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Reheating is an important part of inflationary cosmology. It describes the production of Standard
Matter particles after the phase of accelerated expansion. We give a review of the reheating process,
focusing on an in-depth discussion of the preheating stage which is characterized by exponential
particle production due to a parametric resonance or tachyonic instability. We give a brief overview
of the thermalization process after preheating and end with a survey of some applications to super-
symmetric theories and to other issues in cosmology such as baryogenesis, dark matter and metric
preheating.
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I. INTRODUCTION

The inflationary model [1] has become the current
paradigm of early universe cosmology. The first key
aspect of the model is a phase of accelerated expan-
sion of space which can explain the overall homogene-
ity, spatial flatness and large size of the current universe.
Microscopic-scale quantum vacuum fluctuations during
the phase of acceleration are red-shifted to currently ob-
servable scales, and lead to a spectrum of cosmological
fluctuations which becomes scale-invariant in the limit in
which the expansion rate becomes constant in time [2].

Reheating at the end of the period of accelerated ex-
pansion is an important part of inflationary cosmology.
Without reheating, inflation would leave behind a uni-
verse empty of matter. Reheating occurs through cou-
pling of the inflaton field φ, the scalar field generating
the accelerated expansion of space, to Standard Model
(SM) matter. Such couplings must be present at least
via gravitational interactions. However, in many models
of inflation there are couplings through the matter sector
of the theory directly.

Reheating was initially [3] analyzed using first order
perturbation theory and discussed in terms of the decay
of an inflaton particle into SM matter particles. As first
realized in [4] (see also [5]), such a perturbative analy-
sis may be rather misleading since it does not take into
account the coherent nature of the inflaton field. A new
view of reheating was then proposed [4] which is based on
the quantum mechanical production of matter particles
in a classical background inflaton field 1. As this analysis
showed, it is likely that reheating will involve a paramet-
ric resonance instability. This proposal was studied more
carefully in [8, 9] and then analyzed in detail in [10]. The
term “preheating” was coined [8] to describe the initial
energy transfer from the inflaton field to matter particles.

1 See also [6, 7] for other approaches to the out-of-equilibrium dy-
namics of the inflaton field.
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Typically, the state of matter after preheating is highly
non-thermal, and thus must be followed by a phase of
thermalization.
The first goal of this review article is to present an

introduction to the theory of preheating after inflation.
In Section 2 of this article, we give a lightning review of
inflationary cosmology. Section 3 is the most important
section of this review in which we present a comprehen-
sive analysis of preheating. The efficiency of preheat-
ing turns out to be rather model-dependent. We first
discuss “standard preheating” which will typically occur
in simple single-field inflation models like those used in
“Chaotic Inflation”. The efficiency of preheating can be
much higher if a tachyonic direction develops, which is
what occurs in certain small field inflation models and in
“Hybrid Inflation”, a model involving two scalar fields.
It turns out that while preheating leads to a very rapid
start to the process of energy transfer from the inflaton
to SM matter, it typically does not drain most of the en-
ergy of the inflaton field. This happens in a second stage,
a stage characterized by the nonlinear interactions of the
fluctuation modes which have been highly excited by the
preheating process. According to recent studies [11], this
process is turbulent. The initial stage of turbulence (af-
ter which the bulk of the energy density is no longer in
the inflaton field) is rapid, but the actual thermalization
of the decay products takes much longer. These issues
are briefly discussed in Section 4. Section 5 focuses on
reheating in supersymmetric models. Finally, in Section
6 we give a brief overview of a number of applications of
preheating in inflationary cosmology.

II. INFLATION MODELS AND INITIAL
CONDITIONS FOR REHEATING

Cosmological inflation [1] is a phase of accelerated ex-
pansion of space. In the context of General Relativity
as the theory describing space and time, inflation re-
quires scalar field matter. More precisely, the energy-
momentum tensor of matter must be dominated by the
almost constant potential energy density of the scalar
field φ.
A scalar field is postulated to exist in the SM of particle

physics: the Higgs field used to give elementary fermions
their masses. To serve as a Higgs field, its potential en-
ergy must have a minimum at a non-trivial field value.
The standard example is

V (φ) =
1

4
λ(φ2 − η2)2 (1)

where η is the vacuum expectation value of φ. It is as-
sumed that at high temperatures the symmetry is re-
stored by finite temperature effects (see e.g. [12] for a
review of field theory methods used in inflationary cos-
mology) and φ = 0. Once the temperature T falls below
a critical value Tc, φ ceases to be trapped and will start
to roll towards one of the lowest energy states φ = ±η.

The SM Higgs must have a coupling constant λ which is
set by the gauge coupling constant and cannot be suffi-
ciently small to yield a long time period of slow rolling
of φ which is required to obtain enough inflation (except
possibly if φ is non-minimally coupled to gravity [13]).
Hence, scalar field-driven inflation requires us to go

beyond the SM of particle physics. Once one makes
this step, there are typically many candidate scalar fields
which could be the inflaton, in particular in supersym-
metric models.
For cosmological studies, the precise nature of the in-

flaton is often secondary and hence simple toy models are
used. “New” inflation [14, 15] maintains the idea that φ
begins trapped near φ = 0. Inflation takes place during
the period when φ is undergoing the symmetry-breaking
phase transition and slowly rolling towards φ = ±η. The
model was based on scalar field dynamics obtained by re-
placing the potential (1) by a symmetry breaking poten-
tial of Coleman-Weinberg [16] form, where the mass term
at the field origin is set to zero and symmetry breaking
is obtained through quantum corrections. However, new
inflation models typically suffer from an initial condition
problem [17].
“Chaotic” (or “large-field”) inflation [18] is an alterna-

tive scenario. Inflation is triggered by a period of slow-
rolling of φ unrelated to a symmetry-breaking phase tran-
sition. The simplest example occurs in the toy model of
a single scalar field with potential

V (φ) =
1

2
m2φ2 (2)

where m is the mass of φ (which is of the order 10−6mpl

if the model is to yield the observed magnitude of cos-
mological fluctuations [2]). Here, mpl is the Planck mass

defined via m−2
pl ≡ G, G being Newton’s gravitational

constant. It is assumed that φ starts out at large field
values and slowly rolls towards its vacuum state φ = 0.
For inflation to be successful, two conditions must be sat-
isfied. Firstly, the energy density must be dominated by
the potential energy term, and secondly the acceleration
term in the field equation

φ̈+ 3Hφ̇ = −V ′

(φ) , (3)

the Klein-Gordon equation in an expanding background,
must be negligible compared to the other two terms.
Here, H is the Hubble expansion rate and a prime in-
dicates the derivative with respect to φ. Making use of
the Friedmann equation

H2 =
8πG

3

(

1

2
φ̇2 + V (φ)

)

(4)

it is easy to see that the slow-rolling conditions are only
satisfied for super-Planckian field values |φ| > mpl. In
the above two equations (3) and (4) we have taken the
field configuration to be homogeneous. In the case of
chaotic inflation, the homogeneous slow-roll trajectory is
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a local attractor in initial condition space [19], even in the
presence of linear metric fluctuations [20], and thus this
model is free from the initial condition problem of new
inflation. In the context of “real” particle physics theo-
ries such as supersymmetric models, gravitational effects
often steepen the potential for values of |φ| beyond the
Planck mass and therefore prevent slow-roll inflation.
One way to try to avoid this problem but maintain the

success of chaotic inflation is to add a second scalar field
ψ to the sector of the theory responsible for inflation and
to invoke a potential of the form

V (φ, ψ) =
1

2
m2φ2 +

g2

2
ψ2φ2 +

1

4
λ
(

ψ2 − v2
)2
, (5)

where g and λ are dimensionless coupling constants and
v is the vacuum expectation value of ψ. For large values
of |φ|, the potential in ψ direction has a minimum at
ψ = 0, whereas for small values of |φ|, ψ = 0 becomes an
unstable point. The reader can verify that in this model
slow-rolling of φ does not require super-Planckian field
values. This two field model is called “hybrid” inflation
[21].
Let us return to the toy model of chaotic inflation with

the potential (1). The slow-roll trajectory is given by

φ̇ = − 1

2
√
3π
mmpl , (6)

and it is easy to see that the slow-roll conditions break
down at the field value

φc =
mpl

2
√
3π

. (7)

After the breakdown of slow-rolling, φ commences
damped oscillatory motion about φ = 0 and the time-
averaged equation of state is that of cold matter (p = 0
where p denotes pressure). Asymptotically for large
times mt≫ 1 the solution approaches

φ(t) → mpl√
3πmt

sin(mt) . (8)

This scalar field configuration will provide the classical
background matter in the reheating phase.

