −1 was obtained], which
can be represented in terms of elliptic integrals as in Eq. (66) of
Ref. [38].

2 For the Planck+BAO best-fit cosmology and the range of con-
trasts δ shown in Fig. 1, the function Θ can be approximated with
maximum error of 0.4% by the fit Θ(δ) = 1−0.0882 δ− 0.123 sin δ

1.29+δ .

0.010 0.1000.0500.020 0.0300.015 0.070
0.00

0.05

0.10

0.15

50 100 150 200 250

-0.8

-0.6

-0.4

-0.2

0.

z

dH
êH

Mpcêh

dr
êr

Figure 2. The 68%, 95% and 99.7% confidence-level prob-
abilities of gaussian matter fluctuations (right vertical axis)
and consequently of the local Hubble parameter (left vertical
axis), as a function of co-moving size of the matter fluctua-
tion (top ticks) or, equivalently, redshift (bottom ticks). The
relation between δH/H and δρ/ρ is given by Eq. (1). The
range zmin ≤ z ≤ zmax corresponds to the range of observa-
tion of [2]. Also shown is the 1-σ emerald band relative to the
value H local

0 /HCMB
0 −1, which shows the 2.4σ tension between

CMB and local measurements of the Hubble constant.

Therefore, we need to know the typical contrast of a per-
turbation that extends over a redshift in this range. We
take a conservative approach and consider density per-
turbations stemming from a standard matter power spec-
trum P (k) with Planck+BAO best-fit parameters. Con-
sequently, we know that the mean square of the density
perturbation in a sphere of radius R around any point
today – and so also around us – is

σ2
R ≡

(
δM

M

)2
=
ˆ ∞

0

k2dk
2π2 P (k)

[
3j1(Rk)
Rk

]2
, (2)

where M is the mass enclosed by a sphere of radius R
and j1 is the spherical Bessel function of the first kind.
Next we assume that perturbations in the density field

follow a gaussian distribution pgau with the variance
given by σ2

R of Eq. (2):

pgau(x) = 1
σR
√

2π
e
− x2

2σ2
R , (3)

with x ≡ δρ/ρ. In Fig. 2 we plot the 68%, 95% and
99.7% confidence-level fluctuations on the local Hubble
parameter, as well as the 1-σ band relative to the value
H local

0 /HCMB
0 −1, which shows the 2.4-σ tension discussed

above.
In reality, nonlinear matter fluctuations are better de-

scribed by a lognormal distribution [40]:

plogn(x) =
exp

[
− (log(σ2

R+1)+2 log(x+1))2

8 log(σ2
R

+1)

]
√

2π(x+ 1)
√

log (σ2
R + 1)

, (4)
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Figure 3. The 68%, 95% and 99.7% confidence-level proba-
bilities of log-normally distributed matter fluctuations (right
vertical axis) and consequently of the local Hubble parameter
(left vertical axis), as a function of co-moving size of the mat-
ter fluctuation (top ticks) or, equivalently, redshift (bottom
ticks). As in Fig. 2 we show the 1-σ band relative to the value
H local

0 /HCMB
0 − 1.

which has zero mean, variance σ2
R and support (−1,∞]

– in agreement with the fact that δρ/ρ > −1. More-
over, for σR → 0 it approaches the gaussian distribution
of Eq. (3). In Fig. 3 we show the 68%, 95% and 99.7%
confidence level fluctuations of the local Hubble param-
eter induced by log-normally distributed matter pertur-
bations. We show separately the case for both over- and
under-densities as they are no longer symmetric when
using a skewed distribution such as Eq. (4). Using the
log-normal distribution, we see that local voids at a low
redshift are actually more likely than they would appear
from a gaussian distribution. From here on, we will use
the superscripts +,− to refer to the distinct distributions
of positive and negative perturbations and their proper-
ties, in particular the mean systematic error σ±H0

. For
the symmetric gaussian distribution we of course have
σ+
H0

= σ−H0
.

