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Eternal inflation without metaphysics
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In the usual account of eternal inflation the universe is supposed to be a deSitter background
in which pocket universes nucleate at a steady rate. However this is metaphysics because there
is no way this mosaic structure can be observed. We don’t see the whole universe but only a
nearly homogeneous region within our past light cone. We show that we can use the no-boundary
wave function to calculate small departures from homogeneity within our past light cone despite
the possibility of much larger fluctuations on super horizon scales. We find that the dominant
contribution comes from the history that exits eternal inflation at the lowest value of the potential
and predict, in a certain class of landscape models, a tensor to scalar ratio of about 10%. In
this way the no-boundary wave function defines a measure for the prediction of local cosmological
observations.

The string landscape is thought to contain a vast num-
ber of vacua, including some that have four large dimen-
sions, our small positive value of the cosmological con-
stant, and the Standard Model. But the landscape does
not explain which vacuum in this class we are in. For
that one has to turn to cosmology and to a theory of the
quantum state of the universe.

A quantum state specifies amplitudes for different ge-
ometry and field configurations on a spacelike surface.
We have shown that the no-boundary wave function
(NBWF) [1] in the saddle point approximation predicts
a large amplitude for configurations that behave classi-
cally when the universe is large and have an early period
of inflation [2]. The NBWF thus acts as a vacuum se-
lection principle in the class described above, selecting
regions in field space where the landscape potential ad-
mits one or more directions of inflation. The landscape
then essentially becomes an ensemble of different models
of inflation, weighted by NBWF probabilities. For the
rest of this paper we assume this ensemble.

We are interested in the probabilities of different values
of local observables such as those referring to the cosmic
microwave background (CMB), in a nearly homogeneous
Hubble volume and conditioned on our observational sit-
uation. Since we do not know where our Hubble volume
is, we must sum over its possible locations. Furthermore,
as observers we are physical systems within the universe,
described by data D which occur only with a very small
probability in any Hubble volume. Top-down (TD) prob-
abilities take this in account, by conditioning the bottom-
up (BU) NBWF probabilities on the requirement that D
exists somewhere [3, 4].

We will find that significant contributions to TD prob-
abilities come only from landscape regions that admit a
regime of eternal inflation where V > ǫ. Further it turns
out that the dominant contribution to TD probabilities
comes from the region(s) where the threshold for eternal
inflation lies at the lowest value of the potential, inde-
pendently of its shape above this value.

In the usual approach to eternal inflation it is argued
the universe develops large inhomogeneities that lead to
a mosaic structure on super-horizon scales, consisting of
(possibly infinitely many) nearly homogeneous patches
separated by inflating regions [5]. The probability distri-
butions for local observables can be different in different
homogeneous patches, each of which itself can become ar-
bitrarily large. This has led to a challenge, known as the
measure problem, for the prediction of local observations
in one Hubble volume. To resolve this a cutoff is imposed
on the spacetime in order to regulate infinities. The ex-
pected number of Hubble volumes of different kinds can
then be calculated and used to define the probabilities
for the observations of a typical observer.
A very different approach to eternal inflation is based

on the measure defined by the universe’s quantum state.
This paper builds on a series of papers (e.g. [2, 6])
in which we have investigated the implications of the
no-boundary quantum state measure. The semiclassi-
cal NBWF does not predict a single classical spacetime.
Rather it predicts BU probabilities for an ensemble of
alternative spacetimes. In models of eternal inflation the
TD probabilities for large long wavelength perturbations
are high [6]. However, in contrast to the usual approach,
we find that the very large scale structure of the eter-
nally inflating histories in the ensemble is irrelevant for
the probabilities of observables in our Hubble volume. In-
stead, the latter depend only on alternatives in our past
light cone. To calculate the probabilities of different con-
figurations inside one Hubble volume one sums (coarse
grains) over everything outside the past light cone. This
results in well-defined probabilities for observations with-
out the need for further ad hoc regularization.
By ‘metaphysics’ one might mean parts of a theoretical

picture that do not directly refer to, explain or influence
our observations within a Hubble volume. If so, then
this is a predictive discussion of eternal inflation without
metaphysics.
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The No-Boundary Measure

