
Lectures on inflation and cosmological
perturbations

David Langlois

Abstract
The purpose of these lectures is to give a pedagogical introduction to inflation and
the production of the primordial perturbations, as well as a review of some of the
latest developments in this domain.
After a short introduction, we review the main principles of the Hot Big Bang model,
as well as its limitations. These deficiencies provide the motivation for the study of a
cosmological phase of accelerated expansion, called inflation, which can be induced
by a slow-rolling scalar field. A few illustrative models are presented. We then turn
to the analysis of cosmological perturbations, and explain how the vacuum quantum
fluctuations are amplified during an inflationary phase. The next step consists in
relating the perturbations generated during inflation to the perturbations of the cos-
mological fluid in the standard radiation dominated phase. One can thus confront
the predictions of inflationary models with cosmological observations, such as the
measurements of the Cosmic Microwave Background or the large-scale structure
surveys. The present constraints on inflationary models are discussed.
The final part of these lectures gives a review of more general models of inflation, in-
volving multiple fields or non standard kinetic terms. Although more complicated,
these models are usually motivated by high energy physics and they can lead to
specific signatures that are not expected in the simplest models of inflation. After
introducing a very general formalism to describe perturbations in multi-field models
with arbitrary kinetic terms, several interesting cases are presented. We also stress
the role of entropy perturbations in the context of multi-field models. Finally, we
discuss in detail the non-Gaussianities of the primordial perturbations and some
models that could produce a detectable level of non-Gaussianities.
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2 David Langlois

1 Introduction

Inflation is today the main theoretical framework that describes the early Universe
and that can account for the present observational data. In thirty years of exis-
tence, inflation has survived, in contrast with earlier competitors, the tremendous
improvement of cosmological data. In particular, the fluctuations of the Cosmic
Microwave Background (CMB) had not yet been measured when inflation was in-
vented, whereas they give us today a remarkable picture of the cosmological per-
turbations in the early Universe. In the future, one can hope that more precise mea-
surements of the primordial cosmological perturbations will allow us to go one step
further in the confrontation of inflation models with data, and especially to discrim-
inate between the many different possible realizations of inflation.

The purpose of these lectures is two-fold. The first goal is to explain, in a simple
way and starting from first principles as much as possible, the conceptual basis
of inflation and the elementary steps to calculate the cosmological perturbations
predicted by the simplest models. The second objective of these lectures is to give
an overview of the latest developments on inflation, in particular the study of more
general models of inflation involving several scalar fields or non-standard kinetic
terms. Although more complicated, these models can give very specific signatures
in the primordial cosmological perturbations, in particular non-Gaussianities and
isocurvature perturbations.

There is a huge literature on inflation and these lectures cover only a few topics,
with a list of references that is far from exhaustive. More details and more references
can be found in several textbooks (see e.g. [1, 2, 3]) and many reviews (including
for instance [4, 5, 7, 6, 8]; more specialized reviews will also be mentioned in the
text). A novel feature of these lectures is to introduce the latest methods used for
the computation of perturbations. They have the advantage to be easily extendible
to the study of non-linear perturbations, which has recently become an extremely
active topic.

The outline of these lectures is the following. In the next section, we recall the ba-
sic elements of the Hot Big Bang model and discuss its limitations, which motivate
inflation. Homogeneous inflation is introduced in Section 3. In Section 4, we turn to
the theory of linear cosmological perturbations and explain how they are generated
during an inflationary phase. The following section, Section 5, is devoted to the link
between primordial perturbations and present cosmology, and thus to the confronta-
tion of inflation models with the data. In Section 6, more general models of inflation
are considered, with a discussion of several specific scenarios, which have attracted
a lot of attention recently. Section 7 is devoted to the primordial non-Gaussianities
and we conclude in the last section.
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2 The hot Big Bang model

Modern cosmology is based on the theory of general relativity, according to which
our Universe is described by a four-dimensional geometry gµν that satisfies Ein-
stein’s equations

Gµν ≡ Rµν −
1
2

Rgµν = 8πGTµν , (1)

where Rµν is the Ricci tensor, R≡ gµν Rµν the scalar curvature and Tµν the energy-
momentum tensor that describes the matter distribution.

2.1 The Friedmann equations

One of the main assumptions of cosmology, which has been confirmed by obser-
vations so far, is to consider, as a first approximation, the universe as being ho-
mogeneous and isotropic. Note that these symmetries define implicitly a particular
“slicing” of spacetime, in which the space-like hypersurfaces are homogeneous and
isotropic. A different slicing of the same spacetime would give space-like hypersur-
faces that are not homogeneous and isotropic.

Homogeneity and isotropy turn out to be very restrictive and the only ge-
ometries compatible with these requirements are the FLRW (Friedmann-Lemaı̂tre-
Robertson-Walker) spacetimes, with metric

ds2 =−dt2 +a2(t)
[

dr2

1−κr2 + r2 (dθ
2 + sin2

θdφ
2)] , (2)

where κ = 0,1,−1 determines the curvature of spatial hypersurfaces: respectively
flat, elliptic or hyperbolic. Moreover, the matter content compatible with homogene-
ity and isotropy is necessarily characterized by an energy-momentum tensor of the
form

T µ

ν = Diag [−ρ(t),P(t),P(t),P(t)] (3)

where ρ corresponds to an energy density and P to a pressure.
Substituting the metric (2) and the energy-momentum tensor (3) into Einstein’s

equations (1) gives the Friedmann equations,(
ȧ
a

)2

=
8πGρ

3
− κ

a2 , (4)

ä
a
= −4πG

3
(ρ +3P) , (5)

which govern the time evolution of the scale factor a(t).
An immediate consequence of the two above equations is the continuity equation

ρ̇ +3H (ρ +P) = 0, (6)
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where H ≡ ȧ/a is the Hubble parameter. The continuity equation can also be ob-
tained directly from the energy-momentum conservation

∇µ T µ

ν = 0, (7)

where ∇ denotes the covariant derivative associated with the metric gµν .
The cosmological evolution can be determined once the equation of state for the

matter is specified. Let us assume here P = wρ with w constant, which includes
the two main types of matter that play an important rôle in cosmology, namely
non relativistic matter (w ' 0) and a gas of relativistic particles (w = 1/3). The
conservation equation (6) can be integrated to give

ρ ∝ a−3(1+w). (8)

Substituting into (4), one finds, for κ = 0,

a(t) ∝ t
2

3(1+w) , (9)

which thus gives the evolution a(t) ∝ t1/2 for relativistic matter and a(t) ∝ t2/3 for
non-relativistic matter. Note that a different cosmological evolution, governed by
modified Friedmann’s equations, can be envisaged in the primordial Universe, as
for example in the context of brane cosmology (see e.g. [9]), but this possibility will
not be discussed in these notes.

The present cosmological observations seem to indicate that our Universe is cur-
rently accelerating. The simplest way to account for this acceleration is to assume
the presence of a cosmological constant Λ in Einstein’s equations, i.e. an additional
term Λgµν on the left-hand side of (1). By moving this term on the right hand side of
Einstein’s equations it can also be interpreted as an energy-momentum tensor with
equation of state P = −ρ , where ρ is time-independent. This leads, for κ = 0 and
without any other matter, to an exponential evolution of the scale factor

a(t) ∝ exp(Ht). (10)

In our universe, several species with different equations of state coexist, and it has
become customary to characterize their relative contributions by the dimensionless
parameters

Ω(i) ≡
8πGρ

(i)
0

3H2
0

, (11)

where the ρ
(i)
0 denote the present energy densities of the various species, and H0

is the present Hubble parameter. The first Friedmann equation (4), evaluated at the
present time, implies

Ω0 = ∑
i

Ω(i) = 1+
κ

a2
0H2

0
. (12)

One can infer from present observations the following parameters: Ωm ' 0.3 for
non-relativistic matter (which includes a small baryonic component Ωb ' 0.05),
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ΩΛ ' 0.7 for a “dark energy” component (compatible with a cosmological con-
stant), Ωγ ' 5× 10−5 for the photons, and a total Ω0 close to 1, i.e. no detectable
deviation from flatness.

2.2 The shortcomings of the standard Big Bang model

The standard Big Bang model has encountered remarkable successes, in particular
with primordial nucleosynthesis and the CMB, and it remains today a cornerstone in
our understanding of the present and past universe. However, a few intriguing facts
remain unexplained in the strict scenario of the Hot Big Bang model and seem to
necessitate a larger framework. We review now the main problems:

• Homogeneity problem
A first question is why the approximation of homogeneity and isotropy turns out
to be so good. Indeed, inhomogeneities are unstable, because of gravitation, and
they tend to grow with time. It can be verified for instance with the CMB that
inhomogeneities were much smaller at the last scattering epoch than today. One
thus expects that these homogeneities were still smaller further back in time.
How to explain a universe so smooth in its past ?

• Flatness problem
Another puzzle lies in the (spatial) flatness of our universe. Indeed, the first Fried-
mann equation, Eq. (4), implies

Ω −1≡ 8πGρ

3H2 −1 =
κ

a2H2 . (13)

In standard cosmology, the scale factor behaves like a∼ t p with p < 1 (p = 1/2
for radiation and p = 2/3 for non-relativistic matter). As a consequence, (aH)−2

grows with time and |Ω −1| must thus diverge with time. Therefore, in the con-
text of the standard model, the quasi-flatness observed today requires an extreme
fine-tuning of Ω near 1 in the early universe.

• Horizon problem
One of the most fundamental problems in standard cosmology is certainly the
horizon problem. The (particle) horizon is the maximal distance that can be cov-
ered by a light ray. For a light-like radial trajectory, dr = a(t)dt and the horizon
is thus given by

dH(t) = a(t)
∫ t

ti

dt ′

a(t ′)
= a(t)

t1−q− t1−q
i

1−q
, (14)

where the last equality is obtained by assuming a(t) ∼ tq and ti is some initial
time.



6 David Langlois

In standard cosmology (q < 1), the integral converges in the limit ti = 0 and the
horizon has a finite size, of the order of the so-called Hubble radius H−1:

dH(t) =
q

1−q
H−1. (15)

It also useful to consider the comoving Hubble radius, (aH)−1, which represents
the fraction of comoving space in causal contact. One finds that it grows with
time, which means that the fraction of the universe in causal contact increases
with time in the context of standard cosmology. But the CMB tells us that the
Universe was quasi-homogeneous at the time of last scattering on a scale encom-
passing many regions a priori causally independent. How to explain this ?

A solution to the horizon problem and to the other puzzles is provided by the
inflationary scenario, which we will examine in the next section. The basic idea
is to “decouple” the causal size from the Hubble radius, so that the real size of
the horizon region in the standard radiation dominated era is much larger than the
Hubble radius. Such a situation occurs if the comoving Hubble radius decreases
sufficiently in the very early universe. The corresponding condition is

ä > 0, (16)

i.e. the Universe undergoes a phase of acceleration.

3 Inflation

The broadest definition of inflation is that it corresponds to a phase of acceleration
of the universe,

ä > 0. (17)

In this sense, the current cosmological observations, if correctly interpreted, mean
that our present universe is undergoing an inflationary phase. It is worth noting
that many of the models suggested for inflation have been adapted to account for
the present acceleration. We are however interested here in an inflationary phase
taking place in the early universe, thus characterized by very different energy scales.
Another difference is that inflation in the early universe must end to leave room to
the standard radiation dominated cosmological phase.

Cosmological acceleration requires, according to the second Friedmann equa-
tion, Eq. (5), an equation of state satisfying

P <−1
3

ρ, (18)

condition which looks at first view rather exotic.
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A very simple example giving such an equation of state is a cosmological con-
stant, corresponding to a cosmological fluid with the equation of state

P =−ρ. (19)

However, a strict cosmological constant leads to exponential inflation forever which
cannot be followed by a radiation era. Another possibility is a scalar field, which we
now discuss in some details.