Discussion In order to estimate the mean system-
atic error on local determinations of the Hubble constant
we average the 68% confidence level on δH/H over the
survey range:

σ±H0
=
[ˆ zmax

zmin

dzWSN(z)
(
δH±

H

)2
] 1

2

. (5)

In the equation above, the quantity WSN(z) represents
the redshift distribution of the SNe used in [2], which is
peaked at the lower redshifts. It is important to stress at

this point that we are assuming that the SNe are isotrop-
ically distributed over the sky. This implies that we are
neglecting the effect of the anisotropic distribution of the
sources, which could increase sizably the magnitude of
the cosmic variance. We list in Table I the numerical
values of Eq. (5) for combinations of cases where either
the gaussian distribution of Eq. (3) or the skewed log-
normal distribution of Eq. (4) is used.
As δH/H is naturally larger at lower redshift, the value

of σH0 depends strongly on WSN(z) and, in particular,
on zmin and zmax. If one were to extend the upper range
zmax then the cosmic variance σH0 could be reduced at
the cost that the uncertainty in the values of the cos-
mological parameters Ωm,ΩΛ, negligible in the current
analysis, would begin to play a role. Alternatively, one
could reduce the effect of the cosmic variance by increas-
ing the lower cutoff zmin. As discussed earlier, Ref. [23]
claims that the expansion rate estimated from SNe within
74h−1Mpc (corresponding approximately to z = 0.023)
is 6.5% ± 1.8% larger than the one measured from SNe
outside this region. Consequently, one can alleviate the
Hubble bubble effect by adopting zmin = 0.023 [2]. In
Table I, we also show the values of σH0 corresponding to
this choice. The median redshift of the SN redshift dis-
tribution is zmedian ' 0.025 if zmin = 0.010 is used, and
zmedian ' 0.033 if zmin = 0.023 is adopted instead. Also,
from Figures 2 and 3 one can see that this mismatch of
6.5% can be explained by a local inhomogeneity in agree-
ment with the standard model at about 2σR.

It is now natural to ask how much this additional er-
ror from the cosmic variance of our local gravitational
potential can relieve the tension of 9% between the cen-
tral values of the two observations discussed at the be-
ginning. Before proceeding, however, we should point
out that Ref. [2] besides limiting in most of the anal-
ysis the sample to zmin = 0.023, also tries to address
the cosmic variance uncertainty by correcting each SN
Ia on the Hubble diagram for the expected perturbation
of its redshift as determined from the IRAS PSCz den-
sity field [41], in particular by adopting the model B05
of Ref. [8]. The result of this velocity correction causes
the final value of H0 to decrease by 0.5%± 0.1%. While
this approach is in our opinion the right way to proceed
so as to deal with the cosmic variance, in light of the
tension between HCMB

0 and H local
0 and the uncertainties

in the model of Ref. [8],3 we think it is worth consider-
ing the case in which one does not use the results of [8]
and more conservatively estimates the variance stemming

3 The analysis of [8] depends on the estimate of the bias, assumes
a linear relation between velocities and galaxy counts, and is
affected by the selection function of the IRAS PSCz density field
which drops off at larger scales. Also, the model B05 of [8] cannot
explain the Hubble bubble detected by [23], which we mentioned
at the beginning.
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Case Density Contrast
Distribution

zmin σ+
H0

σ−
H0

δH+
0
( km/s

Mpc

)
Adding errors
linearly

Adding errors
in quadrature

I pgau of Eq. (3) 0.010 2.1% 2.1% 1.58 ∆H = 1.6σ ∆H = 2.1σ
II plogn of Eq. (4) 0.010 2.4% 1.7% 1.79 ∆H = 1.5σ ∆H = 2.1σ
III pgau of Eq. (3) 0.023 1.2% 1.2% 0.90 ∆H = 1.9σ ∆H = 2.4σ
IV plogn of Eq. (4) 0.023 1.3% 1.1% 0.97 ∆H = 1.8σ ∆H = 2.4σ