A quantum state of the universe is specified by a wave
function Ψ on the superspace of geometries (hij(x)) and
matter field configurations (χ(x)) on a closed spacelike
three-surface Σ. Schematically we write Ψ = Ψ[h, χ].
We assume the no-boundary wave function as a model of
this state [1]. The NBWF is given by a sum over histories
of geometry g and fields φ on a four-manifold with one
boundary Σ. The contributing histories match the values
(h, χ) on Σ and are otherwise regular. They are weighted
by exp(−I/h̄) where I[g, φ] is the Euclidean action.
In some regions of superspace the path integral can be

approximated by the method of steepest descents. Then
the NBWF will be approximately given by a sum of terms
of the form

Ψ[h, χ] ≈ exp{(−IR[h, χ] + iS[h, χ])/h̄}, (1)

one term for each complex extremum. Here IR[h, χ] and
−S[h, χ] are the real and imaginary parts of the Eu-
clidean action, evaluated at the extremum.
When the surfaces Σ are three spheres of radius a with

a2V (φ) < 1, where V is the potential of the scalar mat-
ter fields, there is an approximately real Euclidean solu-
tion of the field equations, and S ≈ 0. For large radii
a, however, there are only complex solutions, and the
wave function oscillates rapidly. When S varies rapidly
compared to IR (as measured by quantitative classical-
ity conditions [2]) the NBWF predicts that the geome-
try and fields behave classically. The NBWF can then
be viewed as predicting a family of classical Lorentzian
histories that are the integral curves of S and have prob-
abilities to leading order in h̄ that are proportional to
exp[−2IR(h, χ)]/h̄], which is constant along the integral
curve.
In [2, 6] we evaluated the semiclassical NBWF

for a model consisting of a single scalar field mov-
ing in a quadratic potential. We found that for
large radii a the NBWF predicts a family of alter-
native Lorentzian Friedman-Lemâıtre-Robertson-Walker
universes with Gaussian perturbations. The alternative
histories can be labeled by the absolute values of the
perturbations ζ0 and of the background scalar field φ0 at
the ‘South Pole’ (SP) of the corresponding saddle point.
Classicality requires φ0

>∼ 1 (in Planck units). The rel-
ative BU probabilities of the alternative configurations
follow approximately from

IR(φ0) ≈ −π/4V (φ0) (2)

together with the Gaussian probabilities for fluctuations.
The NBWF has the striking property that all saddle

point histories undergo some amount of matter driven
slow roll inflation, with a number of e-folds N(φ0) ≈
3φ2

0/2. The NBWF therefore selects inflationary clas-
sical histories. These exhibit the usual Gaussian spec-
trum of fluctuation modes ζq with expected amplitude

ζ2q ≈ (π2/4)
(

H2/ǫ
)

exit
, where ǫ ≡ φ̇2/H2 and the ampli-

tude is evaluated when the perturbations exit the hori-
zon. Hence saddle points starting below the threshold of

eternal inflation are nearly homogeneous. By contrast,
in regions of the landscape where the condition for eter-
nal inflation V > ǫ is satisfied – which means the scalar
fields are effectively in a deSitter background – the prob-
abilities are high for significant perturbations on large
scales.
Assuming this holds generally, only configurations that

emerge form regions of the landscape that admit infla-
tionary solutions will have significant probability. One
expects different inflationary patches of a landscape po-
tential are separated by large potential barriers. Hence
the NBWF acts as a vacuum selection principle in the
landscape which becomes an ensemble of models of infla-
tion, weighted by their no-boundary probabilities.
Near minima in the landscape with a single inflation-

ary direction in field space the NBWF predicts a one-
parameter family of background solutions that can be
labeled by φ0. There is an obvious generalization to
multifield models involving n inflaton fields φi and an
n−dimensional family of solutions.
We now seek to calculate the relative contributions of

the different inflationary regions in field space to the TD
probabilities for local observations in our Hubble volume.
Probabilities for Observations

Top-Down Weighting: Our observations are confined
to one Hubble volume and our data D occur with only
a very small probability pE(D) in any Hubble volume
on a constant density surface Σs(D,φ0, ζ0). TD proba-
bilities for local observables O takes this observational
situation in account, by weighting the BU probabilities
by the probability p(D≥1) that D exists somewhere on
the surface [10]. We showed in [4] that this weighting is
given by a multiplicative factor

1− [1− pE(D)]Nh ≤ 1. (3)

