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PREFACE

This problem was born in 1922 when A.Friedmann wrote
his famous cosmological solution for the homogeneous
isotropic Universe. However, during the next 35 years
researches devoted their attention mainly to the physi-
cal processes after the Big Bang and there was no se-
rious attempts to put under a rigorous analysis the phe-
nomenon of the cosmological singularity as such. The
person who inspired the beginning of such analysis was
L.D.Landau. In the late 1950s he formulated the crucial
question whether the cosmological singularity is a gen-
eral phenomenon of General Relativity or it appears only
in particular solutions under the special symmetry con-
ditions. The large amount of work have been done in
Landau school before an answer emerges in 1969 in the
form of the so-called “BKL conjecture” (the present-day
terminology). The basic reviews1 covering also the con-
temporary development are [1]-[14]. The BKL conjec-
ture has its foundation in a collection of results and, first
of all, it asserts that the general solution containing the
cosmological singularity exists. This fundamental ques-
tion of existence of such solution was the principal goal

1 Some of these articles should not be considered merely as reviews
since they contain also the original results. This is relevant especially
for the papers [3], [8] and [13]. For example, the first construction of the
general non oscillatory solution with power asymptotic near singularity
for the case of perfect liquid with stiff matter equation of state and
investigation of the general oscillatory regime in presence of the SU(2)
Yang-Mills field can be found only in [3]. The Iwasawa decomposition
for the metric tensor was first introduced namely in [8]. Manyoriginal
details of the dynamical system approach to cosmological evolution
can be found in [13]. The papers [13] and [14] we mentioned for
completeness in order to remind to a reader on the existence of an
alternative approach to the analysis of the character of cosmological
singularity based on the representation of the Einstein equations in
the form of dynamical system and the serch for the description of its
attractor in vicinity to the singularity. This is powerful method which
can be considered as dual to the "cosmological billird approch" to
which the present talk is mainly dedicated. The restricted time for the
talk prevented to include a discussion also on this important aspect of
the theory.

of our work, however, we succeeded also in describing
the analytical structure of gravitational and matter fields
in asymptotic vicinity to the singularity and we showed
that in most general physical settings such solution has
complicated oscillatory behaviour of chaotic character.

In order to avoid misunderstandings let’s stress that
under cosmological singularity we mean the singularity
in time, when singular manifold is space-like, and when
the curvature invariants together with invariant character-
istics of matter fields (like energy density) diverge on this
manifold. An intuitive feeling that there are no reasons
to doubt in existence of the general solution with cosmo-
logical singularity we have already in 1964 but another
five years passed before the concrete structure have been
discovered. In 1965 appeared the important theorem of
Roger Penrose [15], saying that under some conditions
the appearance of incomplete geodesics in space-time is
unavoidable. This is also singularity but of different type
since, in general, incompleteness does not means that in-
variants diverge. In addition the theorem can say noth-
ing about the analytical structure of the fields near the
points where geodesics terminate. Then Penrose’s result
was not of a direct help for us, nevertheless it stimu-
lated our search. Today it is reasonable to consider that
the BKL conjecture and Penrose theorem represent two
sides of the phenomenon but the links are still far to be
understandable. This is because BKL approach deal with
asymptotic in the vicinity to the singularity and Penrose
theorem has to do with global space-time.

It is worth to stress that some misleading statements
are to be found in the literature in relation to the afore-
mentioned results. First of all, from the BKL theory as
well as from Penrose theorem not yet follows that cos-
mological singularity is inevitable in General Relativity.
BKL showed that the general solution containing such
singularity exists but general in the sense that initial data
under which the cosmological singularity is bound to ap-
pear represent a set of nonzero measure in the space of
all possible data. However, we don’t know “how big” this
measure is and we have no proof that this set can cover
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the totality of initial data. In the non-linear system can be
many general solutions (that is, each containing maximal
number of arbitrary functional parameters) of different
types including also a general solution without singular-
ity. Moreover there is the proof [16] of the global sta-
bility of Minkowski spacetime which means that at least
in some small (but finite) neighbourhood around it exists
a general solution without any singularity at any time.
The same is true in relation to the all versions of Penrose
theorem: for these theorems to be applicable the nontriv-
ial initial/boundary conditions are strictly essential tobe
satisfied, but an infinity of solutions can exists which do
not meet such conditions. The thorough investigation of
applicability of Penrose theorem as well as all its subse-
quent variations the reader can find in [17, 18].