III. INFLATON DECAY

A. Perturbative Decay

Reheating is a key part of inflationary cosmology. It
describes the production of SM matter at the end of the
period of accelerated expansion when the energy density
is stored overwhelmingly in the oscillations of φ. Histor-
ically, reheating was first treated perturbatively [3].
We assume that the inflaton φ is coupled to another

scalar field χ. Taking the interaction Lagrangian to be

Lint = −gσφχ2 , (9)

where g is a dimensionless coupling constant and σ is
a mass scale, then the decay rate of the inflaton into χ
particles is given by

Γ =
g2σ2

8πm
, (10)

where m is the inflaton mass.

In the approach of [3], the energy loss of the inflaton
due to the production of χ particles was taken into ac-
count by adding a damping term to the inflaton equation
of motion which in the case of a homogeneous inflaton
field is

φ̈+ 3Hφ̇+ Γφ̇ = −V ′

(φ) . (11)

For small coupling constant, the interaction rate Γ is typ-
ically much smaller than the Hubble parameter at the end
of inflation. Thus, at the beginning of the phase of infla-
ton oscillations, the energy loss into particles is initially
negligible compared to the energy loss due to the expan-
sion of space. It is only once the Hubble expansion rate
decreases to a value comparable to Γ that χ particle pro-
duction becomes effective. It is the energy density at the
time when H = Γ which determines how much energy
ends up in χ particles and thus determines the “reheat-
ing temperature”, the temperature of the SM fields after
energy transfer.

TR ∼ (Γmpl)
1/2

. (12)

Since Γ is proportional to the square of the coupling con-
stant g which is generally very small, perturbative reheat-
ing is slow and produces a reheating temperature which
can be very low compared to the energy scale at which
inflation takes place.

There are two main problems with the perturbative de-
cay analysis described above. First of all, even if the infla-
ton decay were perturbative, it is not justified to use the
heuristic equation (11) since it violates the fluctuation-
dissipation theorem: in systems with dissipation, there
are always fluctuations, and these are missing in (11).
For an improved effective equation of motion see e.g. [22].

The main problem with the perturbative analysis is
that it does not take into account the coherent nature
of the inflaton field. The inflaton field at the beginning
of the period of oscillations is not a superposition of free
asymptotic single inflaton states, but rather a coherently
oscillating homogeneous field. The large amplitude of
oscillation implies that it is well justified to treat the
inflaton classically. However, the matter fields can be as-
sumed to start off in their vacuum state (the red-shifting
during the period of inflation will remove any matter par-
ticles present at the beginning of inflation). Thus, matter
fields χ must be treated quantum mechanically. The im-
proved approach to reheating initiated in [4] (see also
[5]) is to consider reheating as a quantum production of
χ particles in a classical φ background.
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B. Preheating

We will present the preheating mechanism for the sim-
ple toy model with interaction Lagrangian

Lint = −1

2
g2χ2φ2 , (13)

where, as before, g is a dimensionless coupling constant
2. In this subsection we will neglect the expansion of
space. Provided that the time period of preheating is
small compared to the Hubble expansion time H−1 this
is a reasonable approximation. In the next subsection we
will include the expansion of space explicitly.
The quantum theory of χ particle production in the

external classical inflaton background begins by expand-
ing the quantum field χ̂ into creation and annihilation

operators âk and â†k as:

χ̂(t,x) =
1

(2π)3/2

∫

d3k
(

χ∗
k(t)âke

ikx + χk(t)â
†
ke

−ikx
)

,

(14)
where k is the momentum. If we assume that there are
no non-linearities in the χ sector of the theory, then the
equation of motion for χ is linear and can be studied sim-
ply mode by mode in Fourier space. The mode functions
then satisfy the equation

χ̈k +
(

k2 +m2
χ + g2Φ2 sin2 (mt)

)

χk = 0 , (15)

where Φ is the amplitude of oscillation of φ. This is the
Mathieu equation which is conventionally written in the
form

χ′′
k + (Ak − 2q cos 2z)χk = 0 , (16)

where we have introduced the dimensionless time variable
z = mt and a prime now denotes the derivative with
respect to z. Comparing the coefficients, we see that

Ak =
k2 +m2

χ

m2
+ 2q q =

g2Φ2

4m2
(17)

The growth of the mode function corresponds to parti-
cle production, as in the case of particle production in
an external gravitational field [26]. We will return to
this point in the next subsection. For now, let us simply
state that exponential growth of the mode functions will
lead to an exponential growth of the number of χ par-
ticles, with the exponent of this growth being twice the
corresponding exponent of the mode functions.
It is well known that the Mathieu equation has insta-

bilities for certain ranges of k and leads to exponential
growth

χk ∝ exp(µkz) , (18)

2 Preheating in a conformally flat scalar field model was analyzed
in [23, 24], and in a sine-Gordon potential in [25].

FIG. 1: Instability bands of the Mathieu equation (from [27]).
The horizontal axis is the parameter q of (16), the vertical axis
is the value of A. The shaded regions are regions in parameter
space where there is a parametric resonance instability.

where µk is called the Floquet exponent. For small values
of q, e.g. q ≪ 1, resonance occurs in a narrow instability
band about k = m (see Figure 1). Hence, in this case we
speak of “narrow resonance” (see [27] for in-depth discus-
sions of the Mathieu equation and its generalizations).
The resonance is much more efficient if q ≫ 1 [8, 10]. In

this case, resonance occurs in broad bands. In particular,
the bands include all long wavelength modes k → 0. We
then speak of “broad” parametric resonance. A condition
for particle production is that the WKB approximation
for the evolution of χ is violated. In the WKB approxi-
mation, we write: χk ∝ e±i

∫
ωkdt, which is valid as long

as the adiabaticity condition

dω2
k

dt
≤ 2ω3

k (19)

is satisfied. In the above, the effective frequency ωk is
given by

ωk =
√

k2 +m2
χ + g2Φ(t)2sin2(mt) , (20)

By inserting the effective frequency (20) into the condi-
tion (19) and following some algebra, we find that the
adiabaticity condition is violated for momenta satisfying

k2 ≤ 2

3
√
3
gmΦ−m2

χ. (21)

For modes with these values of k, the adiabaticity con-
dition breaks down in each oscillation period when φ is
close to zero. We conclude that the particle number does
not increase smoothly, but rather in “bursts”, as was first
studied in [10].
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So far, we have studied preheating in a toy model in
which Standard Model matter is modeled by a scalar field
χ. However, in principle we are interested in the produc-
tion of SM fermions. Such fermions could be produced
after preheating into a scalar field χ which then in turn
couples to fermions. In particular, in supersymmetric
theories to be discussed in a later section there are many
channels for this to happen. However, it turns out that
preheating into fermions is also effective, in spite of the
fact that the occupation number of any fixed state can-
not be greater than one (because of the Pauli exclusion
principle). This is discussed in detail in [28, 29].