Here, Nh is the total number of Hubble volumes in Σs.
When Nh is sufficiently small so that our data is rare the
TD factor is very small and reduces to weighting the BU
probabilities by the volume of Σs [7, 8]. We have argued
[4] this is the case in saddle point histories that start be-
low the threshold of eternal inflation, which predict high
amplitudes for nearly homogeneous final configurations
with (3) proportional to e3N .
By contrast, saddle points in the regime of eternal in-

flation predict high amplitudes for configurations that
have large long wavelength perturbations [6]. The vol-
ume of Σs(D,φ0, ζ0) of these perturbed configurations
can be exceedingly large or even infinite [9] so that the
probability that D exists somewhere is nearly one.
The TD weighting has a significant effect on the BU

distributions in models that admit a regime of eternal
inflation. The NBWF BU probabilities favor histories
starting at a low value of the potential followed by only
a few e-folds of slow roll inflation [cf. (2)]. However, the
TD weighting (3) suppresses the probabilities for such
histories, and instead favors saddle points starting in the
regime of eternal inflation [11]. In models of eternal in-
flation, the low BU probability of histories starting above
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the threshold of eternal inflation is compensated by the
large number of Hubble volumes in the resulting surfaces
Σs.
Once regions in field space for which the condition for

eternal inflation holds have been selected, the probabil-
ities of local observations are given by their bottom-up
values. It remains to estimate the latter.
Coarse Graining: A wave function Ψ[h, χ], and the

histories constructed from it, specify probabilities for al-
ternatives all across a spacelike surface, to its future, and
to its past. To obtain probabilities for observables O in
our Hubble volume requires summing over the probabili-
ties for alternatives not directly relevant for observations.
This is coarse graining.
Causality implies that the probabilities of observations

in our Hubble volume can depend only on alternatives in
our past light cone. Coarse graining over alternatives
to the future of Σs, including all quantum branching, is
immediate. The result is simply that the probabilities
for alternatives on Σs are given by the wave function.
There remains the coarse graining over alternatives on

Σs in Hubble volumes outside our own. This can be dis-
cussed explicitly in the saddle point approximation (1).
We find that a given saddle point yields the same predic-
tions for local observables for all Hubble volumes [12] on
Σs. Further, all saddle points starting at sufficiently high
potential in a particular inflationary direction in field
space yield identical predictions. This is the case, for
instance, in single-field models of eternal inflation with
a sufficient number of e-folds after the exit from eternal
inflation. We call regions in the landscape where saddle
points produce Hubble volumes with the same distribu-
tions for O eternally inflating channels. Probabilities for
observables O depend only on the channel, and we can
coarse grain over different eternally inflating histories in
any one channel. Labeling the different channels by K
we arrive at

p(O|D≥1) ≈
∑

K

p(O|K)p(K). (4)

Here, p(K) is the NBWF probability of channel K, and
p(O|K) is the probability for observables O given that
channel. This is a finite and manageable prescription
for probabilities for observation in our Hubble volume.
The two probabilities involved in (4) can be estimated as
follows.
Local observables O such as those associated with the

CMB refer only to short wavelength fluctuations that can
be observed in our Hubble volume. This means long-
wavelength fluctuations should be coarse grained over
to compute joint probability p(O,K). To leading or-
der in h̄, if one coarse grains over all possible values of
the long-wavelength fluctuations this sum-over-histories
yields one (see however [11]). The probabilities p(O,K)
can then be estimated by using saddle points in chan-
nel K that are nearly homogeneous everywhere and re-
tain only the small, short-wavelength, observable, fluctu-
ations. Those saddle points can be labeled by φK0 ≥ φei

K ,

where φei

K is the threshold value that marks the onset of
the regime of eternal inflation in channel K, and by the
values of the short-wavelength perturbations ζK0 at the
SP. Since the BU probabilities decrease rapidly with φ0

(cf. (2)) we can approximate p(K) by exp(−π/(4V ei

K ))
where V ei

K ≡ V (φei

K) is the value of the local potential in
channel K at the lowest exit from eternal inflation. The
conditional probabilities p(O|K), finally, can be calcu-
lated using standard perturbation theory techniques (see
e.g. [6]).
Hence, with these approximations we predict that the

contributions from different channels in the landscape to
the TD probabilities (4) of observables O in our Hubble
volume are approximately given by the homogeneous sad-
dle points with the lowest exits from eternal inflation in
each channel. If the landscape has one particular channel
where the threshold of eternal inflation is at significantly
lower potential than in all others, then this channel pro-
vides the dominant contribution to the sum in (4).
Predictions for Observations