The second delusion is that the general solution with
singularity can be equally applied both to the singular-
ity in future (Big Crunch) and to the singularity in past
(Big Bang) ignoring the fact that these two situations
are quite different physically. To describe what are go-
ing near cosmological Big Crunch (as well as near the
final stage of gravitational collapse of an isolated object
in its co-moving system) one really need the general so-
lution since in the course of evolution inescapably will
arise the arbitrary perturbations and these will reorganize
any regime into the general one. The Big Bang is not the
same phenomenon. We don’t know initial conditions at
the instant of singularity in principle and there are no rea-
sons to expect that they should be taken to be arbitrary.
For example, we can not ruled out the possibility that the
Universe started exactly with the aid of the Friedmann
solution and it may be true that this does not means any
fine tuning from the point of view of the still unknown
physics near such exotic state. Of course, the arbitrary
perturbations familiar from the present day physics will
appear after Big Bang but this is another story. The con-
clusion is that if somebody found the general cosmolog-
ical solution this not yet means that he knows how Uni-
verse really started, however he has grounds to think that
he knows at least something about its end.

Sometimes one can find in literature the statement that
in the BKL approach only the time derivatives are impor-
tant near singularity and because of this the asymptotic
form of Einstein equations became the ordinary differen-
tial equations with respect to time. Such statement is a lit-
tle bit misleading since space-like gradients play the cru-
cial role in appearing the oscillatory regime. One of the
main technical advantage of the BKL approach consists
in identification among the huge number of the space
gradients those terms which are of the same importance
as time derivatives. In the vicinity to the singularity these
terms in no way are negligible, they act during the whole
course of evolution (although from time to time and dur-
ing comparatively short periods) and namely due to them
oscillations arise. The subtle point here is that asymp-

totically these terms can be represented as products of
effective scale coefficients, governing the time evolu-
tion of the metric, and some factors containing space-
like derivatives. This nontrivial separation springing up
in the vicinity to the singular point produce gravitational
equation of motion which effectively are the ordinary dif-
ferential equations in time because all factors containing
space-like derivatives enter these equations solely as ex-
ternal parameters, though dynamically influent parame-
ters. Owing to these ordinary differential equations the
asymptotic evolution can be described as motion of a
particle in some external potential. The aforementioned
dominating space gradients create the reflecting potential
walls responsible for the oscillatory regime. For the case
of homogeneous cosmological model of the Bianchi IX
type such potential have been described by Misner [19].
The literal assertion that “only the time derivatives are
important near singularity” is correct just for those cases
when the general solution is of non oscillatory character
and has simple power asymptotic near singularity as, for
instance, for the cases of perfect liquid with stiff-matter
equation of state [3, 20, 21], pure gravity in space-time
of dimension more than ten [22], or some other classes
of "subcritical" field models [23].

BASIC STRUCTURE OF
COSMOLOGICAL SINGULARITY

The character of the general cosmological solution in
the vicinity to the singularity can most conveniently be
described in the synchronous reference system, where
the interval is of the form

−ds2 = −dt2 + gαβ dxα dxβ (1)

We use a system of units where the Einstein grav-
itational constant and the velocity of light are equal
to unity. The Greek indices refer to three-dimensional
space and assume the values 1,2,3. Latin indicesi,k
will refer to four-dimensional space-time and will take
the values 0,1,2,3. The coordinates are designated as
(x0,x1,x2,x3) = (t,x,y,z).

The Einstein equations in this reference system take
the form

R0
0 =

1
2

κ̇ +
1
4

κα
β κβ

α = T 0
0−

1
2

T , (2)

R0
α =

1
2
(κ,α −κβ

α ;β ) = T 0
α , (3)

Rβ
α =

1
2
√

g
(
√

gκβ
α )̇+ Pβ

α = T β
α − 1

2
δ β

α T , (4)



where the dot signifies differentiation with respect to
time t and

καβ = ġαβ , g = detgαβ . (5)

The tensorial operations on the Greek indices, as well
as covariant differentiation in this system are performed
with respect to the three-dimensional metricgαβ . The
quantityκ is a three-dimensional contraction:

κ = κα
α = (lng)̇ . (6)

Pβ
α is a three-dimensional Ricci tensor, expressed in

terms ofgαβ in the same way asRk
i is expressed in terms

of gik. The quantitiesT 0
0,T

0
α andT β

α are components of
the energy-momentum tensorT k

i four-dimensional con-
traction of which is designated byT .

T =T k
k = T 0

0 + T α
α . (7)

It turn out that the general cosmological solution of
Eqs. (2)-(4) in the asymptotic vicinity of a singularity
with respect to time is of an oscillatory nature and may
be described by an infinite alternation of the so-called
Kasner epochs. The notions of a Kasner epoch and of the
succession of two of these epochs are the key elements
in the dynamics of the oscillatory regime. It is most
convenient to study their properties in the example of
empty space, whenT k

i = 0 and then take into account
all the changes that may be observed in the presence of
matter. This procedure is reasonable since, in general, the
influence of matter upon the solution in the vicinity of the
singularity appears to be either negligible or can be put
under the control.