C. Preheating in an Expanding Background

Provided that the Floquet exponent is not much
smaller than unity, the parametric resonance instability
leads to an energy transfer from the inflaton to matter
particles which is rapid on the scale of the Hubble time.
Thus, an analysis neglecting the expansion of the uni-
verse is self-consistent. However, as discussed in detail
in [10], it is not too difficult to include the expansion of
space.
We will first give a qualitative analysis of broad reso-

nance in an expanding background characterized by the
cosmological scale factor a(t) which is increasing in time
as given by the Friedmann equations. The equation of
motion for χ is

χ̈k + 3Hχ̇k +

(

k2

a2
+m2

χ + g2Φ(t)2 sin2 (mt)

)

χk = 0.

(22)
The adiabaticity condition is now violated for momenta
satisfying:

k2

a2
≤ 2

3
√
3
gmΦ(t)−m2

χ. (23)

Note that the expansion of space makes broad resonance
more effective since more k modes are red-shifted into
the instability band as time proceeds. We will see below
that the improved analysis yields the same expression
for the resonance band except for the exact value of the
numerical coefficient of the first term on the r.h.s.. Broad
parametric resonance ends when q ≤ 1/4.
Let us now move on to a quantitative analysis of this

problem, building on the comprehensive study of [10]. It
proves convenient to eliminate the Hubble friction term
in the equation of motion by rescaling the field variable.
We consider the variable Xk(t) = a3/2(t)χk(t) in terms
of which the equation of motion (22) becomes:

Ẍk + ω2
kXk = 0 (24)

with

ω2
k =

k2

a2(t)
+m2

χ+g
2Φ2(t) sin2 (mt)− 9

4
H2− 3

2
Ḣ. (25)

Note that in the matter-dominated background which we
are considering the last two terms on the right-hand side
cancel.
The equation of motion (24) represents a harmonic os-

cillator equation with a time-dependent frequency. The
evolution of the solution will be described by the WKB
approximation (which entails the absence of particle pro-
duction) unless the adiabaticity condition is violated.
This will happen during short time intervals around the
instances t = tj when φ = 0, as discussed in the previous
section. We label the intervals of adiabatic evolution by
an integer j. In the j’th interval (lasting from tj−1 to tj),
the adiabatic evolution of Xk is given by

Xj
k(t) =

αj
k√
2ωk

ei
∫
ωkdt +

βj
k√
2ωk

e−i
∫
ωkdt, (26)

where the coefficients αj
k and βj

k (the “Bogoliubov coeffi-
cients”) are constant and satisfy the normalization con-

dition |αj
k|2 − |βj

k|2 = 1 (derived from the Heisenberg
uncertainty principle).
During the brief time periods when φ is close to zero,

we can use the approximation φ2(t) ≃ Φ2m2(t − tj)
2.

Introducing the new time variable τ = gΦm(t − tj) and

a rescaled momentum κ2 =
(k2/a2)+m2

χ

gΦm the equation of

motion for X becomes

d2Xk

dτ2
+
(

κ2 + τ2
)

Xk = 0 . (27)

This equation corresponds to scattering from a parabolic
potential.
The non-adabatic evolution of Xk during the short in-

tervals when φ crosses the origin leads to a transforma-
tion of the coefficients of Bogoliubov type

(

αj+1
k

βj+1
k

)

=

(

1
Dk

R∗

k

D∗

k

e−2iθj

k

Rk

Dk
e2iθ

j

k
1
D∗

k

)

(

αj
k

βj
k

)

(28)

=

( √
1 + e−πκ2eiϕk ie−

π
2
κ2−2iθj

k

−ie−π
2
κ2+2iθj

k

√
1 + e−πκ2e−iϕk

)

(

αj
k

βj
k

)

,

where we defined θjk =
∫ tj
0 dtωk which is the phase ac-

cumulated at tj . The reflection and transmission coeffi-
cients Rk and Dk are given by

Rk = − ieiϕk

√
1 + eπκ2

(29)

Dk =
e−iϕk

√
1 + e−πκ2

, (30)

where the phase ϕk is:

ϕk = arg

{

Γ

(

1 + iκ2

2

)}

+
κ2

2

(

1 + ln
2

κ2

)

. (31)

Here Γ stands for the complex Gamma function. In ac-
cordance with the general theory of particle production
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in external fields (see e.g. [26]), the occupation number
of the k’th mode is

nk = |βk|2. (32)

Making use of the Bogoliubov transformation (28), we
obtain the following recursion relation of the particle
number:

nj+1
k = e−πκ2

+
(

1 + 2e−πκ2
)

nj
k

+ 2e−
π
2
κ2
√

1 + e−πκ2

√

nj
k(1 + nj

k) sin θ
j
tot,(33)

where θjtot = 2θjk − ϕk + arg(αj
k)− arg(βj

k), we used (32)

and |αj
k|2 = 1+nj

k. From (33) it follows that only modes
with πκ2 ≤ 1 will grow. Inserting the definition of κ into
this condition, we get an expression for the resonance
band which reproduces (23) except for the numerical co-
efficient in the first term on the r.h.s. of the equation
which is now 1/π instead of 2/(3

√
3).

We can expand (33) in the limit nk ≫ 1 and obtain

nj+1
k =

(

1 + 2e−πκ2

+ 2e−
π
2
κ2
√

1 + e−πκ2 sin θjtot

)

nj
k.

(34)
The occupation number can only grow if the expression
in the bracket is larger than 1. For the fastest growing
mode (k = 0), nj+1

k > nj
k if

− π

4
< θjtot <

5π

4
, (35)

where we have takenmχ = 0. Now, since θjtot has a rather
complicated time-dependence, it could almost be consid-
ered as a random variable. Thus, the range of phases (35)
implies that the solution grows about 75% of the time.
We can define an effective Floquet exponent µj

k for the
j’th interval via

nj+1
k = e2πµ

j

knj
k . (36)

By comparing with (34) we get

µj
k =

1

2π
ln
(

1 + 2e−πκ2

+ 2e−
π
2
κ2
√

1 + e−πκ2 sin θjtot

)

.

(37)
The “average” Floquet exponent µk is determined by:

µk =
π

m∆t

∑

j

µj
k , (38)

where ∆t is the total duration of the resonance. Making
use of (37) we obtain

µk ≈ 1

2π
ln 3 − O(κ2) . (39)

The fact that the exponent is of the order unity implies
that broad parametric resonance in an expanding back-
ground is very efficient and can convert a substantial frac-
tion of the inflaton energy density into matter in a time
interval small compared to the Hubble time.

The total number density of χ particles is obtained by
integrating over all values of k:

nχ(t) =
1

(2πa)3

∫ ∞

0

d3knk(t) (40)

=
1

2π2a3

∫ ∞

0

dkk2|β0
k|2e2mµkt.

which can be estimated as [30]

nχ(t) ≈
(gmΦ0)

3/2|β0
m|2e2mµt

16π3a3
√

mµt
2π + 1

. (41)

This equation determines how fast the energy is drained
from the inflaton field, and thus the time interval which
it takes before preheating is completed.