3.1 Cosmological scalar fields

The dynamics of a scalar field minimally coupled to gravity is governed by the
action

Sφ =
∫

d4x
√−g

(
−1

2
∂

µ
φ∂µ φ −V (φ)

)
, (20)

where g≡ det(gµν) and V (φ) is the potential of the scalar field. The corresponding
energy-momentum tensor, obtained by varying the action (20) with respect to the
metric, is given by

Tµν = ∂µ φ∂ν φ −gµν

(
1
2

∂
σ

φ∂σ φ +V (φ)

)
. (21)

In the homogeneous and isotropic geometry (2), the energy-momentum tensor is of
the perfect fluid form, with the energy density

ρ =−T 0
0 =

1
2

φ̇
2 +V (φ), (22)

where one recognizes the sum of a kinetic energy and of a potential energy, and the
pressure

P =
1
2

φ̇
2−V (φ). (23)

The equation of motion for the scalar field is the Klein-Gordon equation, obtained
by taking the variation of the above action (20) with respect to the scalar field,

∇
µ

∇µ φ =
dV
dφ

, (24)

which reduces to
φ̈ +3Hφ̇ +V ′ = 0 (25)

in a homogeneous and isotropic universe.
The system of equations governing the dynamics of the scalar field and of the

cosmological geometry is thus given by
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H2 =
8πG

3

(
1
2

φ̇
2 +V (φ)

)
, (26)

φ̈ +3Hφ̇ +V ′ = 0, (27)
Ḣ =−4πGφ̇

2. (28)

The last equation can be derived from the first two and is therefore redundant.

3.2 The slow-roll regime

The dynamical system (26-28) does not always give an accelerated expansion but
it does so in the so-called slow-roll regime when the potential energy of the scalar
field dominates over its kinetic energy.

More specifically, the slow-roll approximation consists in neglecting the kinetic
energy of the scalar field, φ̇ 2, in (26) and its acceleration, φ̈ , in the Klein-Gordon
equation (27). One then gets the simplified system

H2 ' 8πG
3

V, (29)

3Hφ̇ +V ′ ' 0. (30)

Let us now examine in which regime this approximation is valid. From (30), the
velocity of the scalar field is given by

φ̇ '− V ′

3H
. (31)

Substituting this relation into the condition φ̇ 2/2�V yields the requirement

εV ≡
M2

P
2

(
V ′

V

)2

� 1, (32)

where we have introduced the reduced Planck mass

MP ≡
1√

8πG
. (33)

Alternatively, one can use the parameter

ε ≡− Ḣ
H2 , (34)

which coincides with εV at leading order in slow-roll, since ε = φ̇ 2/(2M2
PH2).

Similarly, φ̈ � V ′ implies, after using the time derivative of (31) and (29), the
condition



Inflation and cosmological perturbations 9

ηV ≡M2
P

V ′′

V
� 1. (35)

In summary, the slow-roll approximation is valid when the conditions εV ,ηV � 1
are satisfied by the potential, which means that the slope and the curvature of the
potential, in Planck units, must be sufficiently small.

3.3 Number of e-folds

Inflation must last long enough, in order to solve the problems of the Hot Big Bang
model. To investigate this question, one usally introduces the number of e-folds
before the end of inflation, denoted N, and simply defined by

N = ln
aend

a
, (36)

where aend is the value of the scale factor at the end of inflation and a is a fiducial
value for the scale factor during inflation. By definition, N decreases during the
inflationary phase and reaches zero at its end.

In the slow-roll approximation, it is possible to express N as a function of the
scalar field. Since dN =−d lna =−Hdt =−(H/φ̇)dφ , one easily finds, using (31)
and (29), that

N(φ)'
∫

φend

φ

V
M2

PV ′
dφ . (37)

Given an explicit potential V (φ), one can in principle integrate the above expression
to obtain N in terms of φ . This will be illustrated below for some specific models.

Let us now discuss the link between N and the present cosmological scales. If
one considers a given scale characterized by its comoving wavenumber k = 2π/λ ,
this scale crossed out the Hubble radius, during inflation, at an instant t∗(k) defined
by

k = a(t∗)H(t∗). (38)

To get a rough estimate of the number of e-foldings of inflation that are needed
to solve the horizon problem, let us first ignore the transition from a radiation era
to a matter era and assume for simplicity that the inflationary phase was followed
instantaneously by a radiation phase that has lasted until now. During the radiation
phase, the comoving Hubble radius (aH)−1 increases like a. In order to solve the
horizon problem, the increase of the comoving Hubble radius during the standard
evolution must be compensated by at least a decrease of the same amount during
inflation. Since the comoving Hubble radius roughly scales like a−1 during inflation,
the minimum amount of inflation is simply given by the number of e-folds between
the end of inflation and today

ln(a0/aend) = ln(Tend/T0)∼ ln(1029(Tend/1016GeV)), (39)
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i.e. around 60 e-folds for a temperature T ∼ 1016Gev at the beginning of the radia-
tion era. As we will see later, this energy scale is typical of inflation in the simplest
models.

ln(aH)−1

ln a

Fig. 1 Evolution of the comoving Hubble radius λH = (aH)−1, during inflation, radiation domi-
nated era and matter dominated era. The horizontal dashed lines correspond to two different co-
moving lengthscales: the larger scales cross out the Hubble radius earlier during inflation and
reenter the Hubble radius later in the standard cosmological era.

This determines roughly the number of e-folds N(k0) between the moment when
the scale corresponding to our present Hubble radius k0 = a0H0 exited the Hubble
radius during inflation and the end of inflation. The other lengthscales of cosmo-
logical interest are smaller than k−1

0 and therefore exited the Hubble radius during
inflation after the scale k0, whereas they entered the Hubble radius during the stan-
dard cosmological phase (either in the radiation era for the smaller scales or in the
matter era for the larger scales) before the scale k0 (see Fig. 1).

A more detailed calculation, which distinguishes between the energy scales at
the end of inflation and after the reheating, gives for the number of e-folds between
the exit of the mode k and the end of inflation (see e.g. [2, 10])

N(k)' 62− ln
k

a0H0
+ ln

V 1/4
k

1016GeV
+ ln

V 1/4
k

V 1/4
end

+
1
3

ln
ρ

1/4
reh

V 1/4
end

. (40)
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Since the smallest scale of cosmological relevance is of the order of 1 Mpc, the
range of cosmological scales covers about 9 e-folds.

The above number of e-folds is altered if one changes the thermal history of the
universe between inflation and the present time by including for instance a period
of so-called thermal inflation.

3.4 A few examples

It is now time to illustrate all the points discussed above with some specific poten-
tials.

3.4.1 Power-law potential

We consider first the case of power-law monomial potentials, of the form

V (φ) = λφ
p, (41)

which have been abundantly studied in the literature. In particular, the above poten-
tials include the case of a free massive scalar field, V (φ) = m2φ/2.

The slow-roll parameters are given by

ε =
p2MP

2φ 2 , η = p(p−1)
M2

P
φ 2 . (42)

The slow-roll conditions ε � 1 and η � 1 thus imply

φ � p MP, (43)

which means that the scalar field amplitude must be above the Planck mass during
inflation.

After substituting the potential (41) into the slow-roll equations of motion (29-
30), one can integrate them explicitly to get

φ
2− p

2 −φ
2− p

2
i =− 2p

4− p

√
λ

3
MP (t− ti) (44)

for p 6= 4 and

φ = φi exp

[
−4

√
λ

3
MP(t− ti)

]
(45)

for p = 4.
One can also express the scale factor as a function of the scalar field [and thus as a

function of time by substituting the above expression for φ(t)] by using d lna/dφ =
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H/φ̇ '−φ/(pM2
P). One finds

a = aend exp

[
−
(
φ 2−φ 2

end

)
2pM2

P

]
. (46)

Defining the end of inflation by ε = 1, one gets φend = pMP/
√

2 and the number of
e-folds is thus given by

N(φ)' φ 2

2pM2
P
− p

4
. (47)

This can be inverted, so that

φ(N)'
√

2N pMP, (48)

where we have ignored the second term of the right hand side of (47), consistently
with the condition (43).

3.4.2 Exponential potential

Cosmological scalar fields with a potential of the form

V =V0 exp

(
−
√

2
q

φ

MP

)
, (49)

admit an exact solution (i.e. valid beyond the slow-roll approximation) of the system
(26-28), with a power-law scale factor, i.e.

a(t) ∝ tq. (50)

The evolution of the scalar field is given by the expression

φ(t) =
√

2qMP ln

[√
V0

q(3q−1)
t

MP

]
. (51)

Note that one recovers the slow-roll approximation in the limit q� 1, since the
slow-roll parameters are given by

εV =
1
q

ηV =
2
q
. (52)

3.4.3 Hybrid inflation

In this type of model, the potential contains a constant piece in addition to a power-
law potential, the simplest example being
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V (φ) =V0 +
1
2

m2
φ

2. (53)

In fact, the full model relies on the presence of two scalar fields, where one plays
the traditional rôle of the inflaton, while the other is necessary to end inflation. In
the original model of hybrid inflation [11], one starts from the potential

V (φ ,ψ) =
1
2

m2
φ

2 +
1
2

λ
′
ψ

2
φ

2 +
1
4

λ
(
M2−ψ

2)2
. (54)

For values of the field φ larger than the critical value φc = λM2/λ ′, the potential for
ψ has its minimum at ψ = 0. This is the case during inflation: ψ is thus trapped in
this minimum ψ = 0, so that the effective potential for the scalar field φ , which plays
the rôle of the inflaton, is given by (53) with V0 = λM4/4. During the inflationary
phase, the field φ slow-rolls until it reaches the critical value φc. The shape of the
potential for ψ is then modified and new minima appear in ψ = ±M. ψ will thus
roll down into one of these new minima and, as a consequence, inflation will end.

During the inflationary phase, the slow-roll parameters are given by

ε =
m2M2

Pφ̃ 2

V0(1+ φ̃ 2)2
, η =

m2M2
P

V0(1+ φ̃ 2)
, (55)

where we have introduced the rescaled scalar field φ̃ , which is dimensionless and
defined so that V =V0(1+ φ̃ 2). Note that there are two limiting regimes: if φ̃ � 1,
the constant term is negligible and one recovers a power-law potential with p = 2;
if φ̃ � 1, V0 dominates and the potential is extremely flat with ε � η .

3.5 The inflationary “zoology”

3.5.1 Historical perspective

The first model of inflation is usually traced back to Alan Guth [12] in 1981, al-
though one can see the model of Alexei Starobinsky [13] as a precursor. Guth’s
model, which is named today old inflation is based on a first-order phase transition,
from a false vacuum with non zero energy, which generates an exponential infla-
tionary phase, into a true vacuum with zero energy density. The true vacuum phase
appears in the shape of bubbles via quantum tunneling. The problem with this in-
flationary model is that, in order to get sufficient inflation to solve the problems of
the standard model mentioned earlier, the nucleation rate must be sufficiently small;
but, then, the bubbles never coalesce because the space that separates the bubbles
undergoes inflation and expands too rapidly. Therefore, the first model of inflation
is not phenomenologically viable.

After this first and unsuccessful attempt, a new generation of inflationary models
appeared, usually denoted new inflation models [14]. They rely on a second order
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phase transition, based on thermal corrections of the effective potential and thus
assume that the scalar field is in thermal equilibrium.

This hypothesis of thermal equilibrium was given up in the third generation of
models, initiated by Andrei Linde, and whose generic name is chaotic inflation [15].
This allows to use extremely simple potentials, quadratic or quartic, which lead to
inflationary phases when the scalar field is displaced from the origin with values of
the order of several Planck masses.

In the last few years, there has been an intense activity in building inflationary
models based on high energy theories, in particular in the context of supersymmetry
and string theory. Details can be found in several recent reviews [16, 17, 18, 19, 20].

3.5.2 Classification

There exist a huge number of models of inflation. As far as single-field models are
concerned1, it is convenient to regroup them into three broad categories:

• Large field models (0 < η ≤ ε)
The scalar field is displaced from its stable minimum by ∆φ ∼MP. This includes
the chaotic models with monomial potentials

V (φ) = Λ
4
(

φ

µ

)p

, (56)

or the exponential potential

V (φ) = Λ
4 exp(φ/µ) , (57)

which have already been discussed.

• Small field models (η < 0 < ε)
In this type of models, the scalar field is rolling away from an unstable maxi-
mum of the potential. This is a characteristic feature of spontaneous symmetry
breaking. A typical potential is

V (φ) = Λ
4
[

1−
(

φ

µ

)p]
, (58)

which can be interpreted as the lowest-order term in a Taylor expansion about the
origin. Historically, this potential shape appeared in the so-called ‘new inflation’
scenario.
A particular feature of these models is that tensor modes are much more sup-
pressed with respect to scalar modes than in the large-field models, as it will be

1 or at least effectively single field during inflation (the hybrid models require a second field to end
inflation as discussed earlier).
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shown later.