So let’s assume that the tensorT k
i in Eqs.(2)-(4)

equals zero. A Kasner epoch is a time interval during
which in Eq. (4) the three-dimensional Ricci tensorPβ

α
may be neglected in comparison with the terms involving
time differentiation. Then from (2) and (4) we obtain the
following equations in this approximation:

(
√

gκβ
α )̇ = 0 , κ̇ +

1
2

κα
β κβ

α = 0 . (8)

Here and elsewhere we shall assert that the singularity
corresponds to the instantt = 0 and we shall follow the
evolution of the solution towards the singularity, i.e., the
variation of time as it decreases from certain valuest > 0
down tot = 0. Eq. (3) in the general case is of no interest
for the dynamics of the solution, since its role is reduced
to the establishment of certain additional relations on
arbitrary three-dimensional functions resulting from the
integration of the Eqs.(2),(4) (that is of supplementary
conditions for initial data).

The general solution of Eqs. (8) may be written down
in the form

gαβ = ηABlA
α lB

β , ηAB = diag(t2p1,t2p2,t2p3) (9)

where by the big Latin lettersA,B,C we designate the
three-dimensional frame indices (they take the values
1,2,3). The exponentsp1, p2, p3 and vectorslA

α are arbi-
trary functions of the three-dimensional coordinatesxα .
We call the directions alonglA

α as Kasner axis, the triad
lA
α represents the common eigenvectors both for metric

gαβ and second formκαβ . The exponentsp1, p2, p3 sat-
isfy two relations:

p1 + p2+ p3 = 1, p2
1 + p2

2 + p2
3 = 1. (10)

It ensues from these relations that one of the expo-
nentspA is always negative while the two others are pos-
itive. Consequently, the space expands in one direction
and contracts in two others. Then the value of any three-
dimensional volume element decreases since, according
to (9)-(10), the determinant ofgαβ decreases proportion-
ally to t2.

Of course, the solution (9)-(10) sooner or later will
cease to be valid because the three-dimensional Ricci
tensor Pβ

α contain some terms which are growing with
decreasing of time faster than the terms with time deriva-
tives and our assumption thatPβ

α can be neglected will
become wrong. It is possible to identify these "danger-
ous" terms inPβ

α and include them into the new first
approximation to the Einstein equations, instead of (8).
The remarkable fact is that the asymptotic solution of this
new approximate system can be described in full details
and this description is valid and stable up to the singu-
larity. The result is that the evolution to the singularity
can be represented by a never-ending sequence of Kas-
ner epochs and the singularityt = 0 is the point of its
condensation. The durations of epochs tend to zero and
transitions between them are very short comparatively to
its durations. The determinant of the metric tensorgαβ
tends to zero. On each Kasner epoch the solution take
the form (9)-(10) but each time with new functional pa-
rameters ´pA andĺA

α . On each epoch the exponents ´pA sat-
isfy the same relations (10), that is the space expands in
one direction and contracts in two others, however, from
epoch to epoch these directions are different, i.e. on each
new epoch the Kasner axis rotate relatively to their ar-
rangement at the preceding one.

The effect of rotation of Kasner axis make its use in-
convenient for an analytical description of the asymp-
totic oscillatory regime because this rotation never stops.
However, it turn out that another axis exist (they are not
eigenvectors for the second formκαβ ) , rotation of which
are coming to stop in the limitt → 0 and projection of
the metric tensor into such "asymptotically frozen" (ter-
minology of the authors of Ref. [8]) triad still is a di-
agonal matrix. The components of this matrix have no



limit since their behaviour again can be described by
the never-ending oscillations of a particle against some
potential walls. This is an efficient way to reduce the
description of asymptotic evolution of six components
of the metric tensor to the three oscillating degrees of
freedom. For the homogeneous model of Bianchi type
IX this approach was developed in [24, 25] where the
three-dimensional interval has been represented in the
form gαβ dxα dxβ = (R̃ΓR)AB(lA

α dxα)(lB
β dxβ ) with the

standard Bianchi IX differential formslA
α dxα (wherelA

α
depends only onxα in that special way that∂ν lCµ −
∂µ lCν = CC

ABlA
µ lB

ν with only non-vanishing structural con-
stantsC1

23 = C2
31 = C3

12 = 1). The diagonal matrixΓ and
three-dimensionalorthogonal matrix R depend only on
time (tilde means transposition). Remarkably, the gravi-
tational equations for this model shows that near singu-
larity all three Euler angles of matrixR tends to some
arbitrary limiting constants and three components ofΓ
oscillate between the walls of potential of some special
structure.