D. Termination of Preheating

In the previous analysis of preheating, we have ne-
glected the back-reaction of the produced χ particles
on the dynamics of the preheating process. The back-
reaction arises at different places. First, the presence of
χ particles changes the effective mass of the inflaton os-
cillations. The rough criterion which we will use below is
that this back-reaction effect is negligible as long as the
change ∆m2

φ in the square mass of the inflaton is smaller

than m2.
In the Hartree approximation, the change in the infla-

ton mass due to χ particles is given by

∆m2
φ = g2〈χ2〉 , (42)

where the pointed brackets indicate the quantum expec-
tation value. The expectation value of χ2 is given by

〈χ2〉 =
1

2π2a3

∫ ∞

0

dkk2|Xk(t)|2 (43)

Inserting the expansion of the field modes Xk in terms
of the Bogoliubov coefficients we find that

∆m2
χ(t) ≃ gnχ(t)

|φ(t)| . (44)

It appears that this expression becomes ill-defined when
φ crosses zero. However, the equation of motion is still
well defined at these points. To estimate the strength
of back-reaction, we will replace φ by its amplitude Φ.
Thus, the condition under which this back-reaction effect
is negligible is

nχ(t) ≤ m2Φ(t)

g
. (45)

This is an implicit equation for the time t1 when back
reaction can no longer be neglected. Note that the ex-
pression for the number density of χ particles was derived
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in (41), and that Φ scales as a function of time as t−1.
Because of the exponential growth of nχ, it is clear that
up to logarithmic factors the time interval of preheating
is

δt ∼ (µm)−1 . (46)

Thus, since H ≪ m, this time interval is short compared
to the Hubble expansion time, unless the Floquet expo-
nent µ is suppressed.
A second condition must be satisfied in order to be

able to neglect the back-reaction of the χ particles on
the preheating dynamics: it is the condition that the
energy in the χ particles is sub-dominant. Making us
of the estimate, ρχ ∼ 〈(∇χ)2〉 ≃ k2〈χ2〉, and inserting
the value of 〈χ2〉 at the time t1 determined above, we
see that ρχ is smaller than the potential energy of the
inflaton field at the time t1 as long as the value q at the
time t1 is larger than 1, e.g. q(t1) > 1. This is roughly
speaking the same as the condition for the effectiveness
of broad resonance.
As it turns out, in many models there is another mech-

anism which shuts off the resonance before the either of
the two conditions mentioned above becomes satisfied.
Numerical studies [31–34] have shown that the scatter-
ing of χ particles off the inflaton condensate limits the
value of the χ modes to a value lower than that which
would be obtained from arguments such as the first one
above which makes use of the Hartree approximation.
For small values of q, the resonant period may be com-
pletely absent.
If q(t1) >> 1 then broad parametric resonance ends

when most of the energy is still stored in the inflaton
condensate. The further decay must then be analyzed by
other techniques, e.g. perturbatively or using numerical
simulations. In particular, the time interval of matter-
dominated dynamics after inflation could last a long time,
leading to a low matter temperature after the matter
field excitations have thermalized. On the other hand,
if q(t1) ∼ 1, then the matter-dominated phase will end
with the end of preheating. We still need to study how
long it takes for the decay products to thermalize. This
topic of thermalization after preheating will be discussed
in the next section.
Before moving on to the study of thermalization after

preheating, we must discuss some variants of preheating
in which the inflaton decay is much more efficient than in
the chaotic inflation toy model used so far in this section.

E. Tachyonic Preheating

In the chaotic inflation model we have studied up to
this point the effective frequency of the χ oscillations is
always positive. If it were negative, then we would obvi-
ously get an exponential instability. The simplest way to
obtain this instability is to simply change the sign of the
coupling term (13) in the interaction Lagrangian. This
can be done without giving up stability of the model if

we add quartic potential terms that dominate at large
field values but are unimportant during preheating. This
model has “negative coupling resonance”, a mechanism
that was proposed in [35]. Similar negative coupling in-
stabilities can also occur in models with cubic interaction
terms [36–38].
Another simple model in which the effective frequency

is negative for a certain time interval is the symmetry
breaking potential (1). For small field values, the effective
mass of the fluctuations of φ is negative and hence a
“tachyonic” resonance will occur, as studied in [39, 40].
For small field values, the equation for the fluctuations
φk of φ is

φ̈k +
(

k2 −m2
)

φk = 0 . (47)

Hence, modes with k < m grow with an exponent which
approaches µk = 1 in the limit k → 0. Given initial
vacuum amplitudes for the modes φk at the intial time
t = 0 of the resonance, the field dispersion at a later time
t will be given by

〈δφ2〉 =

∫ m

0

kdk

4π
e2t

√
m2−k2

. (48)

The growth of the fluctuations modes terminates once the
dispersion becomes comparable to the symmetry break-
ing scale.
Tachyonic preheating also occurs in hybrid inflation

models like that of (2). In this case, it is the fluctuations
of ψ which have tachyonic form and which grow expo-
nentially [39]. Note that reheating in hybrid inflation
was first studied in [41] using the tools of broad para-
metric resonance. Fermion production in this context
was discussed in [42]. Fermion production is the context
of tachyonic preheating was then analyzed in [43]. The
quantum to classical transition of fluctuations in tachy-
onic preheating was investigated in [44, 45].
Another preheating mechanism which is more effective

than the broad resonance process described above arises
if the χ particles in the model of (9) are coupled linearly
to fermions such that the χ particles created when φ ∼ 0
decay after half a φ oscillation, thus preventing the χ
particles from slowing the decay of φ. This mechanism is
called “instant preheating” [46].

IV. THERMALIZATION

A. Perturbative Considerations

Neither the perturbative decay of a Bose inflaton con-
densate (discussed in Section 3.a) nor the preheating
mechanism discussed in later subsections of Section 3
produce a thermal spectrum of decay products. For many
questions in cosmology it is not sufficient to know when
inflation has terminated - it is crucial to know at what
temperature the universe first takes on a thermal distri-
bution. Examples are applications of reheating to baryo-
genesis and to nucleosynthesis constraints. In this section
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we first discuss perturbative thermalization. Then we
summarize the results of recent non-perturbative studies
of inflaton decay. We begin with perturbative considera-
tions.

In a full thermal equilibrium the energy density ρ and
the number density n of relativistic particles scale as:
ρ ∼ T 4 and n ∼ T 3, where T is the temperature of
the thermal bath. Thus, in full equilibrium the average
particle energy is given by: 〈E〉eq = (ρ/n), which obeys

the scaling, 〈E〉eq ∼ ρ1/4 ∼ T .

On the other hand, if the inflaton decays perturba-
tively, then right after the inflaton decay has completed,
the energy density of the universe is given by:

ρ ≈ 3 (Γmpl)
2
, and 〈E〉 ≈ m ≫ ρ1/4 , (49)

(where m is the inflaton mass). Then, from conservation
of energy, the number density of decay products is found
to be

n ≈
( ρ

m

)

≪ ρ3/4 . (50)

Hence, perturbative inflaton decay results in a dilute
plasma that contains a small number of very energetic
particles.

Reaching full equilibrium requires re-distribution of
the energy among different particles, kinetic equilibrium,
as well as increasing the total number of particles, chem-

ical equilibrium. Therefore both number-conserving and
number-violating reactions must be involved.

The most important processes for kinetic equilibration
are 2 → 2 scatterings with gauge boson exchange in the
t-channel. (Scalar exchange in t-channel diagrams are
usually suppressed, also vertices that arise from a Yukawa
coupling are helicity suppressed.) The cross-section for
these scatterings is σ2→2 ∼ α2|t|−1, where α is a gauge
fine structure constant and the variable t is related to
the exchanged energy ∆E and momentum, ∆p through
t = ∆E2 − |∆p|2. Due to an infrared singularity, these
scatterings are very efficient even in a dilute plasma [47,
48].