Fig. 2 Schematic potential for the three main categories of inflationary models: large-field models,
small-field models, hybrid models.

• Hybrid models (0 < ε < η)
Although a second scalar field is needed to end inflation, hybrid models cor-
respond effectively to single-field models with a potential characterized by
V ′′(φ)> 0 and 0 < ε < η . A typical potential is

V (φ) = Λ
4
[

1+
(

φ

µ

)p]
. (59)

Once more, this potential can be seen as the lowest order in a Taylor expansion
about the origin.
In the case of hybrid models, the value φN of the scalar field as a function of the
number of e-folds before the end of inflation is not determined by the above po-
tential and, therefore, (φN/µ) can be considered as a freely adjustable parameter.

4 Quantum fluctuations and “birth” of cosmological
perturbations

So far, we have concentrated our attention on strictly homogeneous and isotropic
aspects of cosmology. Of course, this idealized version, although extremely useful,
is not sufficient to account for real cosmology and it is now time to turn to the study
of deviations from homogeneity and isotropy.

In cosmology, inhomogeneities grow because of the attractive nature of gravity,
which implies that inhomogeneities were much smaller in the past. As a conse-
quence, for most of their evolution, inhomogeneities can be treated as linear pertur-
bations. The linear treatment ceases to be valid on small scales in our recent past,
hence the difficulty to reconstruct the primordial inhomogeneities from large-scale
structure, but it is quite adequate to describe the fluctuations of the CMB at the time
of last scattering. This is the reason why the CMB is currently the best observational
probe of primordial inhomogeneities.
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In this section, we concentrate on the perturbations of the inflaton and show how
the accelerated expansion during inflation converts its initial vacuum quantum fluc-
tuations into “macroscopic” cosmological perturbations (see [21, 22, 23, 24, 25, 26]
for some of the historical works). In this sense, inflation provides us with “natu-
ral” initial conditions. We will also see how the perturbations of the inflaton can be
translated into perturbations of the geometry.

4.1 Massless scalar field in de Sitter

As a warming-up, it is instructive to discuss the case of a massless scalar field in a
de Sitter universe, described by a cosmological metric with exponential expansion,

ds2 =−dt2 +a2(t)dx2, a(t) = eHt . (60)

It turns out it is more convenient to use, instead of the cosmic time t, a conformal
time τ , defined by

τ =
∫ dt

a(t)
, (61)

so that the metric takes the particularly simple form

ds2 = a2(τ)
[
−dτ

2 +dx2] . (62)

In the de Sitter case, the conformal time is given by

τ =−e−Ht

H
=− 1

aH
, (63)

so that the scale factor in terms of τ is simply

a(τ) =− 1
Hτ

. (64)

The conformal time is here negative (so that the scale factor is positive) and goes
from −∞ to 0.

The action for a massless scalar field is given by

S =
∫

d4x
√−g

(
−1

2
∂µ φ∂

µ
φ

)
=
∫

dτ d3x a4
[

1
2a2 φ

′2− 1
2a2 ∇φ

2
]
, (65)

where we have substituted in the action the cosmological metric (62) and where a
prime denotes a derivative with respect to the conformal time τ . Note that, whereas
we still allow for spatial variations of the scalar field, i.e. inhomogeneities, we will
assume here, somewhat inconsistently, that the geometry is completely fixed as ho-
mogeneous. We will deal later with the question of the metric perturbations.
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It is possible to eliminate the factor a2 in front of the kinetic term φ ′2 by intro-
ducing the new function

u = aφ . (66)

This will generate a term proportional to uu′ but one can get rid of it by an integration
by parts. The action (65) can then be rewritten as

S =
1
2

∫
dτ d3x

[
u′2−∇u2 +

a′′

a
u2
]
. (67)

The first two terms are familiar since they are the same as in the action for a free
massless scalar field in Minkowski spacetime. The fact that our scalar field here
lives in de Sitter spacetime rather than Minkowski has been reexpressed as a time-
dependent effective mass

m2
e f f =−

a′′

a
=− 2

τ2 . (68)

Let us now proceed to the quantization of the scalar field u by using the standard
procedure of quantum field theory. One first turns u into a quantum field denoted û,
which we expand in Fourier space as

û(τ,x) =
1

(2π)3/2

∫
d3k
{

âkuk(τ)eik.x + â†
ku∗k(τ)e

−ik.x
}
, (69)

where the â† and â are creation and annihilation operators, satisfying the usual com-
mutation rules

[âk, âk′ ] =
[
â†

k, â
†
k′

]
= 0,

[
âk, â

†
k′

]
= δ (k−k′). (70)

The function uk(τ) is a complex time-dependent function that must satisfy the clas-
sical equation of motion in Fourier space, namely

u′′k +
(

k2− a′′

a

)
uk = 0, (71)

which is simply the equation of motion for an oscillator with a time-dependent mass.
In the case of a massless scalar field in Minkowski spacetime, this effective mass is
zero (a′′/a = 0) and one usually takes

uk =

√
h̄
2k

e−ikτ (Minkowski), (72)

where the choice for the normalization factor will be clear below. In the case of de
Sitter, one can solve explicitly the above equation with a′′/a = 2/τ2 and the general
solution is given by

uk = αe−ikτ

(
1− i

kτ

)
+βeikτ

(
1+

i
kτ

)
. (73)
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Canonical quantization consists in imposing the following commutation rules on
the τ =constant hypersurfaces:[

û(τ,x), û(τ,x′)
]
=
[
π̂u(τ,x), π̂u(τ,x′)

]
= 0 (74)

and [
û(τ,x), π̂u(τ,x′)

]
= ih̄δ (x−x′), (75)

where πu ≡ δS/δu′ is the conjugate momentum of u. In the present case, πu = u′

since the kinetic term is canonical.
Subtituting the expansion (69) in the commutator (75), and using the commuta-

tion rules for the creation and annihilation operators (70), one obtains the relation

uku′k
∗−u∗ku′k = ih̄, (76)

which determines the normalization of the Wronskian.
The choice of a specific function uk(τ) corresponds to a particular prescription

for the physical vacuum |0〉, defined by

âk|0〉= 0. (77)

A different choice for uk(τ) is associated to a different decomposition into creation
and annihilitation modes and thus to a different vacuum.

Let us now note that the wavelength associated with a given mode k can always
be found within the Hubble radius provided one goes sufficiently far backwards in
time, since the comoving Hubble radius is shrinking during inflation. In other words,
for |τ| sufficiently big, one gets k|τ| � 1. Moreover, for a wavelength smaller than
the Hubble radius, one can neglect the influence of the curvature of spacetime and
the mode behaves as in a Minkowski spacetime, as can also be checked explicitly
with the equation of motion (71) (the effective mass is negligible for k|τ| � 1).
Therefore, the most natural physical prescription is to take the particular solution
that corresponds to the usual Minkowski vacuum, i.e. uk ∼ exp(−ikτ), in the limit
k|τ| � 1. In view of (73), this corresponds to the choice

uk =

√
h̄
2k

e−ikτ

(
1− i

kτ

)
, (78)

where the coefficient has been determined by the normalisation condition (76). This
choice, in the jargon of quantum field theory on curved spacetimes, corresponds to
the Bunch-Davies vacuum.

Finally, one can compute the correlation function for the scalar field φ in the
vacuum state defined above. When Fourier transformed, the correlation function
defines the power spectrum Pφ (k):

〈0|φ̂(x1)φ̂(x2)|0〉=
∫

d3k eik.(x1−x2)
Pφ (k)
4πk3 . (79)
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Note that the homogeneity and isotropy of the quantum field is used implicitly in
the definition of the power spectrum, which is “diagonal” in Fourier space (homo-
geneity) and depends only on the norm of k (isotropy). In our case, we find

2π
2k−3Pφ =

|uk|2
a2 , (80)

which gives in the limit k|τ|� 1, i.e. when the wavelength is larger than the Hubble
radius,

Pφ (k)' h̄
(

H
2π

)2

(k� aH) . (81)

Note that, in the opposite limit k|τ| � 1, one recovers the usual vacuum fluctuations
in Minkowski, with Pφ (k) = h̄(k/2πa)2.

We have used a quantum description of the scalar field. But cosmological pertur-
bations in the standard cosmological eras are usually described by classical random
fields. Roughly speaking, the transition between the quantum and classical (although
stochastic) descriptions makes sense when the perturbations exit the Hubble radius.
Indeed each of the terms in the Wronskian (76) is roughly of the order h̄/2(kτ)3

in the super-Hubble limit and the non-commutativity can then be neglected. In this
sense, one can see the exit outside the Hubble radius as a quantum-classical transi-
tion, although some refinement is required to make this statement more precise (see
e.g. [27]).

4.2 Quantum fluctuations with metric perturbations

Let us now move to the more realistic case of a perturbed inflaton field living in
a perturbed cosmological geometry. In fact, Einstein’s equations imply that scalar
field fluctuations must necessarily coexist with metric fluctuations. A correct treat-
ment, either classical or quantum, must therefore involve both the scalar field pertur-
bations and metric perturbations. We thus need to resort to the theory of relativistic
cosmological perturbations, which we briefly present below (more details can be
found in e.g. [28, 29, 30, 7, 31]).

4.2.1 Linear perturbations of the metric

The most general linear perturbation about the homogenous metric can be expressed
as

ds2 = a2{−(1+2A)dτ
2 +2Bidxidτ +(δi j +hi j)dxidx j} , (82)
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where we have assumed, for simplicity, a spatially flat background metric2. We have
introduced a time plus space decomposition of the perturbations. The indices i, j
stand for spatial indices and the perturbed quantities defined in (82) can be seen as
three-dimensional tensors, for which the indices can be lowered (or raised) by the
spatial metric δi j (or its inverse).

It is very convenient to separate the perturbations into three categories, the so-
called “scalar”, “vector” and “tensor” modes. For example, a spatial vector field Bi

can be decomposed uniquely into a longitudinal part and a transverse part,

Bi = ∂iB+ B̄i, ∂iB̄i = 0, (83)

where the longitudinal part is curl-free and can thus be expressed as a gradient, and
the transverse part is divergenceless. This yields one “scalar” mode, B , and two
“vector” modes B̄i (the index i takes three values but the divergenceless condition
implies that only two components are independent).

A similar procedure applies to the symmetric tensor hi j, which can be decom-
posed as

hi j = 2C δi j +2∂i∂ jE +2∂(iE j)+E i j, (84)

with E i j transverse and traceless (TT), i.e. ∂iE
i j
= 0 (transverse) and E i j

δi j = 0
(traceless), and Ei transverse. The parentheses around the indices denote sym-
metrization, namely 2∂(iE j) ≡ ∂iE j +∂ jEi. We have thus defined two scalar modes,
C and E, two vector modes, Ei, and two tensor modes, Ēi j.

4.2.2 Coordinate transformations

The metric perturbations, introduced in (82), are modified in a coordinate transfor-
mation of the form

xα → xα +ξ
α , ξ

α = (ξ 0,ξ i). (85)

It can be shown that the change of the metric components can be expressed as

δgµν → δgµν −2∇(µ ξν) , (86)

using the symbol ∇ for the four-dimensional covariant derivative, where the varia-
tion due the coordinate transformation is defined for the same old and new coordi-
nates (and thus at different physical points).

The above variation can be decomposed into individual variations for the various
components of the metric defined earlier. One finds

A → A−ξ
0′−H ξ

0 (87)
Bi → Bi +∂iξ

0−ξ
′
i (88)

2 This is all the more justified given that the metric in the early Universe was closer to a spatially
flat metric than our present metric, which is itself indistiguishible from a flat geometry, according
to observations.
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hi j → hi j−2
(
∂(iξ j)−H ξ

0
δi j
)
, (89)

where H ≡ a′/a.
The effect of a coordinate transformation can also be decomposed along the

scalar, vector and tensor sectors introduced earlier. The generator ξ α of the co-
ordinate transformation can indeed be written as

ξ
α = (ξ 0,∂ i

ξ +ξ
i
), (90)

with ξ
i

transverse, which shows explicitly that ξ α contains two scalar components,
ξ 0 and ξ , and two vector components, ξ

i
. The transformations (88-89) are then

decomposed into :

B → B+ξ
0−ξ

′

C → C−H ξ
0

E → E−ξ (91)

Bi → Bi−ξ
i′

E i → E i−ξ
i
.