Table I. Cosmic variance σ±
H0

of the local Hubble parameter calculated using Eq. (5). pgau and plogn denote the statistical
distribution used to describe the density contrast, δρ/ρ, gaussian (3) or lognormal (4). zmin denotes the minimum redshift of
the SNe included in the sample. The gaussian distribution has symmetric errors, σ+

H0
= σ−

H0
. The quantity δH+

0 gives the
absolute error relative to σ+

H0
for H local

0 . Finally, ∆H ≡
∣∣H local

0,unc −HCMB
0

∣∣ = 2.5σ describes how much the tension between
the CMB and local measurement of H0 is reduced when σ+

H0
is included as a systematic error. The quantity H local

0,unc is the
0.5%-larger uncorrected value of the local Hubble constant, see the main text for more details.

Case I Case II Case III Case IV
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Figure 4. Probability of having an inhomogeneity that in-
duces a δH/H (left vertical axis) or δH (right vertical axis)
larger than a given value for the cases listed in the legend and
in Table I. Also shown is the 1-σ band relative to the value
H local

0,unc/H
CMB
0 − 1.

from standard inhomogeneities. We therefore compare
the global HCMB

0 to the 0.5%-larger uncorrected value of
H local

0,unc = 74.2±2.4 km s−1 Mpc−1. This slightly increases
the tension which is now ∆H ≡

∣∣H local
0,unc −HCMB

0
∣∣ = 2.5σ.

As the error from cosmic variance is systematic in nature
it should be kept separate from the statistical one. Just
to give a rough estimate, we list in Table I how much
the tension is reduced by adding the errors linearly or in
quadrature. When using the log-normal distribution we
employ the value σ+

H0
as H local

0 > HCMB
0 .

Conclusions The simple analysis of this Letter car-
ries two messages. The first is that local measurements
of the Hubble parameter are limited to the minimum sys-
tematic error δH+

0 listed in Table I. These results qual-
itatively agree with previous estimations of the cosmic
variance of the local expansion rate (see e.g. [20, 29, 30]).

The second point is that by including the effect of a
local inhomogeneity – in particular a local underdensity
– the tension between CMB and local measurements of

the Hubble constant is alleviated, even though only par-
tially. One can quantify the remaining tension by esti-
mating the probability that inhomogeneities stemming
from a standard matter power spectrum can explain the
9% discrepancy. We show in Fig. 4 the result for the four
cases discussed in Table I: it is evident that one needs a
very rare large-scale structure to explain away the offset
in the Hubble rates. If this tension is further increased,4
a cosmology beyond the standard model may prove nec-
essary.
Of course, a more thorough analysis is needed in order

to precisely quantify the effect of the local inhomogene-
ity on measurements of the expansion rate, possibly by
introducing the effect of perturbations of the local grav-
itational potential directly in the first steps of the data
analysis, as in [2]. Nonetheless, the results of this Let-
ter provide a quick and easy way – equations (1) to (5)
– to estimate the systematic error σH0 , which can be
specialized to a given survey by using the corresponding
distribution of standard candles WSN(z).
Finally, in the present era of “precision” cosmology it

is of crucial importance to fully understand the source of
this offset in the Hubble rates, if it is a mere systematic
error or new physics. If one neglects this issue, a fit of
a cosmological experiment at large scale combined with
local measurements of the Hubble constant biases the ex-
tracted cosmological parameters e.g. the equation of state
of dark energy and the effective number of relativistic de-
grees of freedom. On the other hand, disregarding local
measurements on the basis of this disagreement might
potentially obscure a hint of cosmology beyond the stan-
dard model. This is clearly shown by the analysis of the
Planck collaboration, see e.g. Eqs (91-93) in [3].
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