We never tried to generalize this approach (namely
with orthogonal matrixR) to the inhomogeneous mod-
els but the recent development of the theory showed
that even in most general inhomogeneous cases (includ-
ing multidimensional spacetime filled by different kind
of matter) there is analogous representation of the met-
ric tensor leading to the same asymptotic freezing phe-
nomenon of "non-diagonal" degrees of freedom and re-
ducing the full dynamics to the few "diagonal" oscillat-
ing scale factors. This is so-called Iwasawa decomposi-
tion first used in [8] and thoroughly investigated in [26].
The difference is that in general inhomogeneous case in-
stead of orthogonal matrixR it is more convenient to
use an upper triangular matrixN (with componentsNA

α
where upper indexA numerates the rows and lower index
α corresponds to columns)

N =





1 n1 n2
0 1 n3
0 0 1



 (11)

and to write three-dimensional interval in the form
gαβ dxα dxβ = (ÑΓN)αβ dxα dxβ ). The diagonal matrix
Γ as well as matrixN are functions of all four coordi-
nates but near the singularity matrixN tends to some
time-independent limit and components ofΓ oscillate be-
tween the walls of some potential. This asymptotic os-
cillatory regime has the well defined Lagrangian. If one
writes matrix Γ as Γ = diag(e−2β 1

,e−2β 2
,e−2β 3

) then
the asymptotic equations of motion for the scale coef-
ficientsβ A became the ordinary differential equations in
time (separately for each pointxα of three-dimensional

space) which follow from the Lagrangian:

L = GAB
dβ A

dτ
dβ B

dτ −V (β A),

V (β A) = C1e−4β 1
+ C2e−2(β 2−β 1) +C3e−2(β 3−β 2) .

(12)
Here we use the new time variableτ instead of original
synchronous timet. In asymptotic vicinity to the singu-
larity the link is dt = −

√

detgαβ dτ where differentials
should be understood only with respect to time, consider-
ing the coordinatesxα in detgαβ formally as fixed quan-
tities. Since detgαβ tends to zero approximately liket2 it
follows that singular limitt → 0 corresponds toτ → ∞.
The metricGAB of three-dimensional space of scale co-
efficientsβ A are defined by the relationGABdβ Adβ B =
∑(dβ A)2− (∑dβ A)2. This is flat Lorenzian metric with
signature (-,+,+) which can be seen from transformation
β 1 = β́ 1 + β́ 2 + β́ 3, β 2 = β́ 1− β́ 2 + β́ 3, β 3 = −β́ 3 af-
ter which one getGABdβ Adβ B =−2(dβ́ 1)2+2(dβ́ 2)2+

2(dβ́ 3)2. All coefficientsCA(xα) are time-independent
and positive; with respect to the dynamics they play a
role of external fixed parameters. Apart from the three
differential equations of second order forβ A which fol-
low from the Lagrangian (12) there is well known addi-
tional constraint

GAB
dβ A

dτ
dβ B

dτ
+V(β A) = 0, (13)

which represents the(0
0) component of the Einstein

equations. In particular case of homogeneous model of
Bianchi type IX equations (12) and (13) gives exactly
the same system which was described in [24, 25], in
spite of the fact that in these last papers the asymptot-
ical freezing of "non-diagonal" metric components has
been obtained using an orthogonal matrixR instead of
Iwasawa’s oneN. Analysis of the eqs. (12)-(13) shows
that in the limitτ → ∞ the exponentsβ A(τ) are positive
and all tend to infinity in such a way that the differences
β 2−β 1 andβ 3−β 2 also are positive and tend to infin-
ity, that is each term in the potentialV (β A) tends to zero.
Then from (13) follows that each trajectoryβ A(τ) be-
comes "time-like" with respect to the metricGAB, i.e.

near singularity we haveGAB
dβ A

dτ
dβ B

dτ < 0, though this
is so only in the extreme vicinity to the potential walls
β 1 = 0, β 2−β 1 = 0 andβ 3−β 2 = 0. Between the walls
whereβ 1 > 0, β 2−β 1 > 0, β 3−β 2 > 0 the potential is
exponentially small and trajectories become "light-like",

i.e. GAB
dβ A

dτ
dβ B

dτ = 0. These periods of "light-like" mo-
tion between the walls corresponds exactly to the Kas-
ner epochs (9)-(10) (with an appropriate identification
of Kasner axis during each period). It is easy to see that
the walls itself are "time-like" what means that collisions
of a "particle moving in a light-like directions" against
the walls are inescapable and interminable.