Chemical equilibrium is achieved by changing the num-
ber of particles in the reheat plasma. From (50) it follows
that in order to reach full equilibrium the total number
of particles must increase by a factor of neq/n, where

n ≈ ρ/m and the equilibrium value is: neq ∼ ρ3/4. This
can be a very large number, e.g. neq/n ∼ O(103). It was
recognized in [47, 49] (see also [50, 51]) that the most rel-
evant processes are 2 → 3 scatterings with gauge-boson
exchange in the t−channel. The cross-section for emit-

ting a gauge boson whose energy is E ∼ (Γmpl)
1/2

(where
as in earlier sections of this review Γ is the inflaton decay
rate), from the scattering of two fermions (up to a loga-

rithmic “bremsstrahlung” factor) is σ2→3 ∼ α3 (Γmpl)
−1

.
When these scattering become efficient, the number of

particles increases very rapidly [52] 3 As a result, full
thermal equilibrium will be established shortly after that.
Based on the above analysis, one can use the rate for

the above inelastic scatterings as the thermalization rate
Γth of the universe . This rate at the time when the infla-
ton decay completes can be found by using Eqs. (49,50):

Γth ∼ α3
(mpl

m

)

Γ. (51)

For typical values of α ∼ 10−2− 10−1 and m ≤ 10−5mpl,
we find Γth ≥ Γ. Therefore the universe reaches full
thermal equilibrium immediately after the completion of
perturbative inflaton decay.

B. Non-Perturbative Considerations

The purely perturbative considerations of the previous
subsection are subject to the same criticisms as the orig-
inal perturbative analysis of the initial stages of reheat-
ing. Hence, we must turn to non-perturbative analyses.
Some analytical approaches were pioneered in [6] and [7].
Numerical studies, however, have proved more powerful.
Since the occupation numbers of the excited modes are

typically very high after the initial stages of preheating,
a classical field theory analysis should be justified. Ini-
tial numerical studies were pioneered in [31–34, 53]. Two
numerical package to perform such simulations are pub-
licly available [54, 55]. Detailed numerical simulations
of tachyonic preheating are given in [40]. Here, we will
focus on numerical studies of preheating in models with
narrow or broad parametric resonance [11].
The resonant phase of the reheating process described

in Section 3 produces either (in the case of narrow res-
onance) field fluctuations in a narrow interval about the
resonant frequency (which is set by the mass of the in-
flaton field), or else (in the case of broad or tachyonic
resonance) field fluctuations at all wavenumbers smaller
than the critical value given in (23), whose magnitude is
set by the inflaton mass and amplitude.
Once the occupation numbers of the resonant modes

become sufficiently large, re-scattering of the fluctuations
begins. As first studied in [31–34] this terminates the
phase of exponential growth of the occupation numbers.
In the case of narrow resonance, new peaks in the spec-
trum of the number density n(k) develop at harmonic
frequencies. Soon, the spectrum shows excitations in a
continuum band which reaches to k = 0 and has an ultra-
violet (UV) cutoff whose value increases with increasing
time.
As studied in detail in [11], the evolution of the field

fluctuations evolves to a regime of turbulent scaling

3 Decay processes which were considered in [51], are helpful, but
in general they cannot increase the number of particles to the
required level.



9

driven by the remnant oscillations of the inflaton conden-
sate. The resulting distribution of fluctuations is charac-
terized by the spectrum

n(k) ∼ k−3/2 (52)

which is non-thermal (for a thermal distribution we
would have n(k) ∼ k−1).
The evolution during the phase of turbulence has been

shown [11] to be self-similar in the sense that as a function
of time the spectrum scales as

n(k, τ) = τ−qn0(kτ
−p) , (53)

where τ is a rescaled time (τ = t/t0, where t0 is the
time when the turbulent scaling regime begins), n0 gives
the initial distribution of the particles, and p and q are
positive rational numbers whose values are determined
in numerical simulations. This equation (53) describes
the overall growth in the number of fluctuation quanta
and at the same time gives the increase of the UV cutoff
frequency as a function of time.
The phase of turbulence ends once most of the energy

has been drained from the inflaton field. At this time
quantum processes take over and lead to the thermaliza-
tion of the spectrum. In the case of an O(N) scalar field
model, the preheating and thermalization was considered
analytically in the large N approximation [56], and ap-
plied to thermalization of fermions and gauge fields in
hybrid inflation in [57] (see also [58] for a more general
study of thermalization of quantum fields in an expand-
ing universe).
Note that the time interval of the resonant preheat-

ing phase is given by the inflaton mass m and hence is
very short on the Hubble time scale. The period when
the intial re-scatterings take place and which ends when
the turbulent scaling distribution becomes established is
longer than the period of the intial resonance, but not by
a large factor [11]. Thus, the time t0 is of the same order
of magnitude as the time when inflation ends. However,
the period of driven turbulence is very long, in particular
if all of the coupling constants in the field theory model
are small. If cr is the fraction of the energy density ρI
at the end of inflation which remains in the inflaton at
the beginning of the phase of turbulence, then a rough
estimate of the time τth of thermalization is [11]

τth ∼
(

(crρI)
1/4

m

)1/p

. (54)

A typical value of p is p = 1/7. Given the normalization
of m from the observed magnitude of the cosmological

fluctuations we find τth ∼ c
7/4
r 1021. Hence, we see that

the temperature at which thermal equilibrium finally be-
comes established is low. The resulting value of the re-
heating temperature in fact agrees roughly with what is
obtained from the perturbative arguments given in the
previous subsection.

V. REHEATING IN SUPERSYMMETRIC
MODELS

As an important application of the theory of reheating
described in the previous sections we consider reheat-
ing in supersymmetric models. Supersymmetry (SUSY)
introduces new degrees of freedom and new parameters,
and a large number of scalar fields that may acquire large
VEVs during inflation. These elements can affect various
aspects of reheating that we discussed in Sections III and
IV. Here we demonstrate some of the possible effects in
the context of a well-motivated SUSY model.

A. Inflaton Couplings to Matter Fields

The minimal supersymmetric SM (MSSM) is a well-
motivated extension of the SM (for reviews see e.g. [59,
60]). The new fields in the MSSM are scalar partners of
leptons and quarks, called sleptons and squarks respec-
tively, and fermionic partners of gauge and Higgs fields
called gauginos and Higgsinos respectively. The MSSM
superpotential is given by

WMSSM = huQHuu+hdQHdd+heLHde+µHuHd , (55)

where Hu, Hd, Q, L, u, d, e in Eq. (55) are chiral super-
fields representing the two Higgs fields (and their Hig-
gsino partners), left-handed (LH) (s)quark doublets,
right-handed (RH) up- and down-type (s)quarks, LH
(s)lepton doublets and RH (s)leptons respectively. The
dimensionless Yukawa couplings hu, hd, he are 3× 3 ma-
trices in the flavor space, and we have omitted the gauge
and flavor indices. The last term is the µ term, which is
a SUSY version of the SM Higgs boson mass.

Now we consider inflaton couplings to the MSSM fields.
For a gauge singlet inflaton, the only renormalizable cou-
pling occurs through the superpotential term 2gΦHuHd,
with Φ being the inflaton superfield (for details, see [61]).
Taking into account the inflaton superpotential mass
term (m/2)ΦΦ, the renormalizable part of the scalar po-

tential that is relevant for the inflaton decay into MSSM
scalars is given by:

V ⊃ 1

2
m2φ2 + g2φ2χ2

1 + g2φ2χ2
2 +

1√
2
gmφχ2

1 −
1√
2
gmφχ2

2 ,(56)

where χ1,2 denotes the scalar component of (Hu ±
Hd)/

√
2 superfields, and we have only considered the real

parts of the inflaton, φ, and χ1,2 fields.

