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Geocentric cosmology: a new look at the measure problem
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We show that most of cutoff measures of the multiverse violate some of the basic properties of
probability theory when applied repeatedly to predict the results of local experiments. Starting from
minimal assumptions, such as Markov property, we derive a correspondence between cosmological
measures and quantum field theories in one lesser dimension. The correspondence allows us to
replace the picture of an infinite multiverse with a finite causally connected region accessible by a
given observer in conjunction with a Euclidean theory defined on its past boundary.

INTRODUCTION

The old problem of initial conditions in the big bang
cosmology was replaced by a measure problem in the in-
flationary cosmology. In order to make predictions in
eternally inflating multiverse [1–4] one usually postulates
a regularization scheme, or a measure [5–13], which could
be repeatedly tested against observations. In this paper
we show that most of the cutoff measures are inconsis-
tent with the most basic properties of the probability
theory when applied to local experiments. To resolve the
issue we propose a new approach to the measure prob-
lem which allows us to explore more easily the space of
consistent measures.

CUTOFF MEASURES

In this section we show an inconsistency in the predic-
tions of cutoff measures about local experiments. Let us
consider a semi-classical picture of eternal inflation. We
can think of the multiverse as a realization of a random
process of formation of pocket universes with rates de-
termined by the tunneling instantons. In addition, other
random processes take place within each pocket universe
which in our discussion amount to local experiments in
local labs. We define a local lab as a spacetime region R
which is small enough compared with the curvature scale
to be safely approximated by a flat metric. The bound-
ary of R can be split into a past R− and a future R+

such that no causal signal can reach R without passing
through R−. In other words, a knowledge of the initial
state on R− is enough to determine the state everywhere
on R.1 We concentrate on those (double) experiments
in which a particular initial measurement is performed
on R− with outcome φ1 and another final measurement
on R+ with outcome φ2. Since the total number of such
labs is infinite we use a cutoff measure which regularizes
the infinite four-volume of spacetime and results in finite
probabilities.

1 More precisely, R− is the smallest subset of the boundary of R
such that its future domain of dependence D+(R−) contains R.

Suppose that a cutoff measure is given. We can divide
the regularized four-volume of spacetime into box regions
of fixed size ℓ and count regions with various φ1,2. We
then calculate the following probabilities by taking the
cutoff to infinity:2

• µ(φ1): The probability that a local experiment,
confined to a box of size ℓ in the multiverse, has
outcome φ1 in the initial measurement.

• M(φ2, φ1): The joint probability that a local ex-
periment, confined to a box of size ℓ in the mul-
tiverse, has outcomes φ1 and φ2 in the initial and
final measurement, respectively.

• M(φ2|φ1): The conditional probability that a local
experiment, confined to a box of size ℓ in the mul-
tiverse and with initial measurement outcome φ1,
has outcome φ2 in the final measurement.

Evidently, all three functions µ, joint M(·, ·) and con-
ditional M(·|·) depend on the cutoff measure from which
they are derived and on ℓ. Naively one may expect

M(φ2, φ1) = µ(φ1)M(φ2|φ1), (1)

which implies

µ(φ1) =

∫

dφ2M(φ2, φ1), (2)

to hold true; but actually neither of Eqs. (1) and (2) are
correct in general. The reason is that the two M func-
tions (joint and conditional) search for whole regions R
whereas µ searches for past boundaries R− only. How-
ever, below any cutoff surface there are more R−’s than
R’s. Were there equal number of them the above re-
lations would hold; but M ’s and µ give probabilities on
different sample spaces so this naive expectation is wrong.
Let us see this in a simple example. Suppose that

there are only two possible outcomes: 1 and 2. We first
calculate regularized M(1, 1) under a cutoff surface:

M(1, 1) =
N♦(1, 1)

N♦

, (3)

2 We assume that these quantities do not depend on the arbitrari-
ness that exists in tiling the spacetime with boxes.
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where N♦ is the total number of regions R and N♦(1, 1)
is the number of such regions with initial outcome 1 and
final outcome 1. Similarly,

M(1|1) =
N♦(1, 1)

N♦(1)
, µ(1) =

N∨(1)