The tensor perturbations remain unchanged since ξ α does not contain any tensor
component.

To summarize, the whole system scalar field plus gravitation is described by
eleven perturbations. They can be decomposed into five scalar quantities: A, B, C and
E from the metric and δφ ; four vector quantities B̄i and Ē i; two tensor quantities: the
two polarizations of ET T

i j . However, these quantities are physically redundant since
the same physical situation can be described by different sets of values of these
perturbations, provided they are related by the coordinate transformations described
above.

One would thus like to identify the true degrees of freedom, i.e. the physically in-
dependent quantities characterizing the system. One can reduce the effective number
of degrees of freedom by using the four coordinate transformations, which consist of
two scalar transformations and two vector transformations as we saw earlier. More-
over, Einstein’s equations contain nondynamical equations, i.e. constraints, which
are also the consequence of the invariance by coordinate transformations. They can
be decomposed into two scalar constraints and two vector constraints. The situation
for the scalar, vector and tensor sectors, respectively, is summarized in Table 1. By
taking into account the coordinate changes and the constraints, one finds three true
degrees of freedom: two polarizations of the gravitational waves and one scalar de-
gree of freedom. If matter was composed of N scalar fields, one would get N scalar
degrees of freedom in addition to the two tensor modes.

In a coordinate transformation, the scalar field perturbation is also modified, ac-
cording to

δφ → δφ −φ
′
ξ

0 . (92)
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Metric Scalar field Gauge choice Constraints True d.o.f.
S 4 1 -2 -2 1
V 4 0 -2 -2 0
T 2 0 0 0 2

Table 1 Counting of the degrees of freedom in the scalar, vector and tensor sectors.

In single-field inflation, there are thus two natural choices of gauge to describe the
scalar perturbation. The first is to work with hypersurfaces that are flat, i.e. C = 0,
in which case we will denote the scalar field perturbation by Q, i.e.

Q = δφC=0 . (93)

The other choice is to work with hypersurfaces where the scalar field is uniform,
i.e. δφ = 0, in which case the scalar degree of freedom is embodied by the metric
perturbation Cδφ=0. In other words, the true scalar degree of freedom can be rep-
resented either as a pure matter perturbation or a pure metric perturbation. In the
general case, we have

Q = δφ − φ ′

H
C , (94)

which is a gauge-invariant combination (often called the Mukhanov-Sasaki vari-
able [25, 32]).

4.3 Quantizing the scalar degree of freedom

In order to quantize the true scalar degree of freedom, one needs the action that
governs its dynamics. Let us first note that the linearized equations of motion for
the coupled system {gravity + scalar field} are obtained from the expansion of the
full action at second-order in the perturbations. Indeed the equations for the linear
perturbations correspond to the Euler-Lagrange equations derived from a quadratic
Lagrangian. In our case, the difficulty is that there are several scalar perturbations
that are not independent. In order to quantize this coupled system, one can work
directly with the second-order Lagrangian [30], or resort to a Hamiltonian approach
[33, 34].

The modern approach, introduced by Maldacena [35] to study perturbations be-
yond linear order, is based on the Arnowitt-Deser-Misner (ADM) formalism [36].
In the ADM approach, the metric is written in the form

ds2 =−N2dt2 +hi j(dxi +Nidt)(dx j +N jdt) (95)

where N is called the lapse function and Ni the shift vector. The full action for the
scalar field and gravity
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S =
∫

d4x
√−g

(
−1

2
∂

µ
φ∂µ φ −V (φ)

)
+

M2
P

2

∫
d4x
√−gR (96)

becomes, after substitution of (95),

S =
∫

dtd3x
√

hN
[

V 2

2N2 −
1
2

hi j
∂iφ∂ jφ −V (φ)

]
+

M2
P

2

∫
dtd3x

√
h

N
(Ei jE i j−E2) ,

(97)
where h = det(hi j),

V ≡ φ̇ −N j
∂ jφ . (98)

and the symmetric tensor Ei j, defined by

Ei j ≡
1
2

ḣi j−N(i| j) , (99)

(the symbol | denotes the spatial covariant derivative associated with the spatial
metric hi j) is proportional to the extrinsic curvature of the spatial slices.

The variation of the action with respect to N yields the energy constraint,

V 2

2N2 +
1
2

hi j
∂iφ∂ jφ +V (φ)+

M2
P

2N2 (Ei jE i j−E2) = 0 , (100)

while the variation of the action with respect to the shift Ni gives the momentum
constraint,

M2
P

(
1
N
(E j

i −Eδ
j

i )

)
| j
=

V

N
∂iφ . (101)

In order to study the linear perturbations about the FLRW background, we now
restrict ourselves to the flat gauge, which corresponds to the choice

hi j = a2(t)δi j. (102)

The scalar fields on the corresponding flat hypersurfaces can be decomposed as

φ = φ̄ +Q (103)

where φ̄ is the spatially homogeneous background value of the scalar field and Q
represents its perturbation (on flat hypersurfaces). In the following, we will often
omit the bar and simply write the homogeneous value as φ , unless this generates
ambiguities.

We can also write the (scalarly) perturbed lapse and shift as

N = 1+α, Ni = β,i , (104)

where the linear perturbations α and β are determined in terms of the scalar field
perturbation Q by solving the linearized constraints. At first-order, the momentum
constraint implies
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α =
φ̇

2M2
P H

Q , (105)

while the energy constraint gives ∂ 2β in terms of Q and Q̇.

4.4 Second order action

We now expand the action, up to quadratic order, in terms of the linear perturbations.
This action can be written solely in terms of the physical degree of freedom Q by
substituting the expression (105) for α (it turns out that β disappears of the second
order action, after an integration by parts). The second order action can be written
in the rather simple form

S(2) =
1
2

∫
dt d3xa3

[
Q̇2− 1

a2 ∂iQ∂
iQ−M 2Q2

]
, (106)

with the effective (squared) mass

M 2 = V ′′− 1
a3

d
dt

(
a3

H
φ̇

2
)
. (107)

As we did earlier, it is convenient to use the conformal time τ and to introduce
the canonical degree of freedom

v = aQ (108)

which leads to the action

Sv =
1
2

∫
dτ d3x

[
v′2 +∂iv∂

iv+
z′′

z
v2
]
, (109)

with

z = a
φ ′

H
. (110)

This action is analogous to that of a scalar field in Minkowski spacetime with a time-
dependent mass. The situation is quite similar to what we obtained previously, with
the notable difference that the effective time-dependent mass is now z′′/z, instead of
a′′/a.

The quantity we will be eventually interested in is the comoving curvature per-
turbation R, which is related to the canonical variable v by the relation

v = zR. (111)

Since, by analogy with (80), the power spectrum for v is given by

2π
2k−3Pv(k) = |vk|2, (112)
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the corresponding power spectrum for R is found to be

2π
2k−3PR(k) =

|vk|2
z2 . (113)

In the case of an inflationary phase in the slow-roll approximation, the evolution
of φ and of H is much slower than that of the scale factor a. Consequently, one gets
approximately

z′′

z
' a′′

a
, (slow− roll) (114)

and all results obtained previously for u apply directly to our variable v in the slow-
roll approximation. This implies that the properly normalized function correspond-
ing to the Bunch-Davies vacuum is approximately given by

vk '
√

h̄
2k

e−ikτ

(
1− i

kτ

)
. (115)

In the super-Hubble limit k|τ| � 1 the function vk behaves like

vk '−
√

h̄
2k

i
kτ
' i

√
h̄
2k

aH
k
, (116)

where we have used a'−1/(Hτ).
Consequently, combining (113), (110) and (115) and reintroducing the cosmic

time gives the power spectrum for R, on scales larger than the Hubble radius,

PR '
h̄

4π2

(
H4

φ̇ 2

)
k=aH

=
h̄

2M2
Pε∗

(
H∗
2π

)2

(117)

where we have used ε ≡−Ḣ/H2 in the second equality, and the subscript ∗ means
that the quantity is evaluated at Hubble crossing (k = aH). This is the main result
for the spectrum of scalar cosmological perturbations generated from vacuum fluc-
tuations during a slow-roll inflation phase.

4.5 Gravitational waves

We have focused so far our attention on scalar perturbations, which are the most
important in cosmology. Tensor perturbations, or primordial gravitational waves, if
ever detected in the future, would be a remarkable additional probe of the early uni-
verse. In the inflationary scenario, like scalar perturbations, primordial gravitational
waves are generated from vacuum quantum fluctuations [37]. Let us now explain
briefly how.

The action expanded at second order in the perturbations contains a tensor part,
given by
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S(2)g =
M2

P
8

∫
dτ d3xa2

η
µν

∂µ Ē i
j∂ν Ē j

i , (118)

where ηµν denotes the Minkoswki metric. Apart from the tensorial nature of E i
j,

this action is quite similar to that of a scalar field in a FLRW universe (65), up to a
renormalization factor MP/2. The decomposition

aĒ i
j = ∑

λ=+,×

∫ d3k
(2π)3/2 vk,λ (τ)ε

i
j(k;λ )eik.x (119)

where the ε i
j(k;λ ) are the polarization tensors, shows that the gravitational waves

are essentially equivalent to two massless scalar fields (for each polarization) φλ =
MPĒλ/2.

The total power spectrum is thus immediately deduced from (80) and reads

PT = 2× 4
M2

P
× h̄
(

H
2π

)2

, (120)

where the first factor comes from the two polarizations, the second from the renor-
malization with respect to a canonical scalar field, the last term being the power
spectrum for a scalar field derived earlier. In summary, the tensor power spectrum is

PT =
8h̄
M2

P

(
H∗
2π

)2

, (121)

where the subscript ∗ recalls that the Hubble parameter, which can be slowly evolv-
ing during inflation, must be evaluated when the relevant scale exited the Hubble
radius during inflation.

A measurement of the tensor amplitude (121) gives direct access, in this context,
to the energy scale H∗ during inflation, in contrast with the scalar amplitude (117)
which depends on the slow-roll parameter ε∗ as well. The tensor to scalar ratio,

r ≡ PT

PR
= 16ε∗ , (122)

is proportional to the slow-roll parameter.

5 From inflation to the standard era

Once the perturbations have been computed during inflation, one must relate them
to perturbations in the standard radiation dominated era, where they will be used
as “initial conditions”. A priori, one could think that it is necessary to follow the
details of how the inflaton is converted into ordinary particles in order to establish
this relation. In fact, all these details turn out to be irrelevant, at least in the case of



Inflation and cosmological perturbations 27

single field inflation, because there exists a conservation law for scales larger than
the Hubble radius, which is the case for all relevant scales at the end of inflation.

5.1 Covariant approach

Instead of the traditional metric-based approach, we use here a more geometrical
approach to cosmological perturbations [38], which will enable us to recover easily
and intuitively the main useful results, not only for linear perturbations but also for
non-linear perturbations.

Let us consider a spacetime with metric gab and some perfect fluid characterized
by its energy density ρ , its pressure P and its four-velocity ua. The corresponding
energy momentum-tensor is given by

Tab = ρuaub +P(gab +uaub). (123)

Let us also introduce the expansion along the fluid worldlines,

Θ = ∇aua, (124)

and the integrated expansion

α =
1
3

∫
dτp Θ , (125)

where τp is the proper time defined along the fluid worldlines. In a FLRW spacetime,
one would find Θ = 3H. Therefore, in the general case, one can interpret Θ/3 as a
local Hubble parameter and S = exp(α) as a local scale factor, while α represents
the local number of e-folds.

As shown in [39, 40], the conservation law for the energy-momentum tensor,

∇aT a
b = 0, (126)

implies that the covector

ζa ≡ ∇aα− α̇

ρ̇
∇aρ (127)

satisfies the relation

ζ̇a ≡Luζa =−
Θ

3(ρ + p)

(
∇a p− ṗ

ρ̇
∇aρ

)
, (128)
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where a dot denotes the time derivative defined as the Lie derivative along ua3.
This result is valid for any spacetime geometry and does not depend on Einstein’s
equations.