One of the crucial points discovered in [8] is that in the
limit τ →∞ the walls become infinitely sharp and of infi-
nite height which simplify further the asymptotic picture
and make transparent the reasons of chaoticity of such
oscillatory dynamics. BecauseGABβ Aβ B = −2(β 1β 2 +
β 1β 3+β 2β 3) and near singularity allβ A are positive we
haveGABβ Aβ B < 0. Then by the transformationβ A =
ργA one can introduce instead ofβ A the "radial" coordi-
nateρ > 0 (ρ → ∞ whenτ → ∞) and "angular" coordi-
natesγA subjected to the restrictionGABγAγB = −1. The
last condition pick out inγ-space the two-dimensional
Lobachevsky surface of constant negative curvature and
each trajectoryβ A(τ) has the radially projected trace on
this surface. The free Kasner flights in three-dimensional
β -space between the walls are projected into geodesics
of this two-dimensional surface. The walls are projected
into three curves forming a triangle on the Lobachevsky
surface and reflections against these curves are geometric
(specular). If we introduce the new evolution parameter
T by the relationdτ = ρ2dT then the new Lagrangian
(with respect to the “time”T ) will be:

LT = −
(

d lnρ
dT

)2
+ GAB

dγA

dT
dγB

dT −ρ2V (ργA),

GABγAγB = −1.
(14)

In the limit ρ = ∞ the new potentialρ2V (ργA) is
exactly zero in the region between the walls whereγ1 >
0, γ2− γ1 > 0, γ3− γ2 > 0 and becomes infinitely large
at the pointsγ1 = 0, γ2 − γ1 = 0, γ3 − γ2 = 0 where
the walls are located and behind them where quantities
γ1, γ2 − γ1,γ3 − γ2 are negative. This means that near
singularity potentialρ2V depends only onγ-variables
andρ can be considered as cyclic degree of freedom. In
this way the asymptotic oscillatory regime can be viewed
as the eternal motion of a particle inside a triangular
bounded by the three stationary walls of infinite height
in two-dimensional space of constant negative curvature.
The important fact is that the area occupied by this
triangle is finite. It is well known (see references in
[8], section 5.2.2) that the geodesic motion under the
conditions described is chaotic.

It is worth to mention that in case of homogeneous
Bianchi IX model the fact that its dynamics is equivalent
to a billiard on the Lobachevsky plane was established in
[27].

The numerical calculations confirming the admissi-
bility of the BKL conjecture can be found in [6] and
[28, 29].

THE INFLUENCE OF MATTER

In papers [3, 20, 30] we studied the problem of the in-
fluence of various kinds of matter upon the behaviour

of the general solution of the gravitational equations in
the neighbourhood of a singular point. It is clear that, de-
pending on the form of the energy-momentum tensor, we
may meet three different possibilities: (i) the oscillatory
regime remains as it is in vacuum, i.e. the influence of
matter may be ignored in the first approximation; (ii) the
presence of matter makes the existence of Kasner epochs
near a singular point impossible; (iii) Kasner epochs ex-
ist as before, but matter strongly affects the process of
their formation and alternation. Actually, all these possi-
bilities may be realized.

There is a case in which the oscillatory regime ob-
served as a singular point is approached remains the
same, in the first approximation, as in vacuum. This case
is realized in a space filled with a perfect liquid with the
equation of statep = kε for 0 < k < 1. No additional re-
flecting walls arise from the energy-momentum tensor in
this case.

If k = 1 we have the "stiff matter" equation of state
p = ε. This is the second of the above-mentioned possi-
bilities when neither Kasner epoch nor oscillatory regime
can exist in the vicinity of a singular point. This case
has been investigated in [3, 20] where it has been shown
that the influence of the "stiff matter" (equivalent to the
massless scalar field) results in the violation of the Kas-
ner relations (10) for the asymptotic exponents. Instead
we have

p1 + p2+ p3 = 1, p2
1 + p2

2+ p2
3 = 1− p2

ϕ (15)

where p2
ϕ is an arbitrary three-dimensional function

(with the restrictionp2
ϕ < 1) to which the energy den-

sity ε of the matter is proportional (in that particular
case when the stiff-matter source is realized as a mass-
less scalar fieldϕ its asymptotic isϕ = pϕ ln t and this is
the formal reason why we use the indexϕ for the addi-
tional exponentpϕ ).