We see that even in the simplest SUSY set up, the
scalar potential is more involved than the non-SUSY case
given in Eq. (13), which in turn can alter the picture
of preheating presented in Section III (see the detailed
discussion in Refs. [48, 61]). An interesting feature of
Eq. (56) is that both the cubic φχ2 and quartic φ2χ2

interactions appear and SUSY naturally relates their
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strengths 4. Also, the inflaton coupling to fermionic part-
ners of χ1,2 follows naturally from SUSY. The prospects
for fermionic preheating will thus be the same as those
for the bosonic case.

B. Supersymmetric Flat Directions

A key property of SUSY theories is the presence of flat
directions in field space along which the potential iden-
tically vanishes (in the limit of unbroken SUSY). Such
scalar fields (which are complex) can therefore obtain
large VEVs along these special directions at no energy
cost. These flat directions, which can be interpreted
as a degeneracy of the vacuum state of SUSY theories,
arise because of cancellations between fields of opposite
charges in the D-term potential. A powerful tool for find-
ing the flat directions has been developed in [62–64] (for
reviews see [65? , 66]). Flat directions are classified by
gauge-invariant monomials

∏n
i=1Xi, where Xi are chi-

ral superfields of the model. This ensures that the D-
term part of the potential vanishes5 along the direction
〈χ1〉 = ... = 〈χn〉 = ϕ (χi are scalar components of
Xi). This corresponds to a two-dimensional subspace
represented by a complex field ϕ. A flat direction VEV
spontaneously breaks gauge symmetries and gives (SUSY
conserving) masses to the gauge bosons/gauginos sim-
ilar to the Higgs mechanism in electroweak symmetry
breaking [48, 61, 63, 68, 69]. The induced masses for
gauge/gaugino fields are ∼ α1/2|ϕ| (we recall that α is
a gauge fine structure constant). Similarly, a flat direc-
tion VEV induces (SUSY conserving) masses ∼ h|ϕ| for
those fields that have superpotential couplings to ϕ (h is
a Yukawa coupling). Therefore all fields that are coupled
to a flat direction obtain very large masses.

The flat directions are massless if SUSY is exact, but
they are lifted when SUSY is broken (which is assumed
to happen at a scale of the order of TeV), as a result
of which they get a mass mϕ ∼ O(TeV). Provided that
mϕ ≪ Hinf , Hinf being the Hubble expansion rate during
inflation, the flat direction can acquire a large VEV by
the virtue of quantum jumps during inflation, see the
discussion in Refs. [65, 66]. This can dramatically alter
the post-inflationary history of the universe as we will see
in the next subsections 6.

4 Note that the cubic term is required for a complete decay of the
inflaton field.

5 Since the total SM charge of a gauge-invariant monomial is zero
by definition, the D-term potential involving only the fields used
to build the monomial will also vanish since it is proportional to
the sum of the charges.

6 The development of large VEVs requires that the flat directions
do not obtain positive Hubble-induced supergravity corrections
during inflation. This problem can be avoided, for example, by
considering non-minimal Kahler potentials.

C. Perturbative Decay

Consider a flat direction ϕ that has Yukawa couplings
to the inflaton decay products χ. This happens, for ex-
ample, for MSSM flat directions that are made of squark
and/or slepton fields with χ being a MSSM Higgs field,
see Eq. (56) (for details, see [61]). This results in the
following term in the scalar potential:

V ⊃ h2|ϕ|2χ2, (57)

where h denotes a Yukawa coupling. Note that the first
generation of leptons and quarks have a Yukawa coupling
∼ O(10−5), while the rest of the SM Yukawa couplings
are > 10−4. Since |ϕ| is virtually frozen while mϕ < H <
Hinf it is only when H ≃ mϕ that the flat direction starts
its oscillations. Since the field is complex, typically an
elliptical trajectory with an O(1) eccentricity will result
[63]. Hence, |ϕ| will redshift as |ϕ| ∝ H−1.
While the flat direction has a large amplitude, the in-

duced mass of the inflaton decay products obtained via
(57) will lead to the inflaton decay being kinematically
forbidden as long as h|ϕ| ≥ m/2. There are thus two
criteria for perturbative inflation decay. First of all, the
decay of the inflaton into χ particles must be kinemat-
ically allowed which will become possible once the in-
duced χ mass drops below the inflaton mass m. Tak-
ing into account the fact that once H falls below the
value mϕ the field amplitude of ϕ decreases linearly in H
we find that the kinematic decay becomes possible once

H <
(

m
hϕ0

)

mϕ, where ϕ0 is the initial VEV of the flat

direction. A second condition for perturbative inflaton
decay to occur is that H < Γ, Γ being the rate for per-
turbative decay of the inflaton. Thus, the inflaton cannot
decay until the Hubble rate has decreased to a value Hdec

given by:

Hdec = min

[(

m

hϕ0

)

mϕ, Γ

]

. (58)

If ϕ0 is sufficiently large, then we can have Hdec ≪ Γ.
This happens if ϕ0 > h−1mϕm

Γ . Flat directions can
therefore significantly delay inflaton decay on purely
kinematical grounds.

D. Non-perturbative Decay

In order to understand the preheating dynamics in the
presence of flat directions, we consider the governing po-
tential that is obtained from Eqs. (56,57):

V =
1

2
m2φ2 + g2φ2χ2 +

g√
2
mφχ2 + h2|ϕ|2χ2. (59)

As mentioned in the previous section, we generically have
h > 10−4, and g can be as large as ∼ O(1). After mode
decomposition of the field χ, the energy of the mode with
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momentum k, denoted by χk, is given by:

ωk =
(

k2 + 2g2φ2 +
√
2gmφ+ 2h2|ϕ|2

)1/2

. (60)

Let us freeze the expansion of the universe first. Includ-
ing the expansion will not change our conclusions.
We will now show that there is also a kinematic block-

ing of preheating if the initial value of the flat direction
fields is large. We consider the most efficient case for
preheating, large field inflation, e.g. 〈φ〉 > mpl. Note
that for g > 10−6, the inflaton induces a large mass
g〈φ〉 > Hinf for χ during inflation. As a result, χ, quickly
settles down to the minimum even if it is initially dis-
placed, and remains there. Therefore, ϕ, does not re-
ceive any mass corrections from its coupling to χ during
inflation.
As discussed in the previous subsection, in the in-

terval mϕ ≤ H ≤ m, the flat direction VEV slides
very slowly because of the under damped motion due
to large Hubble friction term - it is effectively frozen.
Non-perturbative production of χ quanta will occur if
there is a non-adiabatic time-variation in the energy, e.g.
that dωk/dt ≥ ω2

k. The inflaton oscillations result in a
time-varying contribution to ωk, while the flat direction
coupling to χ yields a virtually constant piece. This con-
stant piece weakens the non-adiabaticity condition. In-
deed time-variation of ωk will be adiabatic at all times,
i.e. dωk/dt < ω2

k, provided that h2|ϕ|2 > gΦm, where
Φ ∼ O(mpl) is the amplitude of the inflaton oscillations.
Thus, there will be no resonant production of χ quanta
if

ϕ0 > h−1 (gmplm)
1/2

, (61)

Similar arguments lead to a kinematical blocking of
fermionic preheating, as the symmetry between bosons
and fermions implies similar equations for the momen-
tum excitations, see Eq. (60).