The covector ζa can be defined for the global cosmological fluid or for any of the
individual cosmological fluids (the case of interacting fluids is discussed in [41]).
Using the non-linear conservation equation

ρ̇ =−3α̇(ρ +P) , (129)

which follows from ub∇aT a
b = 0, one can re-express ζa in the form

ζa = ∇aα +
∇aρ

3(ρ +P)
. (130)

If w≡ P/ρ is constant, the above covector is a total gradient and can be written as

ζa = ∇a

[
α +

1
3(1+w)

lnρ

]
. (131)

On scales larger than the Hubble radius, our definition agrees with the non-linear
curvature perturbation on uniform density hypersurfaces as defined in [42] (see also
[43])

ζ = δN−
∫

ρ

ρ̄

H
dρ̃

˙̃ρ
= δN +

1
3

∫
ρ

ρ̄

dρ̃

(1+w)ρ̃
, (132)

where N = α . The above equation is simply the integrated version of (127), or of
(130).

5.2 Linear conserved quantities

Let us now introduce a coordinate system, in which the metric (with only scalar
perturbations) reads

ds2 = a2{−(1+2A)dτ
2 +2∂iBdxidτ +[(1+2C)δi j +2∂i∂ jE]dxidx j} . (133)

One can decompose the fluid four-velocity as

uµ = ūµ +δuµ , δuµ =
{
−A/a,vi/a

}
, vi = ∂iv+ v̄i , (134)

where v̄i is transverse.
At linear order, the spatial components of ζa are simply

3 For scalar quantities, this is equivalent to an ordinary derivative along ua (e.g. ρ̇ ≡ ua∇aρ), but
for ζa, one has ζ̇a ≡ ub∇bζa +ζb∇aub.
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ζ
(1)
i = ∂iζ

(1), ζ
(1) ≡ δα− ᾱ ′

ρ̄ ′
δρ , (135)

where a prime denotes a derivative with respect to τ . Linearizing (128) implies that
the curvature perturbation on uniform-energy-density hypersurfaces, defined by

ζ =C−H
δρ

ρ ′
=C+

δρ

3(ρ +P)
(136)

and originally introduced in [44], obeys the evolution equation (see also [45])

ζ
′ =− H

ρ +P
δPnad−

1
3

∇
2(E ′+ v), (137)

where δPnad is the non-adiabatic part of the pressure perturbation, defined by

δPnad = δP− c2
s δρ. (138)

Note that ζ (1) differs from ζ but they coincide when the spatial gradients can be ne-
glected, for instance on large scales. The expression (137) shows that ζ is conserved
on super-Hubble scales in the case of adiabatic perturbations.

Another convenient quantity, which is sometimes used in the literature instead of
ζ , is the curvature perturbation on comoving hypersurfaces, which can be written
in any gauge as

R =−C− H

ρ +P
δq, ∂iδq≡ δ(S)T

0
i , (139)

where the subscript (S) denotes the perturbations of scalar type. For a perfect fluid,
δq = (ρ +P)v, where v has been defined in (134).

One can relate the two quantities ζ and R by using the energy and momentum
constraints, which were derived earlier in the ADM formalism. Linearizing (100)
and (101) yields, respectively,

3H 2
δN +aH ∂

2
β = − a3

2M2
P

δρ (140)

H δN = − a3

2M2
P

δq . (141)

Combining these two equations yields the relativistic analog of the Poisson equa-
tion, namely

∂
2
Ψ =

a2

2M2
P
(δρ−3H δq)≡ a2

2M2
P

δρc , (142)

where we have replaced β by the Bardeen potential Ψ ≡−C−H (B−E ′) =−H β

and introduced the comoving energy density δρc ≡ δρ−3H δq. Since

ζ =−R+
δρc

ρ +P
=−R− 2ρ

3(ρ +P)

(
k

aH

)2

Ψ , (143)
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one finds that ζ and R coincide in the super-Hubble limit k� aH.

5.3 “Initial” conditions for standard cosmology

In standard cosmology, the “initial” conditions for the perturbations are usually de-
fined in the radiation dominated era around the time of nucleosynthesis, when the
main cosmological components are restricted to the usual photons, baryons, neu-
trinos and cold dark matter (CDM) particles. The scales that are cosmologically
relevant today correspond to lengthscales much larger than the Hubble radius at that
time.

Before the invention of inflation, “initial” conditions were put “by hand”, with
the restriction that their late time consequences should be compatible with obser-
vations. Inflation now provides a precise prescription to determine these “initial
conditions”4.

Since several species are present, one needs to specify the density perturbation
of each species. A simplification arises in the case of single field inflation, since
exactly the same cosmological history, i.e. inflation followed by the decay of the
inflaton into the usual species, occurs in all parts of our Universe, up to a small time
shift depending on the perturbation of the inflaton in each region. As a consequence,
even if the number densities of the various species vary from point to point, their
ratio should be fixed, i.e.

δ (nA/nB) = 0 , (144)

for any pair of species denoted A and B (see e.g. [47] for a more detailed discus-
sion). This is not necessarily true in multi-field inflation, as the perturbations in the
radiation era may depend on different combinations of the scalar field perturbations.

The variation in the relative particle number densities between two species can
be quantified by the quantity

SA,B ≡
δnA

nA
− δnB

nB
, (145)

which is usually called the entropy perturbation between A and B. When the equa-
tion of state for a given species is such that w≡ P/ρ = const, one can reexpress the
entropy perturbation in terms of the density contrast, in the form

SA,B ≡
δA

1+wA
− δB

1+wB
. (146)

It is convenient to choose a species of reference, for instance the photons, and to
define the entropy perturbations of the other species relative to it. The quantities

4 although one must be aware that present cosmological scales can correspond to scales smaller
than the Planck scale during inflation, suggesting the possibility of trans-Planckian effects (see
e.g. [46]).
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Sb ≡ δb− 3
4 δγ , (147)

Sc ≡ δc− 3
4 δγ , (148)

Sν ≡ 3
4 δν − 3

4 δγ , (149)

thus define respectively the baryon, CDM and neutrino entropy perturbations.
For single field inflation, all these entropy perturbations vanish, Sb = Sc = Sν = 0,

and the primordial perturbations are said to be adiabatic. An adiabatic primordial
perturbation is thus characterized by

1
4

δγ =
1
4

δν =
1
3

δb =
1
3

δc . (150)

Only one density constrast needs to be specified. However, since it is a gauge-
dependent quantity, it is better to use the gauge-invariant quantity ζ , i.e. the uni-
form density curvature perturbation, which is also equivalent to −R, since we are
on super-Hubble scales here.

Note that the adiabatic mode, which is directly related to the curvature pertur-
bation, is also called curvature mode. By contrast, the entropy perturbations can
be non-zero even if the curvature is zero, and the corresponding modes are called
isocurvature modes.

5.4 Inflation and cosmological data

Let us now discuss the confrontation of single-field inflation models with the current
cosmological data. The main idea is that one can predict precisely the statistics of the
CMB perturbations, once the amplitude of the primordial perturbation as a function
of scale, R(k), is given, provided some choice for the cosmological parameters Ωi.
In other words, the measurements of the CMB, together with other cosmological
data, allow us to constrain both the cosmological parameters, which are numbers,
and the primordial spectrum, which is a function (see e.g. [48, 49] for details on
the CMB physics). From the present data, one finds that the primordial spectrum is
nearly (although not quite) scale-invariant , with an amplitude

P
1/2
R ' 5×10−5. (151)

In order to derive some constraints on the inflation models, it is useful to reex-
press the scalar and tensor power spectra, respectively given in (117) and (121), in
terms of the scalar field potential. This can be done by using the slow-roll equations
(29-30). One finds for the scalar spectrum

PR(k) =
1

12π2

(
V 3

M6
PV ′2

)
k=aH

, (152)
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the subscript meaning that the term on the right hand side must be evaluated at
Hubble radius exit for the scale of interest. The scalar spectrum can also be written
in terms of the first slow-roll parameter defined in (32), in which case it reads

PR(k) =
1

24π2

(
V

M4
PεV

)
k=aH

. (153)

If εV is not much smaller than 1, as in chaotic models, the observed amplitude (152)
implies that the typical energy scale during inflation is

V 1/4 ∼ 10−3MP ∼ 1015GeV. (154)

As for the tensor power spectrum, it is given in terms of the scalar field potential by

PT =
2

3π2

(
V

M4
P

)
k=aH

. (155)

The scalar and tensor spectra are almost scale invariant but not quite since the
scalar field slowly evolves during the inflationary phase. In order to evaluate quan-
titatively this variation, it is convenient to introduce a scalar spectral index as well
as a tensor one, defined respectively by

nS(k)−1 =
d lnPR(k)

d lnk
, nT (k) =

d lnPT (k)
d lnk

. (156)

One can express the spectral indices in terms of the slow-roll parameters. For this
purpose, let us note that, in the slow-roll approximation, d lnk = d ln(aH) ' d lna,
so that

dφ

d lna
=

φ̇

H
'− V ′

3H2 '−M2
P

V ′

V
, (157)

where the slow-roll equations (29-30) have been used. Therefore, one gets

ns(k)−1 = 2ηV −6εV , (158)

where εV and ηV are the two slow-roll parameters defined in (32) and (35). Similarly,
one finds for the tensor spectral index

nT (k) =−2εV . (159)

Comparing with Eq. (122) yields the relation

r =−8nT , (160)

the so-called consistency relation which relates purely observable quantities (at least
in principle). This means that if one was able to observe the primordial gravitational
waves and measure the amplitude and spectral index of their spectrum, a rather
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formidable task, then one would be able to test directly the paradigm of single field
slow-roll inflation.

Let us finally go back to the particular models which we have already consid-
ered, in order to establish the predictions of these models in the (ns,r) plane, where
they can be easily compared with the observational constraints. For the power-law
potentials (41), one finds, using (42),

ns−1 =−6ε +2η =−2
p+2

p
ε (161)

and
r = 16ε =

8p
p+2

(1−ns) . (162)

Moreover,
ε =

p
4N

, (163)

where N is the number of e-folds before the end of inflation when the scales of
cosmological interest crossed out the Hubble radius. Therefore, the observational
prediction for a model with a power-law potential lie on a line in the (ns,r) plane,
the precise point depending on the number of e-folds when the perturbations were
generated.

For an exponential potential (49), one finds, using (52),

ns−1 =−2
q
, r =

16
q
. (164)

The prediction in the (ns,r) plane thus depends only on the parameter in the expo-
nential of the potential, but not on the number of e-folds as in the previous case.

For potentials (53) like in hybrid inflation, one finds

η =
1+ φ̃ 2

φ̃ 2
ε, (165)

and

r = 8
φ̃ 2

2φ̃ 2−1
(1−ns). (166)

One can proceed in a similar way for any model of inflation and thus be able to
confront it with observational data. In general, it is worth noticing that a significant
amount of gravitational waves, and thus a detectable r, requires a variation of the
inflaton of the order of the Planck mass during inflation [50].
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6 More general inflationary scenarios

So far, the simplest models of inflation are compatible with the available data but
it is instructive to study more refined models for at least two reasons. First, models
inspired by high energy physics are usually more complicated than the simplest
phenomenological inflationary models. Second, exploring more general models of
inflation and identifying their specific observational features is a healthy procedure
to prepare the interpretation of the future data.

At present, two types of extensions of the simplest scenarios have been mainly
studied:

• models with non standard kinetic terms;
• models with multiple scalar fields.

Of course, the two aspects can be combined and there exist scenarios involving
several scalar fields with non-standard kinetic terms, as we will see later.

Among the scenarios involving several scalar fields, it is useful to distinguish
three subclasses. The first, and oldest, category consists of models with multiple in-
flatons, i.e. models where several scalar fields play a dynamical role in the homoge-
nous cosmological evolution during inflation. In the second category, one finds the
curvaton scenarios. These models assume the existence, in addition to the inflaton,
of a scalar field, which is light during inflation but does not participate to infla-
tion per se. Its energy density, which decreases less quickly than radiation, becomes
significant only after inflation. Its decay produces a second reheating, and its fluctu-
ations are then imprinted in the curvature perturbation.

The final subclass regroups what we will name the modulaton scenarios. Like in
the curvaton models, one assumes the presence of a light scalar field, the modulaton,
which is subdominant during inflation but acquires some fluctuations. The fluctua-
tions of the modulaton are transferred to the curvature perturbation because the cos-
mological evolution is governed by some parameter that depends on the modulaton.
This parameter can be for instance the value of the inflaton at the end of inflation,
or the coupling of the inflaton to other particles during the reheating. Of course,
one can envisage even more complicated scenarios which combine several of these
mechanisms.