N∨

, (4)

where N∨ is the total number of past boundaries R− and
“(1)” means that only regions with initial outcome 1 are
counted. Clearly under any cutoff surface N♦ ≤ N∨. We
find from these relations that:

M(1, 1) =
N∨/N♦

N∨(1)/N♦(1)
· µ(1)M(1|1), (5)

which violates Eq. (1) unless in the limit that the cutoff
goes to infinity the fraction is equal to 1, or if

N∨(1)

N♦(1)
=

N∨(2)

N♦(2)
. (6)

But this can’t be true if, for some reason, the rate of
motion of the cutoff surface is correlated with regions of
high abundance of initial outcome 1 (or 2). Eq. (6) is
satisfied if proper time is used.
It should be emphasized that there is no mathemat-

ical contradiction here; µ and M ’s are three indepen-
dent probability distributions that are not related to each
other through Eqs. (1) and (2). However, if we use these
three functions as predictions for the results of local ex-
periments, then that would contradict basic properties of
probability theory that we expect to hold for experimen-
tal probabilities.

LOCAL EXPERIMENTS

In this section we review local experiments and the pro-
cess by which we can experimentally extract information
from measurements. Unless explicitly stated, our discus-
sion does not depend on whether the system is classical
or quantum. A local observer performs experiments in a
local lab and records the outcomes φ of the measurement.
We assume that the same measurement can be done inde-
pendently on copies of a system to yield probabilities on
the possible outcomes. To begin, suppose that initially at
t1 = 0 the observer knows nothing about the state of the
system, i.e., there is no previous measurement. Then he
conducts a measurement and records the experimental
probability distribution W (φ; t1 = 0). He can perform
a second measurement later and record the conditional
probability W (φ2; t2|φ1; t1 = 0). We will suppress the
time label hereafter but we always take the time of the
first measurement to be t1 = 0. More measurements can
be done in a similar fashion.3 Therefore the most gen-
eral information an observer can acquire from successive

3 It is important that the R+ surface of each measurement consti-
tutes the R− of the next one. Equivalently, we can say that the

measurements can be captured by weight functions of
the form W (φn|φn−1, · · · , φ1), which satisfy the obvious
normalization condition:

∫

dφnW (φn|φn−1, · · · , φ1) = 1. (7)

It is possible to convey the same information via joint
probability distributions. For example and for future ref-
erence, we can define the joint W (·, ·) for two measure-
ments by

W (φ2, φ1) = W (φ1)W (φ2|φ1), (8)

which has a different normalization condition:
∫

dφ1dφ2W (φ2, φ1) = 1. (9)

Conversely, starting from a given joint W (·, ·) we can
define

W (φ) =

∫

dφ′W (φ′, φ) (10)

and W (φ2|φ1) = W (φ2, φ1)/W (φ1) which satisfy nor-
malization conditions of the form (7). This establishes
that the pair of functions W (·) and conditional W (·|·) is
equivalent to the single function joint W (·, ·).
Before proceeding, note that φ labels all possible out-

comes of a measurement. Therefore W depends on the
sequence En of measurements performed at each step,
although this is not explicit in our notation. So, for ex-
ample, if we first measure the position and then the mo-
mentum of a particle we have W (p2|x1), whereas if the
second measurement is also a position measurement then
we have W (x2|x1). Here φ is either x or p.
We say that W has a “Markov property” (in time)

associated to a sequence (Ei)
n
i=1 of immediately suc-

cessive experiments, if all experimental probabilities
W (φ|φm+n, · · · , φm+1, · · · ) are independent of the times
tm+1 ≈ · · · ≈ tm+n and of the number m, type and out-
come of measurements prior to tm+1. Here φm+i is the
outcome of a measurement of type Ei (but the rest of the
measurements are arbitrary). We call a minimal such Ei
a “complete set of measurements” and say that its out-
come Φ = {φi} gives the “complete state” (or “state,”
for short) of the system after the last measurement En.

4

lab is shielded from the external effects so that experiments are
not affected by any causal signal besides those of the previous
ones.