E. Thermalization

The flat direction VEV spontaneously breaks the SM
gauge group. The gauge fields of the broken symme-
tries then acquire a SUSY conserving mass of the order
of α1/2|ϕ|. This mass provides a physical infrared cut-
off for scattering diagrams with gauge boson exchange in
the t−channel. Thus the cross-section for inelastic scat-
terings is now given by σ2→3 ∼ α2|ϕ|−2. For large values
of |ϕ| the scattering rate is suppressed, which results in a
delayed thermalization. It can be shown that the universe
reaches thermal equilibrium when the Hubble expansion
rate is (for details see Ref. [48])

Hth = min [10α2

(

mpl

ϕ0

)2 m2
ϕ

m
, (62)

10α2

(

mpl

ϕ0

)2(
Γ

mϕ

)1/2 m2
ϕ

m
, Γ],

where Γ is the rate for perturbative inflaton decay. This
yields the following expression for the reheat temperature

TR ∼ (Hthmpl)
1/2

. (63)

For very large values of ϕ0, thermalization is consider-

ably delayed, e.g. Hth ≪ Γ, and hence TR ≪ (Γmpl)
1/2

.
This happens for

ϕ0 > 3α
mϕmpl

(mΓ)1/2
. (64)

In the above discussions it has been assumed that
the flat direction condensate does not decay non-
perturbatively. One may think that non-perturbative ef-
fects could also result in a fast decay of flat directions
similar to preheating [36]. However, there is crucial dif-
ference between a rotating and a radially oscillating con-
densate. The F -term couplings do not lead to resonant
particle production from a rotating condensate [70, 71].
It has been shown that D-term couplings of the flat di-
rection can result in non-perturbative particle produc-
tion [72]. However, unlike the case of a radially oscillat-
ing field, the produced quanta have momenta that are
less than the mass of the condensate in this case.

The reason is that a rotating condensate has a U(1)
global charge7 that, in the case of MSSM flat direc-
tions, is identified with the baryon and/or lepton num-
ber [62, 63, 73]. Now, it is easy to show that the charge
per particle in the rotating condensate is of O(1). Note
also that the baryon and lepton number of MSSM fields,
whether in the flat direction condensate or produced from
the flat direction rotation, is ±1/3 and ±1 respectively.
Hence preservation of the baryon/lepton number by the
D-term interactions, along with the conservation of en-
ergy density, implies that for an elliptic trajectory with
O(1) eccentricity the number of produced quanta cannot
be much smaller than the number of zero-mode quanta
in the rotating condensate [69]. Therefore, the non-
perturbative decay of a rotating flat direction does not
change the thermalization picture described above.

The reason for a delayed thermalization is due to in-
ducing large masses to the gauge/gaugino fields from the
VEV of the flat direction. The induced mass by the
plasma is given by m2

eff ∼ αn/〈E〉, where 〈E〉 and n
are the average energy and number density of quanta in
the plasma respectively. Since they cannot be much dif-
ferent from those in the condensate, the induced masses
will also be comparable.

7 This charge corresponds to the angular momentum of the rotat-
ing condensate in field space.
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VI. CONSEQUENCES OF
REHEATING/PREHEATING

A. Non-thermal Particle Creation

Reheating and preheating lead to non-thermal particle
production, as we have seen in previous sections. In cos-
mology it is usually assumed that all particles start out
in thermal equilibrium at the beginning of the Standard
Cosmology phase. However, reheating begins with out-
of-equilibrium decay of the inflaton oscillations and, as
we discussed, decay products may not reach full thermal
equilibrium immediately. During the transition from in-
flation to the Standard Cosmology various non-thermal
processes take place and the assumption of thermal equi-
librium of all particles clearly breaks down. In the follow-
ing, we briefly mention a few applications of non-thermal
particle production.

1. Baryogenesis and Leptogenesis:

The first application is to baryo- and leptogenesis. One
of the several possible mechanisms to explain the ob-
served asymmetry between baryons and antibaryons is
to make use of out-of-equilibrium decay of superheavy
Higgs and gauge particles [74]. If reheating were purely
perturbative, particles as heavy as the inflaton could be
created either in inflaton decay [75] or from scatterings
of inflaton decay products [49, 76].

Preheating, however, provides a mechanism to produce
a large population of superheavy scalar particles much
heavier than the inflaton. In [77] this was studied mak-
ing use of the same chaotic inflation Lagrangian which
we have used in Section 3, with the χ scalars being the
superheavy Higgs or gauge fields. A full numerical study
[78] showed, however, that large self-interactions may ter-
minate the resonance before it becomes effective.

Another way to generate to observed baryon to entropy
ratio is via leptogenesis [79], a scenario in which initially
an asymmetry in the lepton number is produced that is
then partially converted into baryon asymmetry via SM
sphalerons [80]. Preheating after inflation is a way to
generate the initial lepton asymmetry. For example [81],
preheating can produce a large number density of super-
massive RH neutrinos in a model in which the inflaton
couples to these neutrinos ψ via the standard fermionic
preheating interaction term

LI = gφψ̄ψ . (65)

If hybrid inflation occurs at a scale close to the elec-
troweak scale, then the non-thermal production of par-
ticles may provide the out-of-equilibrium condition that
is necessary in order to achieve electroweak baryogenesis
[82].

2. Dark matter:

Another application of non-thermal particle creation
during reheating is to excite dark matter. It is usu-
ally assumed that the dark matter particles are ther-
mally distributed. This assumption is implicit in most
current analyses of the prospects for dark matter detec-
tion in direct and indirect experiments. However, if the
dark matter particles couple to the inflaton, then non-
thermal production of dark matter during reheating is
to be expected. If the dark matter particles have suf-
ficiently strong interactions which allows them to ther-
malize during reheating, then the signatures of the initial
non-thermal distribution will be washed out. However,
if the interactions do not permit thermalization after in-
flation, then the predictions concerning the dark matter
distribution will be quite different.
The production of out-of-equilibrium dark matter dur-

ing preheating was put forwards in [81] and then stud-
ied in detail in [76]. In the latter reference, the super-
heavy dark matter particles produced during reheating
were called “Wimpzillas”. Masses of Wimpzillas com-
parable to the grand unified theory (GUT) scale were
considered (see also [83] for a discussion of a purely grav-
itational production mechanism for Wimpzillas). The
dark matter abundance which can be obtained by the
preheating channel is very model-dependent, whereas
direct gravitational particle production produces dark
matter of the required abundance for particle masses of
MX ∼ g1/21015 GeV [83].

3. Moduli and Gravitino Production

Preheating could also produce dangerous and un-
wanted particles [84]. An example are particles with
gravitationally suppressed couplings and weak scale
masses that arise in many theories beyond the SM. Over-
production of these particles could overclose the universe,
if they are stable, or ruin the success of Big Bang nucle-
osynthesis (BBN) in the case of unstable relics. Here
we consider moduli and gravitino production during pre-
heating.
The existence of bosonic and fermionic moduli fields

is common in SUSY and superstring theories. Moduli
(bosonic modulus, χ, and fermionic modulus, ψ) are typ-
ically coupled to the inflaton via non-renormalizable in-
teraction terms such as

L ∼ φ4
χ

mpl
(bosonic), L ∼ φ2

mpl
ψ̄ψ (fermionic) .