Thanks to (15), in contrast to the Kasner relations
(10), it is possible for all three exponentspA to be pos-
itive. In [20] it has been shown that, even if the con-
traction of space starts with the quasi-Kasner epoch (15)
during which one of the exponentspA is negative, the
asymptotic behaviour (9) with all positive exponents is
inevitably established after a finite number of oscillations
and remains unchanged up to the singular point. Thus,
for the equation of statep = ε the collapse in the gen-
eral solution is described by monotonic (but anisotropic)
contraction of space along all directions. The asymp-
totic of the general solution near cosmological singular-
ity for this case we constructed explicitly in [3], see also
[20, 21, 23]. The disappearance of oscillations for the
case of a massless scalar field should be consider as an
isolated phenomenon which is unstable with respect to
inclusion into the right hand side of the Einstein equa-
tions another kind of fields. For instance, in the same pa-



per [20] we showed that if to the scalar field we add a
vector one then the endless oscillations reappear.

The cosmological evolution in the presence of an elec-
tromagnetic field may serve as an example of the third
possibility. In this case the oscillatory regime in the pres-
ence of matter is, as usual, described by the alternation of
Kasner epochs, but in this process the energy-momentum
tensor plays a role as important as the three-dimensional
curvature tensor. This problem has been treated by us
in [30], where it has been shown that in addition to the
vacuum reflecting walls also the new walls arise caused
by the energy-momentum tensor of the electromagnetic
field. The electromagnetic type of alternation of epochs,
however, qualitatively takes place according to the same
laws as in vacuum.

In paper [3] we have also studied the problem of
the influence of the Yang-Mills fields on the charac-
ter of the cosmological singularity. For definiteness, we
have restricted ourselves to fields corresponding to the
gauge group SU(2). The study was performed in the syn-
chronous reference system in the gauge when the time
components of all three vector fields are equal to zero.
It was shown that, in the neighbourhood of a cosmolog-
ical singularity, the behaviour of the Yang-Mills fields is
largely similar to the behaviour of the electromagnetic
field: as before, there appears an oscillatory regime de-
scribed by the alternation of Kasner epochs, which is
caused either by the three-dimensional curvature or by
the energy-momentum tensor. If, in the process of al-
ternation of epochs, the energy-momentum tensor of the
gauge fields is dominating, the qualitative behaviour of
the solution during the epochs and in the transition re-
gion between them is like the behavior in the case of free
Yang-Mills fields (with the Abelian group). This does
not mean that non-linear terms of the interaction may be
neglected completely, but the latter introduce only mi-
nor, unimportant quantitative changes into the picture we
would observe in the case of non-interacting fields. The
reason for this lies in the absence of time derivatives of
the gauge field strengths in those terms of the equations
of motion which describe the interaction.

MULTIDIMENSIONAL SPACETIME
AND SUPERGRAVITY

The story resembling the aforementioned effect of dis-
sappearance (for scalar field) and reconstruction (after
adding a vector field) of oscillations occurred later in
more general and quite different circumstances. In 1985
appeared very interesting and unexpected result [22]
that oscillatory regime near cosmological singularity in
multidimensional spacetime (for pure gravity) holds for
spacetime dimensionD up toD = 10 but for dimension

D ≥ 11 the asymptotic of the general solution follow the
smooth multidimensional Kasner power law. Up to now
we have no idea why this separating border coincides
with dimension so significant for superstring theories,
most likely it is just an accident. However, the important
point is that if we will add to the vacuum multidimen-
sional gravity the fields ofp-forms the presence of which
is dictated by the low energy limit of superstring mod-
els, the oscillatory regime will reappear. This fact was
established in [31, 32] and subsequently has been devel-
oped by T.Damour, M.Henneaux, H.Nicolai, B.Julia and
their collaborates into the new interesting and promis-
ing branch of superstring theories. In articles [31, 32] it
was demonstrated that bosonic sectors of supergravities
emerging in the low energy limit from all types of super-
string models have oscillatory cosmological singularity
of the BKL character. Let consider the action of the fol-
lowing general form:

S =

∫

dDx
√

g

[

R− ∂ iϕ∂iϕ−

−1
2 ∑

p

1
(p +1)!

eλpϕF (p+1)
i1...ip+1

F(p+1)i1...ip+1

] (16)

whereF (p+1) designates the the field strengths generated

by the p-forms Ap, i.e. F(p+1)
i1...ip+1

= antisym(∂i1Ai2...ip+1).