4 Note that with this definition there may exist “hidden variables”
that the experimentalist is blind to. For example, if one stud-
ies an ideal gas and chooses to measure only P , V and T then
(P, V ) determines the state of the system. He is simply blind to
individual atom velocities and positions that, according to sta-
tistical mechanics, constitute the state of the system. However,
a thermodynamicist would agree with the him on calling (P, V )
the state of the system.
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We refer to any subset of a complete state as an incom-
plete state (but employ the same symbol φ as for a single
outcome). We further assume that the outcomes of these
incomplete measurements are independent of each other
(commuting, in the context of quantum mechanics).

With this notation we can write:

W (φn|Φn−1, · · · ) = W (φn|Φn−1). (11)

It follows that as far as the future evolution is concerned
all that matters is the initial state of the system, known
at the last complete measurement, not how it got to that
state:

W (φn|φn−1, · · · ,Φi, · · · ) = W (φn|φn−1, · · · ,Φi). (12)

Note that if Φ1 6= Φ2 are obtained from the same set
of complete measurements, then they describe distinct
states. But it is possible that two sets of complete mea-
surements lead to two totally different, but equivalent,
sets of outcomes Φ and Φ′ which describe the same state.
Φ and Φ′ are equivalent if they lead to identical subse-
quent evolutions:

W (φ|Φ) = W (φ|Φ′), for all φ. (13)

The set of equivalence classes of Φ’s defines the space of
states of the system.

The preceding definition of state was from the point of
view of an experimentalist who has access to W . From
the theoretical perspective, states and their Markovian
evolution play a central role and W is derived from them
as a prediction. This leads to numerous correlations
amongW ’s and hence to a huge reduction in the informa-
tion they carry. Let us review how it works. In classical
mechanics the state of the system is a point (x, p) in its
phase space which evolves according to a Hamiltonian.
Everything is deterministic except the initial state (just
before the first measurement) which is determined by a
probability distribution P (x, p). The result of all other
experiments are found from the probability distribution
induced on the measured observable. In quantum me-
chanics of a closed system the state of the system is a vec-
tor in its Hilbert space. Again the evolution is governed
by a Hamiltonian, but the outcomes of measurements
are not deterministic: limt2→t1 W (Φ2|Φ1) = |〈Φ2|Φ1〉|

2,
where |Φ1,2〉 are vectors corresponding to the states Φ1,2.
The initial state (just before the first measurement) is
determined by a probability distribution on the Hilbert
space which is practically equivalent to a density matrix:
W (Φ) = 〈Φ|ρ|Φ〉.

In the next section we use these properties of W , espe-
cially the Markov property, to address the problem en-
countered in the previous section.

GEOCENTRIC MEASURES

We can now summarize the problem with cutoff mea-
sures we found above: If we identify

W (φ) ≡ µ(φ), (14)

W (φ2|φ1) ≡ M(φ2|φ1), (15)

W (φ2, φ1) ≡ M(φ2, φ1), (16)

then Eqs. (8) and (10) imply Eqs. (1) and (2), but the
latter are not necessarily satisfied for all cutoff measures.
One way to escape this puzzle is to count only those
initial outcomes for which the whole experiment is under
the cutoff: µ(1) = N♦(1)/N♦. The problem with this
solution is that we then have a measure which is modified
in a different way for every type of experiment. It is also
possible that this puzzle stems from the insufficiencies of
semi-classical description of quantum cosmology and that
we are using the measure more than once (see Appendix
B in [14]).
On the other hand, we can simply forget about com-

puting M(·, ·) and M(·|·) from the measure and be con-
tent with what we get for µ. We can define M(·, ·) such
that Eq. (1) holds but we still need M(·|·). This mo-
tivates our approach in this section where we derive all
probabilities from an initial state probability (correspond-
ing to µ) and some evolution or transition probability

(corresponding to conditional M(·|·)). We study these
generically and will not confine ourselves to µ’s that are
derived from the known cutoff measures.
The Markov property (11) suggests that a whole set of

W ’s can be produced by only two functions:

µ(Φ) = W (Φ), (17)

and

P (Φ2|Φ1) = W (Φ2; t2 = T |Φ1; t1 = 0), (18)

which we call the “measure” µ and the “local transition
probability” P .
In most physical theories, the local transition proba-

bility is determined by a unitary evolution via a Hamil-
tonian. But in this paper we are not interested in prop-
erties of P (which we assume to be given) and would like
to study µ. It is clear that the shielded experiments that
we discussed earlier do not help. Instead we have to let
in external signals from outside of the already-explored
initial surface R− to probe information about µ that has
not yet been accessible.
So far we have only made use of the Markov property of