(66)
The production of moduli fields in chaotic and hybrid
inflation reheating was analyzed in [85]. It was shown
that moduli field can be parametrically amplified (their
amplitude remains smaller than that of the inflaton fluc-
tuations).
Another important example is the gravitino, the spin
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3/2 partner of the graviton. Gravitinos are produced
thermally from scatterings of light particles in the ther-
mal bath. The number density of gravitinos thus pro-
duced can be obtained by solving the Boltzmann equa-
tion:

ṅX + 3HnX ≃ 〈σv〉n2
l , (67)

where nX is the number density of the gravitinos, σ is the
production cross section which scales asm−2

pl , and v ∼ c is
the relative velocity of scatterers l whose number density
is nl. The resulting abundance is found to be [86, 87]

nX

s
∼ 10−2 TR

mpl
, (68)

where s is the entropy density and TR is the reheat tem-
perature of the universe. BBN gives rise to an absolute
upper bound (nX/s) < 10−12 (the exact number depends
on the gravitino mass and its decay modes), which in turn
leads to an upper bound TR < 109 GeV (see e.g. [88, 89]).
Gravitino production during preheating was studied

in [90]. The gravitino equation of motion is the Rarita-
Schwinger equation. Conformal invariance is broken dur-
ing the reheating phase of inflationary cosmology. The
presence of the oscillating inflaton field leads to a period-
ically varying correction to the effective gravitino mass
that results in an instability in the same way that there
is an instability for spin 0 and 1/2 particle modes. The
exact strength of the instability depends sensitively on
the precise SUSY inflationary model one is considering.
Gravitino with helicity ±1/2 component mainly con-

tain the Goldstino component- the inflatino (superpart-
ner of the inflaton), whose interactions are not suppressed
by mpl. One would naturally expect them to be cre-
ated in large abundance. However, in realistic scenarios,
where the scale of inflation is much higher than the scale
of SUSY breaking, e.g. Hinf ≫ O(100 GeV), it was ar-
gued in [91] and explicitly shown in [92] that the helicity
±1/2 states that are produced during preheating mainly
decay in the form of inflatinos along with the inflaton.

B. Metric Preheating

1. Entropy fluctuations

As we have seen repeatedly in this article, the oscillat-
ing inflaton field has potential to lead to preheating of
any fields it couples to. The metric itself is no exception.
Metric fluctuations come in three types (for details see
a review article on the theory of cosmological perturba-
tions, e.g. [93]) - scalar modes, vector modes and tensor
modes. In an expanding universe the vector modes are
negligible since they decay. The tensor modes represent
gravitational waves. The scalar modes are the “cosmo-
logical perturbations” which are sourced by matter fluc-
tuations.

It is possible (see e.g. [93]) to choose a coordinate
system in which the metric including scalar metric fluc-
tuations is diagonal:

ds2 = a2(η)
[

(1 + 2Φ)dη2 − (1− 2Ψ)γijdx
idxj

]

, (69)

where Φ and Ψ are the two scalar metric fluctuation po-
tentials. They are functions of space and time. In the
absence of anisotropic stress (e.g. for scalar field matter)
the two potentials are in fact equal. In the above, a(η)
is the scale factor of the background cosmology and η is
conformal time defined via dt = adη. Also, γij is the
background metric of the spatial sections after factoring
out the cosmological expansion.
In the case of scalar field matter the equation of motion

for the metric fluctuation variable Φ reads (see e.g. [93])

Φ′′ + 2
(

H− φ′′0
φ′0

)

Φ−∇2Φ+ 2
(

H′ −Hφ′′0
φ′0

)

Φ = 0 , (70)

where a prime indicates the derivative with respect to η
and H is the Hubble expansion rate in conformal time.
Also, φ0 denotes the background value of the scalar field.
Note that in the above we are assuming that the pertur-
bations are purely adiabatic (the relative density fluctu-
ations in each matter component are the same). If there
are entropy fluctuations present, there will be a source
term on the right-hand side of (70) which is proportional
to the entropy fluctuation.
It appears from (70) that the oscillations of the back-

ground inflaton field could induce parametric resonance
of the metric fluctuations [94]. From our studies of pre-
heating in Section 3 we would expect the long wavelength
modes to be the most sensitive to this instability. How-
ever, a careful study [95] (see also [96, 97]) showed that
there is no instability of adiabatic metric perturbations
during reheating. This can most easily be seen by fo-
cusing on a new variable ζ, the curvature fluctuation on
constant density hypersurfaces, which is given by

ζ ≡ 2

3

H−1Φ̇ + Φ

1 + w
+Φ , (71)

where w = p/ρ is the equation of state parameter. In the
case of adiabatic fluctuations, ζ on scales larger than the
Hubble radius H−1 satisfies the equation

ζ̇(1 + w) = 0 . (72)

In spite of the fact that during the inflaton oscillations
w = −1 is reached, it can be shown that ζ does not
change.
However, for entropy fluctuations the result is rather

different [98, 99]. Provided that the entropy field (e.g.
the χ field in the chaotic inflation preheating discussion
of Section 3 or the field ψ in the hybrid inflation model)
undergoes a parametric or tachyonic instability and thus
leads to an exponential growth of the entropy fluctua-
tion δS, then the curvature fluctuation ζ will inherit this
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exponential growth. This follows since the entropy fluc-
tuations act as a source for ζ - the equation (72) gets
replaced by

ζ̇ =
ṗ

p+ ρ
δS . (73)

This resonant growth of entropy fluctuations only is
important in models in which the entropy fluctuations are
not suppressed during inflation. Some recent examples
were studied in [100, 101]. The source for this instability
need not be the oscillations of the inflaton field. In SUSY
models, the decay of flat directions can also induce this
instability [102].

2. Gravity waves:

The equation of motion for gravitational waves is sim-
ilar to that of scalar metric fluctuations (70) except that
there is no coupling between the oscillating scalar field
and the wave amplitude. Hence, there is no direct pre-
heating of gravitational waves.
Nevertheless, gravitational waves can be produced by

secondary processes. As analyzed in [103], gravitational
waves can be produced from the interaction of the classi-
cal matter waves produced during preheating. This is a
re-scattering effect. The induced gravitational wave spec-
trum is not scale-invariant but has a pronounced peak
whose frequency is determined by the scale of inflation.
For an inflation energy scale of 1015GeV, the peak of the
spectrum is at about 108Hz. In hybrid inflation models,
the scale of the peak can be in the kHz range relevant
for Advanced LIGO [104]. The amplitude of the peak is
a couple of orders of magnitude higher than the scale-
invariant background of gravity waves produced directly
during inflation.
Recently, several groups [105–108] have performed im-

proved analyses of gravitational wave production during
preheating. The formalism of [105, 107, 108] are quite
general and were applied e.g. to a λφ4 model of infla-
tion [108]. In [109], the formalism for the generation of
gravitational waves was applied to hybrid inflation, and
[106] considered mostly gravitational wave production by
the collision of bubbles formed during the tachyonic reso-
nance in hybrid inflation models. The tachyonic instabil-
ity leads to the formation of bubbles, and the collision of
the bubbles is the primary source of gravitational waves.
In presence of fermionic couplings, see Eq. 65, the inflaton

can fragment to form non-topological solitons [110], since
the fragmentation of the inflaton condensate is inhomo-
geneous and anisotropic, it leads to large production of
gravity waves as shown in [111].

VII. DISCUSSION AND CONCLUSIONS

We have presented an overview of theory and appli-
cation of reheating in inflationary cosmology. Particular
emphasis has been on the preheating mechanisms which
in many models leads to rapid energy transfer between
the inflaton and regular matter.

Our discussion of applications of reheating has been
superficial due to lack of space. We have in fact not
discussed a number of issues such as topological defect
production during preheating [112–114], magnetic field
generation [115, 116], induced non-Gaussianities (see e.g.
[117–120]), preheating in theories with non-Standard ki-
netic terms (see e.g. [121] or extra dimensions (possible
excitation of Kaluza-Klein modes), applications to multi-
field inflation models [122] and to reheating in brane in-
flation models [123], and effects of noise on reheating
[124, 125] (leading to a new proof [126] of Anderson lo-
calization).

It is important to point out that resonant phenomena
which are important in reheating can also play a role in
other areas of cosmology where there are oscillating scalar
fields. One example is in the context of the MSSM where
oscillating moduli fields can lead to resonances [102, 127].
The study of resonant effects in early universe cosmology
is a rich area of research which has of now barely been
touched. Many of the lessons learned in the context of
inflationary reheating have more general applicability.
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