6.1 Generalized Lagrangians

We now consider multi-field models, which can be described by an action of the
form

S =
∫

d4x
√−g

[
R

16πG
+P(X IJ ,φ K)

]
(167)

where P is an arbitrary function of N scalar fields and of the kinetic term
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X IJ =−1
2

∇µ φ
I
∇

µ
φ

J . (168)

The relations obtained earlier for the single field model can then be generalized,
as we now show. The energy-momentum tensor, derived from (167), is of the form

T µν = Pgµν +P<IJ>∂
µ

φ
I
∂

ν
φ

J , (169)

where P<IJ> denotes the partial derivative of P with respect to X IJ (symmetrized
with respect to the indices I and J). The equations of motion for the scalar fields,
which can be seen as generalized Klein-Gordon equations, are obtained from the
variation of the action with respect to φ I and read

∇µ

(
P<IJ>∇

µ
φ

J)+P,I = 0 . (170)

where P,I denotes the partial derivative of P with respect to φ I .
In a homogeneous spacetime, X IJ = φ̇ I φ̇ J/2, and the energy-momentum tensor

reduces to that of a perfect fluid with pressure P and energy density

ρ = 2P<IJ>X IJ−P . (171)

The evolution of the scale factor a(t) is governed by the Friedmann equations, which
can be written in the form

H2 =
1

3M2
P

(
2P<IJ>X IJ−P

)
, Ḣ =−X IJP<IJ>/M2

P . (172)

The equations of motion for the scalar fields reduce to(
P<IJ>+P<IL>,<JK>φ̇

L
φ̇

K)
φ̈

J +
(
3HP<IJ>+P<IJ>,K φ̇

K)
φ̇

J−P,I = 0 , (173)

where P<IL>,<JK> denotes the (symmetrized) second derivative of P with respect to
X IL and XJK .

The expansion of the action (167) up to second order in the perturbations is use-
ful to obtain the classical equations of motion for the linear perturbations and to
calculate the spectra of the primordial perturbations generated during inflation, as
we have seen earlier in the case of a single scalar field.

Working for convenience with the scalar field perturbations QI defined in the
spatially flat gauge, the second order action can be written in the compact form [51]

S(2) =
1
2

∫
dt d3xa3 [(P<IJ>+2P<MJ>,<IK>XMK) Q̇IQ̇J

−P<IJ>hi j
∂iQI

∂ jQJ−MKLQKQL +2ΩKIQKQ̇I] , (174)

where the mass matrix is

MKL = −P,KL +3XMNP<NK>P<ML>+
1
H

P<NL>φ̇
N [2P<IJ>,KX IJ−P,K

]
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− 1
H2 XMNP<NK>P<ML>

[
X IJP<IJ>+2P<IJ>,<AB>X IJXAB]

− 1
a3

d
dt

(
a3

H
P<AK>P<LJ>XAJ

)
(175)

and the mixing matrix is

ΩKI = φ̇
JP<IJ>,K−

2
H

P<LK>P<MJ>,<NI>XLNXMJ . (176)

This formalism is very general and, in the following, we will consider two particular
cases, which have often been studied in the literature.

6.2 Simple multi-inflaton scenarios

A more restrictive, although still very large, class of models consists of multi-field
scenarios governed by a Lagrangian of the form

P = GIJX IJ−V =−1
2

GIJ(φ)∂
µ

φ
I
∂µ φ

J−V (φ) , (177)

where the field metric GIJ can be non trivial (also studied in e.g. [52, 53, 54]). It can
then be shown that the second-order action can be rewritten in the form

S(2) =
1
2

∫
dt d3xa3

[
GIJDtQIDtQJ− 1

a2 GIJ∂iQI
∂

iQJ− M̃IJQIQJ
]
, (178)

with

M̃IJ = DIDJV −RIKLJ φ̇
K

φ̇
L− 1

a3 Dt

[
a3

H
φ̇I φ̇J

]
, (179)

and where DI denotes the covariant derivative with respect to the field space metric
GIJ (so that DIDJV = V,IJ −Γ K

IJ V,K where the Γ K
IJ denote the Christoffel symbols

of the metric GIJ), while RIJKL is the corresponding Riemann tensor and DtQI ≡
Q̇I +Γ I

JK φ̇ IQK .
It is now convenient, following the approach of [55], to introduce a particular

direction in field space, which we will call the instantaneous adiabatic direction,
defined by the unit vector tangent to the inflationary trajectory in field space,

eI
σ =

φ̇ I
√

2X
=

φ̇ I

σ̇
, (180)

where we have introduced the notation X ≡ GIJX IJ and σ̇ ≡
√

2X . The instanta-
neous entropic directions, which are orthogonal to eI

σ , span an hyperplane in field
space.
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Fig. 3 Inflationary trajectory in a two-field model. The (instantaneous) adiabatic vector eσ is tan-
gent to the trajectory while the (instantaneous) entropic vector es is orthogonal to it.

For simplicity, let us now concentrate on two-field scenarios, where there is as
single entropic degree of freedom. Defining the entropy vector eI

s as the unit vector
orthogonal to the adiabatic vector eI

σ , i.e.

GIJeI
se

J
s = 1, GIJeI

se
J
σ = 0 , (181)

the scalar field perturbations can be uniquely decomposed into (instantaneous) adi-
abatic and entropic modes,

QI = Qσ eI
σ +QseI

s . (182)

One can then derive the equations of motion for the quantities Qσ and Qs from
the second-order action. One finds [54]

Q̈σ +3HQ̇σ +

(
k2

a2 +µ
2
σ

)
Qσ = (ΞQs)

.−
(

Ḣ
H

+
V,σ

σ̇

)
Ξ Qs , (183)

with

Ξ ≡− 2
σ̇

V,s , µ
2
σ ≡−

(σ̇/H)..

σ̇/H
−
(

3H +
(σ̇/H).

σ̇/H

)
(σ̇/H).

σ̇/H
, (184)

where V,σ ≡ eI
σV,I and V,s ≡ eI

sV,I . The equation of motion for the entropy part is
given by

Q̈s +3HQ̇s +

(
k2

a2 +µ
2
s

)
Qs =−Ξ

[
Q̇σ −H

(
σ̇2

2H2 +
σ̈

Hσ̇

)
Qσ

]
, (185)
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with

µ
2
s ≡Vss +

1
2

σ̇
2R−

V 2
,s

2X
, (186)

where R is the trace of the Ricci tensor on field space, i.e. the scalar curvature.
The adiabatic perturbation is naturally related to the comoving curvature pertur-

bation (139). Indeed, using the energy-momentum tensor (169), with the property
ρ +P = 2X , which follows from (171), one finds that the comoving perturbation
(139) is given by

R =
H
2X

φ̇IQI =
H√
2X

Qσ . (187)

Taking the time derivative of this expression and using the analog of (142),

−2
k2

a2Ψ = δρc =
√

2X
[

Q̇σ +

(
Ḣ
H
− Ẋ

2X

)
Qσ

]
+2V,sQs (188)

one finds

Ṙ =
H
Ḣ

k2

a2Ψ −2
H
σ̇2 V,sQs . (189)

By noting that the right hand side of Eq. (185) is proportional to Ṙ, one can
rewrite the entropic equation of motion as

Q̈s +3HQ̇s +

(
k2

a2 +µ
2
s +Ξ

2
)

Qs =−
σ̇

Ḣ
Ξ

k2

a2Ψ . (190)

When the spatial gradients can be neglected on large scales, the above equation
shows that the entropy perturbation Qs evolves independently of the adiabatic mode.
In the same limit, the adiabatic mode is governed by a first-order equation

Ṙ ≈ H
σ̇

Ξ Qs or Q̇σ +

(
Ḣ
H
− σ̈

σ̇

)
Qσ −Ξ Qs ≈ 0 , (191)

This implies that, in contrast with the entropy mode, the adiabatic mode is affected
by the entropy on large scales, as soon as the mixing parameter Ξ =−2V,s/σ̇ is non
zero. When the field metric is flat, GIJ = δIJ , one can introduce the rotation angle
θ between the initial basis and the adiabatic/entropy basis, which gives Ξ = 2θ̇ . In
the case of a field metric of the form

GIJ dφ
I dφ

J = dφ
2 + e2b(φ)dχ

2 , (192)

investigated in [56, 57], the coupling is now given by Ξ = 2θ̇ +b′σ̇ sinθ , where the
additional term simply comes from the non-trivial covariant derivative. Note that
non-linear extensions of the adiabatic and entropic equations have been obtained in
[58, 59, 60] (see also [61, 62] for other works on non-linear perturbations in multi-
field inflation).

The above results show that a generic feature of multi-inflaton scenarios is that
the curvature perturbation is not frozen after horizon crossing, like in single-field
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Fig. 4 In a double inflation model, with two different masses for the scalar fields, the inflation-
ary trajectory is bent (left). This induces an evolution of the curvature perturbation, after Hubble
crossing (right). Other examples can be found in [57].

inflation, but can, instead, evolve on large scales as a consequence of the transfer
of entropy perturbations into adiabatic perturbations, as illustrated on Fig. 4. This
property was pointed out originally in [63] in the context of generalized gravity the-
ories. As a consequence, it is crucial, when working with a model involving several
scalar fields during inflation, to identify all the light directions in field space and
to evolve the curvature perturbation until any transfer from entropy into adiabatic
modes has completely ceased (the transfer can even occur long after inflation, as is
the case in the curvaton scenario, which we will discuss later).

As we have just seen, the instantaneous entropy perturbations can affect the evo-
lution of the curvature perturbation during inflation, on large scales, but they could
also survive the end of inflation and the reheating phase and therefore, cause the
existence of “initial” isocurvature perturbations, for instance between the CDM and
photon fluids, in the radiation era. Moreover, these isocurvature perturbations could
be correlated with the “initial” adiabatic perturbations [64], since part of the adia-
batic perturbation can originate from an (instantaneous) entropy perturbation during
inflation. We will discuss later the observational constraints on this possibility.
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6.3 K-inflation

Let us now consider single-field inflation, but with a generalized Lagrangian

L = P(X ,φ), X ≡−∂µ φ∂
µ

φ/2 . (193)

This class of models, studied in [65], has been called K-inflation because inflation
can arise from the presence of non-standard kinetic terms, and not necessarily from
a quasi-flat potential as in standard inflation.

Linear perturbations have been investigated in [66]. Here, they can simply be
obtained from the single-field limit of (174)

S(2) =
1
2

∫
dt d3xa3 [(PX +2PXX X) Q̇2−PX hi j

∂iQ∂ jQ

−M Q2 +2ΩQQ̇
]
, (194)

where PX ≡ ∂P
∂X and PXX ≡ ∂ 2P

∂X2 . The first line of the above action shows that the
perturbations of the scalar field propagate with an effective sound speed given by

c2
s =

PX

PX +2XPXX
, (195)

which, in some models, can be much smaller than the usual speed of light.
Introducing the conformal time τ and the canonically normalized field

v =
a
√

PX

cs
Q (196)

yields the action

S(2) =
1
2

∫
dτ d3x

[
v′2− c2

s (∂v)2 +
z′′

z
v2
]
, (197)

with

z =
aφ̇
√

PX

cs H
. (198)

In Fourier space, this leads to the equation of motion

v′′+
(

k2c2
s −

z′′

z

)
v = 0, (199)

where one notes the presence of c2
s multiplying k2. As a consequence, the fluctua-

tions are amplified at sound horizon crossing, i.e. when kcs ∼ aH, and not at Hubble
radius crossing as in the standard case (the two of course coincide for cs ' c).

Assuming a slow variation of the Hubble parameter H and of the sound speed cs,
one can use the approximation z′′/z ' 2/τ2 and the solution corresponding to the
vacuum on small scales is given by
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v =
1√
2kcs

e−ikcsτ

(
1− i

kcsτ

)
. (200)

This expression differs from (78) only by the presence of cs.
One can then proceed exactly as in the standard case to obtain the power spectrum

of the scalar field fluctuations

PQ '
H2

4π2csPX
(201)

and the power spectrum of the curvature perturbation

PR∗ =
k3

2π2
|vσ k|2

z2 ' H4

4π2σ̇2 =
H2

8π2εcs
, (202)

where ε =−Ḣ/H2 .