Models of Inflation: So far we have concentrated on ex-
plaining how predictions for observations can be derived
from a quantum state of the universe in a landscape that
allows for different regions of eternal inflation. However,
one cannot expect this general discussion to yield real-
istic predictions without further qualification. In par-
ticular we have not discussed possible structure on the
landscape, nor optimized the class of data D (which can
include anthropic constraints) assumed for TD probabil-
ities.
Therefore to illustrate the framework above we now

consider a model landscape where the NBWF selects a
discrete set of K minima that are separated from each
other by steep potential barriers. We further assume that
each minimum in the class under discussion has a single
inflationary direction φK in field space, where the local
potential V (φK) = µKφnK

K with nK ≥ 2, and that oth-
erwise the minima are similar. The threshold values φei

K

that mark the onset of the regime of eternal inflation
around the different minima can be calculated from the
condition that V 3 = V 2

,φ at φei

K . Substituting the NBWF

probabilities (cf. (2)) with φ0 = φei

K in (4) yields for the
TD probabilities

p(O|D≥1) ≈
∑

K

p(O|φei

K) exp (1/µK)
2

2+nK (5)

Hence the dominant contribution comes from minima
where the scalar field is moving in a quadratic poten-
tial, for which p(φei

K) ≈ exp(1/m) where m =
√
µ is the

inflaton mass.
Contributions from Different Saddle Points: The

NBWF predicts probabilities p(Cobs

ℓ |K) for the standard
multipole coefficients of the observed CMB two point
correlator in any class of backgrounds K [6]. The BU
NBWF probabilities for fluctuations are Gaussian to low-
est order in their amplitude. The resulting probabili-
ties pℓ(Cobs

ℓ |K) for a given ℓ are therefore essentially a
χ2-distribution specified by a mean 〈Cobs

ℓ 〉 = CK
ℓ and
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(cosmic) variance σK
ℓ ≡ 2(CK

ℓ )2/(2ℓ+ 1) where the CK
ℓ

are the theoretical multipole coefficients that completely
characterize Gaussian fluctuations.
If the CK

ℓ differ significantly we would expect all Cobs

ℓ ’s
to be within a few σ’s of one or the other predicted ex-
pected values CK

ℓ . If some Cobs

ℓ ’s have been measured,
they can be used to make predictions about Ctbo

ℓ ’s to
be observed by computing the conditional probability
p(Ctbo

ℓ |Cobs

ℓ ). Since the Cobs

ℓ ’s are independent random
variables these turn out to be given by

p(Ctbo

ℓ |Cobs

ℓ ) =
∑

K

p(Ctbo

ℓ |K)p(K|Cobs

ℓ ) (6)

where, using the Bayes relation,

p(K|Cobs

ℓ ) =
p(Cobs

ℓ |K)p(K)
∑

K p(Cobs

ℓ |K)p(K)
(7)

and p(K) is the NBWF probability for channel K. If
either the no-boundary probabilities p(K) or the Cobs

ℓ ’s
are enough to make p(K|Cobs

ℓ ) peaked around oneK then
(6) predicts that further observations will confirm that.
Finally we note that, even though the TD probabilities

(4) for the linear fluctuations are a sum of Gaussian dis-
tributions from different channels, no non-Gaussianity is
predicted for the standard measures of it as discussed in
[6].
Conclusion:

As a quantum mechanical system, the universe has a
quantum state. A theory of that state such as the NBWF
is a necessary part of any final theory. The probabilities
following from the state are a measure for prediction in
cosmology. Applied to predictions of our local observa-
tions the NBWF measure appears to be finite without

the need for further ad hoc regularization. We briefly
summarize the essential principles behind this.

The state predicts probabilities for different configura-
tions of geometry and field on a spacelike surface. Our
observations of the universe are limited to one particular
Hubble volume in a much larger universe. Their prob-
abilities are defined by summing (coarse-graining) over
unobserved features, for example the location of our past
light cone in spacetime, or structure arising from quan-
tum events far outside our past light cone. The saddle
point approximation to the wave function incorporates
some of this coarse graining. The resulting probabilities
for observation are well-defined and depend only on al-
ternatives in our past light cone.

Applying the no-boundary measure to a model land-
scape we found the dominant contribution to top-down
probabilities comes from the region(s) in field space
where the threshold for eternal inflation holds at the low-
est value of the potential. In a model consisting of iso-
lated minima with polynomial, monotonically increasing
directions of inflation, this implies an essentially Gaus-
sian spectrum of microwave fluctuations with a scalar
spectral index ns ∼ .97 and a tensor to scalar ratio of
about 10%.
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