The real parametersλp are coupling constants corre-
sponding to the interaction between the dilaton and
p-forms. The tensorial operations in (16) are carring
out with respect toD-dimensional metricgik and
g = |detgik|. Now the small Latin indices refer toD-
dimensional space-time and Greek indices (as well as
big Latin frame indicesA,B and C) correspond tod-
dimensional space whered = D−1. Also in this theory
the Kasner-like epochs exist which are of the form:

gikdxidxk = −dt2+ ηAB(t,xα)lA
µ(xα)lB

ν (xα )dxµdxν ,

ηAB = diag[t2p1(x
α ),t2p2(x

α ), ...,t2pd(xα )],
(17)

ϕ = pϕ(xα) ln t + ϕ0(x
α ). (18)

However, in the presence of the dilaton the exponentspA
instead of the Kasner law satisfy the relations analogous
to (15):

d

∑
A=1

pA = 1,
d

∑
A=1

p2
A = 1− p2

ϕ (19)

The approximate solution (17)-(19) follows from the
D-dimensional Einstein equations by neglecting the
energy-momentum tensor ofp-forms, d-dimensional
curvature tensorPβ

α and spatial derivatives ofϕ . Now
one has to do the work analogous to that one for 4-
dimensional gravity: it is necessary to identify in all ne-
glected parts of the equations those "dangerous" terms
which will destroy the solution (17)-(19) in the limit



t → 0. Then one should construct the new first approx-
imation to the equations taking into account also these
“dangerous” terms and try to find asymptotic solution
for this new system. This is the same method which have
been used in case of the 4-dimensional gravity with elec-
tromagnetic field and it works well also here. Using the
Iwasawa decomposition ford-dimensional frame metric
ηAB = (ÑΓN)AB whereΓ = diag(e−2β 1

,e−2β 2
, ...,e−2β d

)
it can be shown [8] that near singularity again the phe-
nomenon of freezing of "non-diagonal" degrees of free-
dom of the metric tensor arise and the foregoing new
approximate system reduces to the ordinary differen-
tial equations (for each spatial point) for the variables
β 1, ...,β d andβ d+1 whereβ d+1 = −ϕ . It is convenient
to use thed +1-dimensional flat superspace with coordi-
natesβ 1, ...,β d+1 and correspondingly new indices̄A, B̄
running over values 1, ...,d + 1. The metricGĀB̄ in this
superspace is

GĀB̄dβ Ādβ B̄ =
d

∑
A=1

(dβ A)2− (
d

∑
A=1

dβ A)2 +
(

dβ d+1
)2

.

(20)
The asymptotic dynamics forβ -variables follows from
the Lagrangian of the form similar to (14):

LT = −
(

d lnρ
dT

)2
+ GĀB̄

dγ Ā

dT
dγ B̄

dT −ρ2∑b Cbe−2ρwb(γ),

GĀB̄γ Āγ B̄ = −1.
(21)

Again (0
0) component of the Einstein equations gives

additional condition to the equations of motion following
from this Lagrangian:

−
(

d lnρ
dT

)2

+ GĀB̄
dγ Ā

dT
dγ B̄

dT
+ ρ2∑

b

Cbe−2ρwb(γ) = 0.

(22)
Here β Ā = ργ Ā and time parametersT andτ are de-
fined by the evident generalization to the multidimen-
sional spacetime of their definitions we used in case of
4-dimensional gravity:dt =−

√

detgαβ dτ, dτ = ρ2dT .
All functional parametersCb(xα) in general are positive.
The cosmological singularity corresponds to the the limit
ρ → ∞ and in this limit potential term in Lagrangian can
be considered asρ-independent, asymptotically it vanish
in the region of this space wherewb(γ) > 0 and is in-
finite wherewb(γ) < 0.The sum in the potential means
summation over all relevant (dominating) impenetrable
barriers located at hypersurfaces wherewb(γ) = 0 in the
hyperbolicd-dimensionalγ-space. Allwb(γ) are linear
functions onγ thereforewb(γ) = ρ−1wb(β ). The free
motion ofβ Ā(τ) between the walls in the originald +1-
dimensionalβ -superspace is projected onto a geodesic
motion of γ Ā(T ) on hyperbolicd-dimensionalγ-space,
i.e. to the motion between the corresponding projections

of the original walls ontoγ-space. These geodesic mo-
tions from time to time are interrupted by specular re-
flections against the infinitely sharp hyperplaneswb(γ) =
0. These hyperplanes bound a region inγ-space inside
which a symbolic particle oscillates and the volume of
this region, in spite of its non-compactness, is finite. The
last property is of principle significance since it leads to
the chaotic character of the oscillatory regime.