6.4 A specific example: multi-field DBI inflation

The two previous subsections have illustrated separately the consequences of multi-
ple inflatons, on the one hand, and of non-standard kinetic terms, on the other hand.
Here, these two aspects will be naturally combined in a category of models mo-
tivated by string theory, where inflation is due to the motion of a D3-brane in an
internal six-dimensional compact space.

The dynamics of the brane, with tension T3, is governed by the Dirac-Born-Infeld
Lagrangian (we ignore here the dilaton and the various form fields, but they can be
included, as in [67])

LDBI =−T3
√
−detγµν (203)

which depends on the determinant of the induced metric on the 3-brane,

γµν = HAB ∂µY A
(b)∂νY B

(b) , (204)

where HAB is metric of the compactified 10-dimensional spacetime, assumed to be
of the form

HAB dY A dY B = h−1/2(yK)gµν dxµ dxν +h1/2(yK)GIJ(yK)dyIdyJ , (205)

and Y A
(b)(x

µ) = (xµ ,ψ I(xµ)), with µ = 1 . . .3 and I = 1 . . .6, defines the brane em-
bedding.

After using the rescalings φ I ≡ √T3Y I and f = h/T3, one ends up with a La-
grangian of the form

P =− 1
f (φ I)

(√
D−1

)
−V (φ I) (206)
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with

D ≡ det(δ µ

ν + f GIJ∂
µ

φ
I
∂ν φ

J)

= 1−2 f GIJX IJ +4 f 2X [I
I XJ]

J −8 f 3X [I
I XJ

J XK]
K +16 f 4X [I

I XJ
J XK

K XL]
L (207)

where the field indices are lowered by the field metric GIJ , i.e. the metric of the
internal compact space, and the brackets denote antisymmetrization of the indices.
A potential term, which arises from the brane’s interactions with bulk fields or other
branes, is also included.

Assuming that the brane is moving in a conical geometry, many works have con-
centrated on the purely radial dynamics of the brane, while ignoring the angular
directions. The effective action then reduces to

S =
∫

d4x
√−g

[
− 1

f

(√
1+ f ∂µ φ∂ µ φ −1

)
−V (φ)

]
. (208)

If f φ̇ 2� 1, one can expand the square root in the Lagrangian and one recovers the
usual kinetic term familiar to slow-roll inflation.

This Lagrangian also leads to another type of inflation, called DBI inflation [68,
69], in the “relativistic” limit

1− f φ̇
2� 1 ⇔ |φ̇ | ' 1/

√
f . (209)

Indeed, using (172), one can check that it is possible to obtain ε ≡−Ḣ/H2� 1 in
this limit, provided V � 1/ f cs. An interesting property of DBI inflation is that the
potential can be rather steep, in contrast with standard slow-roll inflation.

The Lagrangian in (208) is of the form P(X ,φ), discussed in the previous sub-
section, with

P(X ,φ) =− 1
f (φ)

(√
1−2 f X−1

)
−V (φ), (210)

and therefore, using (195),

cs =
√

1−2 f X =
1

PX
. (211)

If the angular directions are relevant, the above single field simplification is not
valid and one must work in a multi-field framework with the Lagrangian (206). The
perturbations generated by such a scenario have been studied in detail in [70] and
we now summarize the main results.

After decomposing the perturbations into adiabatic and entropy modes, one finds
that the single field results apply to the adiabatic mode, so that its spectrum at sound
horizon crossing is given by

PQσ ∗ '
H2

4π2 (212)

(the subscript ∗ here indicates that the corresponding quantity is evaluated at sound
horizon crossing kcs = aH).
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As for the (canonically normalized) entropy mode, vs ≡ (a/
√

cs)Qs, its evolution
is governed by the equation

v′′s +ξ v′σ +

(
k2c2

s −
α ′′

α

)
vs = 0 , α ≡ a√

cs
(213)

where we have neglected a possible coupling with the adiabatic mode and assumed
that the effective mass of the entropy mode is small with respect to H. vs has thus
the same spectrum as vσ , but since the normalization coefficients in front of the
adiabatic and entropy modes differ, one finds that the spectrum for the fluctuations
along the entropy direction in field space, is given by

PQs∗ '
H2

4π2c2
s
, (214)

which shows that, for small cs, the entropic modes are amplified with respect to the
adiabatic modes:

Qs∗ '
Qσ∗
cs

. (215)

Since we are in a multi-field scenario, the curvature perturbation can be modified,
after sound horizon crossing, if there is a transfer from the entropic to the adiabatic
modes, as we saw earlier. The final curvature perturbation can be formally written
as

R = R∗+TRS S∗ , (216)

where, for convenience, we have introduced the rescaled entropy perturbation

S = cs
H
σ̇

Qs , (217)

defined such that its power spectrum at sound horizon crossing is the same as that
of the curvature perturbation, i.e. PS∗ =PR∗ . The final curvature power-spectrum
is thus given by

PR = (1+T 2
RS )PR∗ =

PR∗
cos2Θ

, (218)

where we have introduced the “transfer angle” Θ defined by

sinΘ =
TRS√

1+T 2
RS

(219)

(so that Θ = 0 if there is no transfer and |Θ |= π/2 if the final curvature perturbation
is mostly of entropic origin).

The power spectrum for the tensor modes is still governed by the transition at
Hubble radius and its amplitude, given by (121), is unchanged. The tensor to scalar
ratio is thus

r ≡ PT

PR
= 16ε cscos2

Θ . (220)
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Interestingly this expression combines the result of k-inflation [66], where the ra-
tio is suppressed by a small sound speed cs, and that of multi-field inflation with
standard kinetic terms [71], where the ratio is suppressed by a large transfer from
entropy to adiabatic modes.

6.5 The curvaton scenario

The transfer from entropy into adiabatic perturbations can occur during inflation,
as we have seen in scenarios with multiple inflatons, but it can also take place long
after the end of inflation. A much studied example of this possibility is the curvaton
scenario [72, 73, 74] (see also [75]).

The curvaton is a weakly coupled scalar field, σ , which is light relative to the
Hubble rate during inflation, and hence acquires perturbations during inflation, with
an almost scale-invariant power spectrum

Pδσ =

(
H
2π

)2

, (221)

where the curvaton perturbation is defined here in the flat gauge, i.e. δσ = Qσ .

Decay 

ρσ ∝ a−3

ρr ∝ a−4

Fig. 5 Evolution of the energy density of the radiation, ρr , produced by the inflaton and of the
energy density of the curvaton, ρσ , before and after the curvaton decay.

After inflation, the Hubble rate drops and, eventually, the curvaton becomes non-
relativistic so that its energy density grows relatively to that of radiation, until it
represents a significant fraction of the total energy density, Ωσ ≡ ρ̄σ/ρ̄ , before it
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finally decays (see Fig. 5). Hence the initial curvaton field perturbations on large
scales can give rise to a primordial density perturbation after the decay of the cur-
vaton.

Before it decays, the non-relativistic curvaton (with mass m�H) behaves effec-
tively as a pressureless, non-interacting fluid with energy density

ρσ = m2
σ

2 , (222)

where σ is the rms amplitude of the curvaton field. The corresponding perturbations
are characterized, using (136) and (221), by

ζσ =

(
δρσ

3ρσ

)
flat

=
2
3

δσ

σ
⇒Pζσ

' H2

9π2σ2 . (223)

When the curvaton decays into radiation, its perturbations are converted into per-
turbations of the resulting radiation fluid. The subsequent perturbation is described
by

ζ = rσ ζσ +(1− rσ )ζinf , rσ ≡
3Ωσ ,decay

4−Ωσ ,decay
. (224)

This implies that the power spectrum for the primordial adiabatic perturbation ζr
can be expressed as

Pζ = Pζinf
+ r2

σ Pζσ
. (225)

where Pζinf
is the spectrum of perturbations generated directly by the inflaton fluc-

tuations.
In the case of single field inflation, Pζinf

is given in (117) and one can rewrite
the total power spectrum as we have

Pζ = (1+λ )Pζinf
, λ ≡ 8

9
r2

σ ε∗

(
σ∗
MP

)−2

(226)

The limit λ � 1 corresponds to the original curvaton scenario where the inflaton
perturbations are negligible: since rσ and ε∗ are bounded by 1, this requires σ∗�
MP.

A value of λ of order 1 or smaller is possible if rσ or ε∗ are sufficiently small
and/or σ∗ is of the order of MP. In the latter case the curvaton starts to oscillate at
about the same time as it decays and cannot be described as a dust field. A more
refined treatment [76] shows that the curvature perturbation due to the inflaton and
curvaton perturbations is given

R =− V
M2

PV ′
δφ − 3

2
f (σ∗)

δσ∗
MP

, (227)

where the function f (σ∗) interpolates between the limiting situations of a pure cur-
vaton and of a secondary inflaton,
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f (σ∗)'


4
9

MP
σ∗ , σ∗�MP

σ∗
3MP

, σ∗�MP.
(228)

Interestingly, the curvaton scenario can also produce entropic, or isocurvature,
perturbations [77]. It can produce a CDM isocurvature perturbation if the CDM is
created before the curvaton decay and thus inherits the perturbations of the inflaton
so that Scdm = 3(ζinf−ζr); or, on the contrary, if the CDM is created by the curvaton
decay, in which case Scdm = 3(ζσ−ζr). Similarly, baryon isocurvature perturbations
can be generated if the baryon asymmetry exists before the curvaton decay.

6.6 Modulaton

In the curvaton scenario, the curvaton dominates the energy density of the Universe
at some epoch in order to give the main contribution to the primordial perturbations.
Alternatively, one can also envisage scenarios where the primordial perturbations
are due to the perturbations of a scalar field, which has never dominated the mat-
ter content of the universe but has played a crucial rôle during some cosmological
transition. We will name this field a modulaton.

The best example is the modulated reheating scenario [78, 79] where the decay
rate of the inflaton, Γ , depends on a modulaton σ , which has acquired classical
fluctuations during inflation. The decay rate is thus slightly different from one super-
Hubble patch to another, which generates a curvature perturbation.

A simple way to quantify this effect is to compute the number of e-folds between
some initial time ti during inflation, when the scale of interest crossed out the Hubble
radius, and some final time t f . The curvature perturbation is then directly related to
the fluctuations of the number of e-folds, as we discussed at the beginning of Section
5.

For simplicity, we will assume that, just after the end of inflation at time te, the
inflaton behaves like pressureless matter (as is the case for a quadratic potential)
until it decays instantaneously at the time td characterized by Hd = Γ . At the decay,
the energy density is thus ρd = ρe exp[−3(Nd−Ne)] and is transferred into radiation,
so that, at time t f , one gets

ρ f = ρde−4(N f−Nd) = ρee−3(N f−Ne)−(N f−Nd). (229)

Using the relation Γ = Hd = H f exp[2(N f −Nd)] to eliminate (N f −Nd) in (229),
we finally obtain

N f = Ne−
1
3

ln
ρ f

ρe
− 1

6
ln

Γ

H f
. (230)

If one ignores the inflaton fluctuations, the final curvature perturbation is therefore
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ζ = N,σ δσ∗ =−
1
6

Γ,σ

Γ
δσ∗, (231)

which yields the curvature power spectrum

Pζ =
1
36

(
Γ,σ

Γ

)2(H∗
2π

)2

. (232)

The dependence on the modulaton can alternatively show up in the mass of the
particles created by the decay of the inflaton [80, 81].

The modulaton can also affect the cosmological evolution during inflation, as in
the modulated trapping scenario [82], which is based on the resonant production
of particles during inflation [83] (see also [84, 85] for other recent scenarios based
on particle production). If the inflaton is coupled to some particles, whose effective
mass becomes zero for a critical value of the inflaton, then there will be a burst
of production of these particles when the inflaton crosses the critical value. These
particles will be quickly diluted but they will slow down the inflaton. This effect,
which increases the number of e-folds until the end of inflation, can depend on a
modulaton, for example via the coupling between the inflaton and the particles, and
a significant curvature perturbation might be generated (see [82] for details).