W in time to break it into µ and P . As mentioned before,
according to quantum mechanics the most general µ is a
density matrix. We restrict to a smaller class of µ’s by
considering a classical field whose state is given by ϕ(x)
and its conjugate momentum π(x) defined on the initial
surface R−. These field configurations correspond to co-
herent states in the quantum theory and hence reduce the
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density matrix to a functional µ[ϕ, π]. Now we impose an
additional constraint on µ by demanding that the proba-
bilities for field values in a region depend on those outside
only through their common boundary. In other words, we
can find the probability distribution everywhere by prop-
agating our knowledge outward, hence possible names
lab-centric, observer-centric or simply geocentric. For in-
stance on a discrete 1D R−:

µ(ϕ1, · · · , ϕN ) = µ(ϕ1|ϕ2)µ(ϕ2, · · · , ϕN ), (19)

where ϕi stands for both ϕ(xi) and π(xi). We shall re-
fer to this assumption as the Markov property in space,
which by iteration enables us to write µ as the exponen-
tiation of a local functional of fields. On a 3D R−:

µ[ϕ, π] = exp

[

−

∫

R−

d3xL (ϕ(x),∇ϕ(x);π(x),∇π(x))

]

,

(20)
where

L(ϕ(x),∇ϕ(x);π(x),∇π(x))d3x =

− logµ(ϕ(x), π(x)|ϕ(x + dx), π(x+ dx)). (21)

Therefore, we see that with the assumptions of Markov
property in space and time the space of measures on clas-
sical fields is equivalent to the space of 3D Lagrangians,
and the search for a measure is completely equivalent to
a search for a 3D Lagrangian.
As an example, consider a classical statistical mechan-

ics of electromagnetic field at finite temperature T . In
temporal gauge the partition function is given by

Z =

∫

e−
1

T

∫
d3xH(P,A)DADP, (22)

where Pi ≡ Ȧi, Fij ≡ ∂iAj − ∂jAi and H = 1
4F

2
ij +

1
2P

2
i .

It follows that the corresponding 3D Lagrangian for a
thermal bath of photons could be written as

L =
H

T
=

1

4T
F 2
ij +

1

2T
P 2
i . (23)

Of course additional constraints must be added to the
3D path integrals of Eqs. (20) and (22) to impose the
Gauss’s law. Therefore a geocentric measure determined
by Eq. (23) can describe a thermal CMB radiation with
T ≈ 2.7K given that appropriate additional fields and/or
interactions are added to explain, for example, the acous-
tic peaks.
It is also possible to obtain a consistent measure from

any of the cutoff measures by using them only once to
compute µ on the initial surface at the time of the first
measurement. For example, in the scale factor cutoff
measure Eq. (6) and hence Eq. (1) are not satisfied if “1”
and “2” refer to high and low cosmological constant. But
if we use this measure only to compute µ but not M(·|·)
then it is consistent but may or may not have the Markov
property in space. Similarly, from the causal diamond

measure one should only obtain µ, although there are no
problems with Eq. (1) if the lab regions R are themselves
causal diamonds. On the other hand, the stationary mea-
sure does not suffer from this problem because different
cutoff surfaces are used in making predictions for events
with different stationarity times and Eq. (6) is not rele-
vant.

CONCLUSION

We have shown that most of the cutoff measures of
the multiverse suffer from severe inconsistencies and de-
veloped a new framework which allows us to study the
measure problem from a completely different perspective.
In the emerging picture an infinite multiverse is replaced
with a finite geocentric region, and the search for the cor-
rect measure is replaced by a search for a 3D Lagrangian
yet to be discovered.
There are two ways to look for the correct Lagrangian.

One could either try to perform direct phenomenological
searches or one could try to derive it from first principles.
For the phenomenological approach one has to reinter-
pret the existing cosmological data from the geocentric
view point. Although we are guaranteed to uncover some
Lagrangian it is not a priori guaranteed that the corre-
sponding Lagrangian will be local, simple or even useful.
On the other hand it would be interesting to see whether
one can derive the corresponding theory from some yet-
unknown first principles.
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