Of course, one of the central point here is to find all the
aforementioned dominant walls and corresponding "wall
forms"wb(β ). This depends on the spacetime dimension
and menu ofp-forms. In papers [33, 7, 8] the detailed
description of all possibilities for the all types of super-
gravities (i.e., eleven-dimensional supergravity and those
following from the known five types of the superstring
models in ten-dimensional spacetime) can be found. It
was shown that in all cases there is only 10 relevant walls
governing the oscillatory dynamics. The large number of
other walls need no consideration because they are lo-
cated behind these principal ten and have no influence
on the dynamics in the first approximation. The men-
tioned above region inγ-space where a particle oscil-
late is called "billiard table" and collection of its bound-
ing walls forms the so-called Coxeter crystallographic
simplex, that is, in the cases under consideration, poly-
hedron with 10 faces in 9-dimensionalγ-space with all
dihedral angles between the faces equal to the numbers
π/n wheren belongs to some distinguished set of nat-
ural numbers (or equal to infinity). This is very special
geometric construction which (when combined with the
specular laws of reflections against the faces) lead to the
nontrivial huge symmetry hidden in the asymptotic struc-
ture of spacetime near cosmological singularity which
symmetry coexists, nevertheless, with chaoticity.

DAMOUR-HENNAUX-NICOLAI
HIDDEN SYMMETRY CONJECTURE

The mathematical description of the symmetry we are
talking about can be achieved in the following way. Con-
sider the trajectoriesβ Ā(τ) of a particle moving between
the wallswb(β ) = 0 in the original 10-dimensionalβ -
superspace with coordinatesβ Ā and metricGĀB̄ (20).
These trajectories are null stright lines with respect to
the Lorenzian metricGĀB̄. Wall forms wb(β ) are lin-
ear function onβ , that iswb = wbĀβ Ā where the set of
constantswbĀ depends on the choice of a supergravity
model and on the type of the wall (indexb) in the chosen
model. We see that for each wallwb = 0 the constants
wbĀ represent components of the vector orthogonal to to
this wall. We can imagine all these vectors (for differ-
entb) as arrows starting at the origin of theβ -space. All
these vectors have fixed finite normGĀB̄wbĀwbB̄ (GĀB̄ is



inverse to GĀB̄) and one can arrange the scalar products
(wa •wb) = GĀB̄waĀwbB̄ for each supergravity model in
the form of the matrix:

Aab = 2
(wa •wb)

(wa •wa)
(no summation ina). (23)

The crucial point is that, independently of a supergrav-
ity model,Aab is the Cartan matrix of indefinite type, i.e.
with one negative principal value [8, 33, 34, 35]. Any
Cartan matrix can be associated with some Lie algebra
and particular matrix (23) corresponds to the so-called
Lorenzian hyperbolic Kac-Moody algebra of the rank
10. As was shown in [31] the particle’s velocityvĀ =

dβ Ā/dτ after the reflection from the wallwaĀβ Ā = 0
changes according to the universal (i.e. again indepen-
dent of the model) law:

(vĀ)a f ter = (vĀ)be f ore −2
(vB̄)be f orewaB̄

(wa•wa) wĀ
a ,

wĀ
a = GĀB̄waB̄, (no summation ina).

(24)

This transformation is nothing else but the already men-
tioned specular reflection of a particle by the wall or-
thogonal to the vectorwaĀ. Now it is clear that one can
formally identify the ten vectorswaĀ with the simple
roots of the root system of Kac-Moody algebra, the walls
waĀβ Ā = 0 with the Weyl hyperplanes orthogonal to the
simple roots, the reflections (24) with the elements of
the Weyl group of the root system and the region ofβ -
superspace bounded by the walls (where a particle oscil-
lates) with the fundamental Weyl chamber. For the read-
ers less familiar with all these notions of the theory of
generalized Lie algebras (especially in application to the
question under consideration) we can recommend the ex-
haustive review [10] which is well written also from ped-
agogical point of view.

The manifestation of Lie algebra means that the cor-
responding Lie symmetry group must somehow be hid-
den in the system . The hidden symmetry conjecture
[35, 36, 37] proposes that this symmetry might be inher-
ent for the exact superstring theories (assuming that they
exist) and not only for their classical low energy limits of
their bosonic sectors in the vicinity to the cosmological
singularity. The limiting structure near singularity should
be considered just as an auxiliary instrument by means
of which this symmetry is coming to light. As of now we
have no comprehension where and how exactly the sym-
metry would act (could be as a continuous infinite dimen-
sional symmetry group of the exact Lagrangian permit-
ting to transform the given solutions of the equations of
motion to the new solutions). If true the hidden symmetry
conjecture could create an impetus for the third revolu-
tion in the development of the superstring theories.
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