6.7 “Initial ” adiabatic and entropic perturbations

In contrast with single field inflation, multi-field inflation can generate isocurvature
”initial” perturbations in the radiation era. Note that this is only a possibility but not
a necessity: purely adiabatic initial conditions are perfectly compatible with multi-
field scenarios.

The CMB is a powerful way to study isocurvature perturbations because (pri-
mordial) adiabatic and isocurvature perturbations produce very distinctive features
in the CMB anisotropies. On large angular scales, one can show for instance that
[64]

δT
T
' 1

5
(R−2S) . (233)

On smaller angular scales, an adiabatic initial perturbation generates a cosine os-
cillatory mode in the photon-baryon fluid, leading to an acoustic peak at ` ' 220
(for a flat universe), whereas a pure isocurvature initial perturbation generates a sine
oscillatory mode resulting in a first peak at `' 330. The unambiguous observation
of the first peak at `' 220 has eliminated the possibility of a dominant isocurvature
perturbation. The recent observation by WMAP of the CMB polarization has also
confirmed that the initial perturbation is mainly an adiabatic mode. But this does
not exclude the presence of a subdominant isocurvature contribution, which could
be detected in future high-precision experiments such as Planck.

The combined impact of adiabatic and entropic perturbations crucially depends
on their correlation [64, 86]
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β =
PS,R√
PSPR

. (234)

Parametrizing the relative amplitude between the two types of perturbations by a
coefficient α ,

PS

PR
≡ α

1−α
, (235)

the WMAP5 data [87] yield the following constraints on the entropy contribution

β = 0 : α0 < 0.067 (95%C.L.) β =−1 : α−1 < 0.0037 (95%C.L.) (236)

in the uncorrelated case (β = 0) and in the totally anti-correlated case (β = −1),
respectively.

7 Primordial non-Gaussianities

One of the most promising probes of the early Universe, which has been inves-
tigately very actively in the last few years, is the non-Gaussianity of the primor-
dial perturbations (see [88] for a review, but the field has grown considerably in
the last few years). Whereas the simplest models of inflation, based on a slow-
rolling single field with standard kinetic term, generate undetectable levels of non-
Gaussianity [35, 89], a significant amount of non-Gaussianity can be produced in
scenarios with i) non-standard kinetic terms; ii) multiple fields; iii) a non standard
vacuum; iv) a non slow-roll evolution. We will discuss in this section the first two
possibilities.

7.1 Higher order correlation functions

The most used estimate of non-Gaussianity is the bispectrum defined, in Fourier
space, by

〈ζk1ζk2ζk3〉 ≡ (2π)3
δ
(3)(∑

i
ki)Bζ (k1,k2,k3) , (237)

where the Fourier modes are defined by

ζk =
∫

d3x e−ik·x
ζ (x) . (238)

Equivalently, one often uses the so-called fNL parameter, which can be defined in
general by

Bζ (k1,k2,k3)≡
6
5

fNL(k1,k2,k3)
[
Pζ (k1)Pζ (k2)+Pζ (k2)Pζ (k3)+Pζ (k3)Pζ (k1)

]
,

(239)
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where Pζ is the power spectrum5 defined by

〈ζk1ζk2〉= (2π)3
δ
(3)(k1 +k2)P(k1) . (240)

The fNL parameter was initially introduced in [90] for a very specific type of
non-Gaussianity characterized by

ζ (x) = ζG(x)+
3
5

fNLζ
2
G(x) , (241)

in the physical space, where ζG is Gaussian and the factor 3/5 appears because
fNL was originally defined with respect to the gravitational potential Φ = (3/5)ζ ,
instead of ζ . In this particular case, fNL, as defined in (239), is independent of the
vectors ki. In general, fNL is a function of the norm of the three vectors ki (which
define a triangle in Fourier space since they are constrained by k1 +k2 +k3 = 0 as
a consequence of homogeneity), and the “shape” of the three-point function is an
important characterization of how non-Gaussianity was generated [91].

In the context of multi-field inflation, the so-called δN-formalism [92, 52] is
particularly useful to evaluate the primordial non-Gaussianity generated on large
scales [93]. The idea is to describe, on scales larger than the Hubble radius, the non-
linear evolution of perturbations generated during inflation in terms of the perturbed
expansion from an initial flat hypersurface (usually taken at Hubble crossing during
inflation) up to a final uniform-density hypersurface (usually during the radiation-
dominated era). Using the Taylor expansion of the number of e-folds given as a
function of the initial values of the scalar fields,

ζ '∑
I

N,Iδϕ
I
∗+

1
2 ∑

IJ
N,IJδϕ

I
∗δϕ

J
∗ (242)

one finds [93, 94], in Fourier space,

〈ζk1ζk2ζk3〉 = ∑
IJK

N,IN,JN,K〈δϕ
I
k1

δϕ
J
k2

δϕ
K
k3
〉+

1
2 ∑

IJKL
N,IN,JN,KL〈δϕ

I
k1

δϕ
J
k2
(δϕ

K ?δϕ
L)k3〉+perms.

(243)

The first term on the right hand side corresponds to non-Gaussianities arising
from nonvanishing three-point function(s) of the scalar field(s). This is the case for
models with non-standard kinetic terms [95, 96, 97], leading to a specific shape
of non-Gaussianities, usually called equilateral, where the dominant contribution
comes from configurations with three wavevectors of similar length k1 ∼ k2 ∼ k3.

5 In this section on non-Gaussianities, we have followed the recent literature and adopted the
definition (238) for the Fourier modes, which differs slightly from our convention (69) of the
previous chapters. This changes the expression of the power spectrum, but the quantiy P(k) is the
same in the two conventions.
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The terms appearing in second line of (243) can also lead to sizable non-
Gaussianities. Indeed, substituting

〈δϕ
I
k1

δϕ
J
k2
〉= (2π)3

δIJδ
(3)(k1 +k2)

2π2

k3
1

P∗(k1), P∗(k)≡
H2
∗

4π2 , (244)

in (243), one gets
6
5

fNL =
N,IN,JN,IJ

(N,KN,K)2 , (245)

where we use Einstein’s summation convention for the field indices, which are
raised with δ IJ . This corresponds to another type of non-Gaussianity, usually called
local or squeezed, for which the dominant contribution comes from configurations
where the three wavevectors form a squeezed triangle.

The present observational constraints [87] are

−9 < f (local)
NL < 111 (95%CL), −151 < f (equil)

NL < 253 (95%CL), (246)

for the local non-linear coupling parameter and the equilateral non-linear coupling
parameter, respectively.

Extending the Taylor expansion (242) up to third order, one can compute in a
similar way the trispectrum [98], i.e. the Fourier transform of the connected four-
point function defined by

〈ζk1ζk2ζk3ζk4〉c ≡ (2π)3
δ
(3)(∑

i
ki)Tζ (k1,k2,k3,k4) . (247)

Assuming the scalar field perturbations to be quasi-Gaussian, the trispectrum can be
written in the form [99]

Tζ (k1,k2,k3,k4) = τNL [P(k13)P(k3)P(k4)+11 perms] (248)

+
54
25

gNL [P(k2)P(k3)P(k4)+3 perms] , (249)

with

τNL =
NIJNIKNJNK

(NLNL)3 , gNL =
25
54

NIJKNINJNK

(NLNL)3 (250)

and where k13 ≡ |k1 +k3|.

7.2 A few examples

It is not always easy to obtain significant non-Gaussianities even in inflationary
models with several inflatons (see e.g. [100, 101, 94, 102, 103, 104, 105]). Local
non-Gaussianity can also be generated at the end of inflation [106, 107, 108]. Below,
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we discuss in more details the non-Gaussianities generated, first, in the curvaton
scenario and, then, in multi-field DBI inflation.

7.2.1 Curvaton

In scenarios with a curvaton (or a modulaton), the total number of e-folds can be
written as the sum of two contributions: one from the inflaton field φ and the other
from the curvaton/modulaton σ . In the case of standard slow-roll inflation, the sec-
ond derivatives with respect to φ are negligible and (245) reduces to

6
5

fNL =
N2

σ Nσσ

(N2
φ
+N2

σ )
2 =

Nσσ

N2
σ (1+λ−1)2 , (251)

where we have introduced the parameter λ ≡ N2
σ/N2

φ
, which represents the ratio of

the contribution of σ with that of the inflaton in the power spectrum (see (226) for
the curvaton).

For the curvaton, Eq. (224) tell us that Nσ = 2rσ/3σ and the extension of this
equation to second order yields

Nσσ =
4rσ

9σ2

(
3
2
−2rσ − r2

σ

)
, (252)

which leads to a local non-Gaussianity characterized by

6
5

fNL =
1
rσ

( 3
2 −2rσ − r2

σ

)
(1+λ−1)2 . (253)

Non-Gaussianities are thus significant when the curvaton decays well before it dom-
inates, rσ � 1. When λ � 1 and the perturbations from inflation are negligible, one
recovers the standard curvaton result [77].

Note however that fNL does not grow indefinitely as rσ becomes small because
both rσ and λ depend on the curvaton expectation value σ∗. Indeed, substituting
rσ ∼ (σ∗/MP)

2/
√

Γσ/mσ (valid in the limit r� 1), where Γσ is the decay rate of
the curvaton, into the definition (226), one sees that λ is proportional to σ2

∗ , like
rσ . One thus finds [109] that the non-linearity parameter reaches its maximal value
fNL(max) ∼ ε∗/

√
Γσ/mσ for λ ∼ 1, i.e., for σ∗ ∼

√
Γσ/(mσ ε∗)MP. A significant

non-Gaussianity is thus possible if ε∗ �
√

Γσ/mσ . It is easy to extend the above
procedure for the computation of the trispectrum [110].

Moreover, in the curvaton scenarios, isocurvature perturbations can be present.
Even if their contribution to the power spectrum is constrained to be small, they
could contribute significantly to non-Gaussianities. It is thus interesting to study
the non-Gaussianities of isocurvature perturbations as well (see e.g. [111, 112, 113,
114]). Non-Gaussianities in modulaton scenarios have also been investigated (see
e.g. [115, 116, 82]).
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7.2.2 Multi-field DBI inflation

Multi-field DBI inflation is another example where non-Gaussianities have been
investigated. In this case, the three-point correlation functions of the scalar fields
are not negligible and they can be computed from the third order action, which is
given, in the small sound speed limit, by [70, 51]

S(3) =
∫

dt d3x
{

a3

2c5
s σ̇

[
(Q̇σ )

3 + c2
s Q̇σ (Q̇s)

2]
− a

2c3
s σ̇

[
Q̇σ (∂Qσ )

2− c2
s Q̇σ (∂Qs)

2 +2c2
s Q̇s∂Qσ ∂Qs)

]}
(254)

in terms of the instantaneous adiabatic and entropic perturbations. The contribution
from the scalar field three-point functions to the coefficient fNL is

f (3)NL =− 35
108

1
c2

s

1
1+T 2

RS

=− 35
108

1
c2

s
cos2

Θ (255)

which is similar to the single-field DBI result [69, 117], but with a suppression due
to the transfer between the entropic and adiavatic modes.

In the trispectrum, multi-field effects induce a shape of non-Gaussianities that
differs from the single-field case [118]. Moreover, multi-field DBI inflation could
also produce a local non-Gaussianity in addition to the equilateral one (see [119]
for an explicit illustration).

8 Conclusions

As these notes have tried to emphasize, inflation provides an attractive framework
to describe the very early Universe and to account for the “initial” seeds of the
cosmological perturbations, which we are able to observe today with increasing
precision. In particular, the idea that the present structures in the Universe arose
from the gravitational amplification of quantum vacuum fluctuations is especially
appealing.

At present, inflation is more a general framework than a specific theory and there
exists a plethora of models, based on various types of motivation, which can all
satisfy the present observational data. The simplest models, based on a slow-rolling
single field, produce only adiabatic perturbations, with negligible non-Gaussianities,
but with a possibly detectable amount of gravitational waves for the large-field sub-
class.

More sophisticated models, involving multiple scalar fields or non-standard ki-
netic terms, can lead to a much richer spectrum of possibilities: isocurvature per-
turbations that could be correlated with the adiabatic ones, or a detectable level of
non-Gaussianities.
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Any clear evidence in the future of one or several of these additional features
(gravitional waves, isocurvature perturbations and/or primordial non-Gaussianities)
would allow us to discriminate between the main species of inflationary models and
would thus have a huge impact on our understanding of the early Universe.
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